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When a brane is moving in a compact space, bulk-probing signals originating at the brane can arrive
back at the brane outside the lightcone of the emitting event. In this paper, we study how adiabatic
perturbations in the brane fluid, coupled to a bulk fluid, propagate in the moving brane. In the
nondissipative regime, we find an effective sound speed for such perturbations, depending on the brane
and bulk fluid energy densities, equations of state, and brane speed. In the tight-coupling approximation,
the effective sound speed might be superluminal for brane and bulk fluids that satisfy the strong energy
condition. This has immediate consequences for brane-world cosmology models.
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I. THE RELATIVITY OF MOTION
IN A COMPACT SPACE

Consider a five-dimensional Minkowski spacetime with
one spatial direction compactified to a circle, M5 ¼
M4 × S1. Suppose that for an inertial frame K0, coordi-
nates xμ ¼ ðt; xi; yÞ are assigned to events, where y is the
compact direction, and the coordinates of an event with
y ¼ y0 and y ¼ y0 þ L should be identified, i.e. ðt; xi; yÞ∼
ðt; xi; yþ LÞ, where L is the total length of the compact
direction as measured in such a frame. For any other inertial
frame Kv that moves with respect to K0 with speed v in the
y direction, the identification will fail to be purely space-
like: the coordinates x̃μ ¼ ðt̃; x̃i; ỹÞ of an event in Kv will be
identified as x̃μ ∼ ðt̃ − γvL; x̃i; ỹþ γLÞ, as follows from a
Lorentz boost in the coordinates of the identified event, see
also the spacetime diagram of Fig. 1.
The time contribution to the identification results from

the relativity of simultaneity between the frames because it
is only in K0 that the identified events are simultaneous.
There is only one frame in which the total size of the
compact direction is L, while the measurable size in any
other frame moving relative to it will be γL [1]. Moreover,
in the frame Kv, if light signals are sent toward and
backward the direction of motion, there is a mismatch
Δt ¼ 2γvL between their arrival times back at the emission
point, see Fig. 2. Thus, there is a preferred frame in

M4 × S1, and inertial observers can perform experiments
to detect its state of motion relative to it, provided these
probe the global structure of the spacetime. This is a
manifestation of the global breaking of Lorentz symmetry
by compactification. Other consequences of the relativity of
identifications between the frames were explored in [1],
such as the impossibility of global synchronization of
clocks. For other works about relativity on compact spaces,
see Refs. [2–4] and references therein.
If an observer in Kv wants to send a prompt signal to an

event with spatial separation r along ỹ ¼ constant, they
could do it along ỹ ¼ constant or along a direction with
an angle θ ¼ arctan ðγL=rÞ relative to ỹ ¼ constant. If
r=γL ≪ 1, the former option is always more prompt.
However, for a sufficiently large r=γL, the signal propa-
gating with angle θ can arrive earlier than the signal that
does not probe the compact direction. In fact, in Kv, for a
signal propagating at speed u, the time it takes to get at
distance r along the θ direction is

Δt ¼ γL
u sin θ

− γvL; ð1:1Þ

where the second term comes from the time advancement
after the signal crosses the compact direction (see Fig. 2).
This can be smaller than the time r=u that the signal would
take to cover r along ỹ ¼ constant provided

r
γL

>
1

2vu
ð1 − v2u2Þ: ð1:2Þ

Note that when v ¼ 0, signals that probe the compactifi-
cation are always less prompt than signals that do not.
Recently, in [5], a 3-brane moving in a compact direction

was studied, and the compactification-induced Lorentz
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symmetry breaking was exploited to show that brane-
originated, bulk-propagating signals can beat brane propa-
gating signals in the promptness of information transmission.
Thiswas explored in detail in [5] (see also [6]), after studying

the retarded Green’s function of a scalar field onM4 × S1 in
different frames. Due essentially to the time advancement
in (1.1), the motion of the brane modifies brane causality
such that signals probing the bulk can get back to the brane
outside the brane’s light cone, which is an effective super-
luminal propagation between events on the brane. Note,
however, that there is no causality violation since the
time advancement that a bulk-propagating signal can acquire
is always smaller than the time light takes to cross the
bulk [1,7].
The spacetime diagram in Fig. 3, shows the light cone of

an event on the brane and how it spreads through the
compact direction, in coordinates comoving with the brane.
Initially, the intersection of the brane with the light cone
emanating from a brane event e is described by rðt̃Þ ¼ t̃,
where r is the radial coordinate of the directions parallel to
the brane. However, after Δt ¼ γL − γvL, the light cone
intersects the brane at the hyperbola

r2ðt̃Þ ¼ ðt̃þ γvLÞ2 − γ2L2; ð1:3Þ

and for t̃ > L=2γv, the naive “brane light cone” is con-
tained in the genuine light cone that probes the bulk.
Moreover, asymptotically in time, the difference between
these approaches a constant, rðt̃Þ − rkðt̃Þ → γvL.

FIG. 2. Global experiment to probe Kv’s inertial motion. The
line ỹ ¼ 0 is identified with the time-translated ỹ ¼ γL line.
Hence a light ray emitted from event e in the negative-ỹ direction
arrives back to ỹ ¼ 0 at f1 while the light ray emitted in the
frame’s motion direction arrives back to ỹ ¼ 0 at f2. Since the
identified coordinates are time-translated by γvL, the difference
between arrival times is 2γvL. Note that signals with propagating
speeds other than c also undergo time advancement or delay
when crossing the compact direction.

FIG. 3. Future lightcone emanating from an event e. The radial
coordinate of the directions transverse to the brane’s motion
r ¼

ffiffiffiffiffiffiffiffi
xixi

p
is also shown. After some time, the maximal distance

e can influence is set by the light cone emanating from the ỹ ¼ γL
plane. This can be seen from the portion of the red light cone
emanating from the ỹ ¼ 0 which is contained in the yellow light
cone. Assymptotically, the future light “cone” of e is set by the
hyperbola resulting from the intersection of the yellow cone with
the ỹ ¼ 0 plane.

FIG. 1. Spacetime diagram of the motion of the frame Kv in K0

coordinates, with v > 0. The lines y ¼ 0 and y ¼ L are identified.
The event e at the origin in both frames can also be described by the
coordinates ðt̃; ỹÞ ¼ ð−γvL; γLÞ. This can be seen from the dashed
red lines extended from the fundamental region 0 ≤ y < L. In the
frame Kv, the total size of the compact direction is γL.
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An interesting application of the effective superluminal
propagation is the possibility of having a solution to the
cosmological horizon problem in brane-world models. This
was already suggested in [5], with a brief discussion on
how the brane particle horizon would change if the brane is
moving. The horizon problem is a causality problem due to
the finiteness of the distance photons could have traveled
from the big bang until recombination. In standard big-
bang cosmology, such a distance is much smaller than the
particle horizon at recombination [8,9]. So, the isotropy of
the CMB thermal spectrum cannot be explained by a causal
mechanism within the ΛCDM model. However, if one
supposes that our Universe is a 3-brane moving in a
compact direction, then regions outside the brane’s particle
horizon could have been in causal contact, provided there is
a coupling between the brane’s primordial plasma and bulk
propagating fields. One could imagine such a coupling
being relevant only before big bang nucleosynthesis, so
cosmological observables are mildly affected by the bulk
coupling.
In this work, we study how a brane-bulk coupling

modifies the propagation of perturbations in a 3-brane that
is moving in a compact direction. We consider brane and
bulk-perfect fluids coupled by an electriclike coupling in
the tight-coupling approximation, such that dissipation and
nonadiabatic perturbations are subleading effects. The
system has similarities with the photon-baryon fluid of
the primordial plasma deep in the radiation-dominated era.
We are interested in the consequences of the minimal
assumption that there is a coupling between brane and
bulk fluids, as required to thermalize otherwise causally
disconnected brane regions. In the next section, we find the
equation of motion for adiabatic perturbations in the
moving brane, including the bulk coupling. In Sec. III,
we comment on the physics behind our assumptions on
the brane-bulk interactions. Section IV contains a discus-
sion about how cosmological expansion would modify
our results. We discuss its implications in the conclusion
section.

II. INTERACTING BRANE AND BULK FLUIDS

We consider a 3-brane moving with speed v in an extra
transverse direction which is compactified to a circle. In
this section, we shall assume a flat spacetime. In the frame
comoving with the brane, the metric is given by

ds2 ¼ −dt2 þ dxidxi þ dy2; ð2:1Þ

where y is the compact direction. The presence of the
compact direction does not affect local energy-momentum
conservation,

∇MTMN ¼ 0; ð2:2Þ

where TMN is the five-dimensional energy-momentum
tensor. It receives contributions from the bulk and brane
fluids:

TMN ¼ TMN
brane þ TMN

bulk: ð2:3Þ

In order for brane signals to exploit the bulk direction and
arrive at the brane outside the initial point’s light cone, we
will assume that the bulk and brane fluids are coupled,

∇MTMN
brane ¼ JN; ∇MTMN

bulk ¼ −JN: ð2:4Þ

The coupling vector JN is localized on the brane and
proportional to the bulk and brane fields’ interaction rate Γ.
We consider elastic interaction only, such that each fluid’s
particle number is individually conserved.
Moreover, we shall assume the bulk fluid to be a perfect

fluid,

TMN
bulk ¼ ρbUM

b U
N
b þ pbðUM

b U
N
b þ gMNÞ; ð2:5Þ

while the brane fluid is also a perfect fluid,

TMN
brane ¼ ρUMUN þ pðUMUN þ gMNÞ

þ ðp4 − pÞXMXN; ð2:6Þ

but with ρ, p, and UM localized on the brane: they all have
factors of δðyÞ (assuming the brane is at y ¼ 0), and the
brane-fluid velocity field has vanishing y component,
U4 ¼ 0. Moreover, XM is a spacelike unit vector transverse
to UM, and there is no pressure in the extra direction,
p4 ¼ 0. In the frame comoving with the brane, we have
XM ¼ ð0; 0; 0; 0; 1Þ and UM

b ¼ γð1; uib;−vÞ, where v is the
brane speed in the frame comoving with the bulk, i.e., the
special frame where the coordinate identification is purely
spatial.
In the following, we write the continuity and Euler

equations for the brane and bulk fluids. We find back-
ground solutions after assuming that the energy-momentum
transfer flux JN is of first order in perturbations. We
comment more about JN after finding the equations for
linearized perturbations. From (2.4), the brane continuity
and Euler equations are

UM∇Mρþ ðρþ pÞ∇MUM ¼ −JNUN; ð2:7aÞ

gQM∇Mpþ UQUM∇Mpþ ðρþ pÞUM∇MUQ

þ XQ
h
XM∇Mðp4 − pÞ þ ðp4 − pÞ∇MXM

i
þ ðp4 − pÞ

h
XM∇MXQ þ UQUNXM∇MXN

i
¼ JQ þ UQJNUN: ð2:7bÞ
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In the frame comoving with the fluid parallel to the
brane, we have UM ¼ ð1; 0; 0; 0; 0Þ. Using this in the brane
continuity and Euler equations yields

∂0ρ ¼ −J0; ð2:8aÞ

∂
ip ¼ Ji þ J0ui; ð2:8bÞ

∂
4pþ ∂4ðp4 − pÞ ¼ J4: ð2:8cÞ

If we assume that JN vanishes at the background level, we
find the solution

ρ ¼ ρ0δðyÞ; p ¼ p0δðyÞ; p4 ¼ 0; ð2:9Þ

where ρ0 and p0 are constants.
The bulk continuity and Euler equations are

UM
b ∇Mρb þ ðρb þ pbÞ∇MUM

b ¼ JNUN
b ; ð2:10aÞ

gQM∇Mpb þ UQ
b U

N
b∇Npb þ ðρb þ pbÞUM

b ∇MU
Q
b

¼ −JQ − UQ
b JNU

N
b : ð2:10bÞ

We have UM
b ¼ γð1; uib;−vÞ in the brane comoving frame,

such that these equations reduce to

γ∂0ρbþ γuib∂iρb− γv∂4ρb

þðρbþpbÞ
h
∂0γþ∂iðγuibÞ−∂4ðγvÞ

i
¼ JNUN

b ; ð2:11aÞ

∂
ipb þ γ2uibð∂0 þ uib∂i − v∂4Þpb

þ ðρb þ pbÞ
h
γð∂0 þ uib∂i − v∂4ÞðγuibÞ

i
¼ −Ji − γuibJNU

N
b ; ð2:11bÞ

∂
4pb − γ2vð∂0 þ uib∂i − v∂4Þpb

þ ðρb þ pbÞ
h
−γð∂0 þ uib∂i − v∂4ÞðγvÞ

i
¼ −J4 þ γvJNUN

b ; ð2:11cÞ

with JNUN
b ¼ γðJ0 þ Jiuib − J4vÞ. For vanishing JN , we

find the solution

ρb ¼ ρb;0¼ const; pb¼pb;0 ¼ const; uib ¼ 0; ð2:12Þ

and constant v.
The equations for brane perturbations can be obtained

from (2.7) after setting ρ ¼ ρ̄þ δρ, p ¼ p̄þ δp, p4 ¼
p̄4 þ δp4, andUM ¼ ð1; ui; 0Þ, with juij ≪ 1. Note that we
impose these perturbations to be restricted to the brane, so
that U4 is still zero and δρ and δp are also localized on the
brane. Then, to linear order in δρ, δp, and ui, these brane
perturbations satisfy

∂0δρþ ðρ̄þ p̄Þ∂iui ¼ −J0; ð2:13aÞ

ðρ̄þ p̄Þ∂0ui þ ∂
iδp ¼ Ji; ð2:13bÞ

∂yδp4 ¼ J4: ð2:13cÞ

where the background quantities ρ̄ and p̄ are evaluated in
the solution (2.9).
For bulk perturbations, we can already use (2.11), but

with v ¼ v̄þ δv, ρb ¼ ρ̄b þ δρb, pb ¼ p̄b þ δpb, and
treating uib as a perturbation. So, γ ¼ γ̄ þ δγ with γ̄ ¼
ð1 − v2Þ−1=2 and δγ ¼ v̄δvγ̄3 to linear order. Setting ρ̄b, p̄b,
and v̄ to the background solution (2.12) gives

γ̄ð∂0− v̄∂yÞδρbþðρ̄bþ p̄bÞ
h
∂0δγþ γ̄∂iðuibÞ− v̄∂4δγ− γ̄∂4δv

i
¼J0γ̄−J4γ̄ v̄; ð2:14aÞ

γ̄2ðρ̄b þ p̄bÞð∂0 − v̄∂4Þuib þ ∂
iδpb ¼ −Ji; ð2:14bÞ

− γ̄ðρ̄b þ p̄bÞð∂0 − v̄∂4Þðδγv̄þ γ̄δvÞ þ ∂
4δpb

− γ̄2v̄ð∂0 − v̄∂4Þδpb ¼ −J4 þ ðJ0 − v̄J4Þγ̄2v̄: ð2:14cÞ

Note that since JN is a distribution, so will be the bulk fluid
perturbation variables. This can be seen already from (2.4):
the second equation implies a discontinuity in the bulk
energy-momentum tensor across y ¼ 0. However, since we
are interested in the bulk fluid variables evaluated on the
brane, we shall not explicitly write δðyÞ factors.
In ΛCDM, during radiation domination, the radiation and

matter cosmic fluids are coupled mainly due to Thomson
scattering. This interaction enters the Boltzmann equation
describing the phase-space distribution of the fluid’s par-
ticles. In the hydrodynamic limit, the result is an energy-
momentum transfer flux that vanishes at the background
level and is proportional to the difference between the fluid’s
velocity perturbations [10,11]. This can also be seen from a
covariant formalism, as shown in [12]. We shall assume the
same behavior for JN. Hence it should be proportional to the
perturbations in the brane and bulk velocities:

JN ¼ ΘðδUM − δUM
b Þ; ð2:15Þ

where δUM ¼ ð0; ui; 0Þ, δUM
b ¼ ðδγ; γ̄uib;−γ̄δvÞ, and Θ

depends on the cross-section σ of the interaction between
the brane and bulk particles. For simplicity, we impose the
form of JN above and postpone discussion about its micro-
physics description to elsewhere. Hence, we have

J0¼−Θδγ; Ji ¼Θðui− γ̄uibÞ; J4¼−Θγ̄δv: ð2:16Þ

We now wish to find a closed equation for the brane
energy density perturbation δρ. To accomplish this, we
need to combine Eqs. (2.13) and (2.14). Before we do so,
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we impose another simplifying assumption: we set the
perturbation in the pressure p4 to zero, δp4 ¼ 0. This is
justified by the fact that we are interested in perturbations
which are confined to the brane. If we do so, Eq. (2.13c)
gives J4 ¼ 0, which from (2.16) implies δv ¼ 0 and
J0 ¼ 0. So, to this order in approximation, the brane-bulk
scattering process does not allow energy exchange, only
momentum. Therefore, to leading order, the continuity
equations for the brane and bulk perturbations are not
modified by the scattering, while the Euler equations do get
contributions from the interaction. In the next section, we
explain the relation between J0 ¼ 0 ¼ J4, dissipation, and
adiabatic perturbations.
With δv ¼ 0, and assuming a linear barotropic relation

between the energy densities and pressures p ¼ wρ,
pb ¼ wbρb, (2.13) implies

∂0δþ ð1þ wÞ∂iui ¼ 0; ð2:17aÞ

ð1þ wÞ∂0ui þ c2s∂iδ ¼
Θ
ρ̄
ðui − γ̄uibÞ; ð2:17bÞ

where δ ¼ δρ=ρ̄ and δp ¼ c2sδρ, with c2s ¼ w the usual
sound speed for brane perturbation if it had no interaction
with the bulk. Meanwhile, Eqs. (2.14) can be written as

ð∂0 − v̄∂4Þδb þ ð1þ wbÞ∂iuib ¼ 0; ð2:18aÞ

γ̄2ð1þ wbÞð∂0 − v̄∂4Þuib þ c2b∂
iδb ¼ −

Θ
ρ̄b

ðui − γ̄uibÞ;

ð2:18bÞ

c2b∂
4δb − γ̄ v̄ð∂0 − v̄∂4Þδb ¼ 0; ð2:18cÞ

where δpb ¼ c2bδρb.
From the Euler equation for the bulk fluid, we find a

relation between ui and uib. In the tight-coupling approxi-
mation, where ui ≈ uib to first order, we find

ui− γ̄uib ≈−
ρ̄b
Θ

�
γ̄2ð1þwbÞð∂0− v̄∂4Þuiþc2b∂

iδb

�
: ð2:19Þ

Inserting this into the Euler equation for the brane fluid
gives

ð1þ wÞ∂0ui þ c2s∂iδ

¼ −
ρb
ρ

�
γ̄2ð1þ wbÞð∂0 − v̄∂4Þui þ c2b∂

iδb

�
: ð2:20Þ

As explained in the next section, for adiabatic perturba-
tions, we have δb ¼ αδwith the constant α given by (3.17).
Using this relation in the previous equation, we find

�
ð1þ wÞ þ ρ̄b

ρ̄
γ̄2ð1þ wbÞ

�
∂0ui −

ρ̄b
ρ̄
γ̄2v̄ð1þ wbÞ∂4ui

þ c2s

�
1þ α

ρ̄bc2b
ρ̄c2s

�
∂
iδ ¼ 0: ð2:21Þ

Taking ∂0 of the brane’s continuity equation gives

∂
2
0δþ ð1þ wÞ∂0∂iui ¼ 0; ð2:22Þ

while the divergence of (2.21) yields

∂i∂0ui ¼
ρ̄b
ρ̄

γ̄2v̄ð1þ wbÞ
1þ wþ ρ̄b

ρ̄ γ̄
2ð1þ wbÞ

∂i∂4ui

− c2s
1þ α

ρ̄bc2b
ρ̄c2s

1þ wþ ρ̄b
ρ̄ γ̄

2ð1þ wbÞ
∂i∂

iδ: ð2:23Þ

Combining the last two equations, we get

∂
2
0δþ

ρ̄b
ρ̄

γ̄2v̄ð1þ wbÞ
1þ γ̄ ρ̄bð1þwbÞ

ρ̄ð1þwÞ
∂i∂4ui − c2s

1þ α
ρ̄bc2b
ρ̄c2s

1þ γ̄ ρ̄bð1þwbÞ
ρ̄ð1þwÞ

∂i∂
iδ ¼ 0:

ð2:24Þ

But since the perturbations are restricted to the brane,
∂4ui ¼ 0, we get the final equation for perturbations on the
brane:

∂
2
0δ − c2s

1þ α
ρ̄bc2b
ρ̄c2s

1þ γ̄ ρ̄bð1þwbÞ
ρ̄ð1þwÞ

∂i∂
iδ ¼ 0: ð2:25Þ

Thus, we find that, in the tight-coupling approximation, the
sound speed for perturbations on the brane is

ceff ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

ρ̄bc2b
ρ̄c2s

1þ γ̄ ρ̄bð1þwbÞ
ρ̄ð1þwÞ

vuuut : ð2:26Þ

We shall discuss this result after commenting on the
physical meaning of the assumptions on the interaction
that we made in this section.

III. ADIABATIC PERTURBATIONS AND SOUND
SPEED OF THE INTERACTING BRANE-BULK

FLUID SYSTEM

In this section, we show that J0 ¼ 0 ¼ J4 implies that δ
and δb correspond to adiabatic perturbations. To better state
the argument, consider a single relativistic fluid defined in
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an arbitrary spacetime. Local conservation of energy and
momentum rule the fluid’s dynamics,

∇MTMN ¼ 0; ð3:1Þ

where TMN is the energy-momentum tensor of the fluid.
For a general fluid, the interactions of the fluid particles
might be such that there are dissipative effects making the
fluid’s entropy increase, for instance, when the particle
collisions are not elastic, or the fluid has multiple compo-
nents that exchange energy and momentum. Let us first
assume that this is not the case and that the fluid is a perfect
fluid with conserved particle number,

∇MNM ¼ 0; ð3:2Þ

where

TMN ¼ ρUMUN þpðUMUN þgMNÞ; NM ¼ nNM; ð3:3Þ

where ρ, p, and n are the energy density, pressure, and
number density in the frame comoving with the fluid,
respectively.
Given these assumptions and the first and second laws of

thermodynamics on a volume V on the fluid’s frame,

Tdσ ¼ d

�
ρ

n

�
þ pd

�
1

n

�
; ð3:4Þ

one can show from (3.2) and the continuity equation,
UN∇MTMN ¼ 0, that the entropy per particle number σ ¼
S=N (as measured in the fluid’s rest frame) is constant
along the fluid flow [13]:

UM∇Mσ ¼ 0: ð3:5Þ

Equivalently, in terms of the entropy density s ¼
S=V ¼ nσ, we have

∇MðsUMÞ ¼ 0; ð3:6Þ

such that, for a perfect fluid with conserved particle number
density, entropy is conserved.
A general perturbation in the macrostate of the fluid

includes a fluctuation in σ. Perturbations are adiabatic if
δσ ¼ 0. For such a class of perturbations, there is a relation
between the energy and number density fluctuations:

0 ¼ Tδσ ¼ 1

n

�
δρ −

ρþ p
n

δn

�
⇒ δρ ¼ ρþ p

n
δn: ð3:7Þ

Now, let us suppose the fluid is made of two interacting
components but in such a way that the continuity and
number density conservation equations are individually
satisfied for both components. In this case,

Tδσ1 ¼
1

n1

�
δρ1 −

ρ1 þ p1

n1
δn1

�
;

Tδσ2 ¼
1

n2

�
δρ2 −

ρ2 þ p2

n2
δn2

�
; ð3:8Þ

such that if the perturbations in each component are
adiabatic,

δρ1 ¼
ρ1 þ p1

n1
δn1; δρ2 ¼

ρ2 þ p2

n2
δn2: ð3:9Þ

However, if we consider the system as a whole, with
ρ ¼ ρ1 þ ρ2, p ¼ p1 þ p2, and n ¼ n1 þ n2, the condition
for the perturbations in the total fluid to be adiabatic is

δρ1 þ δρ2 ¼
ρ1 þ ρ2 þ p1 þ p2

n1 þ n2
ðδn1 þ δn2Þ: ð3:10Þ

Using the expressions for δρ1 and δρ2 in (3.9) and making
some algebraic manipulations, we find

δn1
n1

¼ δn2
n2

: ð3:11Þ

As a consistency check, the same condition can be found
after imposing δσ ¼ 0, because

δσ ¼ δ

�
S1 þ S2
N1 þ N2

�

¼ n1n2
ðn1 þ n2Þ2

ðσ1 − σ2Þ
�
δn1
n1

−
δn2
n2

�
þ n1δσ1 þ n2δσ2

n1 þ n2
:

ð3:12Þ

Thus, from (3.9), we find a relation between δρ1 and δρ2:

δρ1
ρ1 þ p1

¼ δρ2
ρ2 þ p2

: ð3:13Þ

Note that this result does not depend on the background
metric considered.
Now we would like to consider the interacting case,

∇MTMN
1 ¼ JN; ∇MNM

1 ¼ j; ð3:14Þ

∇MTMN
2 ¼ −JN; ∇MNM

2 ¼ −j: ð3:15Þ

It should be clear from the discussion so far that, if the
interaction is such that the continuity equations are
unmodified and the individual particle number densities
are conserved, then all the calculations above hold, and
adiabatic perturbations satisfy (3.13). In other words, if
UNJN ¼ 0 ¼ j, the condition for adiabatic perturbations in
the interacting case is the same for the noninteracting case.
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Let us apply these discussions to cosmology. In standard
cosmology, before matter-radiation equality, it is necessary
to consider a fluid of interacting radiation and baryonic
matter. The radiation interacts with the baryons via
Thompson scattering. However, to first order, this inter-
action is such that there is no energy exchange between the
components (only momentum transfer), and it also con-
serves particle number [9]. This can be seen from the
expression for JN, JN ∝ σTðUN

γ þ UN
b Þ, where σ is the

Thompson scattering cross section, UN
γ , and UN

b are
the radiation and matter velocity fields [12]. So, JN ¼ 0
at the background level, because both the radiation and
matter fluids follow theHubble flow to that order.Moreover,
to first order in perturbation, UNJN still vanishes and only
the perturbed Euler equations for the fluid get contributions
from JN , such that there is momentum exchange. Hence, we
conclude that there is no dissipation or entropy production to
leading order. If the initial perturbations were adiabatic,
then we can neglect entropy perturbations entirely. Note that
this is not the case if we go beyond the tight-coupling
approximation.
Similarly, in the analysis of the previous section, if we

assume that the bulk and brane fluid perturbations are
adiabatic, we have

δρb
ρb þ pb

¼ δρ

ρþ p
ð3:16Þ

on the brane. This corresponds to

α ¼ 1þ wb

1þ w
ð3:17Þ

and the expression for the effective sound speed (2.26) can
be written as

ceff ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b

c2s
R

1þ γ̄R

vuut
; ð3:18Þ

where we defined the bulk loading R as

R ¼ ρbð1þ wbÞ
ρð1þ wÞ : ð3:19Þ

Note that if R > 0 (which is the case provided the bulk
and brane fields satisfy the null energy condition), then
c2b > γ̄c2s implies ceff > 1.

IV. ADDING EXPANSION

The goal of this section is to estimate how the cosmo-
logical expansion would change equation (2.25). Suppose
we want to consider the dynamics of the two fluids in a
spacetime with metric

ds2 ¼ −dt2 þ a2ðtÞdxidxi þ b2ðtÞdy2 ð4:1Þ

in the brane comoving frame. Wewill not impose Einstein’s
equations, i.e., we are still assuming test fluids in a fixed
curved background. A fully fledged study of the cosmo-
logical perturbations in our setting is beyond the scope of
this paper. Instead, we are interested in the sound horizon of
the moving-brane fluid when it is coupled with the bulk
fluid, and for that, we can neglect the backreaction in the
geometry.
Computing the Christoffel symbols

Γ0
ij¼a2Hδij; Γj

0i¼Hδij; Γ0
yy¼b2Hb; Γ4

04¼Hb; ð4:2Þ

where H ¼ ∂0 ln a and Hb ¼ ∂0 ln b, and using them in
(2.7) gives, for UM ¼ ð1; 0; 0; 0; 0Þ,

∂0ρþ ðρþ pÞð3H þHbÞ ¼ −J0; ð4:3aÞ

a−2ηij∂jp ¼ Ji; ð4:3bÞ

ðb−2 − 1Þ∂4pþ ∂4p4 ¼ J4: ð4:3cÞ

For the bulk, with UM
b ¼ γð1; uib;−vÞ, Eqs. (2.10) give

∂0ρb þ uib∂iρb − v∂4ρb þ ðρb þ pbÞð3H þHbÞ

þ 1

γ
ðρb þ pbÞ

h
∂0γ þ ∂iðγuibÞ − ∂4ðγvÞ

i
¼ J0 þ Jiuib − J4v; ð4:4aÞ

a−2ηij∂jpb þ ðρb þ pbÞ
h
γ∂0ðγuibÞ þ γujb∂jðγuibÞ

− γv∂4ðγuibÞ þ 2Hδijγ
2ujb

i
þ γuib

�
γ∂0pb þ γujb∂pb − γv∂4pb

�
¼ −Ji − ðJ0 þ uibJi − vJ4Þγ2uib; ð4:4bÞ

b−2∂4pb þ ðρb þ pbÞ
h
−γ∂0ðγvÞ − γujb∂jðγvÞ

þ γv∂4ðγvÞ − 2Hbγ
2v
i

− γv
�
γ∂0pb þ γujb∂jpb − γv∂4pb

�
¼ −J4 þ ðJ0 þ uibJi − vJ4Þγ2v: ð4:4cÞ

Similar as in the flat case, we can find the equations for the
brane andbulkperturbations after settingUM ≈ ð1; ui; 0Þ and
treating uib in UM

b as linear order in perturbations. As in flat
space, we have δv ¼ 0 and J0 ¼ 0 ¼ J4. For the brane
variables, evaluating the equations for perturbations in a
background with p̄4 ¼ 0, ∂jρ̄ ¼ 0 ¼ ∂4ρ̄, and p̄ ¼ wρ̄,
we get
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∂0δþ ð1þ wÞ∂iui þ ðc2s − wÞð3H þHbÞδ ¼ 0; ð4:5aÞ

c2sa−2ηij∂jδþ ð1þ wÞð∂0ui þ 2HuiÞ
þ ½wHb − wð1þ wÞð3H þHbÞ�ui

¼ Θ
ρ̄
ðui − γ̄uibÞ; ð4:5bÞ

c2sðb−2 − 1Þ∂4δ ¼ 0; ð4:5cÞ

where we used the background equations and p̄ ¼ wρ̄. For
the bulk, using the background solutionwith ∂ip̄b¼0¼∂iρb,
and Ui

b ¼ 0, we get

ð∂0− v̄∂4Þδbþðc2b−wbÞð3HþHbÞδbþð1þwbÞ∂iuib ¼ 0;

ð4:6aÞ

c2ba
−2ηij∂jδb þ γ̄2ð1þ wbÞ

h
ð∂0 − v̄∂4Þuib þ 2Huib

− wbð3H þHbÞuib
i
¼ −

Θ
ρ̄b

ðui − γ̄uibÞ; ð4:6bÞ

c2bb
−2
∂4δb− γ̄2v̄c2bð∂0− v̄∂4Þδbþ2Hb

γ̄2v̄
wb

�
c2b−wb

�
δb¼0:

ð4:6cÞ

Note that c2b ¼ wb and c2s ¼ w, but we left some terms
proportional to ðc2b − wbÞ and ðc2s − wÞ explicit to depict how
adiabaticity affects the equations.
In the tight-coupling approximation, the bulk Euler

equation gives

−
Θ
ρ̄b

ðui − γ̄uibÞ ≈ c2ba
−2ηij∂jδb þ γ̄2ð1þ wbÞ

h
ð∂0 − v̄∂4Þui

þ 2Hui − wbð3H þHbÞui
i
; ð4:7Þ

and plugging this into brane’s Euler equation, we find

c2s

�
1þα

ρ̄bc2b
ρ̄c2s

�
a−2ηij∂jδþ

�
1þ γ̄2

ρ̄bð1þwbÞ
ρ̄ð1þwÞ

�
ð1þwÞ∂0ui

þ
	
wHbþ2Hð1þwÞ

�
1þ γ̄2

ρ̄bð1þwbÞ
ρ̄ð1þwÞ

�

−
�
1þ γ̄2

ρ̄bð1þwbÞwb

ρ̄ð1þwÞw
�
wð1þwÞð3HþHbÞ



ui¼0:

ð4:8Þ

Taking ∂i of the equation above and combining it with the
time derivative of the brane’s continuity equation gives

∂
2
0δ − c2s

1þ α
ρ̄bc2b
ρ̄c2s

1þ γ̄2 ρ̄bð1þwbÞ
ρ̄ð1þwÞ

a−2∇2δ

þ
(

w
1þ w

Hb

1þ γ̄2 ρ̄bð1þwbÞ
ρ̄ð1þwÞ

þ 2H

−

"
1þ

γ̄2 ρ̄bð1þwbÞwb
ρ̄ð1þwÞw

1þ γ̄2 ρ̄bð1þwbÞ
ρ̄ð1þwÞ

#
wð3H þHbÞ

)
∂0δ ¼ 0: ð4:9Þ

We see that, as expected, the time dependence of the scale
factors introduces friction terms in the equation for δ,
without modifications to the effective sound speed. After
selecting a background evolution for H and Hb, one can
solve (4.9) using a WKB approximation. Generically,
the result will be oscillations with amplitude modulated
by a slow-varying function of the time. Hence, the main
effect of the assumptions on the brane-bulk coupling is
the effective sound speed and its associated sound
horizon.

V. DISCUSSION AND CONCLUSION

In this paper, we studied the first implications of the
coupling between brane and bulk fluids when the brane
moves in a compact direction. Due to the periodicity of the
extra spatial direction, certain bulk propagating signals will
undergo a time advancement that leads to a more prompt
information transmission when signals probe the bulk
rather than remaining parallel to the brane. This gives rise
to an effective superluminal propagation with respect to the
events on the brane.
We considered a system of bulk and brane-coupled

perfect fluids for effective superluminal propagation to
manifest in the brane. Similar to the Thomson interaction
between photons and baryons, we considered an energy-
momentum transfer flux proportional to the difference
between the brane and bulk velocity perturbations. In
the tight-coupling approximation, we manipulated the
continuity equation and the Euler equations of the pertur-
bations to find the effective sound speed for brane adiabatic
perturbations.
Since our calculations are valid for test fluids in fixed flat

and expanding backgrounds and we have not considered
metric perturbations in the equations, it is worth under-
standing in what regime they apply for brane-world cosmol-
ogy models. Metric fluctuations would appear as source
terms in Eq. (4.9), and the system would close after
considering the perturbed Einstein’s equations. Similar to
the study of the CMB photon-baryon fluid oscillations, the
high-frequency modes of the brane fluid correspond to
perturbations in scales smaller than the Hubble radius. For
those modes, the slowly varying, long-wavelength metric
fluctuations sourcing the equation for δ can be neglected,
and Eq. (4.9) is a good approximation for the physics of the
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oscillations. Hence, the resulting sound horizon before the
brane-bulk decoupling

reffs ¼
Z

dz
ceffðzÞ
HðzÞ ¼

Z
dz

cs
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b

c2s
R

1þ γ̄R

vuut ð5:1Þ

is robust against metric fluctuations. Whether or not this
sound horizon can be larger than in the ΛCDM model
depends on the factor in the square root. If the brane and bulk
fluids have radiation and dustlike equation of state, respec-
tively, then ceff < 1 because γ̄ > 1. This is also the case if
both fluids have a radiation equation of state. So, for these
situations, the tight-coupling approximation does not allow
for a “super-acoustic” propagation of perturbations. This
implies that a solution to the horizon problem along the same
lines as invarying speed of light1 [16–18], and tachyacoustic
cosmologies [19] seems only possible after going beyond
the tight-coupling approximation or for a bulk equation of
state satisfying wb > γ̄w. Remarkably, this can be satisfied
without violating the null energy condition for the brane and
bulk fluids. Deep in the radiation domination, for instance,
wewould needwb > γ̄=3 > 1=3, and the bulk fluid does not
even need to violate the strong energy condition.
There are some ways our analysis can be generalized.

Brane-world solutions of five-dimensional Einstein gravity
have been discussed previously [20–24] (see also [25] and
references therein), although in the interval S1=Z2 or with a

static brane, with no possibility of effective superluminal
brane propagation. We leave a complete study of how these
solutions aremodifiedwhen the compact direction is periodic
for future work. Moreover, it would be interesting to inves-
tigate more general energy-momentum transfer fluxes JN ,
including dissipation and entropy perturbations. On a more
speculative note, one could investigate whether the sound
horizon modification above can alleviate the Hubble tension.
A string theory embedding of the setup might require

generalizing the effective superluminal propagation to
brane motion in more general compact spaces. A potential
issue for a string description is the coupling of branes to
p-forms, which induces a charge cancellation condition in
the compact manifold [26]. Solving this Gauss constraint
with antibranes might spoil the return of bulk-propagating
signals to the brane since the signal might end in the
antibrane instead. However, one can use bulk fields, like
fluxes, to cancel the brane charge, and thus, the p-form
coupling is not an obstruction for a single (or stack) brane
motion. Understanding how the moving brane backreacts in
the bulk geometry is more challenging.
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