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Static black holes in the conformal anomaly-sourced semiclassical general relativity in four dimensions
were recently extended to rotating, stationary solutions. These quantum-corrected black holes show
different features compared to the Kerr black hole and need for further extensions. Here we remove the
condition of stationarity and find radiating (Kerr-Vaidya-type) solutions in the same theory augmented with
a cosmological constant. As long as the coupling constant α of the A-type trace anomaly is nonzero, we
show that (i) the cosmological constant is bounded from above, i.e., Λ ≤ 3

4α; (ii) static black holes exist but
they may not be unique; (iii) static black holes do not satisfy the second law of black hole thermodynamics;
(iv) static black holes may have unstable inner horizons; (v) in the nonstationary and axially symmetric
case, stability of the event horizon and the second law of thermodynamics black holes are problematic.
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I. INTRODUCTION

In the absence of a consistent framework for quantum
gravity, a semiclassical approach to general relativity (GR)
(where matter fields are taken to be quantum fields, while the
geometry is kept classical) has borne much fruit since the
early 1970s, especially within the context of black holes
which amplify quantum effects: Hawking radiation [1]
removes the utter dullness in the lives of stationary and static
black holes of classical GR and make them evaporate and
shrink.One particular semiclassical approximation is built on
the conformal anomaly for which one has the full knowledge
of the trace of the expectation value energy-momentum
tensor operator within any quantum state describing classi-
cally conformally invariant fields. Recently, Fernandes [2]
found stationary and axially symmetric rotating black hole
solutions in GR, without a cosmological constant, but with a
source that comes from the trace anomaly induced by the
1-loop effects of the quantum fields within the semiclassical
approximation. These solutions (of which uniqueness is not
yet known) demonstrate various novel features in contrast to
their vacuum GR limits such as the violation of the Kerr
bound and the nonsymmetric event-horizons. The solutions
given in [2] generalize the earlier static and spherical
symmetric black hole solutions in the same theory given
by Cai et al. [3] where an important stumbling block in
finding the solutions of the anomaly-sourced theory (to
be explained below)was also circumvented. In [4], a negative
cosmological constant was introduced, and the static,

spherically symmetric solutionswere found and their thermo-
dynamics was studied.
The current state of the trace-anomaly sourced semi-

classical GR was nicely described in [2] and we invite the
interested reader to refer to that work, but here let us briefly
describe the theory. It is well known that even if one starts
from a classically conformally invariant theory (say a
theory of massless fields conformally coupled to gravity
in four dimensions), the symmetry does not generally
survive quantization (more properly regularization) at a
one-loop level [5]. The Weyl-scaling invariance of the
metric is lost, and this shows itself in the nonzero trace of
the expectation value of the energy-momentum tensor (in
any quantum state). Even without a detailed knowledge of
the massless quantum fields coupled to gravity, we know
that in four dimensions, the trace anomaly is expressed
purely in terms of the curvature invariants of the back-
ground spacetime with the metric gμν as

hψ jTjψi ≔ gμνhψ jTμνjψi ¼
β

2
CμνσρCμνσρ −

α

2
G; ð1Þ

where Cμνσρ are the components of the Weyl tensor in some
coordinates, and G is the Gauss-Bonnet scalar defined in
terms of the Riemann, Ricci tensors and the scalar
curvature as

G ≔ RμνσρRμνσρ − 4RμνRμν þ R2: ð2Þ

In (1), the constants α and β are the only inputs coming
from the underlying conformal field theory; and are known
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explicitly in terms of the number of massless fields [6].
The fact that the right-hand side of (1) does not have
information about the quantum fields (except their number,
just mentioned) is a blessing: one can study the back-
reaction of these fields (in a semiclassical setting of course)
on the geometry they happen to live in. But it is clear that
without the full energy-momentum tensor, one can find
only the solutions to the trace of the field equations. That
trace equation is only a necessary condition, but not a
sufficient one in general. That means the general solution
to the trace of the field equations will involve the correct
solution as a subclass, but it probably will be further
restricted by the full theory. This is the apparent impasse in
considering the anomaly-sourced field equations, and
generically there is no known solution yet: one must
compute the full tensor hψ jTμνjψi which does involve
details of the quantum fields. So even at the semiclass-
ical level, it is very hard to compute the backreaction
of the quantum corrections to a generic background
metric gμν.
Furthermore, as a second issue, one does need good

reasons to calculate such corrections to the classical
background. The main question is the following: can there
be macroscopic effects of these corrections for example in a
black hole geometry where strong gravity amplifies appa-
rently small effects? This second issue was settled in the
affirmative in [7]: quantum conformal anomaly can have
macroscopic effects. Let us also note that in a recent
work [8], extremal black holes were shown to amplify
quantum effects, generically, not just the ones coming from
the conformal anomaly. Therefore, there is ample reason to
study the backreaction of the conformal anomaly in a black
hole background. In the first issue of the full energy-
momentum tensor, a tentative but very useful solution is the
following: assume some symmetry in the background
geometry together with some simplifying assumptions,
such as staticity, spherical symmetry, stationarity, etc. to
fix the total energy-momentum tensor. (For this discussion
see the relevant literature in [2]). In this work, we remove
the important assumption of stationarity, that is we assume
that the spacetime does not have a timelike vector field, and
this leads to a generalization of the rotating stationary black
holes of Fernandes [2], and the static black holes of Cai
et al. [3,4] to dynamical black holes with radiation either
emitted by the black hole or absorbed by it. We also include
a cosmological constant generalizing the solution in [4].
As we shall discuss, our solution describes a quantum-
corrected version of the spherically symmetric and rotating
Vaidya-type radiating solution [9].
The layout of the paper is as follows: In Sec. II, we

discuss the nonstatic spherically symmetric solution, that is
the conformal anomaly sourced (radiating, or radiation
absorbing) Vaidya metric, In Sec. III we discuss the rotating
version, and we delegate the rather long expression of the
full energy-momentum tensor to the Appendix.

II. SPHERICALLY SYMMETRIC
RADIATING SOLUTION

We consider the conformal anomaly-sourced cosmologi-
cal Einstein gravity (in the units 8πG ¼ 1 ¼ c) as our
semiclassical field equations

Rμν −
1

2
gμνRþ Λgμν ¼ hψ jTμνjψi; ð3Þ

together with the usual covariant conservation equation
∇μhψ jTμνjψi ¼ 0 that comes from the requirement that
diffeomorphism invariance survives regularization. The
field equations are augmented with the trace anomaly
equation (1). Then the trace of (3) is a single constraint
on the geometry of the underlying spacetime:

4Λ − R −
β

2
CμνσρCμνσρ þ α

2
G ¼ 0: ð4Þ

Let us note again that the constants α, β contain information
about the quantum fields, but we do not need their explicit
forms here. We first consider a spherically symmetric, but
nonstatic metric

ds2 ¼ −ð1 − 2mðv; rÞÞdv2 þ 2ϵdvdr

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð5Þ

where v is the retarded/advanced null coordinate. For the
special case of mðv; rÞ ¼ mðvÞ=r, and ϵ ¼ −1, the metric
describes a Vaidya black hole [9] emitting radiation, while
for ϵ ¼ 1 the radiation is absorbed by the black hole; both of
these cases are quite relevant as they describe dynamical
black holes with Hawking radiation; or light/ultrarelativistic
dust accretion, respectively. Then the Ricci scalar, Gauss-
Bonnet combination, and the square of the Weyl tensor,
which are independent of the sign of ϵ, can be found to be

R ¼ 2
ðr2mÞ00
r2

; G ¼ 8ðm2Þ00
r2

;

CμνσρCμνσρ ¼ 4r2

3

��
m
r

�00�2

; ð6Þ

where m0 ¼ ∂rmðv; rÞ. Observe that no derivative with
respect to the null coordinate appears in these curvature
invariants, even though they appear in the curvature com-
ponents. For the Vaidya black hole case, that is when
mðv; rÞ ¼ mðvÞ=r, one has a null-dust source.

Gμν ¼Tμν

¼ 2ϵ

r2
∂vmðvÞδvμδvν ; for the Vaidya black hole: ð7Þ

On the other hand, generically, for (5), one has a non-null
energy-momentum tensor.
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Gμ
ν ¼ −

2

r2

0
BBB@

∂rðrmÞ 0 0 0

−r∂vm ∂rðrmÞ 0 0

0 0 r∂rðr∂rmÞ 0

0 0 0 r∂rðr∂rmÞ

1
CCCA:

ð8Þ

The trace equation (4) yields a single nonlinear ODE:

4Λ − 2
ðr2mÞ00
r2

−
2βr2

3

��
m
r

�00�2

þ 4α
ðm2Þ00
r2

¼ 0: ð9Þ

For β ≠ 0, an exact analytical solution is not available,1 so
as in [2–4], we set β ¼ 0 (that is the vanishing of the B-type
anomaly) and consider only the A-type anomaly case with
α ≠ 0. Then, (9) becomes

2Λr2 − ðr2mÞ00 þ 2αðm2Þ00 ¼ 0; ð10Þ

which gives a quadratic equation for mðv; rÞ

2αm2 − r2mþ Λ
6
r4 ¼ pðvÞrþ qðvÞ; ð11Þ

where p and q are arbitrary differentiable functions of the
null coordinate v. The general solution, for α ≠ 0, is

mðv;rÞ¼ r2

4α
� r2

4α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4

3
Λαþ8α

�
pðvÞ
r3

þqðvÞ
r4

�s
; ð12Þ

which is a generalization of the Cai et al. [3] metric to the
nonstatic case. Note that the plus branch is a new solution
that diverges as α → 0, while the minus branch smoothly
goes over to the α ¼ 0 solution, which is

mðv; rÞ ¼ Λr2

6
−
pðvÞ
r

−
qðvÞ
r2

; for α ¼ 0: ð13Þ

The reality of mðv; rÞ in (12) requires that for all v and r,
one has

1 −
4

3
Λαþ 8α

�
pðvÞ
r3

þ qðvÞ
r4

�
≥ 0: ð14Þ

For example as r → ∞, one must have 1 − 4
3
Λα ≥ 0, and

for α > 0, this sets an upper bound on the cosmological
constant of the de Sitter space in terms of the anomaly
coefficient. Namely, it must satisfy Λ ≤ 3

4α. Asymptotically,
as r → ∞, the two branches of (12) behave as

mðv; rÞ → ð1� ffiffiffi
μ

p Þr2
4α

þ pðvÞffiffiffi
μ

p
r
þ qðvÞffiffiffi

μ
p

r2
þO

�
1

r3

�
; ð15Þ

where μ ¼ 1 − 4Λα
3
. This asymptotic behavior shows that at

a constant v coordinate, the spacetime is asymptotically a
Reissner-Nordstrom-de Sitter (or anti–de Sitter) manifold,
with the following identifications of the effective cosmo-
logical constant, mass, and electric charge:

Λeff ¼
3ð1� ffiffiffi

μ
p Þ

2α
; MðvÞ¼pðvÞffiffiffi

μ
p ; Q2¼−

2qðvÞffiffiffi
μ

p : ð16Þ

This interpretation requires pðvÞ ≥ 0 and qðvÞ ≤ 0. The
asymptotic behavior of the scalar curvature is as follows:

R ¼ 6ð1� ffiffiffi
μ

p Þ
α

∓ 24αpðvÞ2
μ3=2r6

þO
�
1

r7

�
: ð17Þ

Similarly, the asymptotic behavior of the Gauss-Bonnet
combination reads as

G ¼ 6ð1� ffiffiffi
μ

p Þ2
α2

∓ 48pðvÞ2
μ3=2r6

þO
�
1

r7

�
: ð18Þ

On the other hand, near r → 0, the behavior of the scalar
curvature is

R ¼ � 2
ffiffiffi
2

p
qðvÞ

r2
ffiffiffiffiffiffiffiffiffiffiffiffi
αqðvÞp � 3

ffiffiffi
2

p
pðvÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffi
αqðvÞp þ

3
�
4 ∓

ffiffi
2

p
pðvÞ2

ffiffiffiffiffiffiffiffi
αqðvÞ

p
qðvÞ2

�
2α

þOðrÞ; ð19Þ

while the Gauss-Bonnet combination diverges as

G ¼ � 4
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
αqðvÞp

α2r2
� 6

ffiffiffi
2

p
pðvÞqðvÞ

rðαqðvÞÞ3=2

þ
�
6ð1þ ffiffiffi

μ
p Þ

α2
∓ 3

ffiffiffi
2

p
pðvÞ2

ðαqðvÞÞ3=2
�
þOðrÞ: ð20Þ

Observe that both R and G require qðvÞ > 0 near r ¼ 0 in
contrast to the r → ∞ expansion.
Let us study the event horizon of this metric defined as a

null surface Hðv; rÞ ¼ constant.2

gμν∂μH∂νH ¼ H0ðð1 − 2mÞH0 þ 2ϵ∂vHÞ ¼ 0: ð21Þ

ForH ≔ r − rHðvÞ ¼ 0, the location of the event horizon is
given by a nonlinear first-order differential equation

1 − 2m − 2ϵ
drH
dv

¼ 0 ð22Þ

1See Ref. [10] for a recent numerical approach to this problem.

2Note that, in (5), the 2mðv; rÞ ¼ 1 is not a null surface, it is
not the event horizon, but it is the marginally trapped surface or
the apparent horizon, see Ref. [11] for the geometry of the Vaidya
spacetime.
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which explicitly reads

ϵ
drH
dv

¼ 1

2
−
r2H
4α

∓ r2H
4α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 8α

�
pðvÞ
r3H

þ qðvÞ
r4H

�s
: ð23Þ

The exact analytical solution of this nonlinear ODE is not
available in its full generality. But let us make some
remarks on the solutions.
(1) The theorem on the existence and uniqueness of the

first-order differential equations guarantees that
the above equation with the appropriate initial
condition has unique a solution provided that
pðvÞ and qðvÞ are continuous functions and
μr4HðvÞ þ 8αðpðvÞrH þ qðvÞÞ ≠ 0 for all v ≥ 0.

(2) On the other hand, if μr4HðvÞ þ 8αðpðvÞrH þ
qðvÞÞ ¼ 0 then (23) may not have unique solutions.
As two examples, we have rH ¼ ffiffiffiffiffiffi

2α
p

(which is
possible if p and q are constants and one has
q ¼ −p

ffiffiffiffiffiffi
2α

p
− αμ

2
); and as a second solution we have

rHðvÞ ¼
ffiffiffiffiffiffi
2α

p
tanh

�
ϵvþ v0
2

ffiffiffiffiffiffi
2α

p
�
; ð24Þ

where v0 is an integration constant. This is possible
if

qðvÞ ¼ −pðvÞ
ffiffiffiffiffiffi
2α

p
tanh

�
vϵþ v0
2

ffiffiffiffiffiffi
2α

p
�

−
1

2
αμ tanh4

�
vϵþ v0
2

ffiffiffiffiffiffi
2α

p
�
: ð25Þ

For different values of ϵ, the positivity of rH requires
different intervals for v. When ϵ ¼ 1 (the case of the
absorption of radiation by the black hole) then
v∈ ½−v0;∞Þ and when ϵ ¼ −1 (the case of the
emission of radiation by the black hole) then
v∈ ð−∞; v0�. Both cases are expected since for
ϵ ¼ 1, rH continues to keep getting larger, while
for ϵ ¼ −1, the process must stop at some future v0
as rH becomes zero.

(3) Since the right-hand side of (23) changes sign in the
interval v ≥ 0, this differential equation implies that
the function rH is decreasing or increasing with
respect to v for certain intervals. Hence the horizon
area A ¼ 4πr2H exhibits a similar behavior. This
means that the above differential equation does
not satisfy the area law of black hole mechanics,
or the second law of black hole thermodynamics,
i.e.; dA

dv > 0 is not valid for all v ≥ 0 as is expected
for dynamical black holes.

(4) When the right-hand side of (23) vanishes, the
corresponding solutions are the critical points or
the equilibrium solutions of rH. These solutions
correspond to the static horizons of Cai et al. [3]. Let

us assume that the static horizon is located at r0H.
Within our formalism, we can check the important
question of the linear stability of these equilibrium
solutions or the stability of the static horizons. For
this purpose, let rHðvÞ ¼ r0H þ εr1ðvÞ, where r1 is a
function that satisfies the linearized form of (23):

dr1
dv

¼ wv1;

w ≔ −
�
r0H
2α

∓ 1ffiffiffi
δ

p
�
μ

2α
ðr0HÞ3 þ 8αp0

��
; ð26Þ

where δ ≔ μðr0HÞ4 þ 8αðp0r0H þ q0Þ. In (26), we
considered both p and q near their static values
p0 and q0, respectively. Equation (26) implies that
the static outer horizon (with the plus sign) is stable
but the stability of the inner horizon (with the minus
sign) depends on the numerical values of the con-
stants μ and α.

(5) Thermodynamics of dynamical black holes is a
developing subject, and it is not easy to properly
define concepts like temperature, and surface gravity
even in the case of quasi-equilibrium. Therefore,
we shall only note one proposal for computing the
surface gravity of the solution we found above. For
this, we follow [12] and see Ref. [13] for a nice
review of this topic, where other proposals were also
discussed. Given a spherically symmetric metric, of
the form

ds2 ¼ −A2ðv; rÞΔðv; rÞdv2 þ 2Aðv; rÞdvdr
þ r2dΩ2

2; ð27Þ

and let

Δðv; rÞ ≔ 1 − 2mðv; rÞ: ð28Þ

Then the surface gravity on the marginally trapped
surface (apparent horizon), or the trapping horizon,
for which Δðv; rHÞ ¼ 0, according to [12] is
given as

κ ≔
A

4rmðv; rÞ ð1 − 2r∂rmðv; rÞ − 2mðv; rÞÞ þ Ȧ
A
;

Ȧ ¼ ∂vA; ð29Þ

which, for our metric yields

κ≔−∂rmðv;rÞjrA evaluated atmðv;rAÞ¼
1

2
; ð30Þ

where rA is the radius of the apparent horizon which
is equivalent to the radius of the event horizon
rA ¼ 2m in the Schwarzschild black hole case in this
coordinate system. For the Schwarzschild black hole
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case, mðv; rÞ ¼ 1=2 ¼ m=r, and hence, (30) yields
the expected, constant value κ ¼ 1=ð4mÞ which is
proportional to the Hawking temperature. But in
our case, κ is a nontrivial function of the null
coordinate v.

III. RADIATING ROTATING SOLUTIONS

Let us now consider the axially symmetric but nonsta-
tionary metric in the coordinates ðv; r; θ;ϕÞ where v is null,
for definiteness we will not introduce ϵ, but it can be easily
incorporated. The line element under the assumptions reads

ds2 ¼ −
�
1 −

2rm
Σ

�
ðdv − a sin2 θdϕÞ2

þ 2ðdv − a sin2 θdϕÞðdr − a sin2 θdϕÞ
þ Σðdθ2 þ sin2 θdϕ2Þ; ð31Þ

where Σ ≔ r2 þ a2 cos2 θ and m ¼ mðv; r; θÞ. Then (4)
reduces to

2

Σ
∂
2

∂r2

�
−rmþ 2α

r2m2ξ

Σ3

�
− 4Λ ¼ 0; ð32Þ

with ξ ≔ r2 − 3a2 cos2 θ. As in the spherically symmetric
case, (32) also gives a quadratic equation for m

rm − 2α
r2m2ξ

Σ3
þ Λ

�
r2Σ −

5r4

6

�
¼ prþ q; ð33Þ

where p ¼ pðv; θÞ and q ¼ qðv; θÞ are arbitrary functions
of v and θ. The solutions are

mðv; r; θÞ ¼ Σ3

4αξr

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8αξ

Σ3

�
prþ q − Λ

�
Σr2 −

5

6
r4
��s �

: ð34Þ

which is a nonstationary generalization of the one given
in [2] with, also, a nonzero cosmological constant. Observe
that the cosmological constant drastically changes the
solution.
Let us now calculate the horizon structure of this

solution. A null surface defined by Hðv; r; θÞ ¼ constant
satisfies gμν∂μH∂νH ¼ 0, which, for the metric (31),
becomes

a2 sin2 θð∂vHÞ2 þ ð−2rmþ a2 þ r2Þð∂rHÞ2
þ 2ða2 þ r2Þ∂rH∂vHþ ð∂θHÞ2 ¼ 0; ð35Þ

and m given in (34) should be inserted in this equation.
It is a highly nontrivial PDE. We can make a further
assumption for the null horizon’s coordinates: that is
H¼r−rHðv;θÞ¼0, then the horizon equation reduces to

a2 sin2 θð∂vrHÞ2 þ ð−2rHmþ a2 þ r2HÞ
− 2ða2 þ r2HÞ∂vrH þ ð∂θrHÞ2 ¼ 0: ð36Þ

Let us make some remarks on this equation. Since rHðv; θÞ
satisfies a first-order nonlinear partial differential equation,
it is still very hard to get a closed-form solution, but by
linearizing around the stationary solution3 we can find
approximate solutions. To this end, let ϵ be a small

parameter and expand the nonstationary horizon radius
rHðv; θÞ around the stationary one as

rHðv; θÞ ¼ r0HðθÞ þ ϵr1ðv; θÞ þOðϵ2Þ; ð37Þ

where r0HðθÞ is the v-independent horizon function that
satisfies

ð∂θr0HÞ2 þ ð−2r0Hm0ðr; θÞ þ a2 þ ðr0HÞ2Þ ¼ 0: ð38Þ

where m0ðr; θÞ follows from (34) with constant q and p.
Then r1ðv; θÞ satisfies the following linear, but still a partial
differential, equation

− ða2 þ ðr0HÞ2Þ∂vr1 þ ð∂θr0HÞ∂θr1
¼ ðm0 þ ζr0H − r0HÞr1; ð39Þ

where we set mðv; r; θÞ ¼ m0ðv; rÞ þ ϵζðr; θÞr1ðv; θÞ with
ζ a cumbersome but known function from the expansion
(34). Assuming ∂θr0H ≠ 0, we can solve (39) with the
following ansatz:

r1ðv; θÞ ¼ eρðθÞfðv; θÞ; ð40Þ

which leads to

ρðθÞ ¼
Z

θ

θ0

m0 þ ðζ − 1Þr0H
∂θr0H

dθ; ð41Þ3This stationary solution corresponds to the one given in [2] for
the case Λ ¼ 0, otherwise, it is more general than that solution.
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and fðv; θÞ ¼ fðηÞ is an arbitrary function of η which is
given as

η ≔ vþ
Z

θ

θ0

a2 þ ðr0HÞ2
∂θr0H

dθ: ð42Þ

Since the linearized solution r1ðv; θÞ contains the arbitrary
function f depending on v and θ, it may not be bounded for
certain values of v and θ. Hence the radiating extension of
the rotating black hole, as in the case of the static black
studied in Sec. II, violates the second law of the black hole
thermodynamics, and the stability of the horizons is not
guaranteed.
Let us study the asymptotic structure of the two

curvature invariants of the radiating metric.
(i) as r → ∞, one has

R ¼ 4Λþ 30r2

α sin θ
þ 6a2 cos2 θ

α sin θ
þO

�
1

r2

�
;

G ¼ 112r4

α2 sin2 θ
−
112r2a2 cot2 θ

α2
−
32a4 cos2 θ cot2 θ

α2

−
48pðvÞ
αr sin θ

þO
�
1

r2

�
: ð43Þ

(ii) The expressions as r → 0 are cumbersome. So we
assume qðvÞ ¼ 0 for the sake of depicting purposes

R ¼ −
8α tan θ sec7 θpðvÞ2

a8
þ 6a2 cos θ cot θ

α

þ 4ΛþOðrÞ;

G ¼ 48 sec6 θpðvÞ2
a6

−
32a4 cos2 θ cot2 θ

α2

þOðrÞ: ð44Þ

Both of these curvature invariants are finite, unlike
the Kerr-black hole case which has a ringlike
singularity.

IV. CONCLUSIONS AND DISCUSSIONS

Motivated by two recent developments, that is the
construction of stationary rotating black hole solutions
of the conformal anomaly sourced general relativity [2],
and the observation of the amplification of quantum
corrections by extremal black holes [8], we have studied
here radiating nonrotating and rotating black hole solutions
of the A-type anomaly sourced general relativity with a
cosmological constant. Our solutions generalize the rotat-
ing solution of [2] and the spherically symmetric solutions
of [3,4] to the nonstationary case as akin to Vaidya’s
generalization of the Schwarzschild metric, and a similar
generalization of the Kerr metric. The metrics we have
found are highly nontrivial: we have found the event
horizon equations but we could only solve them

analytically in the linearized approximation of their sta-
tionary counterparts. A numerical investigation of these
equations and a proper understanding of the geometric
structure of these black holes would be valuable.
Finally, we would like to point out that the only field

equation to determine the metric of spacetime is the trace
equation (1). It may not be seen as natural or physical to
talk about a “solution” for a metric obtained solely from
one equation, and it may not be possible to draw some
conclusions from such a metric in four dimensions. Hence
it is hard to call any metric obtained from the trace
equations (1) a solution. Despite this, we wanted to draw
attention to how black hole physics is altered with the trace
anomaly. For that reason, we studied a metric that fits our
purpose which is the well-known Kerr-Schild metric (31).
Indeed, we showed that many important properties of black
holes of general relativity may change under the back
reaction effects or the conformal anomaly.

APPENDIX: ENERGY MOMENTUM TENSOR

The metric in (31) can be written in the Kerr-Schild form

gμν ¼ g0μν þ
2mr
Σ

λμλν; ðA1Þ

where λμ ≔ ð1; 0; 0;−a sin2 θÞ is a null vector and g0μν is the
flat metric withe line element

ds2 ¼ −ðdv − a sin2 θdϕÞ2
þ 2ðdv − a sin2 θdϕÞðdr − a sin2 θdϕÞ
þ Σðdθ2 þ sin2 θdϕ2Þ: ðA2Þ

Following a similar discussion as in [2], one can rewrite the
Einstein tensor and hence energy-momentum tensor com-
ponents as

hTμνi ¼ λμζν þ λνζμ þ ρ4nμnν þ ρ6kμkν þ μgμν; ðA3Þ

or more explicitly

hTμνi ¼
ρ6

a2 sin4 θ
λμλν þ λμ

�
ζν −

ρ6
a2 sin4 θ

tν

�

þ λν

�
ζμ −

ρ6
a2 sin4 θ

tμ

�
þ ρ4nμnν

þ ρ6
a2 sin4 θ

tμtν þ μgμν; ðA4Þ

where ζμ ≔ ρ2nμ þ ρ3mμ þ ρ5kμ and

λμ¼ð1;0;0;−asin2θÞ; λμ¼ð0;1;0;0Þ tμ¼ð1;0;0;0Þ;
mμ¼ð0;1;0;0Þ; nμ¼ð0;0;1;0Þ; kμ¼ð0;0;0;1Þ: ðA5Þ

METIN GÜRSES and BAYRAM TEKIN PHYS. REV. D 109, 024001 (2024)

024001-6



One can see that

λμhTμνi ¼ −
2r2∂rm
Σ2

λν: ðA6Þ

The functions ρ2, ρ3, ρ4, ρ5, ρ6, μ and the R curvature are given by

ρ2 ¼
1

Σ2
ð2a2cos2θmθ − 2a2rcosθ sinθmv þ r2Σmrθ −ΣmθÞ;

ρ3 ¼
1

sinθΣ2ð2mr−ΣÞ ð2a
2Σsin3θmvr þ a2rΣsin3θmrr þ 2a2sin3θð−2a2sin2θþ 2a2 −ΣÞmr

þ r cosθð4a2sin2θþΣÞmθ þ a2rsin3θΣmvv þ 2 sinθð2a4cos2θsin2θþ 2a2Σcos2θ− a2Σ−Σ2Þmv þ r sinθΣmθθÞ;

ρ4 ¼
1

sinθΣð2mr−ΣÞ ð2a
2rsin3θmvr þ sinθΣð−2a2msin2θþ a2rsin2θþ 2a2m− 2mΣþ rΣÞmrr

þ 2 sinθð2a4sin2θcos2θþ 4a2mrsin2θ− 3a2Σsin2θ− 4a2mrþ 2a2Σþ 2mrΣ−Σ2Þmr

þ r cosθð4a2cos2θþΣÞmθ þ a2rΣsin3θmvv þ 2 sinθð2a4cos2θsin2θ− 2a2Σsin2θþ a2Σ−Σ2Þmv

þ rΣ sinθmθθÞ;

ρ5 ¼
1

Σ2ð2mr−ΣÞ ðasin
2θΣð2a2mcos2θþ 2a2rsin2θþ rΣ− 2mΣÞmvr þ asin2θΣð2a2mcos2θþ a2rsin2θ− 2mΣþ rΣÞmrr

þ 2asin2θð2a4cos2θsin2θ− 4a2mrcos2θþ 3a2Σcos2θ− a2Σþ 2mrΣ−Σ2Þmr

þ a cosθ sinθð4a2mcos2θþ 4a2rsin2θ− 4mΣþ 3rΣÞmθ þ a3rΣsin4θmvv

þ asin2θð4a4cos2θsin2θ− 4a2mrcos2θþ 6a2Σcos2θ− 2a2Σþ 2mrΣ− 3Σ2Þmv þ arΣsin2θmθθÞ;

ρ6 ¼
1

Σð2mr−ΣÞ ð−2a
2rΣsin4θmvr þΣsin2θð2a2msin2θ− a2rsin2θ− 2a2mþ 2mΣ− rΣÞmrr þ 2sin2θð−2a2sin2θcos2θ

þ 4a2mrcos2θþ 3a2Σsin2θ− 2a2Σ− 2mrΣþΣ2Þmr þ r sinθ cosθð4a2sin2θþΣÞmθ − a2rΣsin4θmvv

þ 2sin2θð−2a4sin2θcos2θþ 2a2Σsin2θ− a2ΣþΣ2Þmv − rΣsin2θmθθÞ;

μ¼ 1

sinθΣ2ð2mr−ΣÞ ð−2a
2rΣsin3θmvr − a2rsin3θΣmrr − r cosθðΣþ 4a2sin2θÞmθ þ 2 sinθð−2a4cos2θsin2θ

þ 2a2mrcos2θ− 2a2cos2θΣþ a2Σ− 2mrΣþΣ2Þmr − a2rsin3θΣmvv

þ 2 sinθð−2a4cos2θsin2θ− 2a2Σcos2θþ a2ΣþΣ2Þmv − r sinθΣmθθÞ;

R¼ 1

Σð−2mrþΣÞ ð2ð2a
2mcos2θ− 2mΣþ rΣÞmrr þ 4ð−2mrþΣÞÞ; ðA7Þ

with the identity ρ6 ¼ sin2 θρ4 þ sin2 θΣðRþ 2ρ3 þ 4μÞ. Here mr ≔ ∂rm etc.
Energy conditions: Let Uμ be any timelike or a null vector in the spacetime geometry, then it is not possible to say

anything about the sign of the term UμUνhTμνi, because

UμUνhTμνi ¼ 2ðU · λÞðU · ζÞ þ ρ4ðU · nÞ2 þ ρ6ðU · kÞ2 þ μU2; ðA8Þ

where U · λ ¼ Uμλμ, U · k ¼ Uμkμ, U · n ¼ Uμnμ, U · ζ ¼ Uμζμ and U2 ¼ UμUμ. For an arbitrary timelike or null vector
Uμ, the right-hand side of (A8) can take any sign. Hence we cannot deduce any of the energy conditions for the energy
momentum tensor given in (A3). In any case, we know that all the known energy conditions can be violated by quantum
fields.
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