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Large blue tilted spectral index axionic isocurvature perturbations can be produced when the axion
sector is far out of equilibrium during inflation through an initial Peccei-Quinn (PQ) symmetry breaking
field displacement along a nearly flat direction in the effective potential. As a companion to a previous
work, we present analytic formulas for the blue isocurvature spectrum for the case of the kinetic energy
density of the PQ symmetry breaking field being larger than the quartic power of the final spontaneous PQ
symmetry breaking scale. It corresponds to a regime in which the nonlinearities of the classical potential
become important many times during the formation of the axion isocurvature quantum perturbations
leading to interesting resonant behavior. One consequence of this nonlinearity-driven resonance is the
chaotic nature of the map that links the underlying Lagrangian parameters to the isocurvature amplitudes.
We point out an accidental duality symmetry between the perturbation equations and the background field
equations that can be used to understand this. Finally, we present two types of analytic results. The first
relies on a computation utilizing an effective potential wherein fast timescale fluctuations have been
integrated out. The second is grounded in a functional ansatz, requiring only a limited set of fitting
parameters. Both analytic results should be useful for carrying out forecasts and fits to the data.
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I. INTRODUCTION

Axions offer a compelling solution to the strong CP
problem [1–5]. Due to their weak interactions with the
Standard Model (SM), axions can also potentially con-
stitute a substantial portion of the cosmological cold dark
matter (CDM) [6–13]. Given this dual significance of
axions in both particle physics and cosmology, numerous
experiments have been dedicated to their detection [14–28].
Reviews on direct detection can be found in sources such
as [29–35]. In situations where the axions are spectator
fields during inflation, a well-known cosmological observ-
able called CDM-photon isocurvature perturbations can
become detectable if the axions interact sufficiently weakly
and do not thermalize. The generation of isocurvature
perturbations by spectator axions, including its model-
specific characteristics and the related observational lim-
itations, have been extensively investigated in [36–72]. The
isocurvature spectrum studied in these cases is typically
flat, and comparisons with data leads to constraints in the
(H, Fa) parameter space [12] where H is the inflationary
Hubble scale and Fa is the axion decay constant in
equilibrium. For PQ symmetry breaking to complete before
or during inflation, these parameters typically need to
satisfy Fa > H. Phenomenologically, these isocurvature

constraints can be naturally relaxed by introducing blue-
tilted isocurvature fluctuations that can be highly sup-
pressed on large scales where most of the observational
constraints are most severe.
Interestingly, it has been shown that axionic sector out

of equilibrium dynamics during inflation can generate a
large blue spectral tilt to the quantum isocurvature pertur-
bations [73]. Notably, the work of [74] has highlighted
that a detectable isocurvature signal from a linear spectator
with spectral index ≳2.4 provides a nontrivial evidence of
dynamical degrees of freedom with time-dependent masses
during inflation. In a companion paper [75], we have
analytically and numerically computed the blue-tilted
isocurvature spectrum in the model of [73] in the under-
damped parametric region that produces background
classical field dynamics that are only mildly resonant with
the isocurvature quantum fluctuations. In this work, we
focus on analytically capturing the isocurvature perturba-
tions in strongly resonant situations in which the two
Peccei-Quinn (PQ) symmetry breaking background fields
cross each other many times while undergoing strongly
nonlinear classical oscillations.
During these crossings, the axion perturbation ampli-

tudes can become amplified through an effective negative
mass squared effects similar to the physics of [75]. In our
earlier study [75], we focused on cases involving a
maximum of one crossing after the transition where at
the moment of that one crossing, the dominant force in the
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system is the Hubble damping term (even when the
nonlinear forces driving the resonance are significant in
magnitude). In this current study, as we explore situations
with higher kinetic energy corresponding to quartic-
potential driven forces dominating over the damping force
during the crossings, we observe that the motion of the two
fields becomes chaotic when the nonlinear forces dominate
over the Hubble expansion rate driven damping force
and the harmonic linear forces. Qualitatively, the quartic
interaction within the blue axion system considered here
as well as in [75] can induce a chaotic behavior akin to
the chaos observed in classical so-called Yang-Mills-like
potentials [76–78]. Quantitatively, we observe that the field
trajectory can become chaotic when the average quartic
interaction energy at transition surpasses a certain thresh-
old, ≈OðαChÞðFa=HÞ4, where αCh is an Oð1Þ threshold
parameter that varies mildly with Fa=H.
This background field dynamics approximately deter-

mines the amplitude of the long wavelength quantum
fluctuations because of an accidental duality between the
linearized quantum mode equations and the nonlinear
background field equations. This means that for the rising
part of the isocurvature spectrum and the first few bumps
after the resonant transition occurs, the magnitude of the
isocurvature amplitude maps chaotically to the underlying
Lagrangian parameters. In addition to explaining the
dynamics in this strongly resonant situation, this paper
presents two sets of fitting models that can be used for
forecasts and data fits. One set is based on modeling the
dynamical axion mass through a set of approximately
square and exponential effective potentials that can be
derived after integrating out the high-frequency fluctua-
tions of the background fields. The other is a slightly
simpler fitting function designed to directly match the
shape and amplitude of the final isocurvature spectrum and
is checked by matching with explicitly solved numerical
examples.
The order of presentation is as follows. In Sec. II, we

provide a review of our axion toy model introduced by
Kasuya-Kawasaki in [73] and explore the dynamics of
the background fields for massive underdamped fields.
Moving to Sec. III, we expand upon the analysis of [75] by
considering massive fields that result in multiple zero
crossings of the background fields before the transition.
We present an analytic expression for estimating the
transition time Tc in these cases. Next in Sec. IV, we
examine the characteristics of the isocurvature power
spectrum in the blue-tilted region. We accomplish this
by analyzing the zero-mode (k ¼ 0) system and establish-
ing appropriate matching conditions (based on an acci-
dental duality of the mode equations) to reconcile the
values with those of finite k modes. This approach enables
us to investigate the shape and magnitude of the isocurva-
ture power spectrum in greater detail. We find that for
massive background fields with large OðF4

a=H4Þ nonlinear

interaction, the corresponding zero-mode amplitudes can
show chaotic structure. We end that section by demonstrat-
ing how the duality can be used to understand the chaotic
map between the Lagrangian parameters and the isocurva-
ture amplitudes. In Sec. V, we provide empirical fitting
functions of the zero-mode amplitudes for the nonchaotic
cases and a distribution function for the chaotic cases. In
Sec. VI, we revisit the mass model first presented in [75]
and expand it by applying it to several cases, fitting both the
blue-tilted and oscillating regions of the spectra. Inspired
by the results of the mass model, we present a simpler
seven-parameter sinusoidal fitting function in Sec. VII to
reduce the complexity of possible future fitting efforts. We
conclude in Sec. VIII.
We present some of the finer details of our work in the

following list of appendices. In Appendix A, we estimate
the nonadiabatic effects from zero crossings and quantify
their effects on the transition of the background fields. In
Appendix B, we give an approximate estimation of the
phase, θ, of the zero-mode solution I0. Appendix C
discusses the chaotic structure of the background fields.
We explore one of the subdominant mass parameter
dependence of the isocurvature power spectrum in
Appendix D. Finally, in Appendix E, we list the best-fit
model parameters for the examples discussed in Sec. VII.

II. MASSIVE UNDERDAMPED FIELDS

This paper is concerned with a scenario in which the
complex field sector containing axion is far out of equi-
librium. The key nonaxion field degrees of freedom that
determine the properties of the axion are ϕ� fields where
ϕþ is initially displaced far from the minimum of the
potential located near Fa which is the axion decay constant.
The nonequilibrium dynamics of ϕ� lead to a rich set of
isocurvature power spectra for the axion.
In a previous work [75], we presented analytic results for

axionic blue isocurvature power spectrum for the resonant
underdamped cases within a specific region of the para-
metric space. Here, “underdamped” refers to the situation
when the spectator field has a time-dependent effective
mass m such that m2=H2 > 9=4 for which the perturbation
mode behaves like an underdamped oscillator. Even though
m is time dependent because of its time-varying back-
ground field ϕ� dependence, it happens to be approxi-
mately constant for some initial time period (specified more
fully below). In [75], the analysis was strictly limited to
cases where the mass m is minimally greater than 3H=2
such that the background fields, ϕ�, cross each other close
to the first zero crossing of ϕþ and the kinetic energy at
the crossing is ≤ OðF4

a=H4Þ. One of the aims of this paper
is to explain the dynamics for the case when m2 ≫ H2

(initially), which will lead to multiple zero crossings.
In this section, we will first give a brief review of an

example axion model and then discuss background field
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dynamics for massive fields with multiple zero crossings
before transition.

A. A brief review of an example axion model

In [73], the authors pointed out that if a PQ charged SM
singlet moves along a flat direction lifted only by gravity-
mediated supersymmetry (SUSY) breaking masses of
OðHÞ, then the amplitude of the isocurvature fluctuations
can generically have a strong blue tilt.
Consider then the chiral superfields Φ�;0 from [73]

where the indices indicate the associated Uð1ÞPQ global
Peccei-Quinn charges. The resulting effective potential
obtained after summing up F term and Kaehler induced
contributions while looking along the flat direction
Φ0 ¼ 0 is

V ≈ h2jΦþΦ− − F2
aj2 þ cþH2jΦþj2 þ c−H2jΦ−j2; ð1Þ

where h is a coupling coefficient, c� are positive constants,
and H is the inflationary Hubble scale. The parameter cþ
dominantly controls the blue isocurvature spectral index,
nI − 1 ¼ 3 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − cþ

p
since Φþ is initially displaced

hierarchically larger thanΦ− and Fa along the flat direction
ΦþΦ− − F2

a ¼ 0. Soft SUSY-breaking mass terms (TeV
range) are neglected as they are assumed to be much
smaller than the inflationary Hubble scale H. This setup
(even generalized away from this SUSY example) implic-
itly assumes that the inflation sector can be arranged to
have H ≪ Fa and that the flat directions are only lifted by
the quadratic terms at renormalizable level.
During inflation, the Uð1ÞPQ is broken, and the Φþ field

rolls down along the flat direction from an initial large
displacement. The magnitude of the initial displacement
will eventually determine the k interval over which the
blue spectrum persists, and the maximum displacement of
the field is of OðMPÞ to have the effective field theory be
under control. Such large displacements can be generically
induced through supergravity induced effects from a UV
completion of the theory. The Nambu-Goldstone boson
associated with a linear combination of the phases of the
two fields is recognized as the axion. In particular, with the
parametrization

Φ� ≡ φ�ffiffiffi
2

p exp

�
i

a�ffiffiffi
2

p
φ�

�
; ð2Þ

where φ� and a� are real, and the axion is

a ¼ φþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p aþ −

φ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p a−; ð3Þ

while the heavier partner is ignored as it is not dynamically
important. Using the scalings defined as

ϕ� ≡Φ�
h
H

ð4Þ

F ¼ hFa=H ð5Þ

ξðϕþ;ϕ−Þ≡ ϕþϕ− − F2 ð6Þ

and

T ≡ tH; ð7Þ

the background equations of motion with the interaction
force ξϕ� can be written as

ϕ̈þðTÞ þ 3ϕ̇þðTÞ þ cþϕþ þ ξðϕþ;ϕ−Þϕ− ¼ 0; ð8Þ

ϕ̈−ðTÞ þ 3ϕ̇−ðTÞ þ c−ϕ− þ ξðϕþ;ϕ−Þϕþ ¼ 0; ð9Þ

for motions of Φ� where the background Φ� does not
change its phase. The associated mode equation for the
fluctuations I� ≡ δa�=2 (see [79] for details) is

ð∂2T þ 3∂TÞI þ
�
Kað0Þ
aðTÞ

�
2

I þ M̃2I ¼ 0; ð10Þ

where

K ≡ k
að0ÞH ð11Þ

is the scaled physical wave vector at the initial time of ϕþ
rolling defined as T ¼ 0, the vector I ¼ ðIþ; I−Þ contains
the quantum axion fluctuation information, and the mass
matrix is

M̃2ðTÞ≡
�
cþ F2

F2 c−

�
þ
�
ϕ2
−ðTÞ 0

0 ϕ2þðTÞ

�
: ð12Þ

Hence, at the Lagrangian level, the effective set of para-
meters governing the background, and linearized perturba-
tion dynamics is fcþ; c−; F≡ hFa=Hg. As will be detailed
in Sec II B, the initial condition of the background fields
will be restricted to a two parameter family ðϕþð0Þ; ϕ̇þð0ÞÞ
with the ϕ−ð0Þ and ϕ̇−ð0Þ fixed according to the con-
straint that the fields are sitting on the flat direction. The
boundary conditions for the mode functions will be Bunch-
Davies (BD).
The expression for the isocurvature fluctuations during

inflation can be written as

Δ2
sðt; k⃗Þ ≈ 4ω2

a
k3

2π2
I†
�
r2þ 0

0 r2−

�
I ð13Þ

for
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r� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
�ðtÞ

ðϕ2þðtÞ þ ϕ2
−ðtÞÞ2θ2þðtiÞ

s
; ð14Þ

where ωa is the ratio of axion energy density to the dark
matter fraction today, and θþðtiÞ is the initial axion angle.1

The quantity ωa is sensitive to the assumption of whether
or not the axion contained in I is the QCD axion. For
specificity, the reader can assume that this is the QCD axion
and refer to the formula of the misalignment scenario dark
matter fraction given in [79], although this paper is largely
insensitive to this assumption. Hence, as far as the CDM-
photon isocurvature is concerned, there is one more
parameter of ω2

a=θ2þðtiÞ. In summary, as far as the power
spectrum is concerned, what we will focus in on this paper
is a 3 (Lagrangian) þ2 (initial conditions) þ1 (initial
misalignment angle) parameter model.

B. Resonance and transition

In [75], we derived analytic expressions for the iso-
curvature power spectrum in the underdamped cases. These
cases occur when the mass-squared term cþH2 of the ϕþ
field slightly exceeds 9H2=4 and the kinetic energy of the
background fields ϕ� is within specific parametric bounds
when at their crossing. To analyze these scenarios, the
authors in [75] employed a combination of perturbative
and nonperturbative methods due to the deviation of the
fields from the flat direction described in Eq. (6), which
leads to nonadiabatic effects when the background fields
are approaching the potential minimum. This deviation is
caused by the ϕþ field tending to zero while the total
energy of the system is OðF4Þ. Consequently, there is a
significant increase in the kinetic energy during the field
crossing. In comparison to an overdamped scenario, the
authors in [75] discovered that this substantial kinetic
energy at the crossing leads to diverse spectral shapes with
multiple bumps. Moreover, the underdamped cases exam-
ined in [75] exhibited an amplification of the isocurvature
spectral amplitude by at leastOð30Þ relative to the massless
plateau.
More explicitly, consider the zeroth order perturbed

solution of Eqs. (8) and (9), which is valid in the limitffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ−=ϕþ

p
≪ 1, where we assume that ϕþ field rolls down

along the flat direction from an initial displacement much
greater than F [typically OðMP=HÞ]. Hence, we can
approximate ϕþ as

ϕþðTÞ ≈ ϕð0Þ
þ ðTÞ ¼ ϕþð0Þe−3

2
T secðφÞ cosðωT − φÞ; ð15Þ

where

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
; ð16Þ

tanφ≡ 3=2þ ϵ0
ω

; ð17Þ

and

ϵ0 ≡ ϕ̇þð0Þ
ϕþð0Þ

ð18Þ

describes the initial velocity. Note that underdamped cases
imply that cþ > 9=4. The matching order ϕ−ðTÞ solution is
given as

ϕ−ðTÞ ≈ ϕð0Þ
− ðTÞ ¼ F2

ϕð0Þ
þ

: ð19Þ

In [75], the analysis was carried out by defining a new
parameter

α≡ j∂Tϕð0Þ
þ ðTzÞj
F2

ð20Þ

¼ ω
ϕþð0Þ
F2

secφe−3=2Tz ; ð21Þ

which characterizes the kinetic energy of the underdamped
background fields close to a zero crossing. Here, Tz is the

zero of the ϕð0Þ
þ field defined by

ϕð0Þ
þ ðTzÞ ¼ 0: ð22Þ

As the ϕþ field approaches zero, it intersects with the ϕ−
field. The number of these crossings is uniquely determined
by the value of cþ through ω defined in Eq. (16). Figure 1
shows the rolling down of the background fields for a
fiducial value of cþ ¼ 4.533 that exhibits multiple zero

crossings of ϕð0Þ
þ occurring at times Tz ≈ 1.56; 3.63;

5.7; 7.79, and 9.87. The plot is obtained for an illustrative
fiducial set PA of parameters that we will often use
throughout this paper:

PA ≡ fF ¼ 20.2; c− ¼ 0.5; ϵ0 ¼ 0;ϕþð0Þ ¼ 0.1Mp=Hg:
ð23Þ

At each crossing, we can assess the influence of the ϕ− field
on ϕþ by evaluating the force ξϕ−. These forces can induce
displacements of ϕþ toward the “steep” direction of the
potential (perpendicular to the flat direction), where ξ is
significant. This in turn causes strong oscillatory behavior
of both ϕþ and the order unity coupled ϕ−. Thus, during
each crossing at a time Tcross when ϕþðTcrossÞ ¼ ϕ−ðTcrossÞ,
we can express the effective coupling force fþ on ϕþ as
follows:

fþðTcrossÞ ¼ −ξϕ−jTcross
; ð24Þ

1Without loss of significant generality in the current scenario,
we are assuming Φþ has all of the initial axion angle.
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whose magnitude measures the deviation of ϕþ from the
flat direction trajectory or the zeroth order solution given in
Eq. (15). This deviation is a sufficient condition for the
force in the steep direction to be significant. Hence, we
define resonant transition time Tc as the first Tcross that
satisfies the following two conditions:

fþjT¼Tc
≳Oð0.1Þjϕ̈þðTcÞj; ð25Þ

and

jϕ̇þðTcÞj≳ αLF2: ð26Þ

The first of the conditions ensure sufficient coupling force
from ϕ− such that ϕþ deviates significantly from the

unperturbed solution ϕð0Þ
þ , while the second condition here

is required for ϕþ to oscillate with an amplitude such that
the kinetic energy is sufficiently large, OðF4Þ. When the
above two conditions are satisfied, the two background
fields oscillate with a frequency of OðFÞ. We call this
situation “resonance.” In [75], we chose αL ≈ 0.2 as the
threshold for resonance. For the fiducial example presented
in Fig. 1, the transition occurs at Tc ≈ 9.5, which is close to
the fifth zero crossing, Tz;5 ¼ 9.87. Note that the force fþ
is directly proportional to the amplitude of ϕ−, and from
Eq. (19), we see that ϕ− becomes OðFÞ when ϕþ ∼OðFÞ.
Therefore, the transition typically occurs in the vicinity of a

zero crossing of ϕð0Þ
þ . The moment of transition serves as a

pivotal time in the coupled dynamics of the background
fields. It marks the point in time when the axion begins to
make a dynamical transition to a massless final state. From
an observational perspective, it defines the wave number,
kc, which corresponds to the location of the cutoff where

the isocurvature spectrum smoothly departs from a blue-
tilted power law.
Unlike the case presented in Fig. 1, the analysis and

findings described in [75] were focused on cþ values for
which the background fields ϕ� undergo a transition close

to the first zero crossing of the ϕð0Þ
þ field. Additionally, the

parameter α was constrained within approximate bounds
of [0.2, 1). However, for larger cþ values, the condition
specified in Eq. (25) may not be fulfilled at the first zero
crossing. In the next section, we will estimate the nth zero
crossing point, which is closest to the transition Tc and
hence satisfies the conditions outlined in Eqs. (25) and (26).
Then, by determining the value of α at this zero crossing,
we can effectively characterize the dynamics of the back-
ground fields after the transition.

III. ESTIMATION OF THE Tz CLOSEST TO Tc

As discussed above and illustrated in Fig. 1, in case
of underdamped scenarios, the background fields ϕ�
intersect each other near each zero crossing of ϕð0Þ

þ until
the transition occurs at time Tc. The zero crossings of the

zeroth order solution ϕð0Þ
þ in Eq. (15) are given by the

expression

Tz;j ¼
1

ω

��
j −

1

2

�
π þ φ

�
; ð27Þ

where j gives us the location of the jth zero crossing. Using
Eq. (20), we define the quantity αj at each Tz;j as

αj ¼ ω
ϕþð0Þ
F2

e−
3
2
Tz;j secðφÞ: ð28Þ

From Fig. 1, we observe that close to each Tz;j, the two
background fields cross each other at Tcross;j. The ampli-
tude of the fields at each Tcross;j is controlled by the
parameter αj. In Appendix A, we demonstrate that a higher
value of αj results in a greater incoming velocity of the ϕþ
field, resulting in a smaller crossing amplitude ϕ�ðTcross;jÞ.
Since the force fþ as defined in Eq. (24) is proportional to
the amplitudes of the two fields at the crossing, there exists
an upper limit on the value of αj for the transition to occur
while satisfying the condition described in Eq. (25). Thus,
for αj higher than the upper limit, the field amplitudes are
too small at the crossings, and correspondingly the force fþ
isn’t significant to cause the transition.
To estimate the value of Tz;j that is closest to the

transition, we consider the first condition stated in
Eq. (25) and perform an integration in a small neighbor-
hood around Tc. By integrating this condition, we deter-
mine the smallest value of j that satisfies the condition and
corresponds to the occurrence of the transition. Thus, we
obtain

FIG. 1. Plot highlighting the background field dynamics for
cþ ¼ 4.533where the ϕþ field undergoes multiple zero crossings
before transitioning at approximately Tc ≈ 9.4. The remaining
Lagrangian parameters are set at Fa=H ¼ 20.2, c− ¼ 0.5, ϵ0 ¼ 0

and ϕþð0Þ=H ¼ 3.32 × 108.
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Z
TcþδT1

Tc−δT2

dT
�
ϕþϕ2

− − F2ϕ−
�≳Oð0.1Þ

���ϕ̇þ
���TcþδT1

Tc−δT2

���: ð29Þ

Since the fields must cross before the zero crossing of ϕþ,
we choose the lower and upper boundaries as Tc − δT2 ¼
Ts and Tc þ δT1 ¼ Tz;j, where

Ts ¼ Tz;j − 2ϵj ð30Þ

for ϵj ¼ 1=ðF ffiffiffiffiffi
αj

p Þ. In [75], this choice of ϵj was defined to
be approximately when the deviation of the ϕ− from ϕð0Þ

− of
Eq. (19) is roughly 10%. Since we have F ≫ 1, the time
interval ϵj is far less than unity for values of αj ≫ 1, and
thus, we can expand ϕ� within the interval of integration as

ϕ−ðTÞ ≈ ϕð0Þ
− ðTsÞ þ ϕ̇ð0Þ

− ðTsÞðT − TsÞ; ð31Þ

ϕþðTÞ ≈ ϕð0Þ
þ ðTÞ ≈ αjF2

�
ðT − Tz;jÞ −

3

2
ðT − Tz;jÞ2

�
:

ð32Þ

In Appendix A of [75], it was shown explicitly that
neglecting higher order derivatives for the ϕ− field near
transition (T ∼ Tc −Oð2=FÞ) leads to a much better
approximation, and hence, we restrict ourselves to a
first-order expansion for ϕ−. Upon substitution into
Eq. (29), we getZ

Tz

Ts

�
ϕð0Þ
þ ϕ2

− − F2ϕ−
�
dt≳Oð0.1Þ

���ϕ̇ð0Þ
þ
���Tz;j

Ts

���; ð33Þ

F3
�
1944þ 1458F ffiffiffiffiffi

αj
p þ 384F2αj þ 35F3α3=2j

�
60

ffiffiffiffiffi
αj

p �
3þ F ffiffiffiffiffi

αj
p �

4

≳Oð0.1Þ6F ffiffiffiffiffi
αj

p
; ð34Þ

7F2

12αj
−

3F

5α3=2j

þO
�

1

Fα5=2j

�
≳Oð0.1Þ6F ffiffiffiffiffi

αj
p

; ð35Þ

which, when solved in the limit F ≫ 1, yields

αj ≲
�

7F
72 Oð0.1Þ

�2
3

: ð36Þ

We note that the upper limit in the right-hand side (RHS) of
Eq. (36) is sensitive to the choice of an Oð0.1Þ number. By
comparing with the numerical results, we choose a value of
0.07 and thus obtain

αj ≲ 1.244 × F
2
3 ð37Þ

as the upper limit on the value of αj for the transition to
occur close to the zero crossing at Tz;j. Hence, using

Eqs. (20), (25), and (36), we infer that the background
fields transition when

��ϕ̇ð0Þ
þ
��
Tz;j

¼ αjF2 ≲ F
2
3
þ2: ð38Þ

Equation (38) is isomorphic to Eq. (25). Since F ≫ 1, our
assumption that αj ≫ 1 above Eq. (32) is justified. For
instance, if F ¼ 20, we obtain the upper bound as α ≈ 9,
which also satisfies the second condition given in Eq. (26).
We will now estimate the smallest value of j that satisfies
the condition in Eq. (38) for a given cþ and initial
conditions. Defining the upper bound as αmax ¼ 1.244F

2
3

from Eq. (36) and jc as the jth index corresponding to the
zero crossing closest to transition Tc, we require that

αjc < αmax; ð39Þ

ω
ϕþð0Þ
F2

e−
3
2
Tz;jc secðφÞ < αmax; ð40Þ

Tz;jc >
−2
3

ln

�
αmaxF2

ωϕþð0Þ secðφÞ
�
; ð41Þ

1

ω

��
jc −

1

2

�
π þ φ

�
>

−2
3

ln

�
αmaxF2

ωϕþð0Þ secðφÞ
�
; ð42Þ

jc >
1

2
−
1

π

�
2ω

3
ln

�
αmaxF2

ωϕþð0Þ secðφÞ
�
þ φ

�
: ð43Þ

Therefore, the zero crossing Tz;jc closest to the transition Tc

is given by the expression

Tz;jc ¼
1

ω

��
Ceiling

�
1

2
−
1

π

�
φþ 2ω

3
ln

×

�
αmaxF2

ωϕþð0Þ secðφÞ
��	

−
1

2

�
π þ φ

�
; ð44Þ

which has a limiting behavior

lim
ω≫1

Tz;jc ≈
π

ω
Ceiling

�
−
2ω

π3
ln

�
αmaxF2

ωϕþð0Þ secðφÞ
�
−
1

2

	
:

ð45Þ

In Fig. 2, we plot Tz;jc with respect to ω using Eq. (44).
The corresponding value of the parameter α at Tz;jc is

αc ¼ ω
ϕþð0Þ
F2

e−
3
2
Tz;jc secðφÞ; ð46Þ

where we introduce the index c on α to distinguish it from
other nontransition αj values. Note that for the rest of our
discussion, αc refers to the value at Tz;jc close to transition
Tc. In Fig. 3, we show the value of αc as a function of ω
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where the individual discontinuous curves are bounded
from above by the upper bound αmax given in Eq. (36),
while the lower bound in each successive branch increases
with ω. The plot highlights distinct monotonic branches in
the ωðcþÞ − αc phase space. Within a branch, such as the
range cþ ∈ ½3.5; 4.21�, αc exhibits a monotonically increas-
ing behavior, reaching the maxima defined in Eq. (36),
before abruptly transitioning to the next branch.
This can be understood by recalling that, for the back-

ground fields to transition, the condition described in
Eq. (25) must be fulfilled. As α increases, the LHS in
Eq. (25) decreases while the RHS increases. Consequently,

for sufficiently large values of α, the left-hand side can
drop below the threshold required to meet the condition,
prompting the fields to transition at the next zero crossing
(succeeding branch). This occurs as they dissipate enough
total kinetic energy through Hubble friction, leading to a
reduction in the value of α.
Furthermore, we observe that for cases with larger values

of cþ, the value of α at transition is larger than Oð1Þ. This
will have intriguing implications when we study the
isocurvature power spectrum in Sec. IV for the cases where
the background fields tend to exhibit chaotic behavior.
To summarize the above analysis, as the parameter cþ

increases, the background fields undergo more frequent
oscillations with shorter time periods. Since the system
of background fields must lose sufficient energy before
transition, the number of zero crossings before transition
increases with cþ. Close to each zero crossing, the fields
momentarily cross each other. If the field velocity, char-
acterized by the parameter α is sufficiently small at a given
crossing Tcross;jc while still satisfying Eq. (25), then the two
fields are said to transition. This imposes an upper bound
on the value of α for the transition to occur.
In the above analysis, we have focused on the adiabatic

approximation, neglecting the nonadiabatic effects origi-
nating from all zero crossings (j < jc) prior to transition.
The analysis and examples considered in [75] had Tc close
to the first zero crossing (jc ¼ 1), and therefore, non-
adiabatic effects due to previous zero crossings Tz;j were
absent. These nonadiabatic oscillations can be understood
as rapid transient (homogeneous) oscillations of the ϕ−
field, generated at Tz;j, due to the quartic interaction term,
ðϕþϕ− − F2Þ2, in the reduced Lagrangian. Consequently,
the homogeneous component, ϕ− ≈ ϕ−;Tr, oscillates rap-
idly with an effective frequency controlled by ϕþ and
an amplitude approximately proportional to α−3=4j . In
Appendix A, we provide a detailed derivation of ϕ−;Tr.
However, if Tz;j is at least two e-folds time interval prior

to Tc, with the corresponding value of αj much larger than
unity, the nonadiabatic effects from previous zero crossings
corresponding to values of αj ≫ αmax do not induce
significant changes in the mode functions. This is because
the dynamical effects differing from that of a constant mass
decays as

ΔI�
I�

∼O

�
1

αj

�
∼O

�
e−

3
2
ðTc−Tz;jÞ�: ð47Þ

These α−1j effects are the nonperturbative resonant oscil-
lations that occur at each crossing of the background fields.
For cases where a previous zero crossing has occurred

within about two e-folds time interval of Tc (applicable to
cþ ≳ 5), the nonadiabatic effects from the zero crossing at
Tz;jc−1 can have a significant impact. The rapid oscillations
of ϕ−;Tr lead to an increase in the effective mass of the ϕþ

FIG. 2. Plot of Tz;jc with respect to ω providing an approximate
time at which the background fields transition for different values
of cþ. The curve is generated using Eq. (44) and exhibits
discontinuous curves corresponding to increasing integer values
of j ¼ jc starting with jc ¼ 1 for the first branch corresponding
to ω≲ 0.4. Once Tz;jc is known for given Lagrangian parameters,
an analytical estimate for the location of the transition Tc can be
made using Eq. (50). The above plot is obtained using the
standard fiducial set PA given in Eq. (23).

FIG. 3. Plot highlighting different monotonic branches in the
ωðcþÞ − αc phase space showing the cþ dependence of αc for
standard fiducial set PA defined in Eq. (23). Each of the branches
in the above figures corresponds to an increasing value of jc
where jc ¼ 1 for the first branch starting from cþ ¼ 9=4 and
similarly jc ¼ 4 for the branch where ω∈ ½1.11; 1.4� correspond-
ing to cþ ∈ ½3.5; 4.21�.
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field, resulting in a mass-squared function m2þ ≈ cþ þ ϕ2
−

of the ϕþ field that can exceed cþ for Tz;jc−1 < T < Tc. As
a consequence, the zero crossing Tz;jc corresponding to Tc

is modified and occurs slightly earlier than predicted by
Eq. (44) due to an increased frequency of ϕþ during the
time interval Tz;jc−1 < T < Tc.
In Appendix A. we analytically solve the equation of

motion (EoM) for the ϕþ field in the time region
Tz;jc−1 < T < Tc, taking into account the finite nonadia-
batic effects arising due to the UV oscillations of ϕ− field.
We derive a general expression for the deviation of the ϕþ
field from the zeroth order solution ϕð0Þ

þ . This modified
analytic solution for the ϕþ given in Eq. (A8) is useful in
predicting the location of the next zero crossing at Tz;jc .
Consequently, we can state that the next zero crossing at
Tz;jc occurs at

Tz;jc − Tz;jc−1 ¼
π

ω
− ΔTðAjc−1Þ; ð48Þ

where ΔTðAjc−1Þ is a function of the amplitude of ϕ−;Tr at
Tz;jc−1.

2 We can obtain an estimate for ΔT by solving the
transcendental equation corresponding to ϕþðTz;jcÞ ¼ 0

using the analytic solution of ϕþ given in Eq. (A8).
For resonant underdamped cases where αc ≳ αL ≈ 0.2,

the transition time Tc can be estimated using the expression

Tc ≈ Tz;jc −
0.7
Fαc

αc ≳ αL; ð49Þ

given in Sec. 4 of [75]. For a broad range of αc values
including nonresonant cases, we propose the following
fitting formula:

Tc ≈ Tz;jc −
�
−2.396þ 9.8047

1þ 1.112ðFαc=20.2Þ − 6.013ðFαc=20.2Þ0.5 þ 7.935ðFαc=20.2Þ0.25
�

αc ≳ 10−4; ð50Þ

where Tz;jc is obtained from Eq. (48). In Fig. 4, we plot
the transition time, Tc, as a function of ω for fiducial set
PA ≡ fF ¼ 20.2; c− ¼ 0.5; ϵ0 ¼ 0; ϕþð0Þ ¼ 0.1Mp=Hg.
We compare our analytic estimates obtained from the

expressions given in Eq. (50) with the numerical values
and find an accuracy ≳90%. We observe that the non-
adiabatic effects generated from the previous zero crossing
must be taken into account using the ΔT correction for
ω≳ 1.5 corresponding to cþ ≳ 4.5. Note that these cor-
rections are important when αc ≲ 1 since the corresponding
nonadiabatic effects from a previous zero crossing scale as
A2
jc−1 ∼Oðα−1=2jc−1F

3Þ, where

α−1=2jc−1 ≈
�
αce

3π
2ω

�−1=2 ∝ α−1=2c ; ð51Þ

where we remind the reader that αc ≡ αjc is the value of the
α parameter at the zero crossing Tz;jc .
In [75], the authors observed that the location of the first

bump in the isocurvature power spectrum is approximately
kfirst−bump ≈ 2Hað0Þ expðTcÞ. Since Tc ≈ Tz;jc þOð1=FÞ
for αc > αL, we find that for cþ ≫ 9=4,

Tc ≈ Tz;jc ∼O

�
2

3
ln

�
ϕþð0Þ
F8=3

��
: ð52Þ

Therefore, the location of the first bump or the cutoff scale
from a blue-tilted part of the spectrum to a flat plateau is
related to the hierarchy between the initial displacement of
the ϕþ field and the fPQ ≡ Fa scale. In order to hide the
isocurvature spectrum at large CMB scales, we require a
large hierarchy or displacement along the flat direction.
This is a generic requirement for the blue axion models
where the blue index is generated during the slow roll along

FIG. 4. Plot showing the transition time Tc as a function of ω
for the standard fiducial set PA ≡ fF ¼ 20.2; c− ¼ 0.5; ϵ0 ¼ 0;
ϕþð0Þ ¼ 0.1Mp=Hg. For comparison, we plot the values using
our analytical estimate from Eq. (50) with and without the ΔT
correction for Tz;jc as described in Eq. (48). We observe that our
analytical prediction including the ΔT correction matches with
the numerical values with an accuracy ≳90%. As noted in the
main text, the ΔT correction becomes significant for ω≳ 1.5,
which corresponds to time-interval π=ω≲ 2 e-folds between
the adjacent zero crossings, and hence, the nonadiabatic correc-
tions described in Appendix A cannot be neglected. We find that
these corrections are important when αc ≲ 1 since the corre-
sponding nonadiabatic effects from a previous zero crossing scale
as ≈e−π

ω α−1=2c . 2See Eq. (A3) for an expression of Ajc−1.
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a flat direction. Conversely, it is possible to move the cutoff
scale toward lower k values by choosing a larger F, while
keeping all other cosmological parameters such as the
number of inflationary e-folds Ninf , ϕþð0Þ, H, and reheat-
ing temperature TRH fixed. The estimation of Tc, given in
this section, allows us to predict the cutoff scale kc for the
high-blue isocurvature spectrum.
In the next section, we will discuss the isocurvature

power spectrum in the blue-tilted region for for the massive
cþ cases and present plots highlighting the αc dependence
of the final isocurvature amplitudes.

IV. ISOCURVATURE POWER SPECTRUM
IN THE BLUE REGION

For the axion model considered in this work, the
isocurvature power spectrum generated during inflation
is evaluated using the expression given in Eq. (13) by
solving the coupled differential system in Eq. (10) for the
associated mode fluctuations δa�=2≡ I�. Since we are
considering massive underdamped cases where cþ > 9=4,
the isocurvature power spectrum generically has a high-
blue spectral index Re½nI� ≈ 4. This blue-tilted region of the
power spectrum extends to all modes k < kc that exit the
horizon well before the transition of the background fields
ϕ� at time Tc, where the cutoff scale kc, is associated with
transition Tc, and marks the region in the spectrum where
the power spectrum begins to settle into a scale-invariant
massless plateau.
In [75], the authors uncovered that for specific cases

where the value of the parameter αc at transition is
≳Oð0.1Þ, there is a significant increase in the kinetic
energy during the field crossing. This substantial kinetic
energy at the transition leads to nonadiabatic effects during
the period when the background fields are approaching the
potential minimum that results in diverse spectral shapes
with multiple bumps/oscillations. Moreover, for the cases
covered in [75], the authors found that these resonant
nonadiabatic effects for the underdamped cases lead to an
amplification of at least Oð30Þ relative to the massless
plateau. In summary, the isocurvature power spectrum for
the massive underdamped fields consists of two regions: a
blue-titled spectrum for k≲ kc and a region with multiple
bumps for k > kc that eventually settles to a scale-invariant
massless plateau. The cutoff scale kc that separates these
two regions of the spectrum is a function of Tc.

A. Zero-mode I0
Because the superhorizon inhomogeneous modes I�ðkÞ

behave similarly as the background fields (as explained
below), the superhorizon modes in principle only need to
be solved until the horizon crossing and matched to the
background fields, similar to what happens to curvature
perturbation variables during the quasi-dS era. This sim-
plifies the computation if one has access to an accurate

computation of background field solutions. The inhomo-
geneous modes I�ðkÞ can be solved trivially for T < Tc for
the small k region analytically, which allows this matching
program to be efficient for the rising blue part of the power
spectrum characterized by a simple power law. The main
nontriviality is to argue that despite the nonadiabaticities of
the mass matrix that affects the mode equations for T > Tc,
we can compute the functional behavior of the power
spectrum (to a matching condition-dependent ra accuracy).
This will allow us to obtain an expression for the approxi-
mate k dependence of the power spectrum for long wave-
length modes. Furthermore, because of the accidental
duality that exists between the superhorizon modes and
the background fields, we will be able to semiquantatively
explain the chaotic map between the Lagrangian parame-
ters such as cþ and the isocurvature amplitude.
Let us begin with the mode function governed by

Eq. (10) for the axion model. After normalizing with the
BD adiabatic vacuum, the mode function for T < Tc when
ϕ2þ ≫ F2 is given as

lim
K expð−TÞ≫1

IðK; T ≪ TcÞ

≈ IðearlyÞðK; TÞ≡
�

e−T

2að0Þ
�

3=2
ffiffiffiffi
π

H

r
e−ω

π
2
þiπ

4Hð1Þ
iω ðKe−TÞ

�
1

0

	

þO

�
F2

ϕ2þðTÞ
��

0

1

	
; ð53Þ

where ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
, að0Þ is the scale factor at a chosen

initial time T0 ¼ 0, and the normalized wave vector K is
defined in Eq. (11). Note that the normalization here is
different from 1=

ffiffiffiffiffiffiffiffiffiffi
2ka2

p
by another factor of 1=

ffiffiffi
2

p
. Here,

we emphasize that the BD boundary condition is aligned
along the lightest normalized real eigenvector, e1, of the
mode mass matrix M̃2, which was defined in Eq. (12). In
terms of a parameter, λ ¼ F2=ϕ2þ, the lightest eigenvector
of M̃2 in the limit λ ≪ 1 can be given as

e1ðTÞ ¼
�
1

0

	
− λ

�
0

1

	
þOðλ2Þ; ð54Þ

while the heavier eigenvector, e2, is

e2ðTÞ ¼
�
0

1

	
þ λ

�
1

0

	
þOðλ2Þ: ð55Þ

Hence, Eq. (53) can be equivalently written as

IðearlyÞðK; T ≪ TcÞ ≈
�

e−T

2að0Þ
�

3=2
ffiffiffiffi
π

H

r
e−ω

π
2
þiπ

4H1
iω

× ðKe−TÞe1ðTÞ; ð56Þ
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which has a peculiar normalization in that in the K → ∞
limit, it has an extra power of 1=

ffiffiffi
2

p
coming from a choice

of axion normalization and a physically irrelevant extra
overall minus sign coming from a phase choice. We note
that Eq. (56) is an approximation that holds only when the
contribution from the heavier mode can be neglected. The
most general expression for IðK; TÞ valid at all times can be
written as

IðK; TÞ ¼ y1ðK; TÞe1ðTÞ þ y2ðK; TÞe2ðTÞ; ð57Þ

where y1;2 are the corresponding mode functions in the
instantaneous eigenstate basis. In [75], the authors dem-
onstrated that as the background fields approach transition
at Tc, substantial mode mixing occurs. Through their
analysis, they revealed that the heavy-mode mixing is
most significant when the hierarchy between the lightest
and the heaviest mass eigenvalues is minimal. As a result,
the expression in Eq. (56) is generically invalid as T → Tc.
However, when the background fields have settled to the
minima, the mode function asymptotes to

IðK; T∞Þ ≈ y1ðK; T∞Þe1ðT∞Þ; ð58Þ

where e1ðT∞Þ corresponds to the Goldstone mode of the
axionic system.
Let us now consider modes that exit the horizon at

T K < Tc, which is defined to be when

K2 exp ð−2T KÞ ¼ raðcþ − 2Þ; ð59Þ

where ra ∼ 0.1 represents the accuracy with which one
wants to estimate the amplitude. Because of Eq. (56), we
know

y1ðK;T KÞ ≈
�
e−T K

2að0Þ
�

3=2
ffiffiffiffi
π

H

r
e−ω

π
2
þiπ

4Hð1Þ
iω

�
Ke−T K

�
: ð60Þ

One can also check that y2ðK; T KÞ term is comparatively
negligible for T K < Tc. Now let us consider Eq. (10) with
k ¼ 0, which describes a mode a priori distinct from any
physical modes because k ¼ 0 is always outside of the
horizon:

ð∂2T þ 3∂TÞI0 þ M̃2I0 ¼ 0: ð61Þ

Note that the variable change

I0 → IðdualÞ0 ≡ ðf0ϕþ;−f0ϕ−Þ ð62Þ

maps the zero-mode system in Eq. (61) to the back-
ground field EoMs in Eqs. (8) and (9) for a nonvanishing
constant f0. This is a type of an accidental duality in which
the background equations become identical to the pertur-
bation equations even though the background equations are

nonlinear. Although I that we seek appearing in Eq. (57) is

fundamentally different from IðdualÞ0 since IðdualÞ0 is real up to
a time-independent phase, we know that one linear combi-

nation of I0 and I�0 can be made to equal IðdualÞ0 . This, in
particular, means that if ϕ� solutions exhibit exponential
sensitivity to parameters, then I0 will as well. Such
exponentially sensitive parametric dependence will be
presented later in this section.
We impose boundary conditions for Eq. (61) for the

zero-mode I0 at a time T0 ≪ Tc along the direction of the
lightest eigenvector e1, following a similar phase expres-
sion as shown in Eq. (56):

I0ðT0Þ ¼ e−ð3=2þiωÞT0e1 ð63Þ

∂TI0jT¼T0
¼ −ð3=2þ iωÞe−ð3=2þiωÞT0e1; ð64Þ

which is not the same as the BD condition since these
modes are already outside of the horizon. On the other

hand, unlike the dual IðdualÞ0 , which can be made real by
dividing by f0, the zero mode I0ðTÞ here is complex with a
time-dependent phase just like IðK; TÞ, which means that
I�0 will be an independent solution once I0 is known owing
to the real valued nature of the differential equation system.
At the horizon exit time T K < Tc, the zero mode near time
T K can be given by the expression

I0ðTÞ ≈ e−ð3=2þiωÞTe1ðTÞ near T ∼ T K; ð65Þ

because the heavier mode contribution can still be
neglected at that time. The k-dependent mode function
IðK; T KÞ can be written as

y1ðK; TÞe1ðTÞ ≈ c1ðKÞI0ðTÞ þ c2ðKÞI�0ðTÞ ð66Þ

for T ∼ T K. Note that we have conveniently avoided any
contribution from the heavier eigenmode e2 at T K by
ensuring that λðT KÞ ≪ 1. The coefficients c1;2ðKÞ are
obtained by using Eqs. (54), (60), (65), and (66). For
T > Tc > T K , the complete I0ðTÞ solution incorporates
all significant interactions arising from the mixing of
nontrivial heavier mode such that IðT ≥ T KÞ can be
evaluated as

IðK; T ≥ T KÞ ¼ c1ðKÞI0ðTÞ þ c2ðKÞI�0ðTÞ; ð67Þ

where we obtain the matched coefficients c1;2ðkÞ to be

c1ðkÞ ¼ ð1þ iÞ2−2−iω
�

1

að0Þ
�

3=2
�

k
að0ÞH

�
iω
exp ð−πω=2Þ

×

ffiffiffiffi
π

H

r ð1þ coth ½ωπ�Þ
Γð1þ iωÞ þOðraÞ; ð68Þ
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c2ðkÞ ¼ ð1 − iÞ2−2þiω

�
1

að0Þ
�

3=2
�

k
að0ÞH

�
−iω

× exp ð−πω=2Þ 1ffiffiffiffiffiffiffi
πH

p ΓðiωÞ þOðraÞ; ð69Þ

where k ¼ Kað0ÞH. Since we require that T K < Tc, the
above method is valid for k modes that satisfy

ln

�
k

að0ÞH ffiffiffiffiffiffiffiffiffiffi
racþ

p
	
< Tc: ð70Þ

Numerically we found an accuracy up to 90% for modes
K ≲ 0.35 expðTcÞ. Note that jc1;2j2 is independent of k
because iω is imaginary.
The axion isocurvature power spectrum in Eq. (13) can

be expressed in terms of the zero mode by expanding

I†
�
r2þ 0

0 r2−

�
I;

in terms of I0 evaluated at a time T ¼ T∞. At T∞, the
Goldstone theorem is satisfied, and the M̃2 mass-matrix
yields one massless and one massive eigenvalue where the
massless mode corresponds to the axion. Therefore, for the
normalized massless eigenvector ψ0 at the end (T → T∞):

M̃2ψ0 ¼ 0; ð71Þ

or more explicitly

ψ0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ þ c−
p

�− ffiffiffiffiffi
c−

p
ffiffiffiffiffiffi
cþ

p
�
: ð72Þ

Since as T → T∞, M̃2ψ0 → 0, we find

I0ðTÞ ≈
�
N eiθ þAe−3T

�
ψ0; ð73Þ

where A is a complex number, N and θ are real numbers
independent of k. In terms of ψ0,�
r2þ 0

0 r2−

�
T¼T∞

¼ C

�
c− þ cþ

c−
ψ0ψ

†
0 þ

ffiffiffiffiffiffi
cþ
c−

r
σx

	
ð74Þ

for a constantC that depends upon F, θþ, and c� and where
σx is a Pauli matrix. Using the above definitions, the
isocurvature power spectrum for k modes that satisfy
Eq. (70) is given as

Δ2
sðkÞ≈N 2

�
4
ω2
a

θ2þ

��
k3

2π2

�

×
ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p ðc2þ þ c2−Þjc1ðkÞeiθ þ c2ðkÞe−iθj2
ðcþ þ c−Þ3ðF2

a −
ffiffiffiffiffiffiffiffiffiffiffi
c−cþ

p
H2Þ ; ð75Þ

where the k-independent real coefficients N and θ cannot
be analytically computed in the present approach.
The power spectrum is directly proportional to the square

of the amplitude N of the scalar mode z. The c�1ðkÞc2ðkÞ
have only logarithmic k dependence, which makes this
solvable situation having an approximately k3 dependence
in the long wavelength limit as long as c1ðkÞeiθ þ
c2ðkÞe−iθ does not vanish. In that sense, the prediction
in this parametric region (k3 part of the spectrum with small
sinusoidal oscillations in log k) is not particularly interest-
ing in k dependence. However, the amplitude computation
is nontrivial, and that is what is captured by the intricate
numerical computation of jI0j. Through the factorization
of the zero mode in Eq. (73), the normalization of the
isocurvature power spectrum at late times as given by the
expression in Eq. (75) now depends upon the mode
amplitude N , while the dependence on the wave number
k is determined by the θ parameter. In Appendix B, we
show that θ can be approximated as −ωTc. Consequently,
we can conveniently eliminate θwhen evaluating the power
spectrum using Eq. (75).
In Fig. 5, we compare the isocurvature power spectrum

obtained from solving the k-dependent mode equations as
outlined in Eq. (10) (blue markers) with our approximation
given in Eq. (75) constructed from the zero-mode solution.
Through the plots, we highlight that the zero-mode solution
I0, along with the suitable matching conditions given in
Eqs. (69), can be used to construct the power spectrum for
long-wavelength modes K exp ð−TcÞ≲ 0.4 that exit the
horizon well before transition. By construction, the zero-
mode solution I0 incorporates all significant interactions
arising from the mixing of nontrivial heavier modes. To
evaluate the isocurvature power spectrum for long wave-
length K modes using Eq. (75), we solved the zero-mode
system in Eq. (61) and obtained the values of parametersN
and θ numerically. For the fiducial cases characterized by
cþ ¼ 2.3533 and 2.345 with Fa=H ¼ 20.2 and c− ¼ 0.5,
we find
(1) cþ ¼ 2.3533, αc ≈ 1.434

ðN ; θÞ≡ ð1.254 × 10−4;−2.93035Þ; ð76Þ

(2) cþ ¼ 2.345, αc ≈ 0.765:

ðN ; θÞ≡ ð2.0549 × 10−6;−2.92929Þ: ð77Þ

Numerically, the shape of the power spectrum is not very
sensitive to the exact value of the parameter θ since it enters
the expression in Eq. (75) as a phase shift of the sinusoid
function whose argument is logarithmic in k. To elucidate
this further, we compare the solid-red and dashed-black
curves as shown in Fig. 5, which are plotted, respectively,
using the numerical value of θ, and our approxima-
tion θ ¼ −ωTc.
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For the massive fields where ω > 0.75 or cþ > 2.8, one
can show that

jc1ðkÞj ≫ jc2ðkÞj; ð78Þ

and hence, the θ parameter is insignificant for these cases
and the power spectrum ∝ k3 with negligible sinusoidal
oscillations. Thus, for the massive underdamped fields, the
c1ðkÞ contribution can be approximated as

jc1ðkÞj2 ≈
�
1

a0

�
3 π

H
2−1

jΓð1þ iωÞj2 e
−πω ð79Þ

for ω≳ 0.75. Using the approximation

���� e−πω=2

Γð1þ iωÞ
����2 ≈ 1

2π

e2þ2ωtan−1ðωÞ−πωffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p ; ð80Þ

valid for ω > 1, we obtain the following expression for the
dimensionless isocurvature power spectrum:

Δ2
sðkÞ ≈N 2

ω2
a

θ2þ

1

2π2

�
k

a0H

�
3
ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p ðc2þ þ c2−Þ
ðcþ þ c−Þ3F2

×
e2þ2ωtan−1ðωÞ−πωffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2
p ; ð81Þ

valid for ω≳ 1. Using the approximation

e2þ2ωtan−1ðωÞ−πωffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p ≈
1

ω
ð82Þ

for ω ≫ 1 that is applicable for very massive underdamped
fields having the mass parameter cþ ≫ 9=4, the dimen-
sionless isocurvature power spectrum can be given as

Δ2
sðkÞ≈N 2

ω2
a

θ2þ

1

2π2

�
k

a0H

�
3
ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p ðc2þ þ c2−Þ
ðcþ þ c−Þ3F2

1ffiffiffiffiffiffi
cþ

p ð83Þ

FIG. 5. In the top row, we plot the ratio jm1=m2j of the lightest over heaviest mass eigenvalues of the mass-matrix M̃2 for two fiducial
cases with cþ values 2.3533 and 2.345, both at Fa=H ¼ 20.2 and c− ¼ 0.5. A substantial hierarchy between the lighter and heavier
eigenvalues renders the impact of the mode mixing and the contribution from the heavier mode e2 negligible. Examining the two plots in
the top row, we observe that the heavy mode mixing is most pronounced for cþ ¼ 2.3533 (left) compared to cþ ¼ 2.345 (right). In the
bottom row, we compare the isocurvature power spectrum obtained from solving the k-dependent mode equations as given in Eq. (10)
(solid markers) with our approximation (solid and dashed curves) given in Eq. (75) constructed from the numerical solution to the zero-
mode equation. The solid red (dashed black) curves are plotted using the numerical value of θ (approximation θ ¼ −ωTc). By
construction, the zero-mode solution incorporates all significant nontrivial interactions arising from the heavy mode mixing. Note that
the slope of the power spectrum in the k range shown above is ≈2.6, signaling the nontrivial correction from the sinusoid in log k.
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for ω ≫ 1. Furthermore, if c− ≪ cþ, the above expression
reduces to a compact expression:

lim
cþ≫9=4;c−≪cþ

Δ2
sðkÞθ2þ
ω2
a

≈N 2
1

2π2

�
k

a0H

�
3
ffiffiffiffiffi
c−

p
cþF2

: ð84Þ

Therefore, we conclude that the axion isocurvature power
spectrum is power-law suppressed (Δ2

s ∝
ffiffiffiffiffi
c−

p
c−1þ ) for

massive background fields.
This power law suppression with

ffiffiffiffiffi
c−

p
=cþ is interesting

for a couple of reasons. First, one might naively expect
the correlation function to exhibit exponential decay for
large mass values (a form of decoupling). However, in this
case, the exponential dependence cancels out in both the
numerator and denominator due to the definition of the
isocurvature perturbations. Secondly, the power law is
multiplying a coefficient N , which we will explain below
is almost stochastic whose distribution amplitude depends
on cþ. Hence, even though this wave function squared
leading to a

ffiffiffiffiffi
c−

p
=cþ suppression seems intuitive, it’s

important to note that the factor
ffiffiffiffiffi
c−

p
=cþ will be multi-

plying an effectively stochastic variable, and thus, the
amplitude dependence on the mass parameters in this
“decoupling” parametric region is nontrivial.
In Fig. 6, we plot the final zero-mode amplitude,

limT→∞ jI0j≡N , with respect to αc for different values
of F ¼ Fa=H. The data is obtained by numerically solving
Eqs. (8), (9), and (61) for a large set of cþ values using an
Runge-Kutta solver (RK-solver) to a high numerical
precision. From the plots, we observe that the amplitude
of the zero-mode initially exhibits a continuous increase
with respect to αc. However, as we explore in Appendix C,
for αc greater than a cutoff αCh (where Ch stands for
chaotic), the trajectory of the background fields ϕ�
becomes chaotic. Since the effective mass of the zero

mode is controlled by the dynamics of the background
fields through the mass-squared matrix M̃2ðϕ�Þ, the zero-
mode amplitude starts fluctuating chaotically.3 Con-
sequently, in this region, N can be seen as a stochastic
variable whose distribution depends on cþ or αc. In such
cases, the axionic fluctuation amplitudes have only a
distributional prediction from the underlying Lagrangian
parameters.
To understand the chaotic behavior, we note that the

EoMs for the background fields given in Eqs. (8) and (9)
represent a set of two quartically coupled oscillators. In the
absence of dissipative and linear-force terms, the effective
EoMs are described by a classical Yang-Mills-like potential
(V ¼ x2y2=2). It is well known in the literature [76–78] that
the classical Yang-Mills-like potential leads to chaotic
motion, except for a very small set of initial conditions,
due to a nonlinear mapping of the initial conditions through
the nonlinear interactions. In the presence of a dissipation
term such as Hubble friction, the background fields must
eventually settle to one of the local energy minima. Hence,
the presence of dissipative Hubble term tends to make
chaotic motion more orderly causing the system to con-
verge to one of the equilibrium states. If the interaction and
kinetic energy are considerable during the transition, we
expect a transient chaotic phase until dissipation brings the
system back to an ordered state.
Consequently, there is a critical threshold for the value of

kinetic energy controlling parameter αc below which chaos
does not set in. In Appendix. C, we show examples of ϕ�
field trajectories for a chaotic case in Fig. 17 and further
derive the condition for the onset of the transient chaotic
motion. We show that to minimize transient chaos, the fast
UV mode of the background fields, which is induced by ξ,
should be negligible at the moment when the two fields
cross each other.4 Assuming there are no crossings before
transition, we obtain the condition

hξ2iT1
< 2r2F4 ð85Þ

to avoid transient chaos at the first crossing T1 after
transition time Tc, where r ≈ 0.2 is an Oð0.1Þ number.
In case of multiple crossings prior to the transition, the
above condition must be applied to each crossing (includ-
ing transition) where the UV modes are significant. Hence,

FIG. 6. Plot showing the αc dependence of the zero-mode
amplitude, jI0j ¼ N , for three different values of F ¼ Fa=H with
the remaining Lagrangian parameters given by the PA set. The
data points are obtained by numerically solving Eqs. (8), (9),
and (61).

3We have verified numerically that the chaotic data points in
Fig. 6 exhibit a self-similar fractal structure.

4During each crossing, the nonlinear force f� ¼ ϕ2
�ϕ∓ acting

on the two fields becomes comparable. Consequently, the
presence of substantial UV components during these crossings
can trigger significant trajectory shifts orthogonal to the flat
direction (ξ ¼ 0), which can lead to instabilities. When consid-
ering scenarios where the fields cross for the first time at the
transition, the UV modes generated can induce transient chaos at
the next crossing. However, if there are multiple crossings prior to
the transition, those occurring within Oð1Þ e-folds before Tc can
also induce chaotic motion at Tc.
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in cases where the total energy during the crossings is large
≳OðF4Þ, we expect the fields to behave chaotically.
Due to the dependence of axion isocurvature fluctuation

mode functions I� on the background fields via the mass-
squared matrix M̃2, significant variations in the trajectories
of the background fields can lead to large changes in the
amplitude of the final isocurvature modes. In Fig. 7, we
present an example of the isocurvature spectrum obtained
for a fiducial chaotic case, where we see a large deviation in
the rising part of the spectrum and the first few bumps after
the cutoff due to a small subpercent deviation in the initial
condition value of Φþð0Þ. As highlighted in Fig. 7, the
exponential sensitivity of the field trajectory on initial
conditions can result in either a strong amplification or
significant attenuation of the mode amplitude. Large
amplification may occur when the background fields
follow a trajectory that results in additional dips in the
effective potential (leading to tachyonic masses),5 while
attenuation can be caused by mode mixing corrections
(large heavy mixing) or a slow roll of the background fields
along a flat direction, leading to an exponential decay of
the mode amplitude until the fields stabilize. We refer the
interested reader to [75] for further discussion on mode
attenuation through an m2

B parameter.
Another semiquantitative way to see that the transient

chaos of the background fields can lead to a chaotic
isocurvature amplitude comes from the duality discussed

earlier near Eq. (62). We know that there exists a time
independent Ξ1;2 ¼ Ξ1;2ðcþ; c−; F;ϕþð0Þ; ϵ0Þ such that

Ξ1I0 þ Ξ�
1I

�
0 þ Ξ2I02 þ Ξ�

2I
�
02 ¼

IðdualÞ0

f0
¼ ðϕþ;−ϕ−Þ; ð86Þ

where the right-hand side is real, and I02 are zero modes
independent of I0 defined earlier that spans the solution
space. When the right hand is a solution with different
boundary conditions [e.g. for example change ϕþð0Þ
without changing cþ], then the right-hand side picks out
a very different phase space trajectory because of the
chaotic nature (as evidenced by Fig. 7). Let’s call this

solution ϕð2Þ
� :

Ξð2Þ
1 Ið2Þ0 þ Ξð2Þ�

1 Ið2Þ�0 þ Ξð2Þ
2 Ið2Þ02 þ Ξð2Þ�

2 Ið2Þ�02 ¼ �ϕð2Þ
þ ;−ϕð2Þ

−
�
;

ð87Þ

where fΞð2Þ
n ; Ið2Þ0 ; Ið2Þ02 g constitute a new set analogous to

Eq. (86). Because I0 =∝ IðdualÞ0 satisfies a different differential
equation than ϕ� and different boundary conditions, the

new ϕð2Þ
� solution requires Ξð2Þ

n that is drastically different
than the original Ξn [exponentially sensitive to the change
in the initial conditions ϕ�ð0Þ] to functionally match the
different right-hand side phase space trajectory.6

Now, let’s see how this drastic change in Ξn changes the
coefficientN in Eq. (73), which characterize the amplitude
at T∞ as

I0ðT∞Þ ≈N eiθψ0; ð88Þ

after the background fields have settled to their minima.
Note that Eq. (88) only applies to situations in which the
zero-mode matching of the mode function at the horizon
exit can be identified with a single mode I0 without mixing
I02. In such situations, substituting Eq. (88) into Eq. (86)
evaluated at T∞, we see

N
�
Ξ1eiθ þ Ξ�

1e
−iθ
�
ψ0 þ Ξ2I02 þ Ξ�

2I
�
02

¼ �ϕþðT∞Þ;−ϕ−ðT∞Þ
�
; ð89Þ

where at T∞, the ϕ� goes to an attractor (i.e., the global
minimum) despite the different initial conditions. However,
as we have said above, since with different ϕ� initial

conditions Ξn now has changed drastically say to Ξð2Þ
n , the

other terms change (N → N ð2Þ, θ → θð2Þ) drastically to
match the attractor of the right-hand side; i.e.,

FIG. 7. Plot showing axionic isocurvature power spectra for
two fiducial chaotic cases with a 0.5% deviation in the values of
Φþð0Þ. Due to a large sensitivity of the field trajectories to the
initial conditions, the resulting power spectrum amplitudes in the
rising part of the spectrum and the initial few bumps can differ by
orders of magnitude as seen in this example. For very short
wavelength modes that exit the horizon when the field trajectories
have either settled or track similar points in phase space, the
power spectrum has similar amplitudes.

5We note from Fig. 6 that very large amplifications can break
perturbativity requirement of δS ≪ 1, which is required for
neglecting backreaction on the homogeneous components. Such
cases that violate linearization assumptions are not covered in this
work.

6Note that Ið2Þ0 and Ið2Þ02 can be very different from I0 and I02
because the mass matrix in the differential equation that governs
these basis modes have ϕ� dependences that have chaotically
different phase space trajectories.
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N ð2Þ


Ξð2Þ
1 eiθ

ð2Þ þΞð2Þ�
1 e−iθ

ð2Þ
�
þ


Ξð2Þ
2 Ið2Þ02 þΞð2Þ�

2 Ið2Þ�02

�
· ψ0

¼N
�
Ξ1eiθ þΞ�

1e
−iθ
�þ �Ξ2I02 þΞ�

2I
�
02

�
· ψ0; ð90Þ

where N → N ð2Þ change is chaotic with different initial
conditions for ϕ�. Although one may naively not expect the
parameter changes (such as cþ changes) have much to do
with the initial condition changes that translate to chaoti-
cally different phase space trajectories of ðϕþ;ϕ−Þ, small
cþ changes do map to different initial phase space points
for ðϕþ;ϕ−Þ through Eq. (15) when the nonlinear forces
[governed by ξϕ− of Eq. (24)] start to dominate say at time
T1 (with the linear force region initial conditions fixed).7

On the other hand, different K values do not control
ðϕþ;ϕ−Þ and will therefore not change their phase space
trajectory. That is why the Δ2

s has a K spectral dependence
that is still smooth (unlike the chaotic jumps in the overall
normalization N as a function of cþ) in the K region for
which T K < Tc. When T K is in the intermediate time
region defined to be when the ϕ� undergoes oscillations,
the isocurvature amplitude oscillations as a function of K
can be complicated since the matching condition analogous
to Eq. (66) but with a strongly oscillating function of time
on the left-hand side produces an oscillatory cnðKÞ. That
translates to different matching time T K sampling the
oscillations as a function of time and not strongly divergent
phase space trajectories (chaos) due to effectively different
initial conditions. In Secs. VI and VII, we will present
general fitting formulas for Δ2

sðKÞ that can be used for
practical fitting situations that would be sensitive to the first
three bumps. In other words, the chaotic behavior of the
map between the Lagrangian parameters and the amplitude
does not present an obstacle for fitting Δ2

s characteristic of
this class of models as a function of K.
Of course, if the K value is sufficiently large that

T K ≫ Tc, Eq. (66) is irrelevant, and the amplitude is fixed
by the usual massless mode nearly exact solution in quasi-
dS space:

I ≈ −
iH

2k3=2
ψ0 ¼ N

�
c1ðKÞeiθ þ c2ðKÞe−iθ

�
ψ0; ð91Þ

which enters directly into Eq. (75). Even if ðN ; θÞ changes
drastically say with cþ variation [discussed in Eq. (90)],
c1;2ðKÞ also changes drastically to compensate for the
ðN ; θÞ variation. There is no such compensating matching
condition for cnðKÞ for smallerKs, as can be seen explicitly

in Eq. (69) as they are fixed by a different function than the
final nearly exact solution.
In the next section, we provide analytic fitting functions

for the zero-mode amplitude N as a function of αc, F, and
c− for the nonchaotic cases where αc < αCh. For cþ values
where the background fields are chaotic, a closed-form
analytic expression for the zero-mode function may not
be feasible. For these cases, we propose a numerically
motivated stochastic amplitude model with a log-normal
distribution. Using the estimated value ofN from these fits,
one can approximate the amplitude of the axion isocurva-
ture power spectrum from Eq. (75) for long-wavelength
modes that exit the horizon prior to the transition of the
background fields.

V. FITTING FUNCTIONS FOR ZERO-MODE
AMPLITUDE

In Eq. (64), we provided the initial conditions for the zero-
mode, I0, at time T0 ≪ Tc. Furthermore, in Sec. (IVA), we
noted that when ϕþ ≫ F, the lightest mass eigenvalue is
m1 ≈ cþ, and during the time T < Tc when the expansion
parameter λ ¼ F2=ϕ2þ < 1, the zero-mode solution can be
approximated as

I0ðTÞ ≈ e−ð3=2þiωÞT
�
1

−λ

	
: ð92Þ

The amplitude of I0 during this time can be expressed as

jI0ðTÞj ≈ e−
3
2
T: ð93Þ

As the background fields approach transition at Tc, we
expect nonadiabatic behavior and heavy mode mixing due
to a large interaction energy ∼Oðξ2Þ ∼OðF4Þ ≫ OðH2F2Þ.
Hence, we define an amplification factor Z as

N ¼ e−
3
2
TcZ; ð94Þ

which captures the nontrivial amplification or attenuation
of the zero mode after the transition. In the succeeding
subsections, we will provide an analytic fitting function and
a distribution function for Z in the nonchaotic and chaotic
cases, respectively.

A. Nonchaotic: αc < αCh

For the nonchaotic cases where αc < αCh, the zero-mode
amplitude increases monotonically with αc. From Fig. 6,
we notice that the slope of the zero-mode amplitude in this
parametric region changes at an intermediate value of
αc ≈ α2. As we have verified numerically and briefly
explained in [75], the change of slope corresponds to
situations where large kinetic energy causes the back-
ground fields to cross at least once after the transition.
Hence, for cþ values where αc < α2, the background fields

7Small changes in cþ, unlike the direct changes in the initial
conditions of ϕþ, do change the boundary conditions of I0
through Eqs. (63) and (64), but the way the effective boundary
conditions change in entering the chaotic dynamical time period
is not matched, and therefore, the large change in Ξn is still
expected.
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do not cross each other again after transition in the limit
c− < Oð1Þ.8 At each crossing of the background fields,
the system has a brief period of tachyonic mass dip in the
effective mass of the lightest eigenmode. As a result, the
mode function undergoes a brief period of amplification
whenever the two background fields cross each other with a
large relative kinetic energy. See Sec. VI in [75] for more
details. Hence, for all cþ values where the background
fields cross again after transition, we expect additional
amplification of the mode function. This explains the
change in the slope of the zero mode at α2.
Using a large set of numerical evaluations, we provide

the following fitting functions for the zero-mode amplitude
for nonchaotic cases for Lagrangian parameters F and c− in
the range, F≡ Fa=H∈ ½10; 400� and c− ∈ ½0.1; 9=4�:

Z ≈ f−ðc−Þ ×
�
c0 þ c1

ffiffiffiffiffi
αc

p
α1 < αc < α2

8.0þ c2ðαc − αChÞ α2 < αc < αCh;

ð95Þ

where the prefactor f− gives an approximate dependence of
the zero-mode amplitude on c−,

f−ðc−Þ ≈ 0.26c0.5− þ 0.66c−0.29− 0.1 < c− < 9=4: ð96Þ

For values of c− that lie outside the range ½0.1; 9=4�, we
observe a multifunctional dependence of the mode ampli-
tude on F and c� as summarized in Table I. We briefly
discuss these cases in Appendix D. The fitting parameters
are approximated using the following expressions:

c0 ¼ 2.99703 − 2.419

�
20.2
F

�
þ 2.5927

�
20.2
F

�
2

− 1.2713

�
20.2
F

�
3

; ð97Þ

c1 ¼ 0.07975þ 3.193

�
20.2
F

�
− 4.2829

�
20.2
F

�
2

þ 2.2462

�
20.2
F

�
3

; ð98Þ

c2 ¼
9.127

0.181þ ð20.2=FÞ ; ð99Þ

and

αCh ¼ 1.0185

�
20.2
F

�
0.194

þ 0.4065

�
20.2
F

�
1.26

: ð100Þ

We set α2 as approximately

α2 ¼ αCh −
5.0
c2

; ð101Þ

and

α1 ≈ 10−3: ð102Þ

In Eq. (95), the specific form of Z for αc < α2 is motivated
from Eq. (239) of [75] where the authors derived analytic
expressions for the mode amplitude in this parametric
region. The lower cutoff is set at α1 ≪ αL ≈ 0.2 where αc
greater (lesser) than αL corresponds to resonant (nonreso-
nant) underdamped fields. In Fig. 8, we compare our fitting
function with the numerical results where we construct our
fitting curves (solid lines) using Eq. (94) by taking the
fitting function for Z from Eq. (95) and the analytical
estimation of Tc as given in Eq. (50). Over the range
αL < αc < αCh, the amplitude of zero mode varies by
∼Oð10Þ, which implies an Oð100Þ variation in the ampli-
tude of the isocurvature power spectrum.
In Fig. 6, the cþ values are restricted within the first

branch (jc ¼ 1). As we increase cþ, the parameter αc
makes a jump to the next branch ðjc ¼ 2Þ and successive
branches (See Fig. 3). In each branch, cþ values that
correspond to α≲ αCh belong to nonchaotic class of fields.
Figure 9 gives a plot of N for the first three branches
(jc ≤ 3) for F ¼ 20.2 and shows the transition of mode
amplitude within each branch from a smooth predictive
behavior to random fluctuations due to chaotic background
field dynamics.

FIG. 8. In this figure, we compare our fitting results with the
numerical data for the zero-mode amplitude N as a function of
αc, for three different values of F ¼ Fa=H. The numerical data,
plotted in solid markers, is the same as in Fig. 6, and we construct
our fitting curve using Eq. (94) where we take the fitting function
for Z from Eq. (95) and the analytical estimation of Tc
from Eq. (50).

8A value of c− > Oð9=4Þ can lead to the crossing of the
background fields after transition. However, we limit the defi-
nition of α2 solely based on αc, which is fairly independent of c−
for values of c− ≪ F2.
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B. Noise model: αc > αCh

From Fig. 6, we infer that a closed form prediction of the
final mode amplitude as a function of αc is not feasible,
unlike the fitting functions presented in Sec. VA. For the
fiducial case with F ¼ 20.2, the estimated cutoff αCh ≈ 1.4
as given by Eq. (100). In Fig. 3, we have plotted the
expected value of αc against ω for F ¼ 20.2. Based on
that figure, we can conclude that for F ¼ 20.2, values of
cþ ≳ 8.5 will transition with αc ≳ αCh. In the limit,
F ≳Oð100Þ, we estimate that massive underdamped fields
with cþ > Oð5Þ do not have a stable predictive solution
due to the chaotic behavior of the background fields. This
represents a loss of predictability of the axionic model for
massive fields. On the other hand, for any αc > αCh, there
generically exists the phenomenological possibility of large
amplitude enhancement without fine-tuning of αc.
To complete our analysis of the massive axionic under-

damped fields, we show in Fig. 10 that the histogram
of logðZÞ, for cases with αc > αCh, resembles a normal
distribution. Therefore, we propose that for αc > αCh, the
numerical data for Z can be approximated by a log-normal
distribution given by the expression:

pdfðlogðZÞÞ ¼ Nðμ; σÞ; ð103Þ

where the normal distribution Nðμ; σÞ has mean μ and
variance σ2. As seen in Fig. 6, the numerical data points in
the chaotic region appear to be centered around a mean
value. Using the log-normal distribution function, we
estimate this mean amplification as

hZi ≈ eμþσ2

2 ; ð104Þ

which would approximately correspond to the mode
amplification from an average trajectory following the
transition for the chaotic background fields. By fitting
the numerical data, we find that the mean μ and variance σ2

have the following approximate F dependencies:

μðFÞ ≈ 1.01þ 0.25

�
F
20

�
; ð105Þ

σðFÞ ≈ 1.25þ 0.12

�
F
20

�
: ð106Þ

FIG. 9. In the plot on the left, we compare the zero-mode amplitude N obtained from the fitting formula in Eq. (95) (red square
marker) with the numerical data (blue circular marker) for the first three branches highlighting the distinction between the nonchaotic
and chaotic classes of fields based on the value of αc as cþ is varied from one branch to another. In each branch, we first estimate αc and
Tc for the corresponding values of cþ from the expressions given in Sec. III and use the fitting function in Eq. (95) to obtain an
approximation for the zero-mode amplitude in the nonchaotic region. For values of cþ where αc lies outside the fitting range of Eq. (95),
the prediction is very sensitive to the values of cþ such that only an approximate band of prediction can be realistically given. The
mismatch between the fitting formula and the numerical results near the bottom of the troughs in the left plot occurs for nonresonant
underdamped cases due to the smallness of the αc value such that the separation between Tz;jc and Tc is large (∼Oð1Þ). On the right, we
plot αc as a function of cþ for the first three branches shown on the left. The dashed lines in this plot represents the lower and upper
cutoffs at αL and αCh, respectively.

FIG. 10. Histogram of the logðZÞ over the noisy region for the
fiducial choice of F ¼ 20.2 compared with an approximate
normal distribution (solid blue curve).
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Through the distribution function presented in this
subsection and using the expression for the isocurvature
power spectra for modes k < kc as outlined in Eq. (75), one
can, at best, offer an approximate estimation for the average
power within the blue region of the axion isocurvature
spectrum. This applies specifically to massive under-
damped fields that exhibit chaotic behavior owing to
significant nonadiabaticity during their transition. This
analysis is complementary to the fitting functions provided
in Sec. VA for the nonchaotic dynamical system of
background fields. However, these fits are limited to the
blue-tilted region of the isocurvature power spectrum and
restricted to modes satisfying Eq. (70).
We do not have a simple, smooth prediction for the

small-scale modes that lie within the oscillating part of the
spectrum. This region of the power spectrum has a complex
dependence on the underlying dynamical eigen-masses of
the system of fields and, as we shall see in the next section,
consists of a series of bumps (oscillations) with varying
amplitudes. It was shown in [75] that even the simplest
cases require various analytical tools, and the situation is
compounded by the chaotic nature of the background fields
implying that any fairly approximate estimation of the
height of these bumps would require a complete numerical
analysis of the mode equations as in Eq. (10).
In [75], the authors presented an empirical piecewise

mass model motivated from a large set of analytical cal-
culations including UV integration, nonlinear field redefi-
nitions, and other techniques to approximate the shape
and amplitude of the isocurvature power spectrum in the
oscillating region. They found that for most nonchaotic
cases, a generic nonminimal model with two negative
square wells can be used to approximately map the power
spectrum with variable bump heights in the small-scale
region. In the next section, we will review the mass model
of [75] and apply it to a few sample cases.

VI. EMPIRICAL MASS MODEL

The mass model presented in [75] can be generalized
into a Lagrangian independent numerical model. A
Lagrangian-free model benefits from the variability and
freedom of choice for the values of different parameters that
can give rise to unique spectral shapes and amplitudes
regardless of an underlying known or unknown action. The
model will also allow us to fit isocurvature power spectra
for cases that were beyond the scope of analytical methods
presented in [75]. This is likely to be useful for fitting data
and discovering isocurvature signatures. We begin by first
introducing the mass model and then use it to fit numeri-
cally obtained isocurvature power spectrum for the QCD
axion toy model presented in Sec. II A.
Consider the following second-order linear differential

equation for a scalar perturbation yðK; TÞ in an expanding
FRW spacetime:

ÿðK; TÞ þ 3ẏðK; TÞ þ ðK2e−2T þm2ðTÞÞyðK; TÞ ¼ 0;

ð107Þ
where m2ðTÞ encapsulates information regarding the form
of the potential (mass and interactions) of the effective
Lagrangian. Next, we define an effective mode-dependent
mass-squared term

m2
effðK; TÞ≡ K2e−2T þm2ðTÞ; ð108Þ

such that the differential equation takes the form

ÿðK; TÞ þ 3ẏðK; TÞ þm2
effðK; TÞyðK; TÞ ¼ 0; ð109Þ

and has the general solution

yðK; TÞ ¼ c1ψ1ðK; TÞ þ c2ψ2ðK; TÞ: ð110Þ

To determine ψ1;2 and solve the system of differential
equations, we model m2

eff through a piecewise discontinu-
ous mass model using the set of parameters

Pset ¼fV0;V1;V2;T1;T2;CmgþfVi;Ti;Δig3≤i≤N: ð111Þ

Thus, in each K-dependent time region RðjÞ, the mass-
model m2

effðjÞ takes the form

m2
effðjÞðK; TÞ≡ AðjÞðKÞe−nðjÞT þ cðjÞ T ∈RðjÞðKÞ;

ð112Þ

where AðjÞðKÞ and cðjÞ are functions of the parameters in
Eq. (111), and nðjÞ will take on a value from the set
f3; 5=2; 2g depending on the region RðjÞ.The mass model is
based on the assumption that it is sufficient to follow the
smooth (IR) behavior of the effective mass. Consequently,
it incorporates a positive exponentially decaying term
[derived from integrating out fast OðFÞ UV oscillations
of the lightest eigen-mass with a Hubble-driven decaying
envelope] and a negative tachyonic mass dip (associated
with transient nonadiabatic effects) within each subregion.
In terms of the effective mass-squared m2

effðjÞðK; TÞ in
Eq. (112), the linearly independent solutions to the equa-
tion of motion presented in Eq. (109) in each region take
the form

ψ1;2ðjÞðK;TÞ ¼ e−
3
2
TJ

�
ffiffiffiffiffiffiffiffiffi
9−4cðjÞ

p
nðjÞ

�
2

nðjÞ
AðjÞðKÞe−

nðjÞ
2
T

�
; ð113Þ

where Jν is the cylindrical Bessel function. Thus, starting
from yðK; T0Þ, the final mode amplitude yðK; T∞Þ is
obtained by evaluating appropriate scattering matrices
SðK;RðjÞÞ in each piecewise region RðjÞ using the linearly
independent functions given in Eq. (113) and the derived
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parameters AðjÞðKÞ, nðjÞ, and cðjÞ that specify the m2
effðjÞ in

each region.

A. Mass-model implementation

Using the parameter set Pset presented in Eq. (111), we
will now define the mass model to fit the blue axion

isocurvature power spectrum for the axion toy model
presented in [75]. The motivation for the mass model
and its parametrization in terms of the Lagrangian variables
were covered previously in [75]. We define the model
m2

effðjÞ as

m2
effðjÞ − K2e−2T ¼

8><
>:

V0 0 ≤ T ≤ T1

−V1 T1 ≤ T ≤ T2

V2e−3ðT−T2Þ þPN
i¼3 ð−ViÞsqwðT; Ti;ΔiÞ T2 ≤ T < T∞;

ð114Þ

where

sqwðT; Ti;ΔiÞ ¼
�
1 Ti ≤ T ≤ Ti þ Δi

0 otherwise;
ð115Þ

and we set T0 ¼ 0.9 Similarly we choose T∞ long after the
background fields have settled to their minima. The initial
parameter V0 models the mass-squared term induced for
the lighter mass eigenmode (that tracks axion) as the ϕþ
field is rolling down along the flat direction and ϕ− ≪ ϕþ.
Negative mass-squared terms (dips) like V1 and Vi are due
to the nonadiabatic effects induced during the crossing
of the two fields, where the nonadiabaticity is controlled
by the relative velocity of the fields as they cross. The
exponential term V2 signifies a positive (stabilizing) mass-
squared term induced due to the high frequency OðFÞ
resonant oscillations of the two fields along the steeper
direction in the overall potential.
Except for the exponentially decaying V2 term, all of the

remaining Vi parameters act as cðjÞ within our model, and
they define a constant mass-squared term where it is either
stabilizing (positive) or tachyonic (negative). For the region
½T2; T∞�, we can write the effective mass-squared term as

m2
effðjÞðK;TÞ− cðjÞ ¼ K2e−2T þV2e−3ðT−T2Þ T∈ ½T2; T∞�:

ð116Þ

Thus, the effective mass squared is a sum of exponentials
with different decay constants and amplitudes. However,
by construction, we require that the value of decay constant
nðjÞ within each piecewise region RðjÞ be constant. There-
fore, to specify a single decay constant nðjÞ and an
amplitude AðjÞðKÞ, we perform our evaluations by dividing
the region ½T2; T∞� into two more regions ½T2; TK�

and ½TK; T∞� such that m2
effðjÞðK; TÞ in Eq. (116) is now

given by

m2
effðjÞðK;TÞ− cðjÞ ≡

�
B1ðKÞe−3T T2 ≤ T ≤ TK

B2ðKÞe−2T TK ≤ T < T∞;
ð117Þ

where TK and B1;2 are k-dependent boundary and ampli-
tudes, respectively. These are not model parameters and are
only required for internal calculations. We define TK as the
time when

�
K2e−2T − V2e−3ðT−T2Þ�

T¼TK
¼ 0; ð118Þ

therefore

TK ¼ T2 þ ln

�
V2

K2e−2T2

�
: ð119Þ

With the above definitions, we now give the amplitudes
B1;2ðKÞ in each region as

B1ðKÞ ¼
R TK
T2

dTðK2e−2T þ V2e−3ðT−T2ÞÞR TK
T2

dTe−3T

¼
�
V2e3T2 þ 3

2
K2

�
eT2 þ eTK

1þ 2 cosh ðTK − T2Þ
��

;

ð120Þ

and

B2ðKÞ ¼
R T∞
TK

dTðK2e−2T þ V2e−3ðT−T2ÞÞR T∞
TK

dTe−2T

¼
�
K2 þ 2

3
Ve3T2

�
1þ 2 cosh ðTK − T∞Þ

eT∞ þ eTK

��
:

ð121Þ

For long wavelengths, K can be small enough such that
TK is very large. Let us then consider a long wavelength

9For a more generic model that can be fitted to a larger class of
perturbative systems, we can replace the exponentially decaying
potential with V2e−dðT−T2Þ where d∈R.
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mode, such that an additional −V3 dip lies within the first
section ½T2; TK�. In this case, we can divide the region
½T2; TK� into three subregions as follows:

½T2; TK� ¼ ½T2; T3� ∪ ½T3; T3 þ Δ3� ∪ ½T3 þ Δ3; TK�;
ð122Þ

while the last region ½TK; T∞� remains unchanged.
Similarly, for a sufficiently large K mode (short wave-
length) if the dip −V3 lies within the region ½TK; T∞�, we
obtain three new subregions

½TK; T∞� ¼ ½TK; T3� ∪ ½T3; T3 þ Δ3� ∪ ½T3 þ Δ3; T∞�:
ð123Þ

B. Scattering matrices

After all the regions/subregions have been determined,
we evaluate the scattering matrices in each region RðjÞ using
the linearly independent functions ψ1;2ðjÞ from Eq. (113)
and the derived parameters AðjÞðKÞ, nðjÞ, and cðjÞ. Since
m2

effðjÞ has the same form in each region given by Eq. (112),
the scattering matrix that we will provide below is generic
and applicable in all regions.
For a set of N piecewise regions Rðf1;…;NgÞ, the final

mode amplitude is given by the expression

YðK; TNÞ ¼
YN
j¼1

SðK;RðjÞÞYðK; T0Þ; ð124Þ

where

YðK; TÞ ¼
�

yðK; TÞ
∂TyðK; TÞ

	
ð125Þ

for mode function yðK; TÞ.
The scattering-propagator matrix SðK;RðjÞÞ≡

SðK; TUðjÞ; TLðjÞÞ for a region RðjÞ ¼ ½TLðjÞ; TUðjÞ�, where
the indices U, L indicate upper and lower bounds for the
region, is

SðK; TUðjÞ; TLðjÞÞ ¼
�
ψ1ðjÞ ψ2ðjÞ
ψ̇1ðjÞ ψ̇2ðjÞ

	
T¼TUðjÞ

×

�
ψ1ðjÞ ψ2ðjÞ
ψ̇1ðjÞ ψ̇2ðjÞ

	
−1

T¼TLðjÞ
; ð126Þ

¼ ΨðjÞðTUðjÞÞΨ−1
ðjÞðTLðjÞÞ; ð127Þ

where Ψ−1
ðjÞ represents an inverse operation on matrix ΨðjÞ,

and the two square matrices on the RHS are evaluated at
TLðjÞ and TUðjÞ, respectively. Using Eq. (113), the matrix
ΨðjÞ in the RHS of Eq. (126) is explicitly given as

ΨðjÞðTÞ ¼
�
ψ1ðjÞ ψ2ðjÞ
ψ̇1ðjÞ ψ̇2ðjÞ

	
T
≡ e−

3
2
T

�
JrðzÞ J−rðzÞ

ð−3=2JrðzÞ þ ∂TJrðzÞÞ ð−3=2J−rðzÞ þ ∂TJ−rðzÞÞ

	
; ð128Þ

where z ¼ 2AðjÞðKÞ exp ð−nðjÞT=2Þ=nðjÞ and order r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4cðjÞ

p
=nðjÞ with the parameters AðjÞðKÞ, nðjÞ, and

cðjÞ for a region RðjÞ as defined previously.

C. Numerical fitting

We will now present a few examples where we utilize
the mass model to fit axion isocurvature power spectra
obtained by numerically solving the axion toy model in
Eqs. (8), (9), and (10) for different Lagrangian parameters
using an RK solver. The fitted isocurvature power spectrum
can be expressed as

Δ2
S;fitðK; T∞Þ ¼ CmK3jYðK; T∞Þj2; ð129Þ

where Cm is a normalization parameter from the parameter
set Pset of Eq. (111), and YðK; T∞Þ is obtained from
Eq. (124) using the scattering matrices by taking TN → T∞.
In Eq. (124), we set the initial mode amplitude YðK; 0Þ
using the adiabatic boundary conditions of the BD vacuum.

Let us consider a minimal case where we restrict
ourselves to i ¼ 2 in Eq. (111). This minimal model is
sufficient to fit isocurvature power spectra for both over as
well as underdamped cases where the background fields
do not cross each other again after transition at Tc. This
generically refers to all situations with α < α2 where α2 is
an F-dependent cutoff and given in Eq. (101). Hence, the
minimal model consists of V0, a single−V1 dip at transition
followed by an exponentially decaying V2 term. The
minimal mass model consists of four piecewise regions
Rf1;…;4g as shown below:

½T0; T∞� ¼ Rð1Þ ∪ Rð2Þ ∪ Rð3Þ ∪ Rð4Þ ð130Þ

¼ ½T0; T1� ∪ ½T1; T2� ∪ ½T2; TK� ∪ ½TK; T∞�:
ð131Þ

The final mode amplitude when evaluated using Eq. (124)
can be expressed as
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YðK; T∞Þ ¼ SðK;Rð4ÞÞSðK;Rð3ÞÞSðK;Rð2ÞÞ
× SðK;Rð1ÞÞYðK; T0Þ; ð132Þ

where we set YðK; T0Þ to the BD initial conditions

YðK; T0Þ ¼
�

y

∂Ty

	
T¼T0¼0

¼ eiKffiffiffiffi
K

p
�

1

−iK − 1

	
∀ K2 ≫ V0 − 2; ð133Þ

where T0 ¼ 0, and we have dropped factors such as
2½að0Þ�3=2 ffiffiffiffi

H
p

since we are presenting a fitting function.

Additionally, the parameters AðjÞðKÞ, nðjÞ, and cðjÞ for each
of the four regions Rf1;…;4g are set from

AðjÞðKÞ ¼ fK2; K2; B1ðKÞ; B2ðKÞg; ð134Þ

cðjÞ ¼ fV0;−V1; 0; 0g; ð135Þ

nðjÞ ¼ f2; 2; 3; 2g; ð136Þ

where B1;2 are given by Eqs. (120) and (121). As an
example, consider region Rð3Þ ¼ ½T2; TK� with Að3ÞðKÞ ¼
B1ðKÞ, nð3Þ ¼ 3, and cð3Þ ¼ 0. We can then evaluate the
Ψð3Þ matrix at upper boundary TK as

Ψð3ÞðTKÞ ¼ e−
3
2
TK

"
J1ðzÞ J−1ðzÞ�

− 3
2
J1ðzÞ þ ∂TJ1ðzÞ

� �
− 3

2
J−1ðzÞ þ ∂TJ−1ðzÞ

�
#
; ð137Þ

with

z ¼ 2

3
B1ðKÞe−3

2
TK : ð138Þ

In Figs. 11 and 12, we present a few examples of axionic
blue isocurvature power spectra fitted using the mass model
described above. In these examples, we have normalized
the isocurvature spectra with respect to a constant

C ¼ 2rð1þ r4Þ
ð1þ r2Þ3π2F2

; ð139Þ

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
and set T0 and T∞ to 0 and ∼30,

respectively. In each case, the value of the axion Lagrangian
variables and the fitted model parameters are shown in the
title of the plots.
In Fig. 11, we restrict to examples where αc < αCh. The

plots in the top row belong to the class of axion models
where the background fields can be classified as nonreso-
nant (resonant) oscillations of the fields post-transition
where αc < α2. The nonresonant cases are defined by
having αc < αL ∼ 0.2, where the shape of the isocurvature
power spectrum for these cases bears resemblance to the
overdamped case studied in [79,80]. These are fitted using
the minimal mass model with Pset in Eq. (111) restricted to
N ¼ 2 such that the model consists of a single −V1 dip
followed by an exponential V2 potential. In the bottom row
of Fig. 11, we fit the isocurvature spectra for cases with
αc > α2. We observe that fitting these highly resonant
underdamped instances requires a nonminimal mass model
with Pset in Eq. (111) set to N ¼ 3 and 4, respectively, such
that the model consists of additional −V3 and −V4 dips,
respectively. Finally, in Fig. 12, we present an example
where we apply the mass model to a chaotic case where we

consider a large cþ value such that αc ≫ αCh. Through
these examples, we conclude that the mass model is a
semiquantitatively accurate representation of the axionic
isocurvature power spectra with rich and complex spectral
shapes and bumps.10

VII. A SINE FUNCTION BASED
FITTING MODEL

The mass model presented earlier provides a reasonable
fit to the isocurvature spectrum over a broad range of
scales. However, it involves intricate steps, a large number
of fitting parameters, and can be time consuming when
searching for the best-fit values of the model parameters
from numerical/observational data.11 From an observatio-
nal perspective, the isocurvature spectrum can be divided
into two regions: pre-cutoff (k < kcut) and post-cutoff scale
(k > kcut) where we define kcut as the location of the first
bump in the power spectrum, which can be identified most
simply as the first time when the slope of the power
spectrum goes to zero followed by a decrease in the power.

10The exponential V2 potential in our mass model arises from
the UV integration of the high frequency resonant oscillations of
the lighter mass eigenmode. As shown in [75], for α ≳ 1, the UV
integration procedure tends to breakdown such that the expo-
nential IR term may not be accurate enough to sufficiently model
the power spectrum within acceptable error margins. Since large
cþ cases generally transition with α > 1 and belong to chaotic
regime, these may require additional parameters or variations
within the model to sufficiently map the spectral bumps and
amplitudes. For the examples that we have tested, we find that the
generic mass model provides a good fitting model for the chaotic
scenarios up to a factor of few from the cutoff scale, kcut.

11For each point in the parametric space that is explored during
the fitting procedure, a naive procedure requires evaluating the
entire power spectrum for several k modes using the mass model.
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The pre-cutoff region is well described by a blue tilt, while the post-cutoff region can undergo oscillations before settling to
a massless plateau. In the context of detecting isocurvature modes and accurately fitting the signal, the initial bumps in the
post-cutoff region are of utmost importance. To address this, we propose a simplified piecewise function that effectively
captures and fits the isocurvature spectrum up to the first few bumps, or k≲Oð5Þkcut: a seven-parameter12 piecewise model
in terms of x ¼ 2.08 k=kcut written as

Δ2
2−fitð½c1−6; kcut�; kÞ ¼

8>>>>>>><
>>>>>>>:

c1jH1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðxÞj2xðj1ðxÞÞ2; x≲ x0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1jH1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðx0Þj2x0ðj1ðx0ÞÞ2
q

þ c3
�
e−c4x sinðc5ðx − c6Þ

�
− e−c4x0 sin

�
c5ðx0 − c6Þ

���2

x0 ≲ x≲ 10;

ð140Þ

where j1ðxÞ is the spherical Bessel function of order 1, and H1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðxÞ is the Hankel function of order i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 9=4

p
. For

underdamped cases, the first bump occurs at x ≈ 2.08, and we find that choosing x0 ≈ 3 yields a better matching and a lower
χ2 when fitting the piecewise model to the numerical data for several examples. For the overdamped cases, which are
characteristically defined by a blue tilt of 1 < nI < 4,13 and other scenarios with a smooth transition (without a bump) to the

FIG. 11. Fitting axionic blue isocurvature power spectra for examples where α < αCh using a mass model presented in Sec. VI. In each
plot, the solid (blue) curve represents the power spectrum obtained by solving Eqs. (8), (9), and (10) using an RK solver, while the
dashed (red) curve is the fit from the mass model. The plots in the top row are fitted using the minimal mass model with Pset in Eq. (111)
restricted to N ¼ 2, while the plots in the bottom row are examples of large resonant underdamped cases that are fitted using the
nonminimal mass model with N ¼ 3 (4) such that the model consists of additional −V3 ð−V4Þ dips, respectively.

12Seven real parameters: 6 ci and one cutoff scale kcut.
13This corresponds to a measurement of c2 < 9=4 from blue-titled large-scale modes.
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plateau, we find x0 ¼ 0.4 as a suitable choice. In
Appendix E, we briefly elaborate upon the motivation
for this model construction, provide fitting parameters for
the examples presented in Fig. 13, and give a fitting plot for
a sample overdamped case.
In Fig. 13, we fit the new piecewise sine model to a few

examples. In each case, the fiducial choice of Lagrangian
parameters is given in the title of the plots. The fit model
parameters are given in Appendix E. One can see from
the cþ ¼ 10.0 case of Fig. 13 that the model does not fit the
features of the spectrum for k≳Oð5Þkcut. The reason why
the kcut fixes the k scale range over which the model is
effective is because the number of oscillations in these
isocurvature models has a fundamental oscillatory k-space
period fixed by kcut, and one expects with a seven-parameter
model to be able to fit at most three bumplike features
(counting around two parameters per bump). Of course, in

FIG. 13. In this figure, we show plots where we fit the piecewise-model presented in Eq. (140) to the numerical data for four
underdamped isocurvature power spectra examples. Starting from the top left and moving clockwise, the examples presented in this
figure can be further classified as nonresonant nonchaotic, resonant nonchaotic, resonant chaotic small cþ, and resonant chaotic large
cþ, respectively.

FIG. 12. Fitting axionic blue isocurvature power spectrum for a
large cþ case where αc ≫ αCh using mass model presented
in Sec. VI.
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principle, one may be able to add more parameters to fit
more features for the higher k values, but because near future
surveys may be limited in the range of k-scale sensitivity, the
seven-parameter model seems to strike a reasonable balance
between economy and phenomenological detection cover-
age of the isocurvature perturbations in the near future. It is
important to emphasize that the form of this fitting function
was inspired by the generic solutions to the mass model that
we discussed earlier.

VIII. CONCLUSIONS

In this paper, we computed the axionic blue isocurvature
perturbation power spectrum in the large radial field
mass/kinetic energy limit for which there are multiple
crossings of the radial field across the global minimum
of the effective potential. This paper serves as a companion
to the paper [75]. We have derived a mass model that can be
used to compute the isocurvature spectrum based on the
idea that the fast oscillating background fields have the net
effect of a square well type of potential. Using this type of
model, we have demonstrated that one can for example fit
seven bumps using 12 parameters. This type of model can
be used for phenomenological fitting purposes if desired.
To reduce the complexity of the possible future fitting
efforts, we have also constructed a simpler seven-parameter
sinusoid function based fitting function which fits at least
three bumps, inspired by the results of the mass model. The
new sine model can be used to fit both underdamped as well
as overdamped scenarios of the axionic model considered
in this work, and may be applied model independently to
detect CDM isocurvature perturbations in scenarios where
the axion mass makes a dynamical transition.
One interesting feature of the large kinetic energy cases

considered in this paper was the appearance of exponential
sensitivity of the isocurvature spectrum to Lagrangian
parameters. This sensitivity arises because there is a large
kinetic energy driven resonant phenomena that can expo-
nentially boost or diminish amplitudes. Furthermore, the
Lagrangian parametric variations that translate to changes
in the initial conditions when the nonlinear forces tempo-
rarily dominate generically give rise to a background field
phase space mixing that is characteristic of chaos. This
means that although the spectrum generically has an
oscillatory shape whose oscillatory k period is fixed by
the first collision timescale, the amplitude of the rising part
of the spectrum and the first few oscillatory bumps
determined by the background field phase space are not
simply predictable as a function of the Lagrangian param-
eters controlling the kinetic energy of the radial field. That
in turn implies that if we phenomenologically detect an
oscillatory spectrum of the type considered in this paper,
there will be a large theoretical uncertainty in mapping
back to the underlying Lagrangian parameters. We quantify
this uncertainty using a distribution function presented
in Fig. 10.

In the construction of the rising part of the isocurvature
spectrum, we have also noted that one can reduce the
computation of the spectrum to solving the zero-mode
amplitudes. In other words, we do not need to solve for the
mode functions separately in the rising part of the spectrum
as long as we have the background field solutions. This is
owing to an accidental duality between the long wavelength
mode equations and the background field equations present
in the class of axion models considered in this paper. Using
a set of numerical computations of zero-mode amplitudes,
we have constructed a formula for the isocurvature spec-
trum in its rising part as a function of the underlying
Lagrangian parameters in the nonchaotic region. We have
also used the duality to explain the exponential parametric
sensitivity of the spectrum in the chaotic region.
There are many interesting future directions related to

this work. It would be interesting to carry out fits to data
(or give forecasts for future experiments) using the fitting
formulas presented in this work to look for signals of
isocurvature perturbations. Most of the previous works on
blue isocurvature spectrum have not dealt with the strongly
oscillatory nature of the spectrum generic to the under-
damped isocurvature scenarios. Moreover, even without the
oscillations, most of the previous works have focused on
simplified scenarios without a plateau cutting off the rising
spectrum.
Given the large magnitude of the amplification of the

high k bumps (see, e.g., Fig. 11), the non-Gaussianities
generated by these isocurvature amplitudes may be sig-
nificant and may have a spectral shape that is correlated
with the power spectrum shape. This would be an interest-
ing correlated non-Gaussianity study to pursue. One may
also be able to use the large bump to generate seeds for
unusually large clumped objects in the early universe such
as primordial black holes [81]. This enhancement of the
power can also result in an overabundance of halos at high
redshifts while converging to the halo mass function shape
similar to that of ΛCDM at low redshifts [82,83].

APPENDIX A: ϕ� TRANSIENT SOLUTIONS

In Sec. III, we demonstrated that when ω≳Oð1Þ, the
background fields undergo a transition near a zero crossing
point at Tz;j for j ≥ 2. There we derived expressions to
estimate the zero crossing Tz;jc closest to the transition
using a zeroth order approximate solution for the back-
ground fields. However, as the ϕþ field moves closer to a
zero crossing Tz;j, significant deviations from the zeroth
order solutions can occur due to a large kinetic energy
∼Oðα2F4Þ leading to transient effects.
In this appendix, we will show that the nonadiabatic

effects resulting from a zero crossing at Tz;j results in an

OðF=α3=2j Þ increase in the effective mass of the ϕþ field
such that the location of the next zero crossing at Tz;jþ1

deviates from the expression provided in Eq. (27).
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1. ϕ− ;Tr solution
Since we assume that the background fields remain along

the flat direction before they roll down to the minimum
with ϕþðT0Þ ∼OðMPÞ, the homogeneous solution of the
ϕ− field is negligible at T0. However, as the ϕþ field moves
closer to its first zero crossing Tz;j¼1, a large kinetic energy
∼Oðα2F4Þ generates deviations in ϕ− from the zeroth order
solution. The homogeneous (transient) solution of the ϕ−
field can be obtained by solving the differential equation:

ϕ̈−;Tr þ 3ϕ̇−;Tr þ ðc− þ ϕ2þÞϕ−;Tr ≈ 0: ðA1Þ

Thus, the transient component of ϕ− oscillates rapidly with
a high frequency ∼OðϕþÞ.14 An approximate WKB sol-
ution to Eq. (A1) can be written as

ϕ−;TrðTÞ ≈ e−
3
2
ðT−T�Þ Ajffiffiffiffiffiffiffiffiffijϕþj

p cos

�Z
T

T�
dTjϕþj

�

Tz;j þ ϵj ≲ T ≲ Tz;jþ1 − ϵjþ1; ðA2Þ

where T� ∼ Tz;j þ ϵj for ϵj ≈ 1=ðF ffiffiffiffiffi
αj

p Þ. To obtain an
estimate for the amplitude Aj, we match the solution in
Eq. (A2) with the approximate solution given in Eq. (32) at
Tz;j þ ϵj. This results in the following expression:

Aj ≈
7

4
×

F
3
2

α1=4j

: ðA3Þ

After comparing with the numerical results, we modify the
factor 7=4 in Eq. (A3) to 2.3. This shift can be attributed
to the inaccuracy of Eq. (32). For T > Tz;j þOð1=FÞ, the

complete ϕ− solution is given by the superposition of the
forced and homogeneous solutions. In Fig. 14, we plot
the background field for a fiducial case showing a com-
parison between the numerical solution and our approxi-
mate result in Eq. (A2).

2. Transient mass-squared term

Due to the high frequency transient oscillations of ϕ−,
the ϕþ field inherits a positive mass contribution, which
leads to a decrease in the time period of oscillation. To see
this explicitly, we consider the EoM for ϕþ and substitute
ϕ− ≈ ϕð0Þ

− þ ϕ−;Tr to analyze the effect of ϕ−;Tr:

ϕ̈þ þ 3ϕ̇þ þ cþϕþ þ �ðϕð0Þ
− þ ϕ−;TrÞϕþ − F2

�
×
�
ϕð0Þ
− þ ϕ−;Tr

� ¼ 0; ðA4Þ

which is equivalent to

ϕ̈þ þ 3ϕ̇þ þ �cþ þ ϕ2
−;Tr þ 2ϕð0Þ

− ϕ−;Tr
�
ϕþ − F2ϕ−;Tr ¼ 0:

ðA5Þ

By examining the aforementioned expression, it is evident
that the ϕþ field acquires a mass-squared term that
oscillates rapidly with a high frequency. This oscillation
is a result of the homogeneous oscillations of ϕ−. Through
the UV integration procedure described in Appendix C
of [75], these high-frequency oscillations can be integrated
out, leading to the determination of an effective mass-
squared quantity composed of a residual IR term. More
explicitly, we see that the dominant IR contribution is
obtained through the UV integration of ϕ2

−;Tr:

ϕ2
−;Tr!

UV−Integration 1

2

�
Aje−

3
2
ðT−T�Þffiffiffiffiffiffiffiffiffijϕþj

p �2

: ðA6Þ

After performing the UV integration, we obtain the reduced
EoM for ϕþ as follows:

ϕ̈þ þ 3ϕ̇þ þ cþϕþ þ 1

2
A2
je

−3ðT−T�Þ ≈ 0

Tz;j þ ϵj ≲ T ≲ Tz;jþ1 − ϵjþ1;

ðA7Þ

which has the following approximate solution:

ϕþðx > ϵjÞ≈
1

8cþω2

�
−4ω2A2

je
−3x þ 4ω2A2

je
−3x=2 cosðωxÞ

− 2ωð3A2
j − 4cþfÞe−3x=2 sinðωxÞ

�
; ðA8Þ

FIG. 14. The plot illustrates a comparison between the analytic
approximation (red, dashed line) of ϕ−;Tr as given by Eq. (A2)
and the corresponding numerical result (blue, solid line) for a
specific example case where Tz;j¼4 ≈ 8.

14Here we assume c− to be Oð1Þ.
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≈
αjF2

ω
e−3x=2 sinðωxÞ þ A2

j

4cþω
�
−2ωe−3x

þ 2ωe−3x=2 cosðωxÞ − 3e−3x=2 sinðωxÞ�; ðA9Þ

≈ ϕð0Þ
þ −

A2
j

2cþ

�
e−3x − e−3x=2

�
cosðωxÞ − 3

2ω
sinðωxÞ

��
;

ðA10Þ

where x ¼ T − Tz;j, f ¼ ∂TϕþðTz;jÞ ≈ αjF2, and ϕð0Þ
þ is

the zeroth order perturbed solution given in Eq. (15).

In the limit Aj → 0, we find ϕþ → ϕð0Þ
þ . When the

amplitude Aj is finite and non-negligible, it results in a

deviation from the background solution ϕð0Þ
þ . Consequently

the next zero crossing at Tz;jþ1 occurs at

Tz;jþ1 − Tz;j ¼
π

ω
− ΔTðAjÞ; ðA11Þ

where π=ω is the time period between two zero crossings

for the zeroth order perturbative solution ϕð0Þ
þ , and ΔTðAjÞ

is a function of Aj that can be obtained by solving the
transcendental equation corresponding to ϕþðTz;jþ1 −
Tz;jÞ ¼ 0 using Eq. (A8).
In Fig. 15, we plot ϕþ using Eq. (A8) and compare with

the numerical solution for a fiducial case. Since f ≈ αjF2

and using Eq. (A3), we can estimate the extent of the
Aj-dependent deviation compared to the zeroth order
solution:

ΔϕþðAjÞ
ϕð0Þ
þ

≈O

 
Fffiffiffiffiffiffi

cþ
p

α3=2j

!
: ðA12Þ

Hence, the deviation from the ϕð0Þ
þ solution is negligible for

values of αj ≳OðFÞ.

APPENDIX B: APPROXIMATE ESTIMATION
FOR θ

In this appendix, we give an approximate estimation of
the phase, θ, of the zero-mode solution, I0. First, we note
that the zero-mode solution, I0, was initialized at T0 as

I0ðT0Þ ¼ e−ð3=2þiωÞT0e1 ðB1Þ

from Eq. (63). For ϕþ ≫ F, the lightest mass eigenvalue is
m1 ≈ cþ, and during the time T < Tc when λ¼F2=ϕ2þ<1,
the zero-mode solution can be approximated as

I0ðTÞ ¼ e−ð3=2þiωÞT
�
1

−λ

	
: ðB2Þ

The argument of I0 during this time is

argðI0Þ ≈ −ωT: ðB3Þ

As shown in Fig. 1, at the transition, T ¼ Tc, the back-
ground fields cross each other momentarily and sub-
sequently settle to the minimum of the potential. Since
the underdamped background fields can deviate signifi-
cantly from the flat direction at T ∼ Tc, the lightest mass
eigenvalue can undergo OðFa=HÞ oscillations post-tran-
sition. For c− < cþ, the oscillations do not contribute a
time-averaged mass, thereby freezing the phase angle
argðI0Þ at the transition. For such cases, the final phase
angle θ can be approximated as

θ ≈ −ωTc: ðB4Þ

The transition time, Tc, can be estimated using Eq. (50).

APPENDIX C: CHAOS IN THE BLUE AXION
SYSTEM

In this appendix, we will show that the axion toy model
potential leads to a dynamical system that can result in
chaotic trajectories due to quartic nonlinear interactions in
the ϕ� phase space. When infinitesimally separated field
trajectories traverse regions of local instability, they may
undergo divergent paths and can indicate the possible
presence of a chaotic system. We begin this analysis by
taking our nonlinear second order system of ordinary
differential equations in Eqs. (8) and (9) and rewriting
them as

FIG. 15. In this figure, we plot our analytic approximations,

ϕð0Þ
þ and ϕþ;An, for the ϕþ field using Eqs. (15) and (A8),

respectively. For comparison, we also plot the numerical results
for ϕ� fields. The fiducial values used for generating this plot are
the same as the ones used in Fig. 14. A more accurate estimation
of the amplitude Aj of ϕ−;Tr will yield a better fit of ϕþ;An to the
numerical results.
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ϕ̈þ 3ϕ̇þM2ðϕÞϕ ¼ 0; ðC1Þ

where

M2ðϕÞ ¼
�
cþ þ ϕ2

− −F2

−F2 c− þ ϕ2þ

	
; ðC2Þ

and ϕ ¼ ðϕþ;ϕ−Þ. As shown in Fig. 6, the above system
exhibits chaotic behavior for αc > αCh.
To connect with existing literature, consider the follow-

ing simplified system of equations

ϕ̈� þ ϕ2∓ϕ� ¼ 0 ðC3Þ

by removing the dissipative and mass terms from the EoM
in Eq. (C1). Note that the above system of equations is a
special case of a quartic coupled oscillator system with the
Lagrangian

Lðt; x; yÞ ¼ 1

2
ðẋ2 þ ẏ2Þ − a

2
ðx2 þ y2Þ

−
�
b
4
ðx4 þ y4Þ þ 1

2
cx2y2

	
; ðC4Þ

obtained by taking a ¼ b ¼ 0, and c ¼ 1. A detailed
numerical study of the Lagrangian in Eq. (C4) using the
surface of section technique was performed in [76] where
the authors concluded that for potential V ¼ x2y2=2 where
c ¼ 1, the motion is completely chaotic. However, [77]
showed that there exists a tiny island (occupying 0.005% of
the total phase space) of stable periodic orbits, which was
followed by a second set of stable orbit discovered in [78]
(occupying 4 orders of magnitude smaller region than
found in [77]). Intuitively, chaos occurs due to a nonlinear
map between small changes in the initial conditions and the
integrated effects of nonlinear forces.

1. Effect of dissipation

Consider the effect of adding the dissipative term and the
negative mass squared term as

ϕ̈� þ 3ϕ̇� þ ðϕþϕ− − F2Þϕ∓ ¼ 0; ðC5Þ

where the factor of 3 is the dissipative Hubble term.15 With
the variable changes

x1;2 ¼ ϕ�=F; ðC6Þ

and

τ ¼ TF; ðC7Þ

our EoMs (i ¼ f1; 2g) reduce to

ẍiðτÞ þ γẋiðτÞ þ ðx1ðτÞx2ðτÞ − 1Þxj≠iðτÞ ¼ 0; ðC8Þ

where the new dissipative constant is γ ¼ 3=F. For our blue
axion system, the ICs at transition, Tc, can be approx-
imately given as

ϕþðTcÞ=F ¼ ϕ−ðTcÞ=F ≈ 1 − 0.2αc; ðC9Þ

and

ϕ̇þ=F2 ≈ −αc ϕ̇−=F2 ≈ 0.48 − 0.09=
ffiffiffiffiffi
αc

p
: ðC10Þ

Clearly, we see that the blue axion system with γ ¼ 0
(no Hubble dissipation/friction) is always chaotic since the
incoming velocities of the two fields ϕ� do not lie within
the island of stability ([77]) required for a stable periodic
solution.
A nonzero positive value of γ leads to a constant

dissipation within the system. In the presence of dissipa-
tion, a mechanical system gradually approaches one of its
local energy minima. In the context of the blue axion
system, the trajectories in the ϕ� phase space are asymp-
totically approaching the points (ϕ� ¼ ϕ�;min; ϕ̇� ¼ 0)
known as “point” attractors. These point attractors have
dimension zero as they correspond to a stable equilibrium
point in the phase space. Generally, the presence of
dissipation tends to make chaotic motion into a more
orderly behavior.16 When a system consists of quartically
coupled oscillators and exhibits chaotic behavior, the
introduction of dissipative forces corresponding to quad-
ratic dissipation functions with diagonal elements (γ ≠ 0,
or F ≠ ∞) causes the system to converge to a fixed point. If
the dissipation is very small, the system can display long-
lasting chaotic transients. Such transient chaos in dissipa-
tive systems is thus essentially a phenomenon that occurs
when certain factors, such as the amplitude of the driving
force being above a particular value or friction constant
being below a threshold value.
For our blue axion system, the critical chaos-inducing

nonlinear force is proportional to ξ ¼ ϕþϕ− − F2. Hence,
if the average interaction and kinetic energy are substantial
during the transition, we anticipate a temporary phase of
chaos until dissipation restores order in the system. Thus,
there must exist a threshold limit on the value of αc below
which chaos does not set in for more than a few Oð1=FÞ
time period.
To illustrate the onset of chaos in the presence of

dissipation, we solve the coupled oscillator system in
Eq. (C8) by initializing at τ ¼ 0 with the initial conditions

15Due to d ¼ 3 spatial dimensions.

16Nondiagonal dissipative terms can actually enhance chaos in
certain cases [84].
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similar to that of the blue axionic system at transition.
Hence, we set

x1 ¼ x2 ¼ 1 − 0.2αc; ðC11Þ

ẋ1 ¼ −αc ẋ2 ¼ 0.48 − 0.09=
ffiffiffiffiffi
αc

p
; ðC12Þ

and plot the number of times x1;2 cross each other for τ > 0

as a function of the parameter αc for four different values of
dissipative constant γ ¼ 3=F in Fig. 16. In each scenario,
we observe a phenomenon where the number of crossings,
denoted as N, becomes random (unpredictable) once the
parameter αc becomes larger than a threshold value αCh.
Across all cases, the onset of chaos seems to occur as N
becomes larger than 1, indicating a significant kinetic
energy level allowing the oscillators to cross more than
once after τ ¼ 0.
In Fig. 17, we graph the trajectory of ϕ� fields for two

sample cþ values corresponding to αc lower and higher
than the threshold αCh, respectively. Within each frame, we
also depict a “similar” perturbed ϕ� system with a 1%
deviation in the ICs. We observe that as αc surpasses the
threshold value αCh, the field trajectories can be highly

sensitive to the ICs due to the dominance of the nonlinear
quartic interaction.
In a qualitative sense, the chaos tends to become

important at the moment of the first crossing of the
oscillators after τ ¼ 0. This may be understood by noticing
that as the average interaction energy exceeds a specific
threshold, the subsequent motion (trajectory) following
the crossings can exhibit extensive divergence due to
rapid oscillations (≫ OðγÞ) of the interaction term. To
obtain a quantitative limit, we note that in the blue axion
system, the interaction term ξ induces a high frequency
component, ϕ�;f, to the background field solution.17

Compared to the slow varying IR mode, the UV mode
has a strength approximately given by the ratio ξ=Ω2 where
Ω2 ¼ ϕ2þ þ ϕ2

−. Based on our qualitative reasoning, we
estimate that to initiate chaos, the UV mode should be
important at the first crossing, T1 (after transition).18

Hence, we require for the lack of chaos the condition

FIG. 16. Plot showing number of crossing (for τ > 0) as a function of parameter αc for different values of dissipative constant
γ ¼ 3=F.

17See Appendix E of [75].
18Here, we assume that there are no crossings before the

transition, ensuring that the UV modes are generated mostly after
the transition. See Appendix E of [75].

CHUNG and TADEPALLI PHYS. REV. D 109, 023539 (2024)

023539-28



ξ

Ω2

����
T1

< r ≪ 1; ðC13Þ

where r is an Oð0.1Þ number.19 Since Ω2 ¼ 2F2 at T1, we
obtain the condition

ξ2jT1
≪ r24F4: ðC14Þ

The time average of this quantity over 1=F timescale yields

hξ2iT1
≪ 2r2F4: ðC15Þ

Numerical analysis reveals that the coupled oscillator system
undergoes transient chaotic motion when the average inter-
action energy hðx1x2 − 1Þ2i ≈ ð1=2ÞEð0Þ expð−γτÞ at the
point of first crossing ðτ1 > 0Þ is approximately > 0.1. In
the context of the blue axion system, this condition for the
transient chaotic behavior can be expressed as

hξ2iT1
≈ ð1=2ÞEðTcÞ exp

�
−3ðT1 − TcÞÞ

�
≳ ð0.1ÞF4; ðC16Þ

where EðTcÞ is the total energy at transition. This 0.1
number was numerically inferred with cþ=F2 ≪ 0.1 and
can be interpreted as the number related to the Hubble
expansion rate and does not reflect the cþ parametric
dependence. Presumably, the right-hand side of Eq. (C16)
has contributions that are cþF2, which would become
important when cþ=F2 become comparable to 0.1. These
numerical findings align with the condition described in
Eq. (C15) by setting the Oð0.1Þ parameter r ≈ 0.2. Hence,
while the total energy at the transition is approximately
Oðα2cF4Þ, the Hubble friction must cause sufficient damping

to achieve a stable trajectory for the background fields. Since
T1 is a function of F and αc, we get the following condition
for stable trajectories:

T1ðF; αcÞ≳ TcðF; αcÞ þ
1

3
ln

�
fðαcÞ
0.2

�
; ðC17Þ

where the function fðαcÞ ¼ EðTcÞ=F4 and can be approx-
imately given as

fðαcÞ ≈ α2c þ ð0.48 − 0.09=
ffiffiffiffiffi
αc

p Þ2; ðC18Þ

where we have neglected mass contributions of order F2.

APPENDIX D: EXPLORING c − DEPENDENCE

Post transition, jϕ−j begins to increase due to a positive
velocity of OðF2Þ and becomes dominant compared to a
decreasing jϕþj. During this time, the UV integrated EoM
for the IR component of the dominant jϕ−j field can be
given as

∂
2
Tϕ−s þ 3∂Tϕ−s þ

�
c− þ A2

2Ω̄2
e−3ðT−T2Þ

�
ϕ−s

þ ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
ϕþs ≈ 0; ðD1Þ

where the subscript s denotes IR (slow) component,
T2 ≈ Tc þOð1=F= ffiffiffiffiffi

αc
p Þ, and A=Ω̄ is the effective ampli-

tude obtained through the UV integration of the nonlinear
interaction term ∝ ξ as explained in Appendix E of [75].
During this time, ϕþs ≈ F2=ϕ−s. In the limit ϕ−s > ϕþs,
the general solution to the above ordinary differential
equation is

FIG. 17. In each frame, we plot trajectories of ϕ� fields (thick curve) and a similar perturbed system (thin curve) with a 1% deviation
in the ICs. The plot on the left (right) correspond to case where αc is lower (higher) than αCh. We find that tiny changes in the ICs can
result in large deviations in the trajectories when αc is larger than the threshold value αCh.

19This condition is consistent with the condition that the ϕ2∓ϕ�
term is a subdominant force for the equation of motion.
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ϕ−sðTÞ ¼ e−
3
2
ðT−T2Þ

�
c1Jn

�
2

3
Ae−

3
2
ðT−T2Þ

�

þ c2J−n

�
2

3
Ae−

3
2
ðT−T2Þ

�	
; ðD2Þ

where

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c−=9

p
; ðD3Þ

and the coefficients c1;2 are obtained by matching with the
incoming solution at T2.
At a later time in the evolution of the background fields

when the A=Ω̄ term in Eq. (D1) can be neglected (due to
exponential decay), the solution in Eq. (D2) reduces to

ϕ−sðTÞ ¼ e−
3
2
ðT−T2Þ
c1e3

2
nðT−T2Þ þ c2e−

3
2
nðT−T2Þ�: ðD4Þ

For c− < 9=4, the exponent n is real, and it was shown
in [75] that the evolution of the background fields toward
the minimum of the potential is governed by an Oðc−=3Þ
exponent. Hence, we can write

lim
T→T∞

ϕ−sðTÞ ≈ ϕ−minð1� e−λðT−T∞ÞÞ; ðD5Þ

where λ ≈Oðc−=3Þ. The þð−Þ sign indicates the direction
of the field’s movement where ϕ−ðTÞ is greater (lesser)
than ϕ−min as T → T∞.
Due to the duality between the zero-mode and the

background fields [see Eq. (62)], the evolution of the zero
mode is closely related to that of the background fields,
resulting in an increase/decrease of the zero-mode ampli-
tude.20 Because the rolling of the ϕ− continues until the ϕ−
field reaches its minimum at ϕ−min, the zero mode
amplitude can be written as

I0ðT∞Þ ≈ I0ðT ≫ T2Þ
ϕ−min

ϕ−ðTÞ
: ðD6Þ

Hence, for c− < 9=4, the leading c− dependence of the
zero-mode amplitude is

N ∝ ϕ−min ∝
�
1

c−

�
1=4

ðD7Þ

because ϕ−min ≈ Fðcþ=c−Þ1=4. By matching with the
numerical data, we obtain the following fitting function
for the zero-mode amplitude:

N ðOð0.1Þ < c− < 9=4; cþ; FÞ
≡ f−ðc−ÞN ðc− ¼ 0.5; cþ; FÞ; ðD8Þ

where

f−ðc−Þ ≈ 0.26c0.5− þ 0.66c−0.29− : ðD9Þ

Thus, the zero-mode amplitude increases as an inverse
power of decreasing c− for c− < Oð1Þ. Interestingly, if
c− ∼Oð0.01Þ, the exponential slow roll after transition can
be extremely gradual, causing the fields to not fully settle at
the minima of the potential by the end of inflation. This
slow roll of the fields is analogous to inflationary slow roll
situations, and in the current axion model, this parametric
region is cþ ≲Oð0.1Þ. Consequently, the mode amplitude
at Tend (number of e-folds to the end of inflation) appears to
be either amplified or attenuated due to the insufficient
number of e-folds for the background fields to settle down.
This amplification (attenuation) of the mode amplitude
occurs when ϕ−ðTendÞ is greater (smaller) than ϕ−min, and
the parametric c− dependence is given approximately by
∼ exp ðOðc−ÞðT∞ − TendÞÞ where T∞ is the hypothetical
number of e-folds required for the background fields to
settle to the minima. The value of T∞ is approximately
dependent upon the maximum amplitude ϕ−max, which, in
turn, is controlled by the Lagrangian parameters c� and F.
This subtle yet interesting dynamics for extremely small c−
values was not pointed out in [75].
For c− > 9=4, we first consider the case where the A2

term in Eq. (D1) is negligible, applicable to scenarios where
αc < α2. In these cases, the exponent n in Eq. (D2) is
imaginary, and the solution for ϕ−s becomes oscillatory,
leading to subsequent crossings of the two fields after the
transition. At each crossing, the lightest eigen-mass briefly
becomes tachyonic (due to a short, significant excursion of
−∂Te1:∂Te1) resulting in an amplification of the zero-mode.
The amplitude of the tachyonic dip depends upon the

TABLE I. Table summarizing the approximate dependence of the zero-mode amplitude on the Lagrangian mass
parameters c�, where we have explicitly considered the cþ dependence of the spectrum using the parameter α. The
boundaries α2 and αCh are approximately independent of c− for c− ≪ F2. For example, Eq. (100) still governs αCh in
the range of c− here.

c− αcðcþÞ < α2 α2 < αcðcþÞ≲ αCh αcðcþÞ > αCh

< Oð0.1Þ Exponential increase/decay Exponential increase/decay Chaotic
< 9=4 ð1=c−ÞOð0.25Þ ð1=c−ÞOð0.25Þ Chaotic
F2 ≫ c− > 9=4 Smooth increase Oscillating function of c− Chaotic

20The detailed exploration of the effects of slowly varying
effective mass was covered in Appendix I of [75].
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magnitude of eigenvector rotation ∝ −∂Te1:∂Te1, which
decays as ∼ exp ð−3ðT − TcÞÞ where Tc should be distin-
guished from crossing times other than the first.21 Hence, as
c− increases beyond 9=4, because the background fields
oscillate with a short time-scale ∝ 1=

ffiffiffiffiffi
c−

p
, the tachyonic

amplitude is larger at each crossing, consequently making
the final mode amplitude larger where the steepness of the

rise in amplitude [which is characterized by the coefficient
c1 in Eq. (95)] increases as function of c−.
When α2 < αc < αCh, the A2 term in Eq. (D1) is signi-

ficant, and the fields must cross again after the transition.
Close to the crossing, the incoming velocity of the sub-
dominant field ϕþ has a significant contribution from the
fast UV oscillations, ϕ−f ∼ A=Ω2 sinðR T−T2

0 ΩðxÞdxÞϕ−s,

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2þs þ ϕ2

−s
p

∼OðFÞ and A ∼OðαcF2Þ. A
finite value of c− leads to a marginal increase in the
frequency of Ω ∼ ϕ−s causing the fields to cross earlier. As
a result, the phase θ ¼ R T−T2

0 ΩðxÞdx of ϕþf at the crossing
reduces. For c− values larger than a threshold, the change
in the phase angle, Δθ, can be order 1, leading to the
oscillatory pattern in the final zero-mode amplitude as a
function of c− as observed in Fig. 18 for cþ ¼ 2.348 and
2.391. Up to leading order in c−, we find semianalytically
that we can approximate Δθ ≈ c−ð0.25þ 0.2ðF=20.2ÞÞ,
which implies an almost F-independent lower bound of
c− ∼Oð2Þ for the oscillations to be prominent.

APPENDIX E: FITTED SINE-MODEL
PARAMETERS

The sine model presented in Sec. VII can be most
generally written as

Δ2
2−fitð½c1;…;8; kcut�; kÞ ¼

8<
:

c1
���H1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðkc3Þ
���2ðkc3Þðj1ðkc3ÞÞ2 k≲ kcut

ðc4 þ c5e−c6k sin ðc7ðk − c8ÞÞÞ2 kcut ≲ k < Oð5Þkcut;
ðE1Þ

where j1ðxÞ is the spherical Bessel function of order 1, and
H1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðxÞ is the Hankel function of order i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 9=4

p
.

The functional form of the fitting function in the blue
region (k < kcut) is jointly motivated from the analysis
presented in Sec. IVA and from the results of [75]. Readily
one can identify that c2 > 9=4 for underdamped cases
and < 9=4 for overdamped fields. The first bump in the
isocurvature spectrum (for critical and underdamped cases)
lies at the location kcut. From Eq. (E1), we observe that the
first bump of the fitting model is primarily determined by
the function, j1ðkc3Þ. For the spherical Bessel function,
j1ðxÞ, the first bump occurs at x ≈ 2.08. Consequently, we
deduce that kcutc3 ≈ 2.08, and therefore, we can eliminate
c3 as c3 ≈ 2.08=kcut.
We model the post-cutoff region in Eq. (E1) using a sine

function with an amplitude that exponentially depends on
the mode k. During the fitting procedure, we choose a scale
k0 as the boundary where we match the two piecewise
functions. The matching allows us to eliminate another
model parameter. Hence, consider the following expression

where we match the amplitude of the two piecewise
functions in Eq. (E1) at an arbitrary scale k0:

c1
���H1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðk0c3Þ
���2ðk0c3Þðj1ðk0c3ÞÞ2

¼ �c4 þ c5e−c6k0 sin ðc7ðk0 − c8ÞÞ
�
2: ðE2Þ

Using the above expression, we eliminate c4 as

c4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1jH1

i
ffiffiffiffiffiffiffiffiffiffiffi
c2−9=4

p ðk0c3Þj2ðk0c3Þðj1ðk0c3ÞÞ2
r
− c5e−c6k0 sin ðc7ðk0 − c8ÞÞ: ðE3Þ

Substituting the above expression for c4 into Eq. (E1) and
redefining the remaining parameters yields the form of the
model presented in Eq. (140).
Figure 19 displays an example where we fit the sine

model to an overdamped isocurvature power spectrum

FIG. 18. Plot showing the c− dependence of the zero-mode
amplitude N for four fiducial instances. The black-dashed line is
our fitting curve as given in Eq. (D9). For each distinct value of F,
the corresponding cþ values belong to αc < α2 and α2 < αc ≲
αCh cases, respectively.

21See Eq. (98) and Appendix F of P1.
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covered extensively in [79]. The plots in Figs. 13 and 19
illustrate that the sine model can be extended to analyze and
fit cases beyond the underdamped scenario of the axion toy
model considered in this work. It may also be applicable to
other Lagrangian models that produce similar shapes of the
isocurvature power spectra.
In the rest of this appendix, we provide the best-fit values

of the model parameters obtained by fitting the piece-
wise model in Eq. (140) to the numerical isocurvature
power spectra examples shown in Sec. VII. In each case
mentioned below, we use x ¼ 2.08k=kcut. As discussed in
Sec. VII, for the overdamped (underdamped) cases, we find
x0 ≈ 0.4 (3.0) is a suitable choice for fitting:
(1) cþ ¼ 2.30, c− ¼ 0.5, F ¼ 20.2, ϵ0 ¼ 0,

ϕðT0Þ ¼ 3.32 × 108:

c1 ¼ 0.000361; c2 ¼ 2.3226; c3 ¼ −0.03957;

c4 ¼ 0.88344; c5 ¼ 1.40334; c6 ¼ 3.97287 ðE4Þ

and kcut=ðaiHÞ ≈ 2.0 × 105.

(2) cþ ¼ 2.34, c− ¼ 0.5, F ¼ 20.2, ϵ0 ¼ 0,
ϕðT0Þ ¼ 3.32 × 108:

c1 ¼ 0.000816; c2 ¼ 2.40618; c3 ¼ 0.02156;

c4 ¼ 0.13236; c5 ¼ 0.89631; c6 ¼ 0.97835 ðE5Þ

and kcut=ðaiHÞ ≈ 3.2 × 104.
(3) cþ ¼ 2.36718, c− ¼ 0.5, F ¼ 20.2, ϵ0 ¼ 0,

ϕðT0Þ ¼ 3.32 × 108:

c1 ¼ 307.29; c2 ¼ 2.50251; c3 ¼ 33.571

c4 ¼ 0.06304; c5 ¼ 0.61706; c6 ¼ −0.82489 ðE6Þ

and kcut=ðaiHÞ ≈ 1.7 × 104.
(4) cþ ¼ 10.0, c− ¼ 0.5, F ¼ 20.2, ϵ0 ¼ 0,

ϕðT0Þ ¼ 3.32 × 108:

c1 ¼ 1.8431 × 10−6; c2 ¼ 9.98452; c3 ¼ 0.04836;

c4 ¼ 0.000067; c5 ¼ 0.59356; c6 ¼ −2.4721 ðE7Þ

and kcut=ðaiHÞ ≈ 1.6 × 104.
(5) cþ ¼ 1.5, c− ¼ 0.5, F ¼ 20.2, ϵ0 ¼ 0,

ϕðT0Þ ¼ 3.32 × 108:

c1 ¼ 9.155 × 10−4; c2 ¼ 1.473; c3 ¼ 216.5;

c4 ¼ 0.979; c5 ¼ 1.658 × 10−5; c6 ¼ −1.1942

ðE8Þ

and kcut=ðaiHÞ ≈ 1.6 × 104 and x0 ≈ 0.43.
The last example corresponds to the overdamped case and
the parameter c5 is significant even though its smallness
naively might suggest otherwise. The sinusoidal terms
whose frequency is controlled by c5 is responsible for
describing the small bump near the matching point
of x0 ≈ 0.43.
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