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In this paper we study the gravitational lensing effect for the Schwarzschild solution with holonomy
corrections. We use two types of approximation methods to calculate the deflection angle, namely the weak
and strong field limits. For the first method, we calculate the deflection angle up to the fifth order of
approximation and show the influence of the parameter λ (in terms of loop quantum gravity) on it. In
addition, we construct expressions for the magnification, the position of the lensed images and the time
delay as functions of the coefficients from the deflection angle expansion. We find that λ increases the
deflection angle. In the strong field limit, we use a logarithmic approximation to compute the deflection
angle. We then write four observables, in terms of the coefficients b1, b2, and um, namely: the asymptotic
position approached by a set of images θ∞, the distance between the first image and the others s, the ratio
between the flux of the first image and the flux of all other images rm, and the time delay between two
photons ΔT2;1. We then use the experimental data of the black hole Sagittarius A⋆ and calculate the
observables and the coefficients of the logarithmic expansion. We find that the parameter λ increases the
deflection angle, the separation between the lensed images and the delay time between them. In contrast, it
decreases the brightness of the first image compared to the others.
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I. INTRODUCTION

Shortly after Einstein published the field equations of
general relativity [1], Karl Schwarzschild [2] proposed an
exact solution to these equations, which became known as
the Schwarzschild black hole [3]. The current definition of
these bodies is a region of spacetime covered by an event
horizon from which not even light can escape. Initially,
black holes were discredited and many argued that they
were just a mathematical solution with no relation to
reality. However, they gained notoriety in the 1960s with
the discovery of compact objects and more recently with
the first image of the shadow of what is believed to be a
supermassive black hole [4–9]. Over the years, many other
exact solutions have appeared, such as those of Reissner-
Nordström and Kerr [10], but like the Schwarzschild

geometry, they suffered from a peculiarity that troubled
the scientific community, i.e., the existence of a singu-
larity. A curvature singularity is a sudden endpoint in the
geodesic equations at which quantities such as the density
of matter become infinite. In fact, the notion of geodesic
completeness essentially resides at the root of the singu-
larity theorems [11] and is considered as a key element to
determine the presence of a spacetime singularity [12].
The main focus of physicists attempting to eliminate the

singularity is the development of a theory of quantum
gravity. Initial attempts date back to the middle of the last
century [13], but we still have neither a satisfactory theory nor
experimental data on the quantum aspects of gravity [14].
For instance, we refer the reader to [15,16] and references
therein to get a compilation of modern quantum gravity,
including its challenges and advances. Alternatively to
searching for a complete quantum description of gravitation
there is the possibility to describe some phenomena at low
energy scales (compared to the Plack scale) [17–19].
Through these models it is also possible to find corrections
from gravitation to quantum electrodynamics [20–22] and
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to quantum chromodynamics (QCD) [23]. Another inter-
esting point is the influence of quantum gravitation on dark
matter [24,25]. Among the various effective theories, the
so-called loop quantum gravity (LQG) has gained notori-
ety. In cosmology, LQG has been used in the creation of
cosmological models without singularity [26–28], explan-
ation of the big bang [29,30], and other effects [31,32].
In black hole physics, Ashtekar and collaborators [33]
used the LQG formalism and obtained a new derivation
for the Bekenstein-Hawking formula, Vakili [34] use the
Schwarzschild metric as background geometry in the
framework of classical polymerization and showed that
its energy-momentum tensor has the features of dark energy.
Several other papers have also studied LQG corrections to
the Schwarzschild solution [35–38]. Recently, Alonso-
Bardaji, Brizuela and Vera [39,40] used a canonical trans-
formation and a linear combination of the general relativity
constraints to propose a black hole model consisting of an
LQG correction to the Schwarzschild solution. It is an
anomaly-free model described by the following metric

ds2 ¼ −AðrÞdt2 þ
��

1 −
l
r

�
AðrÞ

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2 sinÞ; ð1Þ

where AðrÞ ¼ 1–2m=r is the usual Schwarzschild metric
function, and l is a new scale length defined by
l ≔ 2mλ2=ð1þ λ2Þ, where λ is called the polymerization
constant and provides the holonomy correction information.
Form > 0, this solution is asymptotically flat and contains a
globally hyperbolic black hole or white hole region with a
minimal space-like hypersurface replacing the original
singularity. The full information on the event horizons,
Penrose diagram, and spacetime structure associated with
this model can be found in the original papers mentioned
earlier. In addition, it was show in [41] (a work focused on
quasinormal modes) that perturbations become less damped
as we increase the LQG parameter λ.
The purpose of this work is to study the light deflection

properties of the solution present in [39,40]. The deflec-
tion of light rays by a massive body can produce a widely
known effect, namely, gravitational lensing. At first,
physicists, including Einstein, believed that this effect
could be observed only in experiments such as the one in
1919 [42]. At that time, astronomers could measure
the deflection angle caused by the Sun during a solar
eclipse [43]. In fact, this kind of observation is possible
only with the Sun. This reasoning began to change with
the pioneering ideas of Fritz Zwicky, who proposed that
we can observe lensing effects caused by galaxies and
even clusters of galaxies. For a more detailed overview of
the early measurements and theoretical proposals on this
topic, see, for example, [44–47] and the references therein.
Recent developments related to this effect can be divided
into two groups: strong lensing and microlensing [44].

Strong lensing is related to measurements of galaxies
and clusters of galaxies and has gained notoriety since
the discovery of the accelerating expansion of the Universe
[48,49]. The reason is that we do not know why the
Universe is expanding, and a popular approach to explain
this behavior is the presence of an exotic cosmic fluid
denoted as dark energy [50]. Although there is no direct
measurement of dark energy, we have tempting evidence for
its existence [51], where the weak gravitational lensing
effect plays an important role in these measurements [52].
Much work has been done in the literature, for instance,
Bartelmann and Schneider [53] have shown how to obtain
the deflection angle within these limits; Holz and Wald [54]
presented a similar method for inhomogeneous universes;
Lewis and Challinor [55] commented on how the weak
lensing effects affect the cosmic microwave background;
and Ghaffarnejad and Niad [56] calculated this effect
considering a Bardeen black hole. For an overview of these
and other methods using weak lensing, we refer the reader
to [57].
Another motivation arising from strong lensing is the

possibility of testing general relativity in a strong gravita-
tional field (so far it has been tested only for weak fields).
Bozza [58] proposed a way to calculate the deflection angle
by a logarithmic expansion. Later, Bozza and Mancini
applied this formalist to Sgr A* to describe how to observe
real black holes with GRAVITY [59]. Pietroni and Bozza,
also considering Sgr A*, commented on the effect of
gravitational lensing on stellar orbit reconstruction [60].
Naoki Tsukamoto reproduced Bozza’s formalism consider-
ing a slightly unstable photon sphere [61], then applied it to
Simpson-Visser spacetime [62] and to a Reissner-Nordström
naked singularity [63]. J. Zhang and Y. Xie later considered
a black-bounce- Reissner-Nordström solution [64]. Advan-
ces in this field is not limited to the theoretical realm, but
there are also recent attempts to observe this effect for
supermassive black holes [65,66]. Microlensing is the
measurement of the collective magnification of various
images; in the case of stars, the observation may take
months or even years [44]. This type of measurement can
be used in the detection of bodies that do not emit light, such
as planets [67,68] or black holes [69]; and also helps in the
study of binary star systems [70,71]. In addition, there are
several other ways to apply gravitational lensing that are still
in the theoretical realm. In [72] the authors claim that it can
be used as a distance estimator, and in [73–75] a formalism
for testing gravitational theories using lenses through com-
pact objects was proposed. In [76], gravitational lensing in
the Kehagias-Sfetsos space-time [77], emerging in the
framework of Hořava-Lifshitz gravity, has also been ana-
lyzed. In [78], light bending serves as constraints on axionic
fuzzy dark matter.
As mentioned above, in this work we will study the

gravitational lensing effect for the Schwarzschild solution
with holonomy corrections. We will consider two types of
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approximations, namely strong and weak lensing. This
paper is organized as follows: In Sec. II, we will briefly
discuss the main aspects of the weak lensing system and
then apply it to the above solutions. In Sec. III; we will
calculate again the first term of the weak field expansion
using the Gauss-Bonnet theorem, and in Sec. IV we repeat
the same procedure as in the previous section, now
considering strong lensing. In Sec. V we numerically
calculated the observavaies using data from the black hole
at the center of our Galaxy. In Sec. VI we discussed an
extension of the photon surface concept to the case of
massive particles. In Sec. VII, we draw our conclusions. We
will use the metric signature ð−;þ;þ;þÞ in this paper.
Also, unless otherwise stated, we will use geometrized
units with G ¼ c ¼ 1.

II. WEAK GRAVITATIONAL LENSING

A. Setting the stage

In this section, we compute the deflection angle and the
observable (image position and magnification) for the
Schwarzschild solution with holonomy corrections, given
by Eq. (1), in the weak field limit. In this regime, we
assume that both the source and the observer are very far
from the lens and the light rays are only slightly distorted
by the lens. Formally, we can define the weak field limit as
follows:

(i) The gravitational lens is compact, static, and spheri-
cally symmetric, with an asymptotically flat space-
time geometry far away from the lens. The
spacetime is vacuum outside the lens and flat in
the absence of the lens.

(ii) The observer and the source lie in the asymptotically
flat regime of the spacetime.

(iii) The distance scale is much larger than the mass
scale, i.e.,

m
r0

≪ 1;
m
u
≪ 1; ð2Þ

where r0 is the distance of closest approach to the
lens and u is the impact parameter.

To start with, we show in Fig. 1 the usual scheme of light
deflection, from which we derive the lens equation as

tan β ¼ tanϑ −Dðtanϑþ tanðα − θÞÞ; ð3Þ

where β and θ are the angular position of the source and the
lensed images, respectively, and

D ¼ DLS

DOS
ð4Þ

with DOS ¼ DLS þDOL being the distance between the
observer and the source (where DLS and DOL are the
distances marked in the figure).

In order to calculate the angle α, we first assume a static
and spherically symmetric spacetime defined by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2; ð5Þ
where dΩ2 is the standard unit sphere metric. The deflec-
tion angle α is given by [44,79]

αðr0Þ ¼ 2

Z
∞

r0

1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB

1=u2 − A=C

s
dr − π: ð6Þ

The above integral can only be solved analytically for
some simple cases. Thus, Keeton and Petters [73] sug-
gested that this result can be approximated by a series of
the following form

αðuÞ¼A1

�
m
u

�
þA2

�
m
u

�
2

þA3

�
m
u

�
3

þO
�
m
u

�
4

: ð7Þ

Here, the deflection angle is written as a function of the
impact parameter u, since it is a gauge invariant variable
(while the closest approach distance has a gauge depend-
ence). The Ai are coefficients to be calculated, which can
be simple numbers or depend on a parameter of the
solution, such as the charge. It is worth mentioning that
this formalism possesses several limitations, which we
consider below.
To demonstrate how this formalism works, we will apply

it to the Schwarzschild metric. In this case we have

AðrÞ ¼ 1 −
2m
r

;

BðrÞ ¼ AðrÞ−1;
CðrÞ ¼ r2: ð8Þ

FIG. 1. Simplified schematization of the gravitational lensing
phenomenon. The light emitted by the source S is slightly
deflected from its original trajectory and arrives at the observer
O with an angle θ instead of β. The deflection angle α is the
distance between the image I and the actual position of the
source. The relevant distances in the figure are: the impact
parameter u, the distance of closest approach x0, the distance
from the observer to the lens DOL and the distance from the lens
to the source DLS.

GRAVITATIONAL LENS EFFECT OF A HOLONOMY CORRECTED … PHYS. REV. D 109, 024004 (2024)

024004-3



Substituting these components into (6)

αðr0Þ ¼ 2

Z
∞

r0

1

r2
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=u2 − 1=r2 þ 2m=r3
p − π; ð9Þ

to solve this, we first make a coordinate change x ¼ r0=r
and h ¼ m=r0, which leads to the following results

αðr0Þ ¼ 2

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2h − x2 þ 2hx3

p − π: ð10Þ

Here we used that the relation between r0 and u is

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðr0Þ
Aðr0Þ

s
; ð11Þ

which in this case becomes

u ¼ r0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r0

q : ð12Þ

Now, assuming the weak field regime, i.e. h ≪ 1, we
expand the integrand into a Taylor series and then solve the
integral term by term, which provides

αðr0Þ ¼ 4hþ
�
15π

4
− 4

�
h2 þ

�
122

3
−
15π

2

�
h3

þ
�
3465π

64
− 130

�
h4 þ

�
7783

10
−
3465π

16

�
h5

þ
�
310695π

256
−
21397

6

�
h6 þOðhÞ7: ð13Þ

To convert this expression into the form (7) we use Eq. (12)
to relate r0 and u as follows

r0
u
¼ 2ffiffiffi

3
p cos

�
1

3
cos−1

�
−
33=2m
u

��
; ð14Þ

then, we can write

r0 ¼
4m
u

þ 15πm2

4u2
þ 128m3

3u3
þ 3465πm4

64u4

þ 3584m5

5u5
þ 255255πm6

256u6
þOðm7Þ: ð15Þ

Inserting Eq. (15) into Eq. (13), we finally obtain

αðuÞ ¼ 4
m
u
þ 15π

4

�
m
u

�
2

þ 128

3

�
m
u

�
3

þ 3465π

4

�
m
u

�
4

þ 3584

5

�
m
u

�
5

þ 255255π

256

�
m
u

�
6

þO
�
m
u

�
7

: ð16Þ

Note that with this procedure we obtain Einstein’s result,
i.e., A1 ¼ 4, which is twice Newton’s result [79]. Here the
coefficients An are only numbers, as the solution has only
one parameter, namely the mass m.

B. Deflection angle

Now, taking into account the holonomy correction (1),
which is given by a change in the length scale

l ≔ 2m
λ2

1þ λ2
; ð17Þ

the LQG correction to the Schwarzschild solution (1) is
given by

AðrÞ ¼ 1 −
2m
r

;

BðrÞ ¼ 1

ð1 − 2m
r Þð1 − 2mλ2

ðλ2þ1ÞrÞ
;

CðrÞ ¼ r2: ð18Þ

Thus, Eq. (6) takes the following form

αðr0Þ ¼ 2

Z
∞

r0

dr
r2

2
4 ðλ2 þ 1Þr
ðλ2ðr − 1Þ þ rÞ

�
2m−r
r3 − 2m

r3
0

þ 1
r2
0

�
3
51=2

:

ð19Þ

Note that Eq. (12) holds for this model. Now we use the
same substitutions as in the previous section, i.e. x ¼ r0=r
and h ¼ m=r0, which leads us to the following results

αðr0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð2hðx3 − 1Þ − x2 þ 1Þð1 − 2hλ2x
λ2þ1

Þ

s
− π: ð20Þ

In the weak field regime we have h ≪ 1 and we can
therefore use a Taylor series expansion for the integrand of
the above expression in terms of h. So we can calculate the
integral term by term, which results in

αðr0Þ ¼ h5
�
−
5

4
ð63π − 223Þλ2 − 3465π

16
þ 7783

10

�

þ h4
�
315πλ2

16
− 49λ2 þ 3465π

64
− 130

�

þ h3
�
−3ðπ − 5Þλ2 − 15π

2
þ 122

3

�

þ h2
�
3πλ2

2
þ 1

4
ð15π − 8ðλ2 þ 2ÞÞ

�
þ 2hðλ2 þ 2Þ:

ð21Þ
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This gives us an approximation for the deflection angle in
powers of m=r0. To convert this result into an approxima-
tion in terms of m=u, we use Eq. (15) and get

αðuÞ ¼ A1

m
u
þA2

�
m
u

�
2

þA3

�
m
u

�
3

þA4

�
m
u

�
4

þA5

�
m
u

�
5

þO
�
m
u

�
6

; ð22Þ

where

A1 ¼ 2ðλ2 þ 2Þ; A2 ¼
3πð2λ2 þ 5Þ

4
;

A3 ¼
16ð3λ2 þ 8Þ

3
; A4 ¼

315πð4λ2 þ 11Þ
64

;

A5 ¼
256ð5λ2 þ 14Þ

5
: ð23Þ

This result shows that the constant polymerization param-
eter λ increases the deflection angle. One can easily verify
that if λ ¼ 0, then Eq. (16) is recovered. However, in this
case we haveA1 ≠ 4, which emphasizes the fact that we are
not dealing with classical general relativity. In Fig. 2, we
plot α against the impact parameter u.

C. Positions of lensed images

From now on, we use the coefficients of the deflection
angle expansion given in Eq. (22) to calculate the following
observables: the image position, the magnification and the
time delay between the primary and secondary images.
First, we change the variables in the lens equation (3) by
using the weak Einstein deflection ring radius,

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GmDLS

c2DOLDOS

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mDLS

DOLDOS

s
ð24Þ

and we define

β¼ β

θE
; θ¼ ϑ

θE
; ϵ¼ tan−1ðm=DOLÞ

θE
¼ θE
4D

: ð25Þ

We now assume a solution of the lens equation (3) in the
form (the Einstein ring is a natural scale in this context, so
we will write all the other quantities involved in ϵ power
expansions)

θ ¼ θ0 þ θ1ϵþ θ2ϵ
2 þ θ3ϵ

3 þOðϵÞ4: ð26Þ

Then we can write the deflection angle as

α ¼ A1

θ0
ϵþA2 −A1θ1

θ20
ϵ2 þ 1

θ30

�
A2 − 2A3θ1

þA1

�
8

3
D2θ40 þ θ21 − θ0θ2

��
ϵ3 þOðϵÞ4: ð27Þ

FIG. 2. Graphical representation of the deflection angle, given
by the Eq. (22) with the coefficients (23), for the Schwarzschild
with holonomy corrections. Here m ¼ 1, and λ ¼ 0 represent the
standard Schwarzschild solution.

FIG. 3. Graphical representation of the components of the θ
expansion, given by the Eq. (30), as a function of the angle β. We
have considered D ¼ 0.01. We have the positive-parity image
when β > 0 and negative-parity image for β < 0. We omit the
regions with jβj ¼ 0.1 for obvious physical reasons.
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Putting these pieces together, we fix β and solve the lens equation term by term to find the coefficients θi [73]. The first
one is

θ0 ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þA1

q
þ β

�
: ð28Þ

The other coefficients are given in terms of θ0 and Ai. For the solution considered we have

θ1 ¼
3πð2λ2 þ 5Þ

8ð2θ20 þ λ2 þ 2Þ ; ð29Þ

θ2 ¼ f192θ0ð2θ20 þ λ2 þ 2Þ3g−1f512D2½4θ80ðλ2 − 10Þ þ 4θ60ð7λ4 þ 16λ2 þ 16Þ þ θ40ð7λ6 þ 30λ4 þ 84λ2 þ 88Þ
þ 4θ20ð3λ4 þ 8λ2 þ 4Þ − 4ðλ2 þ 2Þ2� − 1536Dθ20ðλ2 þ 2Þ2ð2θ20 þ λ2 þ 2Þ2 þ 256½4θ40ðλ6 þ 6λ4 þ 18λ2 þ 24Þ
þ θ20ðλ2 þ 2Þð4λ6 þ 24λ4 þ 69λ2 þ 90Þ þ ðλ2 þ 2Þ2ðλ6 þ 6λ4 þ 18λ2 þ 24Þ� − 27π2ðλ2 þ 2Þð2λ2 þ 5Þ2g: ð30Þ

The first order correction of the position of the images in
the order of ϵ is thus

θ ¼ θ0 þ
3πð2λ2 þ 5Þ

8ð2θ20 þ λ2 þ 2Þ ϵþOðϵÞ2: ð31Þ

We can see that there is no influence of the λ on the zero
order, only from the first upward. In Fig. 3, we represent the
coefficients θ0;1;2 as functions of the angle β [the angles
defined by Eq. (25)] for different values of λ. We choose
D ¼ 0.01 inspired by real situations in which DOS ≫ DLS.

D. Magnifications

The optical magnification μ, how much an image has
decreased or increased in apparent size, is defined by

μ ¼
�
sinðβÞ
sinðθÞ

dβ
dθ

�
−1
; ð32Þ

at a angular position θ. As before, we can construct a series
expansion for the magnification in terms of ϵ

μ ¼ μ0 þ μ1ϵþ μ2ϵ
2 þ μ3ϵ

3 þOðϵÞ4: ð33Þ

For the Schwarzschild with holonomy corrections sol-
ution we have

μ0¼
16θ40

16θ40−4ðλ2þ2Þ2 ; μ1 ¼−
3πθ30ð2λ2þ5Þ
2ð2θ20þλ2þ2Þ3 ; ð34Þ

μ2 ¼ f3ð2θ20 þ λ2 þ 2Þ5ð4θ20 − 2ðλ2 þ 2ÞÞ2g−1
	
4θ20

�
−8D2ðλ2 þ 2Þ2ð2θ20 þ λ2 þ 2Þ2ð−18ðθ20 − 3Þλ4

þ 36ðθ40 − 2θ20 þ 3Þλ2 − 8ðθ0 − 1Þðθ0 þ 1Þðθ40 þ 16θ20 þ 1Þ þ 9λ6Þ − 192Dθ20ðλ2 þ 2Þ3ð2θ20 − λ2 − 2Þð2θ20 þ λ2 þ 2Þ2

−
1

2
θ20ð2θ20 − λ2 − 2Þð512θ40ðλ6 þ 6λ4 þ 18λ2 þ 24Þ þ θ20ð512ðλ2 þ 2Þðλ6 þ 6λ4 þ 18λ2 þ 24Þ − 81π2ð2λ2 þ 5Þ2Þ

þ 128ðλ2 þ 2Þ2ðλ6 þ 6λ4 þ 18λ2 þ 24ÞÞ
�


: ð35Þ

We use the expressions for the general case in [73], since
A1 ≠ 4. Note that in this case the parameter λ influences
already from order zero.

E. Total magnification and centroid

Taking into account (28) and considering that β can also
take negative values, we have

θ�0 ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þA1

q
� jβj

�
: ð36Þ

This means that θþ0 is an image that is on the same side as
the source and the lens, and θ−0 is an image that is on the
opposite side of both, so that the magnification also
becomes μ�. In observations known as microlensing, two
or more images cannot be resolved together. What we
observe then is the total magnification and the magnifica-
tion-weighted centroid. As described in [73], these observ-
ables have no first order corrections for classical general
relativity becauseA1 ¼ 4makes this term zero. For our case
this does not occur and we have a nonzero first order term.
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Therefore, the total magnification μt ¼ jμþj þ jμ−j, can be rearranged to the following expression

μt¼−
3πθ30ðθ20−1Þλ2ð2λ2þ5Þð6ðθ20þ1Þ2λ2þ12ðθ20þ1Þ2þðθ40þθ20þ1Þλ4Þ

2ð2θ20þλ2þ2Þ3ðθ20ðλ2þ2Þþ2Þ3 ϵþ 4ðθ80−1Þðλ2þ2Þ2
ð4θ40− ðλ2þ2Þ2Þðθ40ðλ2þ2Þ2−4Þ : ð37Þ

We can use the Eq. (28) to give the total magnification as
a function of the angle β, but the resulting expression is
extremely lengthy, so we do not reproduce it here. In Fig. 4,
we show the total magnification highlighting each order μt;0
and μt;1 as a function of the angle β. Note that μt;1 ¼ 0 for
λ ¼ 0, which would correspond to the result of classical
general relativity. We made ϵ ¼ 1 because we just want to

analyze the graphical behavior and of the loop quantum
gravity parameter, in observational situations ϵ ∼ 10−4.
The magnification-weighted centroid is defined by

Θ ¼ θþjμþj − θ−jμ−j
jμþj þ jμ−j ; ð38Þ

which leads to

Θ ¼ 4ðθ80 − θ60 þ θ40 − θ20 þ 1Þðλ2 þ 2Þ2 − 16θ40
4θ0ðθ60 − θ40 þ θ20 − 1Þðλ2 þ 2Þ2 þ ϵ

	
3πθ20λ

2ð2λ2 þ 5Þ

×

�
1

4
ðθ120 þ 1Þðλ2 þ 2Þ2ð9π2ð2λ2 þ 5Þ2 þ 128ðλ2 þ 4ÞÞ þ 16θ60ðλ8 þ 20λ6 þ 104λ4 þ 208λ2 þ 160Þ

þ 16ðθ40 þ 1Þθ40ðλ8 þ 12λ6 þ 40λ4 þ 40λ2 þ 16Þ þ 32ðθ80 þ 1Þθ20ðλ2 þ 2Þðλ4 þ 4λ2 − 4Þ
�


× f128ðθ40 − 1Þðθ40 þ 1Þ2ðλ2 þ 2Þ4ð2θ20 þ λ2 þ 2Þðθ20ðλ2 þ 2Þ þ 2Þg−1: ð39Þ

The expression of this observable as a function of the angle
β is also too extensive and we have therefore decided not
to write it here. However, we show in the Fig. 5 the
magnification-weighted centroid as a function of this angle
for different values of λ. We note that, again, the first-order
component is zero when λ ¼ 0.

F. Time delay

The path followed by the photons of the first image with
positive parity and the second image with negative parity is
different and with this we can calculate the associated delay
time. We can write the delay time and the first-order
correction in the form [80]

Δτ ¼ Δτ0 þ Δτ1ϵþOðϵÞ2; ð40Þ

where

Δτ0 ¼
1

2
jβj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ β2

q
þA1

4
ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ β2

p
þ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1 þ β2
p

− β

!
;

Δτ1 ¼
A2

A1

jβj: ð41Þ

From Eq. (41) it is clear that at β ¼ 0 (source, lens, and
observer are aligned) we have the Einstein ring and there is

FIG. 4. Graphical representation of the total magnification,
given by the Eq. (37), as a function of the angle β. We considered
ϵ ¼ 1. We have the positive-parity image when β > 0 and
negative-parity image for β < 0. We omit the regions with jβj ¼
0.1 for obvious physical reasons.
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no delay between images. If we now consider the coef-
ficients given by Eq. (23), we get that

Δτ0 ¼
1

2
β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 2ðλ2 þ 2Þ

q

þ 1

2
ðλ2 þ 2Þ ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 2ðλ2 þ 2Þ

p
þ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 þ 2ðλ2 þ 2Þ
p

− β

!
;

Δτ1 ¼
3πβð2λ2 þ 5Þ
8ðλ2 þ 2Þ ; ð42Þ

this means that the lambda parameter increases the
delay time. In Fig. 6 we show the influence of β on the
coefficients Δτ0;1 for different values of λ.

III. DEFLECTION ANGLE
BY GAUSS-BONNET THEOREM

In this section we will re-derive the coefficientA1 for the
deflection angle in the weak field regime using the method
described in [81]. Its equivalence with the geodesic method
was shown in [82]. In summary, Gibbons and Werner
proposed that the Gauss-Bonnet theorem can be used to
calculate the deflection angle in the form

α ¼ −
Z

π

0

Z
∞

rsl

KdS: ð43Þ

Here K is the optical Gaussian curvature and rsl is the
distance traveled by the photon considering the approxi-
mation of a straight line path. We consider, without loss of
generality, that the movement takes place in the equatorial
plane where θ ¼ π=2, so we have

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdϕ2: ð44Þ

From that metric we derive the optical metric ḡij from the
relation

dt2 ¼ ḡrrdr2 þ ḡϕϕdϕ2 ¼ BðrÞ
AðrÞ dr

2 þ CðrÞ
AðrÞ dϕ

2: ð45Þ

We assume that the geodesics of photons obey ds2 ¼ 0.
The Gaussian curvature K is defined in terms of the new
metric ḡij as follows

K¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ḡrrḡϕϕ
p

"
∂

∂r

 
1ffiffiffiffiffiffi
ḡrr

p ∂
ffiffiffiffiffiffiffi
ḡϕϕ

p
∂r

!
þ ∂

∂ϕ

 
1ffiffiffiffiffiffiffi
ḡϕϕ

p ∂
ffiffiffiffiffiffi
ḡrr

p
∂ϕ

!#
:

ð46Þ

In addition, we have that

dS2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det jḡj

p
drdϕ; ð47Þ

and

FIG. 6. Graphical representation of the time delay coefficients,
given by the Eq. (42), as a function of the angle β.

FIG. 5. Graphical representation of the magnification-weighted
centroid, given by the Eq. (39), as a function of the angle β, where
we consider ϵ ¼ 1. We have the positive-parity image when β > 0
and negative-parity image for β < 0. We omit the regions with
jβj ¼ 0.01 for obvious physical reasons.
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rsl ¼
u

sinϕ
: ð48Þ

Let us now apply this formalism and calculate the first
coefficient of the deflection angle expansion in the weak
field regime. From the Eq. (18) we have

ḡrr ¼
1

ð1 − 2m
r Þ2ð1 − 2mλ2

ðλ2þ1ÞrÞ
; ḡϕϕ ¼ r2

1 − 2m
r

: ð49Þ

Substituting Eq. (49) into Eq. (46) and considering a Taylor
series expansion up to the order of λ2 we get

α ¼ −
Z

π

0

Z
∞

u
sinϕ

�
mð3m − 2rÞ

ðr − 2mÞ3ð r
r−2MÞ3=2

þ λ2mð9m2 − 7mrþ r2Þð− r
2M−rÞ3=2

r4
þOðλ4Þ

�
drdϕ:

ð50Þ

The first integral, in the coordinate r, results in

α ¼ −
Z

π

0

�
1 −

λ2m sinðϕÞðu − 3m sinðϕÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
u−2m sinðϕÞ

q
u2

þ
3m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1−2 sinðϕÞ
q

sinðϕÞ
u

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
u − 2m sinðϕÞ

r �
dϕ: ð51Þ

As we are dealing with the weak field regime, where
m=u ≪ 1, we rewrite the above integral considering a
Taylor series expansion as follows

α ¼ −
Z

π

0

�
−
3m sinðϕÞðm sinðϕÞ

u þ 1Þ
u

−
λ2m sinðϕÞ

u

þm sinðϕÞ
u

þO
�
m
u

�
2
�
dϕ: ð52Þ

The result is then

α ¼ 2ð2þ λ2Þm
u
: ð53Þ

Therefore, we recover the same A1 found by the geodesics
method (23) in Sec. II.

IV. STRONG GRAVITATIONAL LENSING

In the previous section, we used a formalism that
applies to the case where the closest approach (r0) distance
is much larger compared to the mass of the lens (in our
case, the black hole). In this section, we will discuss the
deflection of light in the so-called strong field regime.
From the point of view of the classical mechanics we
would expect that the light (or the particles) can approach

the event horizon freely and would be in an “inaccessible”
region only after crossing it. But this is not what actually
happens. In fact, the light is absorbed by the black hole
when it is sent with a radius smaller than the critical
impact parameter (um) of the solution. K. Virbhadra and
G. Ellis [46] studied the gravitational lensing effect for the
Schwarzschild solution and showed that it occurs for the
value r0 < 3

ffiffiffi
3

p
m. They also showed that r ¼ 3m delimits

a surface on which any null geodesic starting at any point
on the surface and initially tangent to it remains in the
same surface, which we call the photon sphere. In any
spacetime containing a photonsphere, gravitational lens-
ing leads to relativistic images [46]. As r0 → rm (or
u → um), the deflection angle increases and consequently
diverges to r0 ¼ rm (or u ¼ um). This concept of the
photon surface of the Schwarzschild solution was gener-
alized in [47], we can calculate rm by

C0ðrÞ
CðrÞ ¼ A0ðrÞ

AðrÞ : ð54Þ

So, in this section we study the deflection of light in the
limit where the geodesics pass close to the photon surface.

A. Deflection angle

Considering that the deflection angle tends to infinity as
r0 → rm, Bozza [58] proposed that in this limit α can be
approximated by a logarithmic expansion of the form

αðuÞ ¼ b1 log

�
u
um

− 1

�
þ b2 þOðu − umÞ; ð55Þ

where b1, b2 and um are coefficients to be calculated from
the metric. The critical impact parameter um is obtained
directly from Eq. (11) if we equate the distance of closest
approach x0 with the radius of the photon sphere xm. We
will briefly discuss how to obtain the other two coefficients.
We emphasize that the starting point is the same as before,
namely to propose an approximate result for the integral (6).
First, we assume the metric (we use the substitution
x ¼ r=2m)

ds2 ¼ −AðxÞdt2 þ BðxÞdr2 þ CðxÞdΩ2; ð56Þ

Then, we define the variables

y ¼ AðxÞ; ð57Þ

ζ ¼ y − y0
1 − y0

; ð58Þ

where y0 ¼ Aðx0Þ. This leads to

αðx0Þ ¼ Iðx0Þ − π; ð59Þ
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Iðx0Þ ¼
Z

1

0

Rðζ; x0Þfðζ; x0Þdζ: ð60Þ

Here the function Rðζ; x0Þ is given by

Rðζ; x0Þ ¼
2
ffiffiffiffiffiffi
By

p
CA0 ð1 − y0ÞC0; ð61Þ

which is regular for any value of ζ and x0. The function
fðζ; x0Þ is provided by

fðζ; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 − ½ð1 − y0Þζ þ y0� C0

C

q ; ð62Þ

which has a divergence for ζ → 0. All functions without the
subscript 0 are evaluated at x ¼ A−1½ð1 − y0Þζ þ y0�. We
rewrite fðζ; x0Þ as

fðζ; x0Þ ∼ f0ðζ; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ζ þ β2ζ
2

p ; ð63Þ

where

β1 ¼
1 − y0
C0A0

0

ðC0
0y0 − C0A0

0Þ; ð64Þ

and

β2¼
ð1−y0Þ2
2C2

0A
03
0

½2C0C0
0A

02
0 þðC0C00

0−2C02
0 Þy0A0

0

−C0C0
0y0A

00
0�: ð65Þ

In the form (63) we can see that: If β1 ≠ 0, the leading order
of divergence in (62) is ζ−1=2, and if β1 ¼ 0 the divergence
is ζ−1. In the first case f0 can be integrated and the result is
finite, while in the second case the integral diverges.
Returning to the original variables, we note that β1 vanishes
at x0 ¼ xm, and in order to solve this problem, we treat the
integral (60) as follows

Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ; ð66Þ

where

IDðx0Þ ¼
Z

1

0

Rð0; xmÞf0ðζ; x0Þdζ; ð67Þ

refers to the divergent part, and

IRðx0Þ ¼
Z

1

0

gðζ; x0Þdζ; ð68Þ

with

gðζ; x0Þ ¼ Rðζ; x0Þfðζ; x0Þ − Rð0; xmÞf0ðζ; x0Þ: ð69Þ

Note that IR ¼ I − ID. The result of these integrals is [58]

IDðx0Þ ¼ −
�
Rð0; xmÞffiffiffiffiffiffiffi

β2m
p

�
log

�
x0
xm

− 1

�

þ Rð0; xmÞffiffiffiffiffiffiffi
β2m

p log
2ð1 − ymÞ
A0
mxm

þOðx0 − xmÞ; ð70Þ

and

IRðxmÞ ¼
Z

1

0

gðζ; xmÞdζ þOðx0 − xmÞ: ð71Þ

Functions with index m are calculated in x0 ¼ xm. The
logarithmic approximation for the deflection angle is then

αðx0Þ ¼ −
�
Rð0; xmÞffiffiffiffiffiffiffi

β2m
p

�
log

�
x0
xm

− 1

�

þ Rð0; xmÞffiffiffiffiffiffiffi
β2m

p log
2ð1 − ymÞ
A0
mxm

þ
Z

1

0

gðζ; xmÞdζ − π þOðx0 − xmÞ: ð72Þ

As stated in the previous section, it is convenient to write
this result in terms of the gauge invariant coordinate u. We
can expand Eq. (11) and write

u − um ¼ β2m

ffiffiffiffiffiffiffi
ym
C3
m

r
C02
m

2ð1 − y2mÞ
ðx0 − xmÞ2: ð73Þ

With the above equation we can write Eq. (72) in the
form (55), where the coefficients b1 and b2 are

b1 ¼
Rð0; xmÞ
2
ffiffiffiffiffiffiffi
β2m

p ; ð74Þ

b2 ¼
Z

1

0

gðζ; xmÞdζ þ b1 log
2β2m
ym

− π: ð75Þ

Let us now apply this mechanism to the Schwarzschild
solution. In standard coordinates, the metric is

AðxÞ ¼ 1 −
1

x
;

BðxÞ ¼ AðxÞ−1;
CðxÞ ¼ x2: ð76Þ

The first step is to find the radius of the photon sphere xm
from Eq. (54), which in this case is

xm ¼ 3

2
; ð77Þ
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Substituting this result into Eq. (11), we immediately
get um ¼ 3

ffiffiffi
3

p
=2. The functions Rðζ; x0Þ and fðζ; x0Þ

are given by

Rðζ; x0Þ ¼ 2;

fðζ; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ζ þ β2ζ
2 − ζ3

x0

q ; ð78Þ

respectively, where, from Eqs. (64) and (65), we have

β1 ¼ 2 −
3

xm
¼ 0;

β2 ¼
3

xm
− 1 ¼ 1: ð79Þ

and with these results we find b1 ¼ 1. The integral IR is

IRðxmÞ ¼
Z

1

0

gðζ; xmÞdζ ¼ 0.9496; ð80Þ

then b2 ¼ −0.4002. Putting these results together, we get
the logarithmic expansion for the deflection angle as a
function of the impact parameter, given by

αðuÞ ¼ log

�
2u

3
ffiffiffi
3

p − 1

�
− 0.4002: ð81Þ

In Fig. 7 we show the exact deflection angle [computed
numerically with the integral (6)] and the strong/weak field
approximations. We see that both the logarithmic expansion
(blue line) and the exact values (dotted line) diverge at
x0 → xm ¼ 1.5, but these curves move away rapidly as x0
increases. In contrast, the weak-field expansion approaches
the exact result as x0 increases.
For the Schwarzschild solution with holonomy correc-

tions we consider the following metric

AðxÞ ¼ 1 −
1

x
;

BðxÞ ¼ 1

ð1 − 1
xÞð1 − λ2

ðλ2þ1ÞxÞ
;

CðxÞ ¼ x2: ð82Þ

xm ¼ 3

2
ð83Þ

um ¼ 3
ffiffiffi
3

p

2
ð84Þ

Rðζ; x0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1
λ2

3
þ 1

s
;

fðζ; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ζ þ β2ζ
2 − ζ3

x0

q ; ð85Þ

with the same β1;2 from Eq. (79). This leads to

b1 ¼
Rð0; xmÞ
2
ffiffiffiffiffiffiffi
β2m

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1
λ2

3
þ 1

s
: ð86Þ

To compute b2 we first write the function

gðζ; xmÞ ¼
2

z

0
B@3z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ1

λ2þ2λ2zþ3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ð3 − 2zÞ

p −
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1

λ2 þ 3

s 1
CA; ð87Þ

which if integrated results in

Z
gðζ; xmÞdζ ¼ −2

ffiffiffi
3

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1

λ2 þ 3

s
lnðzÞ þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2þ1
λ2þ2λ2zþ3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ð2zþ 1Þ þ 3

p
tan−1

� ffiffiffiffiffiffiffiffi
λ2þ3

p ffiffiffiffiffiffiffiffi
3−2z

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ð6zþ3Þþ9

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 3

p

1
CAþ C: ð88Þ

It is easy to see that the Schwarzschild result is immediately recovered if we use λ ¼ 0. The presence of the constant λ in the
above equation makes it impossible to determine the limit in z ¼ 0 analytically. Because of this limitation, we solve this
integral numerically with values of the constant from zero to two. From this we can calculate the coefficient b2, and show
the result of the coefficients of the expansion of the deflection angle in Fig. 8. In the Figs. 9–11 we show respectively the
deflection angle as a function of the constant λ, the impact parameter u and the reduced impact parameter u=um.

FIG. 7. Graphical representation of the deflection angle for the
Schwarzschild solution.
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V. OBSERVABLES FOR THE SAGITTARIUS A*

In this section we analyze the influence of the λ parameter
on the observables for both the weak and strong field
regimes. We consider the mass and distance with respect to
the black hole at the center of our galaxy, Sagittarius A*,
which (we ignore uncertainties) is [83–85]

m ¼ 4.297 × 106M⊙;

DOL ¼ 2.55402 × 1020 ð89Þ

where M⊙ ¼ 1.98892 × 1030 kg is the Solar mass. Recall
that we use geometric units unless otherwise noted. As
suggested in Sec. II, the observables are the positions of
the lensed images, the magnification, and the delay time
between them. But before we turn to the numerical example,
we need to clarify two points. First, we will work with flux
rather than magnification (following [58,74]). In addition,
we will consider different situations for each regime. For the
weak field, we consider two lensed images, the first with
positive parity and the second with negative parity. In the
strong field, the photon can make loops around the black
hole before emerge into infinity and reach the observer.
Therefore, we will consider observables that relate the first
image and the contribution of all others.

A. Weak field

For this regime we will consider a combination of the
observables we worked on in Sec. II, they are

Pt ¼ ϑþ þ ϑ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
q

þ ϵA2θE
A1

; ð90Þ

ΔP ¼ ϑþ − ϑ− ¼ jβj − jβjθEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
p ϵ; ð91Þ

Ft ¼ Fþ þ F− ¼ FsrcðA1θE
2 þ 2β2Þ

2jβj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
p ; ð92Þ

FIG. 9. Graphical representation, for the Schwarzschild sol-
ution with holonomy corrections, of the deflection angle as a
function of the parameter λ.

FIG. 10. Graphical representation, for the Schwarzschild sol-
ution with holonomy corrections, of the deflection angle as a
function of the impact parameter.

FIG. 11. Graphical representation, for the Schwarzschild sol-
ution with holonomy corrections, of the deflection angle as a
function of the reduced impact parameter.

FIG. 8. Graphical representation, for the Schwarzschild sol-
ution with holonomy corrections, of the coefficients as a function
of the parameter λ.
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ΔF ¼ Fþ − F− ¼ Fsrc −
A2FsrcθE

3

2ðA1θE
2 þ β2Þ3=2 ϵ ð93Þ

Θcent ¼
ϑþFþ − ϑ−F−

Ft
¼ jβjð3A1θE

2 þ 4β2Þ
2A1θE

2 þ 4β2
ð94Þ

Δτ ¼
DOLDOS

�
1
2
jβj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2 þ β2
p

þ 1
4
A1θE

2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2þβ2
p

þjβjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1θE

2þβ2
p

−jβj

�
þ jβjA2θE

A1
ϵ

�
cDLS

: ð95Þ

The flux is related to magnification by Fi ¼ jμijFsrc, where
Fsrc is the source flux. To calculate this numerically, we use
the Eqs. (24) and (25). First, however, we need to convert
the values in (89) to more appropriate units, i.e., parsecs
(pc). We will use the following values

m ¼ 4.297 × 106M⊙ ¼ 2.057 × 10−7 pc;

DOL ¼ 2.55402 × 1020 ¼ 8.277 kpc ð96Þ

this choice of units leads to ϑE ¼ 0.0225813
ffiffiffiffiffiffi
dls

p
and

ϵ ¼ 0.000181799=
ffiffiffiffiffiffi
dls

p
. we assume that dls ¼ DLS=1ðpcÞ

to simplify notation. This distance is usually much smaller
than the distance from the observer to the source DOS
and from the observer to the lens DOL. In other words,
DOL ∼DOS ≫ DLS. The following figures show the behav-
ior of the practical observables as a function of the source
angle β and the loop quantum gravity parameter λ, we have
dls ¼ 1 in all cases. We can see that the influence of λ on

the values of the observables in the considered intervals is
practically zero. Figure 12 shows the angular distance Pt
and Fig. 13 shows the difference of the angular positions
ΔP, both increase with β. The total flux Ft, shown in
Fig. 14, and the flux difference ΔF, shown in Fig. 15, are
constant for β2; below this value we see that Ft increases
while ΔF decreases. However, these fluctuations are small.
Figure 16 shows the centroid Θcent and Fig. 17 shows the
differential time delay Δτ, both observables also increase
with angle β.

B. Strong field

Here we focus on the asymptotic position approached by
a set of images ϑ∞, the distance between the first image
(labeled ϑ1) and the others s, the ratio between the flux of
the first image and the flux of all the other images rm [58],
and in the time delay between one photon with 2 loops from
on photon with one loop around the lens [72]. These are
given by

FIG. 12. Density plot, for the Schwarzschild solution with
holonomy corrections, of the angular distance between two
lensed images Pt (m arc s), given by the equation (90), as a
function of the angle β and the parameter λ.

FIG. 13. Density plot, for the Schwarzschild solution with
holonomy corrections, of the difference of the angular positions
between two lensed images ΔP (m arc s), given by the
equation (91), as function of the angle β and the parameter λ.
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ϑ∞ ¼ um
DOL

; ð97Þ

s ¼ ϑ1 − ϑ∞ ¼ ϑ∞e
b2−2π
b1 ; ð98Þ

rm ¼ e
2π
b1 ; ð99Þ

ΔT2;1 ¼ ½2π − 2γ�um þ 2

ffiffiffiffiffiffi
Bm

Am

s ffiffiffiffiffiffi
um
c1

r
e

b2
2b1

�
e−

πγ
b1 − e−

2πγ
b1

�
:

ð100Þ

In the time expression, γ stands for the angular distance
between the source and the optical axis as seen from the
lens. In real observations, this angle should be of the order
γ ∼D−1

OL. With the values in (89), we obtain the data listed in
Table I. Since ϑ∞ does not depend on λ, the result is
26.5807 μarcsecs (the same as in the Schwarzschild case)
and we therefore do not include it in the table. We note that
the distance between the first and the other images increases

FIG. 14. Density plot, for the Schwarzschild solution with
holonomy corrections, of the total flux between two lensed
images Ft, given by the Eq. (92), as function of the angle β and
the parameter λ.

FIG. 15. Density plot, for the Schwarzschild solution with
holonomy corrections, of the difference of flux between two
lensed images ΔF, given by the equation (93), as function of the
angle β and the parameter λ.

FIG. 16. Density plot, for the Schwarzschild solution with
holonomy corrections, of the differential time delay between two
lensed imagesΘcent (m arc s), given by the Eq. (94), as function of
the angle β and the parameter λ.

FIG. 17. Density plot, for the Schwarzschild solution with
holonomy corrections, of Δτ (s), given by the Eq. (95), as
function of the angle β and the parameter λ.

JUNIOR, LOBO, RODRIGUES, and VIEIRA PHYS. REV. D 109, 024004 (2024)

024004-14



with λ, and so does the delay time between them. The
decrease in rm means that the first image becomes less
intense compared to the other images as the parameter λ
increases. In addition, it is clear that the delay time for this
regime is more intense when compared to the weak field
regime.

VI. MASSIVE PARTICLES SURFACE

The photon surface concept used in Sec. IValso plays an
important role in the study of black hole shadows. We will
not deal with shadows here, but we would like to introduce
a generalization of this concept, namely the surface of
massive particles. In [86] the authors propose a generali-
zation of the photon surface for the case of massive and
charged particles. They define a surface which also has the
main property of a photon sphere, i.e.: any world line
originally tangent to the surface of a massive particle
remains tangent to it. The main difference between these
two definitions is that the photon sphere formalism
considers null geodesics with a fixed impact parameter,
while for massive particles the fixed parameter is the total
energy. A full description of this approach and its main
implications can be found in [86]. Here we restrict
ourselves to the calculation of the surface for a neutral
particle of mass m0 in a spacetime described by the
holonomy-corrected Schwarzschild solution. We start
considering the static metric tensor

ds2 ¼ −Adt2 þ Bdr2 þ Cdϕ2 þDdθ2 ð101Þ

where A, B, C and D are free functions of r and θ, but we
choose a surface with r ¼ const. The main equation of this
method (for neutral particles) is

ε� ¼ �mo

ffiffiffiffiffiffiffiffiffi
κ2χτ
K

r
: ð102Þ

Here ε is the total energy. According to [86], dε=dr ¼ 0
defines marginally stable orbits, such as the innermost
stable circular orbit (ISCO). And the value of r at which
the energy diverges defines the photon surface. In order to
calculate the total energy (102), we must first calculate the
second fundamental form and its trace, which (for this
particular static spacetime) is defined as follows

χμν ¼
1

2
ffiffiffiffi
B

p ð−∂rAdt2 þ ∂rCdϕþ ∂rDdθÞ; ð103Þ

χ ¼ χμν ¼
∂r lnðADCÞ

2
ffiffiffiffi
B

p : ð104Þ

Also, we have that the killing vector is κμ∂μ ¼ ∂t and then
κμκμ ¼ −A. And finally, we have

K ¼ 3χτ − 2χ; ð105Þ

where χτ for this static space time is

χτ ¼
2
ffiffiffiffi
A

p

r
: ð106Þ

If we consider the Schwarzschild metric (8), for exam-
ple, we have

χτ ¼
2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
; χ ¼

0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m
r

q
1
A 2r − 3m

r2
;

κ2 ¼ −1þ 2m
r

; K ¼ 2

0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m
r

q
1
A 3m − r

r2
: ð107Þ

So, the total energy for this case is

ε2=m2
0 ¼

ðr − 2mÞ2
rðr − 3mÞ : ð108Þ

It is easy to see that the above expression diverges for
r ¼ 3m, so we get the well-known result for the radius of
the photon sphere. If we equate dε=dr ¼ 0, we get r ¼ 6m,
which represents the ISCO.

TABLE I. Estimates for the main observables and the strong
field limit coefficients for the black hole in the center of our
galaxy considering the Schwarzschild geometry with holomy
corrections.

λ b1 b2 s (μarcsecs) rm ΔT2;1 (hours)

0 1 −0.40023 0.0332657 6.82188 0.19431
0.1 1.00332 −0.399568 0.0340313 6.79933 0.194315
0.2 1.01307 −0.397839 0.0363476 6.73385 0.19433
0.3 1.02871 −0.395748 0.0402631 6.63147 0.194354
0.4 1.04941 −0.394252 0.0458289 6.50067 0.194385
0.5 1.07417 −0.394335 0.0530645 6.35083 0.194423
0.6 1.10195 −0.396812 0.0619262 6.19076 0.194466
0.7 1.13173 −0.402209 0.0722898 6.02786 0.194512
0.8 1.1626 −0.410737 0.083952 5.86776 0.194559
0.9 1.19382 −0.422324 0.0966477 5.71435 0.194607
1 1.22474 −0.436684 0.110078 5.57004 0.194654
1.1 1.25492 −0.453397 0.12394 5.43611 0.1947
1.2 1.284 −0.471976 0.137951 5.313 0.194745
1.3 1.31175 −0.491927 0.151865 5.2006 0.194787
1.4 1.33803 −0.512787 0.16548 5.09845 0.194828
1.5 1.36277 −0.534139 0.178644 5.00589 0.194866
1.6 1.38595 −0.555633 0.191246 4.92216 0.194901
1.7 1.4076 −0.576979 0.203215 4.84648 0.194934
1.8 1.42775 −0.59795 0.214512 4.77807 0.194965
1.9 1.44647 −0.618373 0.225122 4.71622 0.194994
2 1.46385 −0.638122 0.235048 4.66023 0.195021
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If we now proceed to the holonomy-corrected solution,
we consider the metric (18) and then have

χ¼
ð2r−3mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðr−2mÞþr
ðλ2þ1Þðr−2mÞ

q
r2

;

K¼
2

�
ð2r−3mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2m

ðλ2þ1Þð2m−rÞ
q

−3r
ffiffiffiffiffiffiffiffiffiffiffi
1− 2m

r

q �
r2

: ð109Þ

The quantities χτ and κ2 are the same as (107). With these
values, the energy is

ε2=m2
0¼−

rð1−2m
r Þ3=2

ð2r−3mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2m

ðλ2þ1Þð2m−rÞ
q

−3r
ffiffiffiffiffiffiffiffiffiffiffi
1−2m

r

q : ð110Þ

We can simplify this expression by making the following
change to the variable R ¼ r=m. This leads us to

ε2=m2
0 ¼

2 − R

R

� ffiffiffiffiffiffi
1

λ2þ1

p
ð2R−3Þ

R−2 − 3

� : ð111Þ

Now, by taking the derivative of the above equation, we can
find the radius of the massive particle surface. This
operation results in

rISCO ¼
6m

� ffiffiffiffiffiffiffiffi
1

λ2þ1

q
− 2

�

5
ffiffiffiffiffiffiffiffi
1

λ2þ1

q
− 6

; ð112Þ

we plot this radius in the Fig. 18. Note that for λ ¼ 0 we get
the result of Schwarzschild. This decrease in rISCO implies a
disk of massive matter closer to the event horizon. Note that

by defining the surfaces of photons and particles, we can
construct the shadow and optical appearance of the black
hole. However, we will address this issue in a later article.

VII. SUMMARY AND DISCUSSION

In this article we describe the gravitational lensing effect
for the Schwarzschild solution with holonomy corrections.
We treat the effect using the two types of limits commonly
treated in the literature, i.e., the weak and the strong field
regimes. Our main goal was to measure the influence of the
parameter λ associated with loop quantum gravity on the
deflection angle and observables for each regime. We have
used the method described by Keeton and Petters [73],
where α is approximated by a power series around u=m.
And for the strong field we use the formalism proposed by
Bozza [58], where the deflection angle is given by a
logarithmic approximation.
More specifically, in Sec. II we explored with the weak

field regime, in which the formalism was summarized and
applied it to the Schwarzschild solution, where the first term
of the expansion, A1 ¼ 4, reduces to Einstein’s result [79].
Furthermore, we applied the formalism to the modified
solution and found the expansion for the deflection angle in
powers up to the order of ðm=uÞ5. An interesting detail is
that the first order coefficient is different from four, i.e.,
A1 ≠ 4, highlighting the fact that we are not working with
classical general relativity. We note that the presence of the
constant λ, a parameter related to loop quantum gravity
(LQG), increases the deflection angle, as can be seen from
the analysis of Fig. 2. From the expression for α, we derived
the expression for the image position, magnification, total
magnification, and position of the centroid (observables
commonly discussed in the literature). We wrote the
expression for these observables as an expansion in terms
of the factor ϵθE=4D, where θE is the Einstein angle. Keeton
and Petters [73] pointed out that in any hypothesis involving
general relativity, the total magnification and the position of
the center of gravity would not have first-order terms in this
expansion, but here we can obtain these terms sinceA1 ≠ 4.
We show the influence of the LQG parameter on the
observables in the Figs. 3–6.
Section III was devoted to the proof that the coefficient

A1 can be determined by a method other than the geodesic
one. As described in [81], the Gauss-Bonnet theorem
reduces to the expression (43) in the case of gravitational
lensing. We started from the same metric we used in the
previous treatment and obtained the so-called optical metric
and used it to calculate the Gaussian curvature K. As in the
previous method, the integrals involved are not exactly
solvable. We first used a Taylor series expansion that
considers up to order λ2 (50) and later up to first order
m=u (52). This gave us exactly the same coefficient that we
found earlier. It is interesting to note that this method leads
to coefficients of higher order than the first, which are

FIG. 18. Radius of the massive particle surface as function of
the holonomy parameter λ given by the Eq. (112).
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different from Eq. (23). This is a point we would like to
investigate in a future paper.
In Sec. IV, we addressed the strong field limit. As in the

weak field regime, we began with a brief definition of the
formalism used to obtain the approximation to this regime.
We showed that the expression (55), which holds for any
static and spherically symmetric metric, is an approxima-
tion of the deflection angle when x0 → xm (where x0 is the
distance of closest approach and xm is the capture radius or
the radius of the photon sphere), or in terms of the impact
parameter u → um. We applied the formalism to the
Schwarzschild solution (xm ¼ 1.5) and showed in Fig. 7
the exact deflection angle [obtained by numerical integra-
tion of (6)] and the approximations for weak and strong
fields for this solution. We then applied the formalism to
the Schwarzschild solution with holonomy corrections.
The radius of the photon sphere is the same as the previous
one since it does not depend on the metric function BðrÞ,
therefore, um will also be the same. The coefficient b1 (86)
can be obtained easily, however, the integral (88) cannot be
evaluated to zero for any value of the parameter λ.
Therefore, we computed the coefficient b2 numerically
using the interval 0 < λ < 2. Figure 8 showed the variation
of the coefficients as a function of the LQG parameter. In
Figs. 9–11 we showed the behavior of the deflection angle
with respect to λ. We verified that, as in the weak-field
regime, it increases with increasing parameter.
In Sec. V we calculate the observables using a numeri-

cal example with experimental data of the black hole at the
center of our galaxy (Sagittarius A*) [83–85]. For the
weak field regime, we focus on a situation with two
images, one with positive parity and the other with
negative parity. The observables in this case are the
angular separation Pt, the difference in angular positions
ΔP, the total flux Ft, the flux difference ΔF, the centroid
Θcent, and the differential time delay Δτ. Figures 12–17
show a plot of these quantities as a function of the angle of
the source β and the LQG parameter. We see that the

influence of λ on these quantities is small. For the strong
field regime, we focus on the asymptotic position
approached by a set of images ϑ∞, the distance between
the first image (denoted ϑ1) and the other s, the ratio
between the flux of the first image and the flux of all other
images rm, and on the time delay between a photon with 2
loops and a photon with one loop around the lens ΔT2;1.
We find that the observable ϑ∞ does not depend on λ, s
and ΔT2;1 increase with it, while rm decreases. We showed
in Table I the numerical result obtained. There are already
attempts to measure the strong gravitational lensing effect
[65]. We therefore hope that in the near future it will be
possible to use this formalism to select a particular model
of a black hole via the coefficients of the strong field.
In Sec. VI we have considered the extension of the

concept of photon surface described in [86] and applied it
to the corrected Schwarzschild solution. We determined
the radius of the innermost stable circular orbit (ISCO) and
found that it decreases with increasing parameter λ. This
form of obtaining particle surfaces with the same proper-
ties as the photon sphere may be of interest in a future
work where we plan to address the shadows of this
solution.

ACKNOWLEDGMENTS

M. E. R. thanks Conselho Nacional de Desenvolvimento
Científico e Tecnológico—CNPq, Brazil, for partial finan-
cial support. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Finance Code 001. F. S. N. L.
acknowledges support from the Fundação para a Ciência e a
Tecnologia (FCT) Scientific Employment Stimulus contract
with reference No. CEECINST/00032/2018, and funding
through the research grants No. UIDB/04434/2020,
No. UIDP/04434/2020, No. CERN/FIS-PAR/0037/2019
and No. PTDC/FIS-AST/0054/2021.

[1] J. Stachel e R. Penrose, Einstein’s Miraculous Year: Five
Papers That Changed the Face of Physics (Princeton
University Press, Nova Jersey, 2005).

[2] K. Schwarzschild, Über das Gravitationsfeld eines Massen-
punktes nach der Einsteinschen Theorie, Sitzungsberichte
der Königlich Preußischen Akademie der Wissenschaften
1916, 189 (1916).

[3] C. A. R. Herdeiro and J. P. S. Lemos, The black hole fifty
years after: Genesis of the name, arXiv:1811.06587.

[4] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), First M87 event horizon telescope results. I. The

shadow of the supermassive black hole, Astrophys. J. 875,
L1 (2019).

[5] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. II. Array and
instrumentation, Astrophys. J. Lett. 875, L2 (2019).

[6] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), First M87 event horizon telescope results. III. Data
processing and calibration, Astrophys. J. Lett. 875, L3
(2019).

[7] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. IV. Imaging the

GRAVITATIONAL LENS EFFECT OF A HOLONOMY CORRECTED … PHYS. REV. D 109, 024004 (2024)

024004-17

https://arXiv.org/abs/1811.06587
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57


central supermassive black hole, Astrophys. J. Lett. 875, L4
(2019).

[8] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. V. Physical origin
of the asymmetric ring, Astrophys. J. Lett. 875, L5 (2019).

[9] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. VI. The shadow
and mass of the central black hole, Astrophys. J. Lett. 875,
L5 (2019).

[10] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed., Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2003).

[11] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time (Cambridge University Press, Cambridge,
England, 2023).

[12] G. J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente,
Accelerated observers and the notion of singular spacetime,
Classical Quantum Gravity 35, 055010 (2018).

[13] B. S. DeWitt, Quantum Theory of Gravity. I. The Canonical
Theory, Phys. Rev. 160, 1113 (1967).

[14] A. Ashtekar and E. Bianchi, A short review of loop quantum
gravity, Rep. Prog. Phys. 84, 042001 (2021).

[15] T. Thiemann, Modern canonical quantum general relativity,
arXiv:gr-qc/0110034.

[16] R. Percacci, Gravity as a quantum field theory, Symmetry
15, 449 (2023).

[17] J. F. Donoghue, General relativity as an effective field
theory: The leading quantum corrections, Phys. Rev. D
50, 3874 (1994).

[18] C. P. Burgess, Quantum gravity in everyday life: General
relativity as an effective field theory, Living Rev. Relativity
7, 5 (2004).

[19] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective
Action in Quantum Gravity, Routledge, Taylor and Fran-
cisco Group (CRC Press, Boca Raton, Florida, 1992).

[20] L. I. Bevilaqua, A. C. Lehum, and H. Souza, Universality of
gauge coupling constant in the Einstein-QED system, Phys.
Rev. D 104, 125019 (2021).

[21] L. I. Bevilaqua, M. Dias, A. C. Lehum, C. R. Senise, Jr.,
A. J. da Silva, and H. Souza, Gravitational corrections to
two-loop beta function in quantum electrodynamics, Phys.
Rev. D 104, 125001 (2021).

[22] H. Souza, L. Ibiapina Bevilaqua, and A. C. Lehum, Gravi-
tational corrections to a non-Abelian gauge theory, Phys.
Rev. D 106, 045010 (2022).

[23] H. Souza, L. Ibiapina Bevilaqua, and A. C. Lehum, Gravi-
tational corrections to the Einstein-scalar-QCD model,
Phys. Rev. D 107, 125012 (2023).

[24] X. Calmet and S. K. Majee, Effective theory for dark matter
and a new force in the dark matter sector, Phys. Lett. B 679,
267 (2009).

[25] X. Calmet and F. Kuipers, Implications of quantum gravity
for dark matter, Int. J. Mod. Phys. D 30, 2142004 (2021).

[26] M. Bojowald, Absence of singularity in loop quantum
cosmology, Phys. Rev. Lett. 86, 5227 (2001).

[27] S. Saini and P. Singh, Generic absence of strong singular-
ities and geodesic completeness in modified loop quantum

cosmologies, Classical Quantum Gravity 36, 105014
(2019).

[28] S. Saini and P. Singh, Generic absence of strong singular-
ities in loop quantum Bianchi-IX spacetimes, Classical
Quantum Gravity 35, 065014 (2018).

[29] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of
the big bang: Improved dynamics, Phys. Rev. D 74, 084003
(2006).

[30] M. Varadarajan, On the resolution of the big bang singu-
larity in isotropic loop quantum cosmology, Classical
Quantum Gravity 26, 085006 (2009).

[31] M. Bojowald, Loop quantum cosmology, Living Rev.
Relativity 8, 11 (2005).

[32] A. Ashtekar and P. Singh, Loop quantum cosmology:
A status report, Classical Quantum Gravity 28, 213001
(2011).

[33] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Quantum
geometry and black hole entropy, Phys. Rev. Lett. 80, 904
(1998).

[34] B. Vakili, Classical polymerization of the Schwarzschild
metric, Adv. High Energy Phys. 2018, 3610543 (2018).

[35] C. G. Boehmer and K. Vandersloot, Loop quantum dynam-
ics of the Schwarzschild interior, Phys. Rev. D 76, 104030
(2007).

[36] D.W. Chiou, Phenomenological loop quantum geometry of
the Schwarzschild black hole, Phys. Rev. D 78, 064040
(2008).

[37] J. Ben Achour, F. Lamy, H. Liu, and K. Noui, Polymer
Schwarzschild black hole: An effective metric, Europhys.
Lett. 123, 20006 (2018).

[38] N. Bodendorfer, F. M. Mele, and J. Münch, Effective
quantum extended spacetime of polymer Schwarzschild
black hole, Classical Quantum Gravity 36, 195015 (2019).

[39] A. Alonso-Bardaji, D. Brizuela, and R. Vera, An effective
model for the quantum Schwarzschild black hole, Phys.
Lett. B 829, 137075 (2022).

[40] A. Alonso-Bardaji, D. Brizuela, and R. Vera, Nonsingular
spherically symmetric black-hole model with holonomy
corrections, Phys. Rev. D 106, 024035 (2022).

[41] Z. S. Moreira, H. C. D. Lima, Junior, L. C. B. Crispino, and
C. A. R. Herdeiro, Quasinormal modes of a holonomy
corrected Schwarzschild black hole, Phys. Rev. D 107,
104016 (2023).

[42] F. Dyson, A. Eddington, and C. Davidson, A determination
of the deflection of light by the Sun’s gravitational field,
from observations made at the total eclipse of May 29, 1919,
Philos. Trans. R. Soc. London 220, 291 (1920).

[43] L. C. B. Crispino and D. J. Kennefick, A hundred years of
the first experimental test of general relativity, Nat. Phys. 15,
416 (2019).

[44] Arthur B. Congdon and Charles R. Keeton, Principles
of Gravitational Lensing: Light Deflection as a Probe
of Astrophysics and Cosmology (Springer, NewYork, 2018).

[45] R. Kayser, T. Schramm, and L. Nieser, Gravitational lenses,
Proceedings of a Conference in Hamburg, Germany
(Springer, New York City, 1991).

[46] K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black hole
lensing, Phys. Rev. D 62, 084003 (2000).

JUNIOR, LOBO, RODRIGUES, and VIEIRA PHYS. REV. D 109, 024004 (2024)

024004-18

https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1088/1361-6382/aaa849
https://doi.org/10.1103/PhysRev.160.1113
https://doi.org/10.1088/1361-6633/abed91
https://arXiv.org/abs/gr-qc/0110034
https://doi.org/10.3390/sym15020449
https://doi.org/10.3390/sym15020449
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.1103/PhysRevD.104.125019
https://doi.org/10.1103/PhysRevD.104.125019
https://doi.org/10.1103/PhysRevD.104.125001
https://doi.org/10.1103/PhysRevD.104.125001
https://doi.org/10.1103/PhysRevD.106.045010
https://doi.org/10.1103/PhysRevD.106.045010
https://doi.org/10.1103/PhysRevD.107.125012
https://doi.org/10.1016/j.physletb.2009.07.049
https://doi.org/10.1016/j.physletb.2009.07.049
https://doi.org/10.1142/S0218271821420049
https://doi.org/10.1103/PhysRevLett.86.5227
https://doi.org/10.1088/1361-6382/ab1274
https://doi.org/10.1088/1361-6382/ab1274
https://doi.org/10.1088/1361-6382/aaad79
https://doi.org/10.1088/1361-6382/aaad79
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1088/0264-9381/26/8/085006
https://doi.org/10.1088/0264-9381/26/8/085006
https://doi.org/10.12942/lrr-2005-11
https://doi.org/10.12942/lrr-2005-11
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1155/2018/3610543
https://doi.org/10.1103/PhysRevD.76.104030
https://doi.org/10.1103/PhysRevD.76.104030
https://doi.org/10.1103/PhysRevD.78.064040
https://doi.org/10.1103/PhysRevD.78.064040
https://doi.org/10.1209/0295-5075/123/20006
https://doi.org/10.1209/0295-5075/123/20006
https://doi.org/10.1088/1361-6382/ab3f16
https://doi.org/10.1016/j.physletb.2022.137075
https://doi.org/10.1016/j.physletb.2022.137075
https://doi.org/10.1103/PhysRevD.106.024035
https://doi.org/10.1103/PhysRevD.107.104016
https://doi.org/10.1103/PhysRevD.107.104016
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1038/s41567-019-0519-3
https://doi.org/10.1038/s41567-019-0519-3
https://doi.org/10.1103/PhysRevD.62.084003


[47] C. M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, The
geometry of photon surfaces, J. Math. Phys. (N.Y.) 42,
818 (2001).

[48] A. G. Riess et al. (Supernova Search Team), Observational
evidence from supernovae for an accelerating universe and a
cosmological constant, Astron. J. 116, 1009 (1998).

[49] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements of Ω and Λ from 42 high redshift
supernovae, Astrophys. J. 517, 565 (1999).

[50] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of
dark energy, Int. J. Mod. Phys. D 15, 1753 (2006).

[51] J. Prat et al. (DES Collaboration), Dark energy survey year 1
results: Galaxy-galaxy lensing, Phys. Rev. D 98, 042005
(2018).

[52] J. Frieman, M. Turner, and D. Huterer, Dark energy and the
accelerating universe, Annu. Rev. Astron. Astrophys. 46,
385 (2008).

[53] M. Bartelmann and P. Schneider, Weak gravitational lens-
ing, Phys. Rep. 340, 291 (2001).

[54] D. E. Holz and R. M. Wald, A new method for determining
cumulative gravitational lensing effects in inhomogeneous
universes, Phys. Rev. D 58, 063501 (1998).

[55] A. Lewis and A. Challinor, Weak gravitational lensing of the
CMB, Phys. Rep. 429, 1 (2006).

[56] H. Ghaffarnejad and H. Niad, Weak gravitational lensing
from regular Bardeen black holes, Int. J. Theor. Phys. 55,
1492 (2016).

[57] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C.
Hirata, A. G. Riess, and E. Rozo, Observational probes of
cosmic acceleration, Phys. Rep. 530, 87 (2013).

[58] V. Bozza, Gravitational lensing in the strong field limit,
Phys. Rev. D 66, 103001 (2002).

[59] V. Bozza and L. Mancini, Observing gravitational lensing
effects by Sgr A* with GRAVITY, Astrophys. J. 753, 56
(2012).

[60] S. Pietroni and V. Bozza, The impact of gravitational lensing
in the reconstruction of stellar orbits around Sgr A*, J.
Cosmol. Astropart. Phys. 12 (2022) 018.

[61] N. Tsukamoto, Deflection angle of a light ray reflected by a
general marginally unstable photon sphere in a strong
deflection limit, Phys. Rev. D 102, 104029 (2020).

[62] N. Tsukamoto, Gravitational lensing in the Simpson-Visser
black-bounce spacetime in a strong deflection limit, Phys.
Rev. D 103, 024033 (2021).

[63] N. Tsukamoto, Gravitational lensing by a photon sphere in a
Reissner-Nordström naked singularity spacetime in strong
deflection limits, Phys. Rev. D 104, 124016 (2021).

[64] J. Zhang and Y. Xie, Gravitational lensing by a black-
bounce-Reissner–Nordström spacetime, Eur. Phys. J. C 82,
471 (2022).

[65] J. W. Nightingale, R. J. Smith, Q. He, C. M. O’Riordan, J. A.
Kegerreis, A. Amvrosiadis, A. C. Edge, A. Etherington,
R. G. Hayes, A. Kelly et al., Abell 1201: Detection of an
ultramassive black hole in a strong gravitational lens, Mon.
Not. R. Astron. Soc. 521, 3298 (2023).

[66] R. Legin, Y. Hezaveh, L. Perreault-Levasseur, and B.
Wandelt, A framework for obtaining accurate posteriors
of strong gravitational lensing parameters with flexible

priors and implicit likelihoods using density estimation,
Astrophys. J. 943, 4 (2023).

[67] J. Wambsganss, Discovering galactic planets by gravita-
tional microlensing: magnification patterns and light curves,
Mon. Not. R. Astron. Soc. 284, 172 (1997).

[68] V. Bozza, E. Bachelet, F. Bartolić, T. Heintz, A. Hoag, and
M. Hundertmark, VBBinaryLensing: A public package for
microlensing light curve computation, Mon. Not. R. Astron.
Soc. 479, 5157 (2018).

[69] S. Sajadian and K. C. Sahu, Detecting isolated stellar-mass
black holes with the Roman telescope, Astron. J. 165, 96
(2023).

[70] I. G. Shin, C. Han, A. Gould, A. Udalski, T. Sumi, M.
Dominik, J. P. Beaulieu, Y. Tsapras, V. Bozza, M. K.
Szymanski et al., Microlensing binaries with brown dwarf
companions, Astrophys. J. 760, 116 (2012).

[71] J. Y. Choi, C. Han, A. Udalski, T. Sumi, B. S. Gaudi, A.
Gould, D. P. Bennett, M. Dominik, J. P. Beaulieu, Y. Tsapras
et al., Microlensing discovery of a population of very tight,
very low-mass binary brown dwarfs, Astrophys. J. 768, 129
(2013).

[72] V. Bozza and L. Mancini, Time delay in black hole
gravitational lensing as a distance estimator, Gen. Relativ.
Gravit. 36, 435 (2004).

[73] C. R. Keeton and A. O. Petters, Formalism for testing
theories of gravity using lensing by compact objects. I.
Static, spherically symmetric case, Phys. Rev. D 72, 104006
(2005).

[74] C. R. Keeton and A. O. Petters, Formalism for testing
theories of gravity using lensing by compact objects. II.
Probing post-post-Newtonian metrics, Phys. Rev. D 73,
044024 (2006).

[75] C. R. Keeton and A. O. Petters, Formalism for testing
theories of gravity using lensing by compact objects. III.
Braneworld gravity, Phys. Rev. D 73, 104032 (2006).

[76] Z. Horvath, L. A. Gergely, Z. Keresztes, T. Harko, and
F. S. N. Lobo, Constraining Hořava-Lifshitz gravity by
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