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One of the important extensions of Riemann geometry is Weyl geometry, which is essentially based on the
ideas of conformal invariance and nonmetricity. A similar non-Riemannian geometry was proposed by Erwin
Schrödinger in the late 1940s, in a geometry which is simpler, and (probably) more elegant than the Weyl
geometry. Even if it contains nonmetricity, the Schrödinger connection preserves the length of vectors under
parallel transport, and thus seems to be more physical than the Weyl connection. Interestingly enough,
Schrödinger’s approach did not attract much interest in the field of gravitational physics. It is the goal of the
present paper to reconsider the Schrödinger geometry as a potential candidate for a gravitational theory
extending standard general relativity. We consider a gravitational action constructed from a length preserving
nonmetricity, in the absence of torsion, and investigate its variation in both Palatini and metric formalisms.
While the Palatini variation leads to standard general relativity, the metric version of the theory adds some
nonmetricity dependent extra terms in the gravitational Einstein equations, which can be interpreted as
representing a geometric type dark energy. After obtaining the generalized Friedmann equations, we analyze
in detail the cosmological implications of the theory, by considering two distinct models, corresponding to a
dark energy satisfying a linear equation of state, and to conserved matter energy, respectively. In both cases
we compare the predictions of the Weyl-Schrödinger cosmology with a set of observational data for the
Hubble function, and with the results of the ΛCDM standard paradigm. Our results show that the Weyl-
Schrödinger cosmological models give a good description of the observational data, and, for certain values of
the model parameters, they can reproduce almost exactly the predictions of the ΛCDM model. Hence, the
Weyl-Schrödinger theory represents a simple, and viable alternative to standard general relativity, in which
dark energy is of purely geometric origin.
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I. INTRODUCTION

The creation of the theory of general relativity, as
realized in the essential contributions by Einstein and
Hilbert [1–3] had an overwhelming impact not only on the
various branches of the gravitational physics, including
cosmology, but also on mathematics. In their theoretical
approaches, Einstein and Hilbert extensively applied the
Riemannian geometry [4], in which on a manifold one can
introduce an additional structure, the metric, determined
by a metric tensor gμν, and a symmetric connection Γα

μν,
respectively. The metric tensor allows us to define dis-
tances and angles, while with the help of the connection

one can define the covariant derivative ∇λ of a vector Vμ

as ∇λVμ ¼ ∂λVμ − Γσ
λμVσ. The geometric properties of the

space timemanifold are characterized by the curvature tensor
Rμ
νσλ, constructed from the connection, and its contractions

Rνλ ¼ Rσ
νσλ, andR ¼ Rν

ν, fromwhich the Einstein tensorGμν

is obtained. The gravitational field equations can be also
derived from the Einstein-Hilbert variational principle, with
the help of the action S ¼ R

R
ffiffiffiffiffiffi−gp

d4x. The Einstein-Hilbert
action can begeneralized to the fðRÞmodified gravity theory
action, given by S ¼ R

fðRÞ ffiffiffiffiffiffi−gp
d4x, where f is an arbitrary

analytical function of the Ricci scalar [5,6] For a detailed
review of fðRÞ gravity see [7]. Extensions of fðRÞ gravity
theories by including matter-geometry couplings were con-
sidered in Refs. [8,9,10].
In 1918, a few years after the birth of general relativity,

Weyl [11,12] did propose a generalization of Riemannian
geometry, which was inspired by the idea of developing the
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first unified theory of gravity and electromagnetism. In
generalizing Riemann geometry, Weyl abandoned the met-
ric condition∇λgμν ¼ 0, by generalizing it to∇λgμν ¼ Qλμν,
where Qλμν is the nonmetricity of the spacetime. In the
initial formulation by Weyl, the nonmetricity has the form
Qλμν ¼ ωλgμν, where ωλ is the Weyl vector. Weyl suggested
that the nonmetricity of the spacetime is the source of the
electromagnetic field. Weyl’s unified theory was severely
criticized by Einstein, leading essentially to its abandon-
ment for more than a half century. Einstein’s criticism
can be summarized as follows. Under a rescaling of the
metric tensor gμν → ð1þ ϵωÞgμν, the line element ds2 ¼
gμνdxμdxν is rescaled according to ds → expðω=2Þ ds.
Einstein asserted that since ds represents the ticking of a
clock, or the spacings of atomic spectral lines, if it is not
absolutely invariant, the basic physical quantities (Compton
wavelength, electron mass, etc.) would vary in space and
time, an effect which is not observed experimentally.
This pathological behavior is called the second clock effect.
For a recent discussion of it see [13] For early discussions
of the Weyl geometry and of its applications see [14,15],
respectively.
Soon after the publication of Weyl’s work, another

fundamental advance occurred in differential geometry,
namely, the definition of the concept of torsion [16].
Theories based on torsion represent another interesting
generalization of Einstein’s general relativity [17–19],
presently called the Einstein-Cartan theory [20]. In the
Einstein-Cartan theory, the torsion field Tμ

σλ ≠ 0 is assumed
to be proportional to the spin density of the matter [20].
It is also worth mentioning, for the sake of completeness,

a third mathematical and physical enlargement of the
gravitational field theories. This extension was initiated
by the work of Weitzenböck [21], who introduced a class of
new geometrical structures, known as the Weitzenböck
spaces. A Weitzenböck space is characterized by the basic
mathematical properties ∇μgσλ ¼ 0, Tμ

σλ ≠ 0, and Rμ
νσλ ¼ 0,

respectively, and when Tμ
σλ ¼ 0, reduces to a Euclidean

manifold. Moreover, in a Weitzenböck manifold Tμ
σλ has

values that depend on the regions of the manifold. Due to
the fact that the Riemann curvature tensor identically
vanishes, the Weitzenböck geometries have the property
of distant parallelism, known also as absolute parallelism
teleparallelism. Einstein was the first to apply teleparallel-
ism in physics by proposing a unified teleparallel theory of
electromagnetism and gravitation [22]. Weitzenböck geom-
etries are extensively used in teleparallel equivalent of
general relativity (TEGR) type theories, proposed initially
in [23–25], also known as the fðTÞ gravity theory, where T
is the torsion scalar. These theories can explain the late-time
acceleration of the Universe, without introducing the dark
energy, or the cosmological constant [26–29]. For a review
of teleparallel gravity see [30].
With a few notable exceptions, in the physics community

Weyl’s geometry was almost totally ignored in the first
50 years of its existence. But this situation began to change

especially after 1970, when the interest for the physical and
mathematical applications of Weyl geometry at both macro-
scopic and microscopic levels significantly increased. For a
detailed description of the fascinating history of Weyl
geometry, and of its applications in physics see [31].
An important development related to Weyl geometry

can be related to the investigations by Dirac [32,33]. In
proposing an extension of Weyl’s theory, and geometry,
Dirac introduced the Lagrangian

L ¼ −β2Rþ kDμβDμβ þ cβ4 þ 1

4
FμνFμν; ð1Þ

which contains a real scalar field β of weight wðβÞ ¼ −1,
and the electromagnetic field tensor Fμν coming from the
Weyl curvature. Moreover, Dirac adopted for the constant
k the value k ¼ 6. The Lagrangian (1) has the important
property of conformal invariance. In [34] the cosmological
implications of a Dirac type model were investigated. The
Weyl-Dirac type Lagrangian

L ¼ WλρWλρ − β2Rþ σβ2wλwλ þ 2σβwλβ;λ

þ ðσ þ 6Þβ;ρβ;λgρλ þ 2Λβ4 þ Lm; ð2Þ

was considered in [35], where β is the Dirac scalar field,
while σ and Λ are constants. Wμν is the Weyl length
curvature tensor, obtained from the Weyl vector wμ. In the
cosmological applications of this model it was shown that
ordinary matter is created by the Dirac’s gauge function in
the very early Universe. On the other hand, at late times,
Dirac’s gauge function generates to dark energy that
accelerates the present day Universe.
Weyl’s geometry can be naturally generalized to include

torsion, thus leading to the Weyl-Cartan geometry, which
was intensively studied from both mathematical and
physical points of view [36–41]. For the physical appli-
cations of the Riemann-Cartan and Weyl-Cartan space-
times see the review [42]. A class of teleparallel gravity
models, called Weyl-Cartan-Weitzenböck gravity, was
proposed in [43], with the action formulated with the help
of the dynamical variables ðgμν; wμ; Tλ

μνÞ. The teleparallel
gravity and the Weyl-Cartan-Weitzenböck theory was
generalized in [44], by inserting the Weitzenböck con-
dition into the Weyl-Cartan gravitational action via a
Lagrange multiplier. The cosmological analysis of the
theory shows that both accelerating and decelerating
cosmological models can be obtained.
The theoretical investigations performed by using

Riemannian, Cartan and teleparallel geometries indicate
that general relativity, or more generally, geometric theories
of gravity, can be formulated in (at least) two formalisms,
which are mathematically equivalent: the curvature repre-
sentation (with the nonmetricity and torsion vanishing
identically), and the teleparallel representation, in which
the nonmetricity and the curvature vanish identically.

MING, LIANG, ZHANG, and HARKO PHYS. REV. D 109, 024003 (2024)

024003-2



A third, mathematically equivalent geometric represen-
tation of general relativity has also been formulated. The
properties of the gravitational field can be described
geometrically by the nonmetricity Q of the metric. From
a geometric point of view the nonmetricity describes the
change of the length of a vector when parallelly transported
around a closed loop. The gravitational theory describing
gravity via nonmetricity is called the symmetric teleparallel
theory, and it was initially introduced in [45]. The con-
nection describing the geometry can be decomposed gen-
erally into the Levi-Civita connection of the Riemannian
geometry, and a deformation one form, Aα

β, so that
Γα

β ¼ Γfgα
β − Aα

β. The deformation one form is generally
given by Aαβ ¼ Kαβ −Qαβ=2 −Qγ½αβ�θγ, where Kαβ is the
contorsion, while Qαβ denotes the nonmetricity, which is
generally defined according to Qαβ ¼ −Dgαβ.
In a teleparallel frame, in which the condition Γ≡ 0 is

satisfied, and after also requiring the condition of the
vanishing of the torsion, it follows that Qμνλ ¼ −gμν;λ.
Hence, the deformation tensor becomes the Christoffel
symbol γαβγ, so that A

α
βγ ¼ γαβγ. Then the gravitational action

can be represented as Lg ¼ ffiffiffiffiffiffi−gp
gμνðγαβμγβνα − γαβαγ

β
μνÞ,

which is exactly the Einstein-Hilbert Lagrangian. In sym-
metric teleparallel gravity the associated energy-momentum
density is the Einstein pseudotensor, which now becomes a
true tensor.
The symmetric teleparallel gravity approach was gen-

eralized to the fðQÞ gravity theory (or the coincident
general relativity) in [46]. As a first step in constructing the
theory one introduces the quadratic nonmetricity scalar

Q¼−
1

4
QαβμQαβμþ 1

2
QαβμQβμαþ 1

4
QαQα−

1

2
QαQ̄α; ð3Þ

where Qμ ¼ Qμ
α
α, and Q̃

μ ¼ Qα
μα. Then, the nonmetricity

conjugate Pα
μν is defined as

Pα
μν ¼ c1Qαμν þ c2QðμανÞ þ c3Qαgμν þ c4δαðμQ̄νÞ

þ c5
2
ðQ̃αgμν þ δαðμQνÞÞ: ð4Þ

Finally, after introducing the general quadratic form Q as
Q ¼ Qμν

α Pα
μν, one can write down the gravitational action of

the fðQÞ theory as [46]

S ¼
Z

dnx

�
−
1

2

ffiffiffiffiffiffi
−g

p
Qþ λα

βμνRα
βμν þ λα

μνTα
μν

�
: ð5Þ

The physical, cosmological and geometrical properties
of the fðQÞ gravity have been extensively investigated
recently [47–53]. For a review of the fðQÞ theory see [54].
An extension of the fðQÞ theory was considered in [55] by
assuming that the nonmetricity Q could nonminimally

couple to the matter Lagrangian. The action of the theory
is thus given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
f1ðQÞ þ f2ðQÞLm

�
; ð6Þ

where Lm is the matter Lagrangian, and f1 and f2 are
arbitrary analytical functions of Q. The existence of a
nonminimal coupling between geometry and matter leads
to the nonconservation of the matter energy-momentum
tensor, and to the presence of an extra force in the geodesic
equation of motion of massive particles. The cosmological
solutions obtained in the framework of this model can
describe the accelerating evolution of the Universe.
The most general extension of the fðQÞ gravity, with the

gravitational Lagrangian L constructed from an arbitrary
function f of the nonmetricity Q and of the trace T of the
matter-energy-momentum tensor, was introduced in [56].
The action of the theory is

S ¼
Z �

1

16π
fðQ; TÞ þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð7Þ

Within the framework of fðQ; TÞ gravity one can construct
cosmological models by assuming some simple functional
forms of the function fðQ; TÞ. In these models the Universe
enters in an accelerating phase, which usually ends with a
de Sitter type expansion.
In the 1940s Erwin Schrödinger, who was mostly

interested in metric-affine theories, tried to find the most
general possible symmetric connection [57,58]. From
general considerations he arrived at the result that such
a connection is given by Γλ

μν ¼ γλμν þ gλρSρμν, where Sρμν
is a geometric quantity consisting of the combination of
two antisymmetric connections. The geometry based on
Schrödinger’s connection represents essentially a new
geometry, which is distinct from that of Weyl. A system-
atic investigation of the Schrödinger connection was
performed in [59], where an action of the form

S ¼ 1

2κ2

Z
d3x

� ffiffiffiffiffiffi
−g

p
fðRÞ þ 1

2μ
ϵμνρQρR̂νμ

�

þ
Z

d3xϵμνρζνσTρμ
σ; ð8Þ

was considered, where fðRÞ denotes an arbitrary function
of the scalar curvature R ¼ gμνRμνðΓÞ, R̂μν ≔ Rλ

λμν ¼
∂½μQν� is the homothetic curvature tensor, μ is a Chern-
Simons coupling constant, and ζνσ a Lagrange multiplier,
respectively. Moreover, ϵμνρ ¼ ffiffiffiffiffiffi−gp

εμνρ the Levi-Civita
symbol, εμνρ is the Levi-Civita tensor, while Γ denotes an
arbitrary connection. Solutions with constant scalar cur-
vature were obtained in the framework of this model,
leading to a self-duality relation for the nonmetricity
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vector. This relation gives a Proca type equation, which
may be an indication of the inhomogeneous Maxwell
equations as originating from affine geometry.
It is the main goal of the present investigation to consider

the possibility of the Schrödinger geometry as being an
important and viable candidate for the geometric extension
of standard general relativity. To implement this idea we
begin by considering a gravitational action, which is for-
mulated in terms of a length preserving nonmetricity, in the
absence of torsion. The variation of this action is considered
in both Palatini and metric formalisms. It turns out that
the Palatini variation leads to standard general relativity,
and hence the two theories coincide in this formulation.
However, the metric variation of the Schrödinger action
leads to the presence of nonmetricity dependent extra terms
in the gravitational Einstein equations. We interpret these
terms as representing a geometric type dark energy.
In order to investigate the physical implications, and the

viability of the Weyl-Schrödinger theory we consider the
field equations in the FLRW cosmological metric. After
deriving the generalized Friedmann equations, we analyze
in detail the cosmological implications of the Weyl-
Schrödinger theory. In the generalized Friedmann equations
the presence of nonmetricity generates two new terms,
which can be interpreted as an effective geometric energy
density of the dark matter, and an effective pressure. To test
viability of the theory we consider two distinct cosmological
models. In the first model, we assume that dark energy
satisfies a linear equation of state, that is, the effective
geometric pressure is proportional to the dark matter energy
density, with the parameter of the equation of state assumed
to be a redshift dependent function. In the second model we
assume that the matter energy density is conserved. For both
models we perform a comparison of the predictions of the
Weyl-Schrödinger cosmology with a set of observational
data for the Hubble function, and with the similar results
obtained within the framework of the ΛCDM standard
cosmological paradigm. Our results show that the Weyl-
Schrödinger cosmological models can give a good descrip-
tion of the observational data for the Hubble function.
Moreover, for specific values of the model parameters, they
can reproduce almost exactly the predictions of the ΛCDM
model. Therefore, the Weyl-Schrödinger theory in its non-
metricity representation could provide a simple, and viable
alternative to standard general relativity, in which dark
energy is of purely geometric origin.
The present paper is organized as follows. We introduce

the fundamentals of the Weyl and Schrödinger geometries
in Sec. II. The action of the Weyl-Schrödinger theory is
introduced in Sec. III, where the gravitational field equa-
tions are derived in both Palatini and metric formalisms. The
cosmological implications of the theory are investigated in
Sec. IV, where the predictions of two distinct cosmological
models are compared with the observational data, and the
similar predictions of the ΛCDM model. We discuss our

results, and we conclude our work in Sec. V. The calcula-
tional details of the variation of the action in the Palatini
formalism are presented in Appendix A 1. The technical
details of the calculation of the variation of the action with
respect to the metric tensor are given in Appendix A 2.
Finally, the derivation of the generalized Friedmann equa-
tions for the FLRW metric is presented in Appendix A 3.

II. FROM WEYL GEOMETRY TO THE
SCHRÖDINGER CONNECTION

In his book [58], Schrödinger wished to find the most
general class of an affine connection to be in accordance
with the affine measure of distance along every geodesic,
i.e., a relationship between gμν and Γλ

μν. While allowing the
existence of a nonzero nonmetricity, a Schrödinger con-
nection is supposed to preserve the length of vectors under
parallel transport, which in general does not hold in Weyl
geometry. To find such a form of connection, one can start
with a sufficient condition with vanishing nonmetricity that
Qαμν ¼ −∇αgμν ¼ 0, then the circling of it gives

0 ¼ ∇ρgμν ¼ ∂ρgμν − gμαΓα
νρ − gναΓα

μρ; ð9Þ

0 ¼ ∇μgνρ ¼ ∂μgνρ − gναΓα
ρμ − gραΓα

νμ; ð10Þ

0 ¼ ∇νgρμ ¼ ∂νgρμ − gραΓα
μν − gμαΓα

ρν: ð11Þ

Adding the later two equations and minus the first, and
contracting with 1

2
gρλ yields

0 ¼ 1

2
gρλð∂μgνρ þ ∂νgρμ − ∂ρgμνÞ −

1

2
gρλgραðΓα

μν þ Γα
νμÞ

þ 1

2
gρλgναðΓα

μρ − Γα
ρμÞ þ

1

2
gρλgμαðΓα

νρ − Γα
ρνÞ

¼ γλμν − ΓλðμνÞ þ gρλðgναΓα½μρ� þ gμαΓα½νρ�Þ; ð12Þ

or

Γλ
μν ¼ γλμν þ gρλðgναΓα½μρ� þ gμαΓα½νρ�Þ þ Γλ½μν�; ð13Þ

where γλμν ¼ 1
2
gρλð∂μgνρ þ ∂νgρμ − ∂ρgμνÞ is the Christoffel

symbol, ΓλðμνÞ ≡ 1
2
ðΓλ

μν þ Γλ
νμÞ and Γλ½μν� ≡ 1

2
ðΓλ

μν − Γλ
νμÞ

are the symmetric and antisymmetric parts of Γλ
μν, respec-

tively. Considering that in the equations of geodesic,
antisymmetry cancels in the overall connection, we can
drop the last term in (13) and are led to

Γλ
μν ¼ γλμν þ gρλðgναΓα½μρ� þ gμαΓα½νρ�Þ: ð14Þ

From this relation Schrödinger concluded that the con-
nections Γλ

μν, which are compatible with the metric gμν in a
general meaning, while the condition Qρμν ¼ 0 is not
necessary satisfied, should have the form
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Γλ
μν ¼ γλμν þ gρλSρμν; ð15Þ

where the Schrödinger tensor Sρμν is symmetric in its later
indices

Sρμν ¼ Sρνμ: ð16Þ

He also concluded that with this form of connections, the
necessary condition that a vector preserves its length under
parallel transport is

SðρμνÞ ¼ 0: ð17Þ

To see this, notice that for a tangent vector of a geodesic,
ξμ ∝ dxμ

dλ , we have ξρ∇ρξ
μ ¼ 0, then its length being

constant gives

0¼ ξρ∇ρðgμνξμξνÞ
¼∇ρgμνξρξμξνþgμνξνξρ∇ρξ

μþgμνξμξρ∇ρξ
ν

¼ð∂ρgμν−gμαΓα
νρ−gναΓα

μρÞξρξμξν
¼ð∂ρgμν−gμαγανρ−gναγαμρ−gμαgλαSλνρ−gναgλαSλμρÞξρξμξν
¼−ðSμνρþSνμρÞξρξμξν
¼−2Sμνρξρξμξν; ð18Þ

and thus we arrive at the result SðμνρÞ ¼ 0.
To summarize, a Schrödinger connection, which pre-

serves the length of vectors under parallel transport,
although involving nonzero nonmetricity, has the form
(15), while fulfilling the conditions (16) and (17),
respectively.
As is well known, the generic decomposition of an affine

connection is given by

Γλ
μν ¼ γλμν þ Nλ

μν

¼ γλμν þ Lλ
μν þ Cλ

μν

¼ γλμν þ
1

2
gρλðQμνρ þQνρμ −QρμνÞ

þ gρλðTρμν þ Tμνρ − TνρμÞ; ð19Þ

where Tλ
μν ≔ Γλ½μν� is the torsion tensor, Nλ

μν, Lλ
μν and

Cλ
μν are the distortion, deflection and contorsion tensor,

respectively. In the case of symmetric connection (i.e.,
vanishing torsion) and NðρμνÞ ¼ 0, (19) reduces to

Γλ
μν ¼ γλμν þ

1

2
gρλðQμνρ þQνρμ −QρμνÞ

¼ γλμν þ
1

2
gρλð−Qρμν −QρμνÞ

¼ γλμν − gρλQρμν ð20Þ

with QðρμνÞ ¼ 0. This corresponds to a Schrödinger con-
nection for which the Schrödinger tensor Sρμν ¼ −Qρμν. It
was also discussed that the Schrödinger connection can be
written only in terms of torsion with vanishing nonme-
tricity [59]. We will focus on the torsion free case and
consider a length preserving nonmetricity.
Having the affine connection (20) at hand, we can then

define the Riemann curvature tensor Rμ
ναβ, which describes

how parallel transport modifies the orientation of a vector,
by acting the commutator of two covariant derivatives on a
vector vμ,

½∇α;∇β�vμ ¼ 2∇½α�∇β�vμ ¼ Rμ
ναβvν; ð21Þ

where Rμ
ναβ is related to the Schrödinger connection

Γλ
μν via

Rμ
ναβ ≡ ∂αΓμ

νβ − ∂βΓμ
να þ Γμ

ραΓρ
νβ − Γμ

ρβΓρ
να: ð22Þ

Without the help of a metric, there exist two
possible independent contractions of Rμ

ναβ, namely the
Ricci tensor Rμν

Rμν ≡ Rα
μαν ¼ ∂αΓα

μν − ∂νΓα
μα þ Γα

ραΓρ
μν − Γα

ρνΓρ
μα;

ð23Þ

and the homothetic curvature tensor R̂μν

R̂μν ≡ Rα
αμν ¼ ∂μΓα

αν − ∂νΓα
αμ: ð24Þ

It is known that when nonmetricity is present (Qρμν ≠ 0),
the homothetic curvature R̂μν is nonvanishing and can be
expressed as R̂μν ¼ ∂½μQν�. However, in the next section we
will see that only the symmetric part of Ricci tensor appears
in the equations of motion, since R̂μν is anti-symmetric in
the indices μ and ν.
The Ricci tensor Rμν can be decomposited into two parts,

the pure Riemannian part R̊μν computed for the Levi-Civita
connection γλμν and the part containing the contribution of
nonmetricity,

Rμν ≡ ∂αΓα
μν − ∂νΓα

μα þ Γα
ραΓρ

μν − Γα
ρνΓρ

μα

¼ ∂αγ
α
μν − ∂αQα

μν − ∂νγ
α
μα þ ∂νQ̃μ

þ γαραγ
ρ
μν − Q̃ργ

ρ
μν − γαραQρ

μν þ Q̃ρQρ
μν

− γαρνγ
ρ
μα þQα

ρνγ
ρ
μα þ γαρνQρ

μα −Qα
ρνQρ

μα

¼ R̊μν − ∇̊αQα
μν þ ∇̊νQ̃μ þ Q̃ρQρ

μν −Qα
ρνQρ

μα; ð25Þ
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where ∇̊α is the covariant derivative corresponding to γρμν,

i.e., ∇̊αgμν ¼ 0, and we use

R̊μν ≔ ∂αγ
α
μν − ∂νγ

α
μα þ γαραγ

ρ
μν − γαρνγ

ρ
μα; ð26Þ

∇̊αQα
μν ¼ ∂αQα

μν þ γαραQρ
μν − γρμαQα

ρν − γρναQα
μρ; ð27Þ

∇̊νQ̃μ ¼ ∂νQ̃μ − γρμνQ̃ρ: ð28Þ

Before going further into the Weyl-Schrödinger geom-
etry, we shall discuss more about the conditions of the
nonmetricity. With the two independent vectors of non-
metricity, Qμ and Q̃μ, the nonmetricity tensor Qλμν can be
decomposed in n dimension as [60]

Qλμν ¼
nþ 1

ðnþ 2Þðn − 1ÞQλgμν −
2

ðnþ 2Þðn − 1ÞQðμgνÞλ

−
2

ðnþ 2Þðn − 1Þ Q̃λgμν þ
2n

ðnþ 2Þðn − 1Þ Q̃ðμgνÞλ

þ Ωλμν; ð29Þ

where Ωλμν is the traceless part of Qλμν: gμνΩλμν ¼
gλμΩλμν ¼ 0.
If we assume Ωλμν ¼ 0 and Q̃μ ¼ mQμ with some

constant m, then

Qλμν ¼
nþ1−2m

ðnþ2Þðn−1ÞQλgμνþ
2mn−2

ðnþ2Þðn−1ÞQðμgνÞλ; ð30Þ

and thus

QðλμνÞ ¼
nþ 1 − 2m

ðnþ 2Þðn − 1ÞQðλgμνÞ þ
2mn − 2

ðnþ 2Þðn − 1ÞQðμgνλÞ

¼ 2mþ 1

nþ 2
QðλgμνÞ; ð31Þ

therefore the condition QðλμνÞ ¼ 0 leads to m ¼ − 1
2
, i.e.,

Q̃μ ¼ −
1

2
Qμ: ð32Þ

We are going to find a solution of the Schrödinger
connection that satisfies the above condition, together with
the constraint Ωλμν ¼ 0.

III. GRAVITATIONAL FIELD EQUATIONS
IN THE WEYL-SCHRÖDINGER GEOMETRY

In this paper we first work in the Palatini formalism in
which the affine connection and metric are considered to be
two independent variables and the matter part of the action
does not depend on the connection. The gravitational action
we will study is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 5

24
QρQρ þ 1

6
Q̃ρQ̃

ρ þ 2TρQρ

þ ζρσαTα
ρσ

�
þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð33Þ

here R ≔ gμνRμνðΓÞ, Tρ ≔ Tσ
ρσ , and ζρσα is a Lagrange

multiplier.
The variation of (33) with respect to ζμνλ leads to a

vanishing torsion,

Tλ
μν ¼ 0: ð34Þ

The variation with respect to the metric gμν gives the
modified Einstein equation,

RðμνÞ −
1

2
Rgμν þ

5

24

�
1

2
gμνQαQα þQμQν − 2gμνQαQ̃

α

− 2gμνgαβ∇βQα

�
þ 1

6

�
−
1

2
gμνQ̃αQ̃

α − Q̃μQ̃ν

þQμQ̃ν − 2∇ðμQ̃νÞ

�
¼ 8πTμν; ð35Þ

where we define the energy-momentum tensor as usual,
according to the relation

Tμν ≡ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð36Þ

Varying (33) with respect to Γλ
μν results in

−
∇λð ffiffiffiffiffiffi−gp

gμνÞffiffiffiffiffiffi−gp þ∇ρð ffiffiffiffiffiffi−gp
gμρÞδνλffiffiffiffiffiffi−gp þ 1

3
Q̃λgμν

þ 1

3
Q̃μδνλ þQμδνλ −

1

6
Qνδμλ þ ζ½μν�λ ¼ 0: ð37Þ

The detailed calculations for these equations of motion can
be found in Appendix A 1.
Noticing that

∇λ
ffiffiffiffiffiffi−gp

ffiffiffiffiffiffi−gp ¼ 1

2g
∇λg ¼

1

2g
ggαβ∇λgαβ ¼ −

1

2
Qλ; ð38Þ

and

∇λgμν ¼ gαμgαβ∇λgβν ¼ −gαμgβν∇λgαβ ¼ Qμν
λ ; ð39Þ

respectively, and using the decomposition of the non-
metricity (29) in 4 dimensions,

Qλμν ¼
5Qα − 2Q̃α

18
gμν þ

4Q̃ðμgνÞα −QðμgνÞα
9

þΩλμν; ð40Þ
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one can simplify (37) to

0 ¼ 4

9

�
Q̃λ þ

1

2
Qλ

�
gμν þ 10

9

�
Q̃μ þ 1

2
Qμ

�
δνλ

−
2

9

�
Q̃ν þ 1

2
Qν

�
δμλ −Ωλ

μν þ ζ½μν�λ: ð41Þ

Contracting the above equation with gμν one gets

8

3

�
Q̃λ þ

1

2
Qλ

�
¼ 0: ð42Þ

Thus we have

Q̃λ ¼ −
1

2
Qλ: ð43Þ

Using (43) and contracting (41) with any nonzero anti-
symmetric tensor Σρ½μν�, we find

ζ½μν�λ ¼ 0; ð44Þ

and

Ωλ
μν ¼ 0; ð45Þ

respectively. With the use of Eqs. (43) and (45), we obtain a
Schrödinger connection (20), as discussed in the previous
section.
Furthermore, after a straightforward calculation by

inserting (25) and (A23) into (35), the modified Einstein
equation in the Palatini formalism can be largely simplified
to obtain

R̊μν −
1

2
R̊gμν ¼ 8πTμν; ð46Þ

where R̊μν is the Ricci tensor constructed from the Levi-
Civita connection γλμν which is metric compatible, i.e.,

∇̊αgμν ¼ 0. This means our model in its Palatini formalism
is equivalent to the general relativity.
Now, we consider the metric formalism, in which the

connection has to be assumed to depend on the metric in
a priori way. If we adopt the Schrödinger connection (20),
then the variation of (33) with respect to gμν gives the
modified Einstein equation in the metric formalism as

R̊μν −
1

2
R̊gμν −

2

9
QρQρgμν −

11

18
QμQν þ

2

3
gμν∇ρQρ

þ 1

6
gρμ∇νQρ þ 1

6
gρν∇μQρ ¼ 8πTμν: ð47Þ

IV. COSMOLOGICAL APPLICATIONS

In the present section we will consider the cosmological
applications of the Weyl-Schrödinger gravity theory, as we
have introduced it in Sec. III. As a first step in ours study,
we will obtain the generalized Friedmann equations of the
theory, by assuming a flat, isotropic and homogeneous
Universe. We also point out the presence of extra terms, of
geometric nature, in the generalized Friedmann equations,
which can be interpreted as a dark energy, and which trigger
the accelerated expansion of the Universe. Then, we will
reformulate the basic equations in a dimensionless form,
and in the redshift space. The existence of a de Sitter type
solution will be investigated in detail. Two cosmological
models, obtained by obtained various conditions on the dark
energy terms, are obtained, and studied in detail. In each
case a comparison with the standard ΛCDM model and a
small set of observational data is also performed.

A. Generalized Friedmann equations
in Weyl-Schrödinger gravity

We assume first that the Universe is described by the
isotropic, homogeneous and spatially flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, given by

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð48Þ

where aðtÞ is the scale factor. We also assume that, due to
spatial symmetry, the first Weyl vector can be taken to be of
the form

Qρ ¼ ½ωðtÞ; 0; 0; 0�: ð49Þ

Moreover, we consider that the matter content of the
Universe can be described as a perfect fluid, characterized
by only two thermodynamic parameters, the energy density
ρ, and the thermodynamic pressure p. Hence, the ordinary
matter energy-momentum tensor is given by

Tμν ¼ ρuμuν þ pðuμuν þ gμνÞ; ð50Þ

where uμ is the normalized four-velocity of the fluid,
satisfying the condition uμuμ ¼ −1. Then, the field equa-
tions (47) give the two generalized Friedmann equations of
the Weyl-Schrödinger theory as (see Appendix A 3 for their
derivation)

3ȧ2

a2
þ 2ȧ

a
ω −

1

2
ω2 þ ω̇ ¼ 8πρ ð51Þ

and

−
2ä
a

−
ȧ2

a2
−
7ȧ
3a

ω −
1

6
ω2 −

2

3
ω̇ ¼ 8πp: ð52Þ

FROM THE WEYL-SCHRÖDINGER CONNECTION TO THE … PHYS. REV. D 109, 024003 (2024)

024003-7



By introducing the Hubble function H, defined as
H ¼ ȧ=a, we can reformulate the generalized Friedmann
equations as

3H2 ¼ 8πðρþ ρDEÞ ¼ 8πρeff ; ð53Þ

and

2Ḣ þ 3H2 ¼ −8πðpþ pDEÞ ¼ −8πpeff ; ð54Þ

where we have denoted

ρDE ¼ 1

8π

�
−ω̇ − 2Hωþ 1

2
ω2

�
; ð55Þ

and

pDE ¼ 1

8π

�
2

3
ω̇þ 1

6
ω2 þ 7

3
Hω

�
; ð56Þ

respectively. From the generalized Friedman equations we
obtain the global energy balance equation, as given by

ρ̇eff þ 3Hðρeff þ peffÞ ¼ 0; ð57Þ

which can be explicitly written as

ρ̇þ 3Hðρþ pÞ þ 1

8π

d
dt

�
−ω̇ − 2Hωþ 1

2
ω2

�

þ 3

8π
H

�
−
1

3
ω̇þ 1

3
Hωþ 2

3
ω2

�
¼ 0: ð58Þ

As an indicator of the accelerated/decelerated expansion,
we introduce the deceleration parameter q, defined as

q ¼ d
dt

1

H
− 1 ¼ −

Ḣ
H2

− 1: ð59Þ

With the use of the generalized Friedmann equations we
obtain for the deceleration parameter the expression

q¼ 1

2
þ 3

2

peff

ρeff
¼ 1

2
þ 3

2

pþ 1
8π

�
2
3
ω̇þ 1

6
ω2 þ 7

3
Hω

�

ρþ 1
8π

�
−ω̇− 2Hωþ 1

2
ω2

� : ð60Þ

Once the condition q < 0 is satisfied, the Universe will
enter into an accelerated phase of expansion. Thus a
transition can be triggered in the present model by the
dynamical evolution of the Weyl field ω.
To simplify the mathematical formalism we introduce

a set of dimensionless variables ðτ; h; r; P;ΩÞ, defined
according to the transformations

τ ¼ H0t; H ¼ H0h; ρ ¼ 3H2
0

8π
r;

p ¼ 3H2
0

8π
P; ω ¼ H0Ω; ð61Þ

where H0 is the present-day value of the Hubble function.
Then the system of the generalized Friedmann equations
takes the following dimensionless form

h2 ¼ r −
2

3
hΩþ 1

6
Ω2 −

1

3

dΩ
dτ

; ð62Þ

2
dh
dτ

þ 3h2 ¼ −3P −
7

3
hΩ −

1

6
Ω2 −

2

3

dΩ
dτ

: ð63Þ

To facilitate the comparison with the observational
data we reformulate the cosmological evolution equations
in the redshift space, with the redshift variable defined
according to

1þ z ¼ 1

a
; ð64Þ

giving

d
dτ

¼ −ð1þ zÞhðzÞ d
dz

: ð65Þ

Then in the redshift space the generalized Friedman
equations are given by

h2ðzÞ ¼ rðzÞ − 2

3
hðzÞΩðzÞ þ 1

6
Ω2ðzÞ þ 1

3
ð1þ zÞhðzÞ dΩ

dz
;

ð66Þ

−2ð1þ zÞhðzÞdhðzÞ
dz

þ 3h2ðzÞ ¼ −3PðzÞ− 7

3
hðzÞΩðzÞ

−
1

6
Ω2ðzÞ þ 2

3
ð1þ zÞhðzÞ

×
dΩ
dz

: ð67Þ

To test the relevance, and the viability of the cosmo-
logical predictions of the Weyl-Schrödinger gravity theory,
we will perform a detailed comparison of it with the
standardΛCDM cosmology, as well as with a small sample
of observational data points, obtained for the Hubble
function.
In the ΛCDM model the Hubble function is given by

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm

a3
þΩΛ

r
¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

q
; ð68Þ

where Ωm ¼ Ωb þΩDM, with Ωb ¼ ρb=ρcr, ΩDM ¼
ρDM=ρcr and ΩΛ ¼ Λ=ρcr, where ρcr is the critical density
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of the Universe. Ωb, ΩDM and ΩDE represent the density
parameters of the baryonic matter, dark matter, and dark
energy, respectively. The deceleration parameter can be
obtained from the relation

qðzÞ ¼ 3ð1þ zÞ3Ωm

2½ΩΛ þ ð1þ zÞ3Ωm�
− 1: ð69Þ

In the following analysis for the matter and dark energy
density parameters of the ΛCDM model we will use the
numerical values ΩDM ¼ 0.2589, Ωb ¼ 0.0486, and
ΩΛ ¼ 0.6911, respectively [61,62]. Hence, the total matter
density parameter Ωm ¼ ΩDM þΩb ¼ 0.3075, where we
have neglected the contribution of the radiation to the total
matter energy balance in the late Universe. The present day
value of q, as predicted by the ΛCDM model, is thus
qð0Þ ¼ −0.5912, indicating that the recent Universe is in
an accelerating expansionary stage. For the observational
data we use the values of the Hubble functions from the
compilation presented in [63].

B. The de Sitter solution: h= constant

We look first for exact vacuum solutions of the Weyl-
Schrödinger cosmological models, with P ¼ 0, under the
condition of a constant expansion rate, with h ¼ h0 ¼
constant. Equation (63) then becomes

dΩ
dτ

þ 7

2
h0Ωþ 1

4
Ω2 þ 9

2
h20 ¼ 0; ð70Þ

with the general solution given by

ΩðτÞ ¼ h0

	 ffiffiffiffiffi
31

p
tanh

�
1

4

ffiffiffiffiffi
31

p
h0ðτ − 4c1Þ

�
− 7



; ð71Þ

where c1 is an arbitrary constant of integration. In the limit
of large times we have limτ→∞ Ωτ ¼ ð ffiffiffiffiffi

31
p

− 7Þh0, that is,
the Weyl vector takes negative values when τ is very large.
Then, from Eq. (62) we obtain the variation of the matter
density during the de Sitter type era as

rðτÞ ¼ 1

4
h20

	
12

ffiffiffiffiffi
31

p
tanh

�
1

4

ffiffiffiffiffi
31

p
h0ðτ − 4c1Þ

�

þ 31sech2
�
1

4

ffiffiffiffiffi
31

p
h0ðτ − 4c1Þ

�
− 68



: ð72Þ

In the large time limit the matter density tends to
limr→∞ rðτÞ ¼ ð3 ffiffiffiffiffi

31
p

− 17Þh20, indicating a slight violation
of the energy condition r > 0 at large time intervals.

C. Model I: Dark energy models with a linear EOS

We will consider now dark energy models that do
not satisfy anymore the condition of the constancy of
the Hubble function. As a first dark energy model in the

Weyl-Schrödinger gravity theory we assume that the
effective pressure and energy density of the dark energy
are related by a linear equation of state, given by

pDEðzÞ ¼ σðzÞρDE −
λ

8π
; ð73Þ

where λ is a constant. For the parameter σðzÞ of the dark
energy equation of state we adopt the Chevallier-Polarski-
Linder (CPL) parametrization [64,65], so that

σðzÞ ¼ σ0 þ σa
z

1þ z
: ð74Þ

This form allows to extend the dark energy EOS to
very high redshifts, since limz→∞ ¼ σ0 þ σa. Hence, the
dynamical cosmological evolution equations describing the
expansion of the dust Universe, with P ¼ 0, take the form

−
2

3

�
1þ 3

2
σðzÞ

�
ð1þ zÞhðzÞ dΩðzÞ

dz
þ 7

3

�
1þ 6σðzÞ

7

�

× hðzÞΩðzÞ þ 1

6
½1 − 3σðzÞ�Ω2ðzÞ þ λ ¼ 0; ð75Þ

and

− 2ð1þ zÞhðzÞ dhðzÞ
dz

þ 3h2ðzÞ − λ

þ σðzÞ
�
−2hðzÞΩðzÞ þ 1

2
Ω2ðzÞ þ ð1þ zÞhðzÞ dΩðzÞ

dz

�

¼ 0; ð76Þ

respectively.
The system of equations (75) and (76) must be integrated

with the initial conditions hð0Þ ¼ 1, and Ωð0Þ ¼ Ω0.
Once the functions hðzÞ andΩðzÞ are known as solutions

of the evolution equations, the matter density can be
obtained as

rðzÞ ¼ h2ðzÞ þ 2

3
hðzÞΩðzÞ − 1

6
Ω2ðzÞ

−
1

3
ð1þ zÞhðzÞ dΩðzÞ

dz
: ð77Þ

The variations as functions of the redshift of the Hubble
function and of the deceleration parameter are represented,
for different values of λ, in Fig. 1. The Weyl-Schrödinger
model, closed with an effective equation of state of the dark
energy, gives a good description of the observational data,
and, for a certain range of the model parameters, can
reproduce almost exactly the predictions of the ΛCDM
model. However, some differences do appear in the behav-
ior of the deceleration parameter. Similarly to the standard
cosmological models, the Weyl-Schrödinger models pre-
dicts a decelerating expansion of the Universe at redshifts
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higher than z ≈ 1, and an accelerating expansion at lower
redshifts.
The variations of the temporal component of the Weyl-

Schrödinger vector Ω, and of the matter energy density rðzÞ
are represented, as a functions of the redshift, in Fig. 2. The
cosmological Weyl-Schrödinger vector is a monotonically
increasing function of the redshift (a monotonically decreas-
ing function of the cosmological time), and its evolution is
strongly dependent, at high redshifts, by the adopted values
of the model parameters. Up to a redshift of around z ≈ 0.5,
the cosmological dynamics of the Weyl-Schrödinger vector

is relatively independent on the numerical values of the
model parameter, including the choice of the initial con-
ditions. The matter energy density of the Weyl-Schrödinger
model coincides, up to a redshift of around z ≈ 2, with the
predictions of the ΛCDM model. However, at larger red-
shifts, there are significant differences between the predic-
tions of the two models. Generally, the increase in the matter
density occurs faster in the ΛCDM model, and thus,
standard cosmology predicts the existence of a much higher
amount of cosmic matter in the early Universe, as compared
with the predictions of the Weyl-Schrödinger model.

FIG. 2. Variation as a function of the redshift of the dimensionless Weyl-Schrödinger vector Ω (left panel) and of the dimensionless
matter energy density r in the Weyl-Schrödinger model with a linear equation of state for the dark energy for λ ¼ 3.1 (dotted curve),
λ ¼ 3.2 (short dashed curve), λ ¼ 3.3 (dashed curve), λ ¼ 3.4 (long-dashed curve), and λ ¼ 3.5 (ultralong dashed curve). The initial
conditions used to integrate the cosmological evolution equations are Ωð0Þ ¼ −9.7 × 10−1, and hð0Þ ¼ 1, respectively. For the
numerical values of the coefficients of the parameter of the dark energy equation of state we have adopted the values σ0 ¼ 0.58 and σa
¼ 0.0018, respectively. The red curve depicts the prediction of the ΛCDM model for the matter energy density, rðzÞ ¼ 0.3075ð1þ zÞ3.

FIG. 1. Variations as functions of the cosmological redshift of the dimensionless Hubble function h (left panel) and of the deceleration
parameter (right) panel in the Weyl-Schrödinger cosmological model with a linear equation of state for the dark energy for λ ¼ 3.1
(dotted curve), λ ¼ 3.2 (short dashed curve), λ ¼ 3.3 (dashed curve), λ ¼ 3.4 (long-dashed curve), and λ ¼ 3.5 (ultralong dashed curve).
The initial conditions used to integrate the cosmological evolution equations are Ωð0Þ ¼ −9.7 × 10−1, and hð0Þ ¼ 1, respectively. For
the numerical values of the coefficients of the parameter of the dark energy equation of state we have adopted the values σ0 ¼ 0.58 and
σa ¼ 0.0018, respectively. The observational data are represented with their error bars, while the red curve depicts the predictions of the
ΛCDM model.

MING, LIANG, ZHANG, and HARKO PHYS. REV. D 109, 024003 (2024)

024003-10



Finally, in Fig. 3 we present the OmðzÞ diagnostic of
the Weyl-Schrödinger cosmological model. The OmðzÞ
diagnostic [66] is an important theoretical tool which
can be used to differentiate alternative cosmological
models from the ΛCDM paradigm. The OmðzÞ function
is defined as

OmðzÞ ¼ H2ðzÞ=H2
0 − 1

ð1þ zÞ3 − 1
¼ h2ðzÞ − 1

ð1þ zÞ3 − 1
: ð78Þ

In the case of theΛCDMmodel,OmðzÞ is a constant, and
it is equal to the present day matter density rð0Þ ¼ 0.3075.
For cosmological models satisfying an equation of state
with a constant equation of state parameter w ¼ constant,
the existence of a positive slope of OmðzÞ is evidence for a
phantomlike evolution, while a negative slope indicates a
quintessence-like dynamics. The function OmðzÞ is repre-
sented for the present particular Weyl-Schrödinger type
cosmological model in Fig. 3.

D. Model II: Models with conserved matter
energy density

As a second example of a cosmological model in Weyl-
Schrödinger theory, we consider the case in which both the
matter and the Weyl-Schrödinger energy-momentum ten-
sors are conserved independently. Hence, we split the total
conservation equation (58) as

ρ̇þ 3Hðρþ pÞ ¼ 0; ð79Þ

and

d
dt

�
−ω̇− 2Hωþ 1

2
ω2

�
þ 3H

�
−
1

3
ω̇þ 1

3
Hωþ 2

3
ω2

�
¼ 0;

ð80Þ

respectively. For a pressureless dust, Eq. (79) can be
immediately integrated to give

rðzÞ ¼ r0ð1þ zÞ3; ð81Þ

where r0 ¼ rð0Þ is the present day matter density. After
introducing the dimensionless coordinates as defined in
Eq. (61), and introducing the new variable u ¼ dΩ=dτ, the
conservation equation of the effective energy of the Weyl-
Schrödinger field can be reformulated as

−
du
dτ

− 2
dh
dτ

Ω − 3huþΩuþ h2Ωþ 2hΩ2 ¼ 0: ð82Þ

Hence, in the redfshift space, the cosmological evolution
equations of the Weyl-Schrödinger theory with conserved
matter and vector field effective energy can be formulated as

ð1þ zÞhðzÞ dΩ
dz

þ uðzÞ ¼ 0; ð83Þ

ð1þ zÞhðzÞ duðzÞ
dz

þ 2ð1þ zÞhðzÞ dhðzÞ
dz

ΩðzÞ − 3hðzÞuðzÞ
þ ΩðzÞuðzÞ þ h2ðzÞΩðzÞ þ 2hðzÞΩ2ðzÞ ¼ 0; ð84Þ

− 2ð1þ zÞhðzÞ dhðzÞ
dz

þ 3h2ðzÞ þ 7

3
hðzÞΩðzÞ

þ 1

6
Ω2ðzÞ þ 2

3
uðzÞ ¼ 0: ð85Þ

The system of differential equations (83)–(85) must be
integrated with the initial conditions hð0Þ ¼ 1, Ωð0Þ ¼ Ω0,
and uð0Þ ¼ u0, respectively. However, these initial con-
ditions are not arbitrary, since they must satisfy the con-
straint, following from the first Friedmann equation (66),
which gives

1 ¼ r0 −
2

3
Ω0 þ

1

6
Ω2

0 −
1

3
u0: ð86Þ

The variations with respect to the redshift z of the Hubble
function and of the deceleration parameter for the Weyl-
Schrödinger cosmological model with conserved quantities
are represented, for different values of Ω0, in Fig. 4. The
model gives a good description of the observational data up
to a redshift of z ¼ 2, and can reproduce almost exactly,
for specific values of the initial condition Ω0, Ω0 ≈ −1, the
predictions of the ΛCDM model. At redshifts higher than
z ¼ 2, there are some important deviations with respect to

FIG. 3. Variation of the function OmðzÞ for the Weyl-
Schrödinger cosmological model with a linear equation of state
of the dark energy for λ ¼ 3.1 (dotted curve), λ ¼ 3.2 (short
dashed curve), λ ¼ 3.3 (dashed curve), λ ¼ 3.4 (long-dashed
curve), and λ ¼ 3.5 (ultralong dashed curve). The initial con-
ditions used to integrate the cosmological evolution equations
are Ωð0Þ ¼ −9.7 × 10−1, and hð0Þ ¼ 1, respectively. The red
curve corresponds to the prediction of the ΛCDM model for the
OmðzÞ function.
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the predictions of ΛCDM. Moreover, in the case of this
particular Weyl-Schrödinger cosmological model, signifi-
cant differences do appear in the behavior of the deceler-
ation parameter, which at high redshifts has a very different
behavior, as compared with the ΛCDM predictions.
The redshift variations of the Weyl vector Ω, and of its

derivative with respect to the redshift u are presented in
Fig. 5. The Weyl-Schrödinger vector field takes negative
values, and it is a decreasing function of the redshift. Its
behavior at higher redshifts show a strong dependence
on the initial condition used to numerically integrate the
cosmological evolution equation. The derivative of the
Weyl-Schrödinger field has only positive values, and it is
monotonically increasing function of the redshift. While at
low redshifts, in the range 0 < z < 1.5, the behavior of u is

basically independent on the initial condition for Ω0, at
higher redshifts the behavior of u essentially depends on
the initial condition for the Weyl-Schrödinger vector field.
The variation of the OmðzÞ function for the Weyl-

Schrödinger cosmological model with conserved matter
energy density is represented in Fig. 6.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered a gravitational
theory based on a geometry that goes beyond the standard
Riemannian one. More exactly, we have investigated the
physical implications of a geometry proposed a long time
ago by Erwin Schrödinger [58], and which, interestingly
enough, despite of its many remarkable features, did not

FIG. 4. Variations as functions of the cosmological redshift of the dimensionless Hubble function h (left panel) and of the deceleration
parameter (right) panel in the Weyl-Schrödinger cosmological model with conserved matter density, for different values of the initial
condition of the Weyl-Schrödinger vector field: Ω0 ¼ −0.86 (dotted curve), Ω0 ¼ −0.90 (short dashed curve), Ω0 ¼ −0.94 (dashed
curve), Ω0 ¼ −0.98 (long-dashed curve), and Ω0 ¼ −1.02 (ultralong dashed curve). The values of u0 are obtained by using Eq. (86).
The observational data for the Hubble function are represented with their error bars, while the red curve show the theoretical predictions
of the ΛCDM model.

FIG. 5. Variations as functions of the cosmological redshift of the dimensionless Weyl-Schrödinger vector Ω (left panel) and of its
derivative u (right) panel in the Weyl-Schrödinger cosmological model with conserved matter density, for different values of the initial
condition of the Weyl-Schrödinger vector field: Ω0 ¼ −0.86 (dotted curve), Ω0 ¼ −0.90 (short dashed curve), Ω0 ¼ −0.94 (dashed
curve), Ω0 ¼ −0.98 (long-dashed curve), and Ω0 ¼ −1.02 (ultralong dashed curve). The values of u0 are obtained by using Eq. (86).
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attract much attention in the scientific community. The
starting point of Schrödinger’s theory is Weyl geometry. In
its initial formulation, Weyl, in an attempt to unify the
gravitational and the electromagnetic fields, introduced a
connection who adds some new terms to the standard Levi-
Civita connection of the Riemannian geometry. These extra
terms are known generally as the nonmetricity Qμνλ. In
Weyl’s theory under parallel transport not only the direc-
tion, but also the length of vectors vary. The trace of the
nonmetricity (the Weyl vector) was identified by Weyl as
the electromagnetic field potential. However, Einstein
severely criticized Weyl’s theory, and this criticism led
to its long time abandonment [31]. Weyl’s theory is based
on the principle of conformal invariance, which has many
attractive features, and it is assumed to be a fundamental
symmetry of nature [67–70], unifying the Standard Model
of the elementary particles, and gravitation.
On the other hand, Schrödinger [58], tried to overcome

Einstein’s criticism of the Weyl theory by considering a
symmetric connection in which the length of vectors is not
changed under parallel transport, even in the presence of
nonmetricity. The Schrödinger connection Γλ

μν can be
defined generally as [59]

Γλ
μν ¼ γλμν þ gλρSρμν; ð87Þ

where Sμνρ is a tensor having the properties

Sλμν ¼ Sλνμ; SðλμνÞ ¼ 0: ð88Þ

If

Sλμν ¼ −Qλμν; ð89Þ

the length of the vectors is invariant during parallel trans-
port [59]. But, similarly to the standard Riemannian case,
the angle between vectors changes due to the parallel
transport [58]. It is interesting to note that one could
consider geometries with vanishing nonmetricity, and
nonzero torsion, and then symmetrize the connection in
μ, ν [59]. Thus, we find

ΓλðμνÞ ≔ Γ̌λðμνÞ ¼ γλμν − 2gλρTðμjρjνÞ: ð90Þ

Then, if

Sλμν ¼ −2TðμjλjνÞ; ð91Þ

Γ̌λðμνÞ is identical with (87) [59]. Hence, it turns out
that (87) can be written down either with regard to torsion,
by using nonmetricity only, or as relating to both non-
metricity and torsion.
We have seen that a general geometry of spacetime can be

characterized by three geometric variables: curvature, tor-
sion and nonmetricity. Thus, in different theories of gravity
one could decide whether to include any of them. This gives
us eight possible choices, as shown in Fig. 7. The most
general gravity theory that contains all of the three variables
is based on a non-Riemannian geometry and is called
Metric-Affine gravity, while the most trivial case with all
three being zero leads to a Minkowski spacetime. The
Schrödinger geometry that we have introduced, and studied
in detail, as well as the Weyl geometry belong to the same

FIG. 6. Variation of the functionOmðzÞ in theWeyl-Schrödinger
cosmological model with conserved matter density, for different
values of the initial condition of the Weyl-Schrödinger vector field:
Ω0 ¼ −0.86 (dotted curve), Ω0 ¼ −0.90 (short dashed curve),
Ω0 ¼ −0.94 (dashed curve), Ω0 ¼ −0.98 (long-dashed curve),
and Ω0 ¼ −1.02 (ultralong dashed curve). The values of u0 are
obtained by using Eq. (86). The prediction of theΛCDMmodel for
the OmðzÞ function is represented by the red solid curve.

FIG. 7. Eight possibilities of gravity theories (geometries):
(1) Minkowski, (2) Riemann, (3) Weyl and Schrödinger, (4) Car-
tan, (5) symmetric teleparallel, (6) generic teleparallel, (7) metric
teleparallel (Weitzenböck) and (8) metric-affine.
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category, in which both curvature and nonmetricity are
present, but at different levels. The classification of the
geometries based on their relationship with the fundamental
geometrical quantities (curvature, torsion, nonmetricity),
and of the corresponding gravitational theories, is presented
in Fig. 7.
In order to formulate the gravitational theory based on

the Weyl-Schrödinger geometry we have introduced the
gravitational action (33), which has essentially a very
simple mathematical structure. In the absence of torsion,
the action is constructed additively from the Weyl scalar R
plus the squares of the two contractions of the non-
metricity Qρ and Q̃ρ, respectively. In order to recover
the Schrödinger connection one must impose the con-
dition Qρ ¼ −2Q̃ρ, which gives finally the field equa-
tions (47), which are the basic equations of the present
Weyl-Schrödinger theory.
It would be interesting to perform a comparison between

the present Weyl-Schrödinger theory, standard general
relativity, and another important modified gravity theory,
the fðRÞ gravity theory [5–7]. The field equations of fðRÞ
gravity are given by

1

2
gμνfðRÞ − Rμνf0ðRÞ þ ð∇μ∇ν − gμν□Þf0ðRÞ ¼ −

κ2

2
Tμν:

ð92Þ

As compared to the fðRÞ gravity field equations, the field
equations of the Weyl-Schrödinger theory, as well as the
corresponding connection, have a very interesting math-
ematical feature, in the sense that no free arbitrary param-
eters are introduced in the theory, and all the coefficients in
the action, and field equations, are purely numerical. Thus,
except the standard gravitational coupling constant of
general relativity, no new parameter does appear in the
field equations. In the fðRÞ theory, the action depends on
the analytical form of the function f, whose mathematical
form is not determined a priori by the theory. Even if a
functional form of f is obtained empirically from the
comparison with observations, and a viable theoretical
model is obtained, generally one cannot find any theoretical
justification for it in the framework of a basic gravity theory.
Moreover, it is rather difficult to obtain a unified fðRÞ
theory describing gravitational dynamics from the Solar
System level to galactic, extra-galactic and cosmological
scales. More importantly, the field equations of the fðRÞ in
the metric formulation are fourth order strongly nonlinear
differential equations, whose general solution requires a
significant extension of the space of initial conditions.
However, in the Palatini formulation the fðRÞ gravity field
equations are of second order [7]. Moreover, if one uses a
fluid representation for the cosmological equations of the
fðRÞ theory, the generalized gravitational fluid contains
higher-derivative curvature invariants, including the
third order time derivative of the Hubble function [7].

The effective cosmological fluid representation of the
Weyl-Schrödinger gravity contains only the Hubble func-
tion, the square of the Weyl vector, and of its derivative.
Moreover, the generalized Friedmann equations of the
present model are much simpler mathematically then the
corresponding Friedmann equations of the fðRÞ theory. In
the fðRÞ theory dark energy originates from curvature,
while in the Weyl-Schrödinger theory the source of the dark
energy is a special type of nonmetricity. Thus, Weyl-
Schrödinger gravity significantly extends the geometric
space, and this may be interpreted as a disadvantage with
respect to theories describing gravity in terms of a single
geometry.
Standard general relativity is a beautiful theory in its

simplicity, and it has a powerful descriptive and predictive
potential. However, to describe the cosmological observa-
tional data one must resort to the cosmological constant Λ,
whose physical or geometrical interpretation is still
unknown [71,72]. Hence, the search for finding the nature
ofΛ is still going one, and alternative models of dark energy
can offer a solution to this problem. The Weyl-Schrödinger
theory offers such a dark energy approach, which is
relatively simple, and uniquely fixes the cosmological
dynamics by introducing a geometric equivalent description
of the cosmological constant. In this theory dark energy has
a purely geometric origin, and it is intimately related to the
space-time structure. Of course, from a theoretical point of
view, it would be preferable to have a clear physical/
geometrical interpretation of Λ, but at the present moment
this seems to be unlikely. Moreover, it turns out that due to
the significant increase of the precision of the cosmological
observations, the ΛCDM model must also face some
important challenges. Perhaps the most important present
of these cosmological problems is the significant difference
between the Hubble expansion rates of the Universe as
obtained from the cosmic microwave background (CMB)
experiments by the Planck satellite, and the low redshift
(local) measurements using type IA supernovae. The
differences in the determinations of the present-day value
of the Hubble constant H0 led to what is called the Hubble
tension problem. For a detailed presentation and discussion
of the Hubble tension, and of its possible solutions, see [73],
and references therein. The Hubble constant H0, as deter-
mined from the Planck satellite data, has the value of
H0 ¼ 66.93� 0.62 km=s=Mpc, while the SHOES collabo-
ration did find the value H0 ¼ 73.24� 1.74 km=s=Mpc
[73]. If the Hubble tension does indeed exist, it strongly
indicates the necessity of considering new gravitational
theories, and of the replacing the ΛCDM model with
alternative cosmological approaches. In [74] it was argued
that a promising way forward to solve the Hubble tension
would ultimately involve a combination of early- and late-
time new physics, as well as a local at z ¼ 0), new physics.
Even that detailed investigation in this problem are still
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necessary, at least in principle, the Weyl-Schrödinger theory
has the potential of addressing the Hubble tension since it
leads to both early and late time cosmological evolutions.
In order to consider the physical implications of the

Weyl-Schrödinger gravity, and its viability, we have ana-
lyzed in detail the cosmological models that follow from
the theory. As a first step, after adopting the homogeneous,
isotropic and flat FLRW metric, and adopting a specific
form for the nonmetricity vector, we have obtained the
generalized Friedmann equations, in which two new terms
do appear. These two terms, representing some extra
contributions coming from nonmetricity, can correspond
to a dark energy type fluid, whose energy density ρDE and
pressure pDE are completely determined by the temporal
component of Qρ. In the present approach the two
generalized Friedmann equations contain four unknowns
ðH;ω; ρ; pÞ, and even after imposing an equation of state
the system is still over-determined. But this allows to
construct various cosmological scenarios, by imposing
some physically reasonable conditions on the effective
dark energy and pressure. In this context we have consid-
ered two distinct cosmological models. In the first model
we have imposed a linear equation of state relating the dark
energy pressure and density, the equation of state being
parameterized by redshift dependent parameter, defined
according to the CPL prescription. The model thus
obtained, depending on four parameters ðΩ0; σ0; σa; λÞ,
can be studied numerically in the redshift space. Once
the numerical solution is known, a comparison with a small
set of observational data of the Hubble function, and with
the ΛCDM model can be performed. The model describes
well the observational data for the Hubble function, and for
some specific values of the model parameters the ΛCDM
model can be recovered almost exactly. The matter density
as predicted by this Weyl-Schrödinger cosmological model
coincides with the ΛCDM predictions up to a redshift of
z ≈ 1.5, but at higher redshifts the predictions of the two
models are rather different.
A second simple cosmological model can be obtained by

imposing the condition of the conservation of the matter
energy density, which is required to satisfy the standard
equation ρ̇þ 3Hρ ¼ 0. The conservation equation deter-
mines the matter energy density as having the same form as
in the ΛCDM model. The cosmological evolution is thus
determined by the initial conditionΩð0Þ of the Weyl vector,
and of its derivative uð0Þ. But the first Friedmann equation
gives a constraint at z ¼ 0, which allows to express uð0Þ in
terms of rð0Þ and Ωð0Þ. Hence, in this cosmological model
the dynamical evolution depends on a single parameter
only, the present day value of the dimensionless Weyl
vector Ωð0Þ. It is interesting that the value Ωð0Þ ¼ −1
reproduces (almost) exactly the predictions of the ΛCDM
model for the Hubble function. This gives for the present
day value of the temporal component of the Weyl vector
ωð0Þ ¼ −H0. Therefore, this two parameters model,

depending on the present day values of the matter density,
and with ωð0Þ ¼ −H0, represents an intriguing, but effec-
tive alternative of the ΛCDM paradigm.
The ΛCDM model gives a very good fit of the obser-

vational data. Hence, if a given cosmological model can
reproduce ΛCDM at least in some redshift range, it can also
give a good description of the data, which are represented,
in our present approach, by a set of Hubble function values,
obtained at various redshifts. However, even if the consid-
ered Weyl-Schrödinger type cosmological models give a
good concordance with ΛCDM, and the observational data,
there are several important differences with respect to the
predictions of the two approaches for other important
cosmological parameters. One such parameter is the decel-
eration parameter q, which determines the expansion rate
of the Hubble sphere, and the dynamics of the observable
galaxy number variation. There are some significant
differences on the behavior of q in Weyl-Schrödinger
models, and ΛCDM, which do appear already at low
redshifts. These differences become extremely important
in both considered models at higher redshifts, where the
Weyl-Schrödinger models predict much larger values of q.
This shows that at high redshifts the Universe expanded
much slower than in ΛCDM, and the transition to an
accelerated phase occurred much more rapidly than
expected from standard cosmology. Determinations of the
values of q for z > 2 would thus allow to discriminate
between the variousWeyl-Schrödinger models, andΛCDM.
The total, baryonic plus dark matter density also gen-

erally behaves differently in the Weyl-Schrödinger and
standard general relativistic models. In the first cosmologi-
cal model the matter energy density basically coincides
with the ΛCDM prediction, but for z > 1.5 the evolution is
very different, with the ΛCDM model predicting a much
faster increase of the total matter density. However, some
parameter values of the Weyl-Schrödinger model predict a
decrease of the matter density at high redshifts, and thus
those parameter values can be ruled out as unphysical. In
the second cosmological model we have considered, with
matter satisfying the usual conservation equation, the
matter evolution fully coincides with the ΛCDM evolution.
Finally, we would like to point out that important

differences between the present theoretical approach and
ΛCDM do appear in the OmðzÞ diagnostic. If the value of
the function OmðzÞ is a constant at any redshift, dark
energy corresponds exactly to a cosmological constant.
An evolving OmðzÞ corresponds to other dynamical dark
energy models. In both our considered cosmological
models OmðzÞ is an evolving function, and hence our
dark energy models do not exactly correspond to a
cosmological constant. This represents an important differ-
ence between the considered Weyl-Schrödinger cosmolo-
gies, describing an evolving dark energy, and the ΛCDM
model. Moreover, the slope of the OmðzÞ function could
distinguish between two different types of dark energy
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models. A positive slope of OmðzÞ indicates phantomlike
dark energy, with w < −1, while a negative slope repre-
sents quintessencelike behavior, with w > −1 [66]. As one
can see from Figs. 3 and 6, for both considered Weyl-
Schrödinger models, the slope of the function OmðzÞ is
negative up to a redshift of around z ≈ 1.5, indicating a
quintessencelike behavior, while, for z > 1.5, the slope is
positive, and thus the cosmological evolution becomes
phantom-like. Hence, a transition from quintessence to
phantom evolution does occur in the presence of non-
metricity, a feature which does not exist in the ΛCDM
models.
To summarize: in the present work we have proposed

and analyzed in detail, from the point of view of the
theoretical consistency, and of the concordance with
observations, a geometrical dark energy model, based
on the Weyl-Schrödinger theory, which has its origins
in the Weyl geometry. In this theory, an effective fluid type
dark energy component can be generated from the non-
Riemannian geometric structures that determine the prop-
erties of the space-time. The Weyl-Schrödinger type model
have a close relationship with the standard general rela-
tivistic Friedmann cosmological evolution equations,
with the Weyl-Schrödinger models exactly reproducing in
some particular case the ΛCDM dynamics. The Weyl-
Schrödinger models permit to introduce in a simple and
intuitive way a geometric dark energy term, of fluid type,
for the description of the cosmological evolution. The
considered Weyl-Schrödinger models also give a good
description of the cosmological observational data, gen-
erally in terms of very few free parameters. They can also
(almost) exactly reproduce the predictions of the ΛCDM
standard cosmological model. However, one should
emphasize that important differences with standard cos-
mology do appear at high redshifts, and in the numerical
values of some cosmographic quantities. Despite these
shortcomings, the Weyl-Schrödinger type FLRW cosmo-
logical model may become an important and attractive
alternative to the ΛCDM model, in terms of theoretical
foundations, explanations of the observational data, and
predictive power. These models may also yield some new
perspectives, and a better understanding of the intricate
relation existing between the physical reality and abstract
mathematical structures.
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APPENDIX

In this appendix we present explicitly the calculational
details of the main mathematical results of our approach.

1. The variation of the action with respect
to gμν and Γλ

μν in Palatini formalism

Firstly, let us start with the variation of Qρ and Q̃ρ with
respect to gμν. By the definitions

Qρμν ≡ −∇ρgμν; Qρ ≡ gμνQρμν; ðA1Þ

and

Q̃ρ ¼ gμνQμνρ; ðA2Þ

we have

δgQρμν ¼ −∇ρδgμν: ðA3Þ

Thus

δgQρ ¼ δgðgμνQρμνÞ ¼ Qρμνδgμν þ gμνδgQρμν

¼ Qρμνδgμν − gαβ∇ρδgαβ

¼ Qρμνδgμν þ gαβ∇ρðgαμgβνδgμνÞ; ðA4Þ

and

δgQ̃ρ ¼ δgðgμνQμνρÞ ¼ Qμνρδgμν þ gμνδgQμνρ

¼ Qμνρδgμν − gαβ∇αδgβρ

¼ Qμνρδgμν þ gαβ∇αðgβμgρνδgμνÞ; ðA5Þ

where δgαβ ¼ −gαμgβνδgμν is used. With the use of another
useful relation, δg ¼ −ggμνδgμν, one gets

δ
ffiffiffiffiffiffi
−g

p ¼ −
δg

2
ffiffiffiffiffiffi−gp ¼ −

1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν: ðA6Þ

Then the variation of (33) with respect to gμν gives
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δgS ¼ 1

16π

Z
d4x

�
Rδ

ffiffiffiffiffiffi
−g

p þ ffiffiffiffiffiffi
−g

p
RðμνÞδgμν þ

5

24
· ðQαQαδ

ffiffiffiffiffiffi
−g

p þ ffiffiffiffiffiffi
−g

p
QμQνδgμν þ 2

ffiffiffiffiffiffi
−g

p
gαβQαδgQβÞ

þ 1

6
ðQ̃αQ̃

αδ
ffiffiffiffiffiffi
−g

p þ ffiffiffiffiffiffi
−g

p
Q̃μQ̃νδgμν þ 2

ffiffiffiffiffiffi
−g

p
gαβQ̃αδgQ̃βÞ þ 2TρQρδ

ffiffiffiffiffiffi
−g

p þ 2
ffiffiffiffiffiffi
−g

p
TρδgQρ − 8π

ffiffiffiffiffiffi
−g

p
Tμνδgμν

�

¼ 1

16π

Z
d4x

	 ffiffiffiffiffiffi
−g

p
δgμν

�
RðμνÞ −

1

2
Rgμν

�
þ 5

24
·

� ffiffiffiffiffiffi
−g

p
δgμν

�
−
1

2
gμνQαQα þQμQν þ 2gαβQαQβμν

�

þ 2
ffiffiffiffiffiffi
−g

p
gαβQαgρσ∇βðgρμgσνδgμνÞ

�
þ 1

6
·
� ffiffiffiffiffiffi

−g
p

δgμν
�
−
1

2
gμνQ̃αQ̃

α þ Q̃μQ̃ν þ 2gαβQ̃αQμνβ

�

þ 2
ffiffiffiffiffiffi
−g

p
gαβQ̃αgρσ∇ρðgσμgβνδgμνÞ

�
þ 2

ffiffiffiffiffiffi
−g

p
Tρ ·

�
δgμν

�
Qρμν −

1

2
Qρgμν

�
þ gαβ∇ρðgαμgβνδgμνÞ

�
− 8π

ffiffiffiffiffiffi
−g

p
Tμνδgμν




¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
δgμν

	
RðμνÞ −

1

2
Rgμν þ

5

24
·

�
−
1

2
gμνQαQα þQμQν þ 2gαβQαQβμν þ 4gμνTβQβ

−
2ffiffiffiffiffiffi−gp gρμgσν∇βð

ffiffiffiffiffiffi
−g

p
gαβQαgρσÞ

�
þ 1

6

�
−
1

2
gμνQ̃αQ̃

α þ Q̃μQ̃ν þ 2gαβQ̃αQμνβ þ 4TμQ̃ν −
2ffiffiffiffiffiffi−gp gσμgβν

· ∇ρð
ffiffiffiffiffiffi
−g

p
gαβQ̃αgρσÞ

�
þ 2

�
Tρ

�
Qρμν −

1

2
Qρgμν þ 2Tρgμν

�
−

1ffiffiffiffiffiffi−gp gαμgβν∇ρð
ffiffiffiffiffiffi
−g

p
TρgαβÞ

�
− 8πTμν



: ðA7Þ

Here we note that the total derivative terms of the form

Z
d4x∇λð

ffiffiffiffiffiffi
−g

p
XλÞ ðA8Þ

for some vector Xλ cannot be ignored, but rather instead
they result in a net contribution given by [75]

2

Z
d4x

ffiffiffiffiffiffi
−g

p
TλXλ: ðA9Þ

Due to the presence of an extra term in the covariant
derivative of a tensor density, and the generally nonsym-
metric nature of the connection, we find

∇λð
ffiffiffiffiffiffi
−g

p
XλÞ ¼ ∂λð

ffiffiffiffiffiffi
−g

p
XλÞ þ Γλ

ρλ
ffiffiffiffiffiffi
−g

p
Xρ − Γρ

ρλ
ffiffiffiffiffiffi
−g

p
Xλ

¼ ∂λð
ffiffiffiffiffiffi
−g

p
XλÞ þ ffiffiffiffiffiffi

−g
p ðΓρ

λρ − Γρ
ρλÞXλ

¼ ∂λð
ffiffiffiffiffiffi
−g

p
XλÞ þ 2

ffiffiffiffiffiffi
−g

p
TλXλ: ðA10Þ

In our model the torsion does not contribute to the final
EoM due to (34), as can be seen below.
Noticing that

∇βð
ffiffiffiffiffiffi
−g

p
gαβQαgρσÞ

¼ ð∇β
ffiffiffiffiffiffi
−g

p ÞgαβQαgρσ þ
ffiffiffiffiffiffi
−g

p ð∇βgαβÞQαgρσ

þ ffiffiffiffiffiffi
−g

p
gαβð∇βQαÞgρσ þ

ffiffiffiffiffiffi
−g

p
gαβQα∇βgρσ

¼ ffiffiffiffiffiffi
−g

p �
−
1

2
QαQαgρσ þ Q̃αQαgρσ þ gρσgαβ∇βQα

þ gαβQαQ
ρσ
β

�
ðA11Þ

and

∇ρð
ffiffiffiffiffiffi
−g

p
gαβQ̃αgρσÞ

¼ ð∇ρ
ffiffiffiffiffiffi
−g

p ÞgαβQ̃αgρσ þ
ffiffiffiffiffiffi
−g

p ð∇ρgαβÞQ̃αgρσ

þ ffiffiffiffiffiffi
−g

p
gαβð∇ρQ̃αÞgρσ þ

ffiffiffiffiffiffi
−g

p
gαβQ̃α∇ρgρσ

¼ ffiffiffiffiffiffi
−g

p �
−
1

2
QρQ̃αgαβgρσ þQαβ

ρ Q̃αgρσ þ gρσgαβ∇ρQ̃α

þ gαβQ̃αQ̃
σ

�
; ðA12Þ

where (38) and (39) are used, we are then able to write
down the modified Einstein equation by inserting (A11)
and (A12) into (A7) and setting δgS ¼ 0:

RðμνÞ −
1

2
Rgμν þ

5

24

�
1

2
gμνQαQα þQμQν − 2gμνQαQ̃

α

− 2gμνgαβ∇βQα

�
þ 1

6

�
−
1

2
gμνQ̃αQ̃

α − Q̃μQ̃ν

þQμQ̃ν − 2∇μQ̃ν

�
¼ 8πTμν: ðA13Þ

Now let us turn to the variation of action with respect to
Γλ
μν. One can easily find first [60]

δΓTρ ¼
1

2
ðδμρδνλ − δμλδ

ν
ρÞδΓλ

μν; ðA14Þ

δΓRα
βρσ ¼ ∇ρδΓα

βσ −∇σδΓα
βρ − 2Tλ

ρσδΓα
βλ; ðA15Þ

δΓQρ ¼ 2δνρδ
μ
λδΓλ

μν; ðA16Þ
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δΓQ̃ρ ¼ ðgμνgρλ þ δμρδνλÞδΓλ
μν: ðA17Þ

With these results the variation of (33) leads to

δΓS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
gαβδΓRρ

αρβ þ
5

12
QρδΓQρ þ

1

3
Q̃ρδΓQ̃ρ þ 2QρδΓTρ þ 2TρδΓQρ þ ζ½μν�λδΓλ

μν

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
gαβð∇ρδΓρ

αβ −∇βδΓρ
αρ − 2Tλ

ρβδΓρ
αλÞ þ δΓλ

μν ·

�
5

6
Qνδμλ þ

1

3
Q̃λgμν þ

1

3
Q̃μδνλ

þQμδνλ −Qνδμλ þ 4Tνδμλ þ ζ½μν�λ

��

¼
Z

d4xδΓλ
μν

�
−∇λð

ffiffiffiffiffiffi
−g

p
gμνÞ þ∇βð

ffiffiffiffiffiffi
−g

p
gμβÞδνλ þ 2

ffiffiffiffiffiffi
−g

p ðTλgμν − Tμδνλ − gμβTν
λβ þ 2TνδμλÞ

þ ffiffiffiffiffiffi
−g

p �
1

3
Q̃λgμν þ

1

3
Q̃μδνλ þQμδνλ −

1

6
Qνδμλ þ ζ½μν�λ

��
: ðA18Þ

Thus δΓS ¼ 0 gives

−
∇λð ffiffiffiffiffiffi−gp

gμνÞffiffiffiffiffiffi−gp þ∇ρð ffiffiffiffiffiffi−gp
gμρÞδνλffiffiffiffiffiffi−gp þ 1

3
Q̃λgμν þ

1

3
Q̃μδνλ þQμδνλ −

1

6
Qνδμλ þ ζ½μν�λ ¼ 0: ðA19Þ

Note that again the torsion terms disappear in the EoM.

2. The variation of the action with respect to gμν in metric formalism

Since in the metric formalism the connection is assumed to depend on the metric in the way given by Eq. (20), the
variation with respect to gμν now has the extra contribution δgRμν, as compared to Eq. (A7). To calculate this contribution,
note that

δgQα
μν ¼ −δgðgαλ∇λgμνÞ ¼ −gαλ∇λδgμν − δgαλ∇λgμν; ðA20Þ

and

δgQ̃ρ ¼ −
1

2
δgQρ ¼ −

1

2
Qρμνδgμν þ

1

2
gαβ∇ρδgαβ: ðA21Þ

Then from Eq. (25) we have

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνδgRμν ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνðδgR̊μν − ∇̊αδgQα

μν þ ∇̊νδgQ̃μþQρ
μνδgQ̃ρ þ Q̃ρδgQρ

μν −Qρ
μαδgQα

ρν −Qα
ρνδgQρ

μαÞ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμν

�
Qρ

μν

�
−
1

2
Qραβδgαβ þ

1

2
gαβ∇ρδgαβ

�
−
1

2
Qρð−gρλ∇λδgμν − δgρλ∇λgμνÞ

−Qρ
μαð−gαλ∇λδgρν − δgαλ∇λgρνÞ−Qα

ρνð−gρλ∇λδgμα − δgρλ∇λgμαÞ
�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
QρQραβδgαβ þ

1

2
Qρgαβ∇ρδgαβ þ

1

2
gμνQλ∇λδgμν −

1

2
gμνQρδgρλQλμν

þQρνλ∇λδgρν −Qρν
αδgαλQλρν þQαλμ∇λδgμα −Qα

ρ
μδgρλQλμα

�

¼
Z

d4x

� ffiffiffiffiffiffi
−g

p
δgμν

�
−
1

2
QρQρμν −

1

2
QμQν −Qρσ

μQνρσ −Qρ
μ
σQνσρ

�
−
1

2
δgαβ∇ρð

ffiffiffiffiffiffi
−g

p
QρgαβÞ
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−
1

2
δgμν∇λð

ffiffiffiffiffiffi
−g

p
QλgμνÞ − δgρν∇λð

ffiffiffiffiffiffi
−g

p
QρνλÞ − δgμα∇λð

ffiffiffiffiffiffi
−g

p
QαλμÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν

�
−
1

2
QρQρμν −

1

2
QμQν − 2Qρσ

μQνρσ þ
1ffiffiffiffiffiffi−gp gαμgβνð∇ρð

ffiffiffiffiffiffi
−g

p
QρgαβÞ þ 2∇λð

ffiffiffiffiffiffi
−g

p
QαβλÞÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν

�
1

2
QρQρμν −

1

2
QμQν − 2Qρσ

μQνρσ −
1

2
QρQρgμν þ gμν∇ρQρ −QλQμν

λ þ 2gαμgβν∇λQαβλ

�
: ðA22Þ

With the solution (43), we are able to write (40) as

Qλμν ¼
1

3
Qλgμν −

1

6
Qμgνλ −

1

6
Qνgλμ; ðA23Þ

and noticing that because of QðρμνÞ ¼ 0,

δgμνQλQμν
λ ¼ δgμνQρ

Qμνρ þQνμρ

2
¼ −

1

2
δgμνQρQρμν

ðA24Þ

and

2δgμνgαμgβν∇λQαβλ ¼ 2δgμνgαμgβν∇λ
Qαβλ þQβαλ

2

¼ −δgμνgαμgβν∇λQλαβ; ðA25Þ

(A22) can be further simplified to

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνδgRμν¼

Z
d4x

ffiffiffiffiffiffi
−g

p
δgμν

�
−
2

9
gμνQρQρ

−
11

18
QμQνþ

2

3
gμν∇ρQρ

þ1

6
gρμ∇νQρþ1

6
gρν∇μQρ

�
: ðA26Þ

All the other contributions to the Einstein equation will
be the same as in the Palatini case. Hence, the field equation
in the metric formalism can be obtained by simply adding
the above terms into Eq. (46), and thus we finally arrive
at Eq. (47).

3. Calculating the Friedmann equations

According to (48) and (49), all the nonzero components
of Qλμν are

Q0ii ¼
1

3
a2b and Qii0 ¼ Qi0i ¼ −

1

6
a2b; ðA27Þ

where i ¼ 1, 2 or 3. Note that γλμν has the same structure,

γ0ii ¼ aȧ and γii0 ¼ γi0i ¼
ȧ
a
; ðA28Þ

we can then calculate all the nonzero components of the
Schrödinger connection (20),

Γ0
ii ¼ aȧþ 1

3
a2b and Γi

i0 ¼ Γi
0i ¼

ȧ
a
þ 1

6
b; ðA29Þ

and get the well known results for R̊μν

R̊00 ¼ 3
ȧ2

a2
and R̊ii ¼ −2

ä
a
−
ȧ2

a2
: ðA30Þ

On the other hand, since

Q0 ¼ −2Q̃0 ¼ b and Qi ¼ Q̃i ¼ 0; ðA31Þ

one gets

QαQα ¼ −b2; ðA32Þ

∇0Q0¼ ∂0Q0¼−ḃ; ∇iQi¼Γi
0iQ0¼−

ȧ
a
b−

1

6
b2 ðA33Þ

and

∇ρQρ ¼ −ḃ − 3
ȧ
a
b −

1

2
b2: ðA34Þ

Inserting all the above results into (47), and considering
T00 ¼ ρ and Tii ¼ p, we are able to write down the
Friedmann equations as (51) and (52).
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