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It is shown that the evolution of an axially and reflection symmetric fluid distribution, satisfying the
Tolman condition for thermal equilibrium, is not accompanied by the emission of gravitational radiation.
This result, which was conjectured by Bondi many years ago, expresses the irreversibility associated to the
emission of gravitational waves. The observational consequences emerging from this result are
commented. The resulting models are not only nondissipative and vorticity free, but also shear-free
and geodesic, furthermore all their complexity factors vanish.
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I. INTRODUCTION

In his seminal paper on gravitational radiation [1] Bondi
wrote (Section 6): “If the distinction between radiative and
non-radiative motions is locally significant then the clearest
self-consistent distinction appears to be between cases where
the equations of state do not involve the time explicitly and
are time reversible (no dissipation), and others.”
In other words, the irreversibility of the process of

emission of gravitational waves must be reflected in the
equation of state of the source through an entropy increas-
ing (dissipative) factor.
The rationale supporting this conjecture is very clear:

radiation is an irreversible process, this fact emerges at once
if absorption is taken into account and/or Sommerfeld type
conditions, which eliminate inward traveling waves, are
imposed. Therefore, it is obvious that an entropy generator
factor should be present in the description of the source.
However, since the Bondi’s work deals exclusively with

the space-time outside the source (more so, far from the
source), the above mentioned relationship between gravi-
tational radiation and dissipative processes within the
source, remained so far a conjecture (a very reasonable
one though).

It is the purpose of this work to provide a definitive proof
of the Bondi’s conjecture.
For doing that we shall resort to a general formalism to

describe the evolution of dissipative axially and reflection
symmetric fluid distribution presented in [2], based in the
1þ 3 formalism developed in [3–6].
Our proof develops in two steps. We shall first prove that

assuming the Tolman condition [7] to be satisfied (implying
the absence of dissipative flux), the fluid is necessarily
vorticity free. Next, using this last condition and the
absence of dissipation we shall prove that the magnetic
part of the Weyl tensor vanishes. This last result closes
the proof of the Bondi’s conjecture, since it implies the
vanishing of the super-Poynting vector. Indeed, in the
theory of the super-Poynting vector, a state of gravitational
radiation is associated to a nonvanishing component of the
latter (see [8–10]). This in turn is in agreement with
the established link between the super-Poynting vector
and the news functions [11], in the context of the Bondi-
Sachs approach [1,12].
Besides we shall see that the fluid is necessarily shear-

free, geodesic and all their complexity factors vanish.
In the next section we shall briefly summarize the main

equations required for our proof. Then we shall proceed
with the proof following the steps outlined before. Finally
we discuss about the physical relevance of our results.
Some basic definitions and intermediate formulae are given
in the Appendix.
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II. THE METRIC AND THE SOURCE: BASIC
EQUATIONS AND NOTATION

As mentioned before, we shall resort to the general
approach fully deployed in [2] in order to achieve our goal.
In this section we shall present very briefly the most general
properties of the space-time under consideration and the
matter content of the source. The reader is referred to [2]
and the Appendix for any specific detail of calculation.
We shall consider axially (and reflection) symmetric

sources. For such a system the most general line element
may be written in “Weyl spherical coordinates” as

ds2¼−A2dt2þB2ðdr2þ r2dθ2ÞþC2dϕ2þ2Gdθdt; ð1Þ

whereA,B,C,G are functions of t, r, and θ, of classCω, with
A, B,C positive defined. We number the coordinates x0 ¼ t,
x1 ¼ r, x2 ¼ θ, x3 ¼ ϕ. At this point it is important to stress
that due to the reflection symmetry [no dtdϕ terms in (1)],
rotations around the symmetry axe are excluded, and
vorticity is associated with motion along the θ direction.
The inverse components of the metric are given by

gαβ ¼

0
BBBBB@

− B2r2

A2B2r2þG2 0 G
A2B2r2þG2 0

0 1
B2 0 0

G
A2B2r2þG2 0 A2

A2B2r2þG2 0

0 0 0 1
C2

1
CCCCCA
: ð2Þ

We shall assume that our source is filled with an anisotropic
and dissipative fluid. The energy momentum tensor may be
written in the “canonical” form as

Tαβ ¼ ðμþ PÞVαVβ þ Pgαβ þ Παβ þ qαVβ þ qβVα: ð3Þ

The above is the canonical, algebraic decomposition of a
second order symmetric tensor with respect to unit timelike
vector, which has the standard physical meaning where Tαβ

is the energy-momentum tensor describing some energy
distribution and Vμ the four-velocity assigned by certain
observer. In our case we are considering an Eckart frame
where fluid elements are at rest.
With the above definitions it is clear that μ is the energy

density (the eigenvalue of Tαβ for eigenvector Vα), qα is the
heat flux, whereas P is the isotropic pressure, andΠαβ is the
anisotropic tensor.
Since we choose the fluid to be comoving in our

coordinates, then

Vα ¼
�
1

A
; 0; 0; 0

�
; Vα ¼

�
−A; 0;

G
A
; 0

�
: ð4Þ

Next, let us introduce the unit, spacelike vectors K, L, S,
with components

Kα ¼ ð0; B; 0; 0Þ; Kα ¼
�
0;

1

B
; 0; 0

�
; ð5Þ

Lα ¼
�

G

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p ; 0;
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þ G2
p ; 0

�
; ð6Þ

Lα ¼
�
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p

A
; 0

�
; ð7Þ

Sα ¼ ð0; 0; 0; CÞ; Sα ¼
�
0; 0; 0;

1

C

�
; ð8Þ

satisfying the following relations:

VαVα ¼ −KαKα ¼ −LαLα ¼ −SαSα ¼ −1; ð9Þ

VαKα ¼VαLα ¼VαSα ¼KαLα ¼KαSα ¼ SαLα ¼ 0: ð10Þ

The unitary vectors Vα, Lα, Sα, Kα form a canonical

orthonormal tetrad (say eðaÞα ), such that

eð0Þα ¼ Vα; eð1Þα ¼ Kα; eð2Þα ¼ Lα; eð3Þα ¼ Sα;

with a ¼ 0, 1, 2, 3 (latin indices labeling different vectors
of the tetrad). The dual vector tetrad eαðaÞ is easily computed

from the condition

ηðaÞðbÞ ¼ gαβeαðaÞe
β
ðbÞ:

We shall express all kinematical and physical variables,
as well as the equations relating them, in terms of
their tetrad components. These expressions are explicitly
deployed in the Appendix.

III. PROVING THAT NO DISSIPATION IMPLIES
NO GRAVITATIONAL RADIATION

In order to ensure the absence of dissipation we have to
impose the Tolman conditions for thermodynamic equilib-
rium [7]. Such conditions emerge from the fact that,
according to special relativity, all forms of energy have
inertia, and therefore this should also apply to heat. Then,
because of the equivalence principle, there should also be
some weight associated to heat, and one should expect that
thermal energy tends to displace to regions of lower
gravitational potential. This in turn implies that the con-
dition of thermal equilibrium in the presence of a gravi-
tational field must change with respect to its form in the
absence of gravity. Thus, a temperature gradient is neces-
sary in thermal equilibrium in order to prevent the flow of
heat from regions of higher to lower gravitational potential.
Tolman deduced such conditions without any reference to
any specific transport equation, however, as expected, for
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any consistent transport equation, the absence of dissipa-
tion should lead to Tolman conditions.
Thus, for example, in the Müller-Israel-Stewart second

order phenomenological theory for dissipative fluids
[13–16]), the transport equation reads

τhμνqν;βV
β þ qμ ¼ −κhμνðT;ν þ TaνÞ

−
1

2
κT2

�
τVα

κT2

�
;α

qμ; ð11Þ

where τ, κ, T denote the relaxation time, the thermal
conductivity, and the temperature, respectively.
From (11) we see that the absence of dissipative flux

implies at once

hμνðT;ν þ TaνÞ ¼ 0; ð12Þ

which are the Tolman conditions.
We have now all the ingredients required for our proof.

Some relevant equations are written down in the Appendix.
We shall assume that the system is in thermodynamic

equilibrium, implying that the Tolman conditions (12) are
satisfied, i.e.,

aμ ¼ −hνμΓ;v Γ≡ lnT: ð13Þ

From the above equation it follows that

a1 ¼ −Γ0; a2 ¼ −
GΓ̇
A2

− Γ;θ: ð14Þ

Using (14) in (A40) produces

K½μLν�aμ;ν ¼ VμΓ;μΩ; ð15Þ

which combined with (A39) produces

Ω;δVδ þ 1

3
ð2Θþ σI þ σII þ 3VμΓ;μÞΩ ¼ 0: ð16Þ

The consequences derived from the above equation are far
reaching. Indeed, if we assume that the system is initially
static (at t ¼ 0 say), and assume that it starts to evolve
afterward, keeping the thermodynamic equilibrium, then the
evolving fluid would be vorticity-free. This result is in full
agreement with earlier works indicating that vorticity gen-
eration is sourced by entropy gradients [17–21]. At the same
time this result reinforces further the Bondi’s conjecture
about the absence of radiation for nondissipative systems, if
we recall the radiation-vorticity link discussed in [11,22].
However, we have not yet a formal proof of the conjecture.
For that we need to prove that a system evolving without
dissipation and vorticity cannot radiate gravitational radia-
tion, i.e., we have to show that during the evolution regime,

after leaving the dynamic equilibrium, H1 ¼ H2 ¼ 0 all
along the evolution.
Thus we consider a system that during its evolution

satisfies the conditions

qI ¼ qII ¼ 0 ⇒ Ω ¼ 0 ⇒ σI ¼ σII ¼ σ: ð17Þ

Then from (A42) we obtain

ð2Θ − σÞ0
3

¼ σC0

C
; ð18Þ

whereas (A43) reads

ð2Θ − σÞ;θ
3

¼ σC;θ

C
: ð19Þ

Also, (A44)–(A46) become

H1 ¼ −
ðσCÞ;θ
2rBC

; ð20Þ

H2 ¼
ðσCÞ0
2BC

; ð21Þ

and

H0
1

B
þH2;θ

Br
þH1

B

�
2C0

C
þ ðBrÞ0

Br

�
þH2

Br

�
2C;θ

C
þ ðBrÞ;θ

Br

�
¼ 0;

ð22Þ

respectively.
Using (20) and (21) in (22) we obtain

H1C0 þH2

C;θ

r
¼ 0 ð23Þ

H0
1

B
þH2;θ

Br
þH1

B
ðBrÞ0
Br

þH2

Br

ðBrÞ;θ
Br

¼ 0; ð24Þ

from which it is obvious that the vanishing of either one of
the scalars (H1 or H2) implies the vanishing of the other.
Finally let us notice that using (18) and (19) in (20) and

(21) we may write

H1 ¼ −
1

rB

�
Ḃ
AB

�
;θ
; ð25Þ

H2 ¼
1

B

�
Ḃ
AB

�0
: ð26Þ

Let us now proceed to the second part of the proof.
We start from an initially static situation, meaning that at

t ¼ 0, we have Ȧ ¼ Ḃ ¼ Ċ ¼ σ ¼ Θ ¼ H1 ¼ H2 ¼ 0.
Besides, conditions (17) are satisfied for all t.

IRREVERSIBILITY AND GRAVITATIONAL RADIATION: A … PHYS. REV. D 109, 024005 (2024)

024005-3



Let us take the first time derivatives of (25), (26), (A42),
and (A43) evaluated at t ¼ 0, we obtain, respectively,

Ḣ1 ¼ −
1

rB

�
B̈
AB

�
;θ
; ð27Þ

Ḣ2 ¼
1

B

�
B̈
AB

�0
; ð28Þ

8πq̇IB ¼
�
1

A

�
B̈
B
þ C̈
C

��0
−
�

B̈
AB

−
C̈
AC

�
C0

C
¼ 0; ð29Þ

and

8πq̇IIBr ¼
�
1

A

�
B̈
B
þ C̈
C

��
;θ
−
�

B̈
AB

−
C̈
AC

�
C;θ

C
¼ 0: ð30Þ

From regularity conditions (A19) and (A20) at r ≈ 0, and
from the fact that A, B, C and their derivatives are regular at
r ≈ 0 we may write at r ≈ 0, using (29)

W ≡ B̈
AB

−
C̈
AC

≈ r ≈ 0: ð31Þ

Taking successive r derivatives of (29) it is a simple
matter to check that all r derivatives (of any order) of W
vanish at r ≈ 0, implying that W ¼ 0 for all values of r
within the fluid distribution.
Thus at t ≈ 0 we have

B̈
AB

−
C̈
AC

¼ 0; ð32Þ

for all values of r within the fluid distribution.
Feeding back (32) into (30), we obtain

�
B̈
AB

�
;θ
¼

�
C̈
AC

�
;θ
¼ 0; ð33Þ

which combined with (27) produces Ḣ1 ¼ 0, and by virtue
of (23), Ḣ2 ¼ 0 as well.
Next, feeding back (31) into (29) produces

�
B̈
AB

�0
¼

�
C̈
AC

�0
¼ 0; ð34Þ

implying because A and B andC are independent functions,
that the only admissible solution to (34) (which is an
identity) is A0 ¼ 0, and B and C are separable functions.
The next step consists in proving that time derivatives of

any order of H1 and H2 evaluated at t ≈ 0 also vanish, i.e.,

H1

ðmÞ
¼H0

ðmÞ
¼ 0 ðfor anym ≥ 1Þ; where X

ðmÞ≡ ∂
mX
∂tm

; ð35Þ

this would imply that H1 ¼ H2 ¼ 0 for any t.
For doing that we shall retrace the same steps above,

using (17) and the results obtained so far.
Thus, taking them-time derivative (withm ≥ 1) of (A42)

and (A43) we may write

B
ðmþ1Þ

AB
¼ C

ðmþ1Þ

AC
: ð36Þ

Also taking the m-time derivative of (25) and (26)
produces

H1

ðmÞ
¼ −

1

Br

�
B

ðmþ1Þ

AB

�
;θ
; ð37Þ

H2

ðmÞ
¼ 1

B

�
B

ðmþ1Þ

AB

�0
: ð38Þ

Using the separability of B and the fact that A0 ¼ 0, in (38)
it follows at once that

H2

ðmÞ
¼ 0; ð39Þ

which by virtue of (23) implies H1

ðmÞ
¼ 0.

Thus if the system is initially static and evolves without
vorticity and without dissipation then all time derivatives of
any order of H1 and H2 vanish for all values of r, implying
that H1 ¼ H2 ¼ 0 at all times.
There is yet another, perhaps more simple, way to prove

the above mentioned statement. Indeed, it is a simple matter
to see that the m-time derivative of σ evaluated at t ¼ 0, for
any m ≥ 1 reads

σ
ðmÞ ¼ 1

B

�
B

ðmþ1Þ

AB
−

C
ðmþ1Þ

AC

�
; ð40Þ

implying because of (36) that time derivatives of σ of any
order vanish at t ¼ 0, implying in its turn that the fluid is
shear-free. But as shown in [23], for a shear-free fluid (not
necessarily perfect fluid), the necessary and sufficient
condition to be irrotational is that the Weyl tensor be
purely electric; this generalizes a result by Barnes [24,25]
and Glass [26]. Besides, it is worth noticing that H1 ¼
H2 ¼ 0 implies that the fluid is also geodesic A0 ¼ A;θ ¼ 0.
Thus according to (A38) the two components of the

super-Poynting vector vanish, meaning that no gravita-
tional radiation is produced during the evolution of the
system.
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IV. CONCLUSIONS

The purpose of this work was to prove the correctness of
the Bondi conjecture about the irreversibility associated
with gravitational radiation. In other words, a reversible
flow (q ¼ 0) implies no gravitational radiation. We proved
that, by showing that the absence of dissipative flux during
the evolution (fulfillment of Tolman conditions), implies
that magnetic parts of the Weyl tensor vanish, thereby
implying the vanishing of the super-Poynting vector.
At this point, it is worth stressing the fact that a reversible

flow, e.g., a perfect isotropic fluid, does not necessarily imply
noncrossing of flow lines (geodesic), unless we assume that
pressure gradients vanish. Indeed, for a perfect (isotropic and
nondissipative) fluid the equation of motion reads

ðμþ PÞaα ¼ hανP;ν; ð41Þ

from where is clear that the geodesic condition (aα ¼ 0),
automatically implies vanishing of pressure gradients. In this
latter case if the fluid is bounded, and we impose matching
conditions on the boundary surface, then the pressure
vanishes and we have geodesic dust.
As a byproduct of our proof it appears that the vorticity of

the fluid also vanishes under the conditionmentioned above,
bringing out, on the one hand the link of vorticity with
dissipative processes already established in [18–21], and on
the other hand the link between vorticity and gravitational
radiation discussed in [11,22] (and references therein).
It is worth mentioning that the fluid configuration

emerging from our restrictions, not only is nonradiative
(gravitationally), shear-free, nondissipative and vorticity
free, but is also geodesic, as a consequence of which the
Tolman conditions imply a homogeneous temperature.
These kind of solutions have been investigated in detail
in [27,28]. Such solutions are in general nonconformally
flat, with the electric Weyl tensor (A22) being defined
through the scalars

EI ¼ EIð0Þ exp
�
−
2

3

Z
Θdt

�
;

EII ¼ EIIð0Þ exp
�
−
2

3

Z
Θdt

�
;

EKL ¼ EKLð0Þ exp
�
−
2

3

Z
Θdt

�
; ð42Þ

with Θ ¼ ΘðtÞ.
Also, these models are characterized by the vanishing of

the trace-free part of the tensor Yαβ (see [23] for details), i.e.,

YI ¼ YKL ¼ YII ¼ 0: ð43Þ

Parenthetically, these three scalars haven been proposed
to describe the degree of complexity of a fluid distribution
[29,30]. Thus according to the criterium assumed in these

references, the resulting models are the simplest among
those belonging to the family of space-times described
by (1).
Finally, we would like to conclude with two remarks:
(1) The fact that the emission of gravitational radiation

requires the presence of dissipative flux within the
source to account by the irreversibility of the process,
implies that any detected burst of gravitational waves
should be accompanied by a burst of thermal radia-
tion, which in principle could be observed too.

(2) An alternativeway of proving the Bondi’s conjecture
could be provided by assuming a perfect fluid (so
that T ¼ ðmuþ pÞVV þ pgÞ with an equation of
state p ¼ pðμ; sÞwhere μ is the energy density and s
the specific entropy. Then, from the generalized
Gibbs equation and the Bianchi identities, it follows
that (see for example [31])

TSα;α ¼ −qα
�
hμαðlnTÞ;μ þ Vα;μVμ þ β1qα;μVμ

þ T
2

�
β1
T
Vμ

�
;μ

qα

�
; ð44Þ

where Sα is the entropy four current and β1 ¼ τ
κT. If

we assume from the beginning that the matter
content of the source is a perfect fluid (no heat flux
vector) then Sα;α ¼ 0, implying that the entropy is
constant and Tolman conditions are satisfied. From
this point, there are different ways to prove that no
gravitational radiation is produced, one of which is
the one we have chosen in this manuscript, though it
is not the only one.
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APPENDIX: SUMMARY OF SCALAR
VARIABLES AND EQUATIONS

The required equations for our proof are given explicitly
in [2]. Here for self-consistency we present a brief summary
of them, including only those equations explicitly required
for our proof. The reader is referred to [2] for details of
calculations.
The anisotropic tensor may be expressed in the form

Παβ ¼
1

3
ð2ΠI þ ΠIIÞ

�
KαKβ −

hαβ
3

�

þ 1

3
ð2ΠII þ ΠIÞ

�
LαLβ −

hαβ
3

�

þ 2ΠKLKðαLβÞ; ðA1Þ
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with hμν ¼ gμν þ VνVμ,

ΠKL ¼ KαLβTαβ; ðA2Þ

ΠI ¼ ð2KαKβ − LαLβ − SαSβÞTαβ; ðA3Þ

ΠII ¼ ð2LαLβ − SαSβ − KαKβÞTαβ: ðA4Þ

The heat flux vector may be written as

qμ ¼ qIKμ þ qIILμ; ðA5Þ

or, in coordinate components

qμ ¼
�

qIIG

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p ;
qI
B
;

AqIIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p ; 0

�
; ðA6Þ

qμ ¼
�
0; BqI;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p
qII

A
; 0

�
: ðA7Þ

Of course, all the above quantities depend, in general, on t,
r, θ.
The kinematical variables (four acceleration, expansion

scalar, shear tensor, and vorticity) are

aα ¼ VβVα;β ¼ aIKα þ aIILα;

¼
�
0;
A0

A
;
G
A2

�
−
Ȧ
A
þ Ġ
G

�
þ A;θ

A
; 0

�
; ðA8Þ

Θ ¼ Vα
;α;

¼ AB2

r2A2B2 þG2

�
r2
�
2
Ḃ
B
þ Ċ
C

�

þ G2

A2B2

�
Ḃ
B
−
Ȧ
A
þ Ġ
G
þ Ċ
C

��
; ðA9Þ

σαβ ¼
1

3
ð2σI þ σIIÞ

�
KαKβ −

1

3
hαβ

�

þ 1

3
ð2σII þ σIÞ

�
LαLβ −

1

3
hαβ

�
; ðA10Þ

where

2σI þ σII ¼
3

A

�
Ḃ
B
−
Ċ
C

�
; ðA11Þ

2σII þ σI ¼
3

A2B2r2 þ G2

�
AB2r2

�
Ḃ
B
−
Ċ
C

�

þG2

A

�
−
Ȧ
A
þ Ġ
G
−
Ċ
C

��
; ðA12Þ

in the above dots and primes denote derivatives with respect
to t and r, respectively.

Finally, for the vorticity vector defined as

ωα ¼
1

2
ηαβμνVβ;μVν ¼ 1

2
ηαβμνΩβμVν; ðA13Þ

where Ωαβ ¼ V ½α;β� þ a½αVβ� and ηαβμν denote the vorticity
tensor and the Levi-Civita tensor, respectively, we find a
single component different from zero, producing

Ωαβ ¼ ΩðLαKβ − LβKαÞ; ðA14Þ

and

ωα ¼ −ΩSα; ðA15Þ
with the scalar function Ω given by

Ω ¼ GðG0
G − 2A0

A Þ
2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p : ðA16Þ

Now, from the regularity conditions, necessary to ensure
elementary flatness in the vicinity of the axis of symmetry,
and in particular at the center (see [32–34]), we should
require that, as r ≈ 0,

Ω ¼
X
n≥1

ΩðnÞðt; θÞrn; ðA17Þ

implying because of (A16) that in the neighborhood of the
center

G ¼
X
n≥3

GðnÞðt; θÞrn: ðA18Þ

Also, for the length of an orbit at t, θ constant, to be 2πr,
close to the origin (elementary flatness), we may write, as
r → 0,

C ≈ rγðt; θÞ; ðA19Þ

implying

C0 ≈ γðt; θÞ; C;θ ≈ rγ;θ; ðA20Þ
where γðt; θÞ is an arbitrary function of its arguments, which
as appears evident from the elementary flatness condition,
cannot vanish anywhere within the fluid distribution.
Observe that from (A16) and regularity conditions at the

centre, it follows that: G ¼ 0 ⇔ Ω ¼ 0.
Next, for the electric (Eαβ) and magnetic (Hαβ) parts of

the Weyl tensor Cαβγδ, we have

Eαβ ¼ CανβδVνVδ;

Hαβ ¼
1

2
ηανϵρCβδ

ϵρVνVδ: ðA21Þ

The electric part of the Weyl tensor has only three
independent nonvanishing components, whereas only two
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components define the magnetic part. Thus we may also
write

Eαβ ¼
1

3
ð2EI þ EIIÞ

�
KαKβ −

1

3
hαβ

�

þ 1

3
ð2EII þ EIÞ

�
LαLβ −

1

3
hαβ

�

þ EKLðKαLβ þ KβLαÞ; ðA22Þ

and

Hαβ ¼ H1ðSαKβ þ SβKαÞ þH2ðSαLβ þ SβLαÞ: ðA23Þ

The orthogonal splitting of the Riemann tensor is carried
out by means of three tensors Yαβ, Xαβ, and Zαβ defined as

Yαβ ¼ RανβδVνVδ; ðA24Þ

Xαβ ¼
1

2
ηαν

ϵρR⋆
ϵρβδV

νVδ; ðA25Þ

and

Zαβ ¼
1

2
ϵαϵρRδβ

ϵρVδ; ðA26Þ

where R⋆
αβνδ ¼ 1

2
ηϵρνδRαβ

ϵρ and ϵαβρ ¼ ηναβρVν.
The three tensors above may be expressed through the

following scalars functions:

YT ¼ 4πðμþ 3PÞ; ðA27Þ

YI ¼ EI − 4πΠI; ðA28Þ

YII ¼ EII − 4πΠII; ðA29Þ

YKL ¼ EKL − 4πΠKL; ðA30Þ

XT ¼ 8πμ; ðA31Þ

XI ¼ −EI − 4πΠI; ðA32Þ

XII ¼ −EII − 4πΠII; ðA33Þ

XKL ¼ −EKL − 4πΠKL; ðA34Þ

ZI ¼ ðH1 − 4πqIIÞ; ZII ¼ ðH1 þ 4πqIIÞ;
ZIII ¼ ðH2 − 4πqIÞ; ZIV ¼ ðH2 þ 4πqIÞ: ðA35Þ

In the above, the scalars YT , XT define the trace of (A24)
and (A25), respectively, whereas the scalars YI, YII, YKL,
XI , XII , XKL define the trace-free part of (A24) and (A25).
The super-Poynting vector defined by

Pα ¼ ϵαβγðYγ
δZ

βδ − Xγ
δZ

δβÞ; ðA36Þ

can be written as

Pα ¼ PIKα þ PIILα; ðA37Þ

with

PI ¼
H2

3
ð2YII þ YI − 2XII −XIÞ þH1ðYKL −XKLÞ

þ 4πqI
3

½2YT þ 2XT −XI − YI�− 4πqIIðXKL þ YKLÞ;

PII ¼
H1

3
ð2XI þXII − YII − 2YIÞ

þH2ðXKL − YKLÞ− 4πqIðYKL þXKLÞ

þ 4πqII
3

½2YT þ 2XT −XII − YII�: ðA38Þ

As mentioned before, in the theory of the super-Poynting
vector, a state of gravitational radiation is associated to a
non–vanishing component of the latter (see [8–10]).
Therefore we shall verify the absence of gravitational
radiation if the two components of the super-Poynting
vector vanish.
From the Ricci identities for the vector Vα, and the

Bianchi identities the following set of equations are
obtained by contracting with different vectors of the tetrad
(see [2] for details). These are as follows: (1) An evolution
equation for Ω [Eq. (B5) in [2]]

Ω;δVδ þ 1

3
ð2Θþ σI þ σIIÞΩþ K½μLν�aμ;ν ¼ 0; ðA39Þ

where

ðKμLν − LμKνÞaν;μ ¼ −
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þ G2
p

�
aI;θ þ

G
A2

ȧI þ aI

�
B;θ

B
þ G
A2

Ḃ
B

��

þ 1

B

�
a0II þ

aII
A2B2r2 þ G2

�
A2B2r2

ðBrÞ0
Br

þ GG0 −G2
A0

A

��
; ðA40Þ
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with

aII ¼
Aa2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þ G2
p ; aI ¼

a1
B
: ðA41Þ

(2) Two equations relating qI and qII with the kinematical variables [Eqs. (B6) and (B7) in [2]]

2

3B
Θ;r −Ω;μLμ þΩðLβ;μKμKβ − Lμ

;μÞ þ 1

3
σIaI −ΩaII

−
1

3
σI;μKμ −

1

3
ð2σI þ σIIÞ

�
Kμ

;μ −
aI
3

�
−
1

3
ð2σII þ σIÞ

�
Lβ;μLμKβ −

aI
3

�
¼ 8πqI; ðA42Þ

1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p
�
2G
A

Θ;t þ 2AΘ;θ

�
þ aIIσII

3
þ Ω;μKμ þΩðKμ

;μ þ LμKβLβ;μÞ þ ΩaI −
1

3
σII;μLμ

þ 1

3
ð2σI þ σIIÞ

�
Lβ;μKβKμ þ aII

3

�
−
1

3
ð2σII þ σIÞ

�
Lμ
;μ −

aII
3

�
¼ 8πqII: ðA43Þ

(3) Two equations relating the two scalars defining the magnetic part of the Weyl tensor with the kinematical variables
[Eqs. (B8) and (B9) in [2]]

−ΩaI −
1

2
ðKμSν þ SμKνÞðσμδ þ ΩμδÞ;γϵνγδ ¼ H1; ðA44Þ

−ΩaII −
1

2
ðLμSν þ SμLνÞðσμδ þΩμδÞ;γϵνγδ ¼ H2: ðA45Þ

And (4) one of equations derived from the Bianchi identities, where one obtains [Eq. (B16) in [2]]

−
1

3
XKLðσII − σIÞ þ aIH1 þ aIIH2 −H1;δKδ −H2;δLδ −H1ðKδ

;δ þ Kν
;δS

δSνÞ −H2ðLδ
;δ þ SδSνLν

;δÞ

¼
�
8π

�
μþ P −

1

3
ðΠI þ ΠIIÞ

�
− YI − YII

�
Ω −

4πAðqIBÞ;θ
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p

þ 4πA

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
�
qII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2B2r2 þG2Þ

p
A

�
;r
: ðA46Þ
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