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The thermal plasma in the early Universe produced a stochastic gravitational wave (GW) background,
which peaks today in the microwave regime and was dubbed the cosmic gravitational microwave
background (CGMB). In previous works, only single graviton production processes that contribute to the
CGMB have been considered. Here, we also investigate graviton pair production processes and show that
these can lead to a significant contribution if the ratio between the maximum temperature and the Planck
mass, Tmax=mp, divided by the internal coupling in the heat bath is large enough. As the dark matter
freeze-in production mechanism is conceptually very similar to the GW production mechanism from the
primordial thermal plasma, we refer to the latter as “GW freeze-in production.” We show that quantum
gravity effects appear in single graviton production and are smaller by a factor ðTmax=mpÞ2 than the
leading order contribution. In our work, we explicitly compute the CGMB spectrum within a scalar model
with quartic interaction.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) from
back hole and neutron star mergers [1,2] opened up a new
window to explore our Universe. While the GWs that have
been detected so far were emitted in the late-time Universe,
GWs can also be produced in the early Universe. These
GWs are stochastic in nature, and their detection would
yield unprecedented information about early Universe
cosmology as well as high energy particle physics. To
give a few examples, GWs in the early Universe can be
produced from inflation [3–6], preheating [7,8], inflaton
annihilation into gravitons [9–11], first-order phase transi-
tions [12,13], cosmic defects such as cosmic strings [14,15],
noisy turbulent motion [16–20] and equilibrated gravi-
tons [21,22]. For a review on early Universe GW sources,
see Ref. [23]. The full GW spectrum for a specific particle
physics model that can describe the entire cosmological
history was worked out in Ref. [24].
In this paper, we consider GWs that were produced from

the thermal plasma [25–28] in the early Universe. Every

plasma, even in thermal equilibrium, produces GWs due to
microscopic particle collisions and macroscopic hydrody-
namic fluctuations, cf. Ref. [26]. In the former case, the GW
momenta are on the order of the temperature, k ∼ T, and in
the latter case, they are much smaller, k ≪ T. Here, we
focus on GWs produced by microscopic particle collisions
since it enables us to probe elementary particle physics
theories at high energies. Furthermore, the GW contribution
from microscopic particle collisions to the final spectrum is
larger compared to the contribution from hydrodynamic
fluctuations [26].
Our main assumption is that after the hot big bang, a

thermal plasma of particles in thermal equilibrium at a
maximum temperature Tmax was present. In addition, we
assume that at this time no GWs are present. In an
expanding Universe, GWs from the thermal plasma are
continuously produced as the temperature decreases. The
spectrum of the produced GWs peaks at a frequency on
the order of the temperature at the time of production. If the
redshift-temperature relation is linear, the GW spectra
that are produced at different temperatures add up such
that the observed GW spectrum today is enhanced. The
spectrum of the produced GWs today peaks in the micro-
wave regime and is hence dubbed the cosmic gravitational
microwave background (CGMB).
In principle, the maximum temperature, Tmax, of

the thermal plasma can be as high as the Planck mass
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mp ≈ 1.2 × 1019 GeV [29]. However, in slow roll infla-
tionary cosmology, it cannot be much higher than 10−3mp.
This bound follows by first inferring the energy scale of
inflation from the amplitude of scalar perturbations and the
tensor-to-scalar ratio and then assuming an instantaneous
and a maximally efficient reheating [30] to a radiation
dominated Universe, cf. Ref. [28] and Ref. [31] for a review.
Note that Tmax > 10−3mp can be achieved in noninfla-
tionary scenarios. One particular example are bouncing
cosmology scenarios which can lead to Tmax which goes up
to the Planck scale: Tmax < mp; cf. Refs. [32–34]. The
maximum temperature of the thermal plasma is also
bounded from below. The most conservative estimates set
a lower limit around a few MeV [35–39], shortly before big
bang nucleosynthesis took place. However, most scenarios
require temperatures reaching well above the electroweak
scale such that, e.g., sphalerons can be active in leptogenesis
scenarios [40].
In previous works, the CGMB spectrum has been

calculated within the Standard Model (SM) [26,27] and
for beyond Standard Model (BSM) theories [28,41–43].
Those works considered only single graviton production
processes. In this case, the resulting GWenergy density per
logarithmic momentum interval, Ωgw, is proportional to
g2 × ðTmax=mpÞ, where g is the internal coupling in the
thermal bath. Here, we extend previous works by also
including GW production processes with two gravitons in
the final state. These give a contribution to Ωgw that is
proportional to ðTmax=mpÞ3. We refer to this GW produc-
tion channel as graviton pair production. Depending on the
values of Tmax=mp and g, the graviton pair production
channel can be the dominating contribution to the CGMB
spectrum. In analogy to dark matter production from the
thermal plasma, we dub the GW production from the
thermal plasma GW freeze-in production.
We also identify at which order quantum gravity and

backreaction effects would appear in the CGMB spectrum.
Observing these effects in the CGMB spectrum would
therefore probe the quantization of gravity and reveal
fundamental information about particle physics if the
GW production occurs at high energy scales that cannot
be probed with particle colliders on Earth.
Throughout this paper, we work with a complex scalar

field with quartic coupling λ that is the internal coupling in
the thermal bath; i.e., for our model, the previously
mentioned generic coupling g is the quartic coupling λ.
In previous works [26–28], such a coupling has not been
considered even though the SM has such a coupling in the
Higgs sector. That is because Refs. [26,27] worked under
the assumption that in the SM, the three gauge couplings

and the top Yukawa are of order of the square root of the
Higgs self-coupling. Note that in BSM theories, this is not
necessarily the case.
This paper is organized as follows: In Sec. II, we

introduce our model, which is a complex scalar field
coupled to gravity. This is then followed by Sec. III, where
we introduce the full evolution equations for the two
distribution functions fϕ and fh, which describe the scalars
and gravitons, respectively. Furthermore, we perturbatively
expand the distribution functions around their initial states.
This enables us to find a solution of the coupled nonlinear
integral-differential equations for the distribution functions.
In Sec. IV, we calculate the Matrix elements squared for the
graviton production processes. We then compute the GW
spectrum in Sec. V. Finally, conclusions are given in
Sec. VI. Throughout this paper, we use natural units with
ℏ ¼ c ¼ kB ¼ 1, where kB is the Boltzmann constant.

II. SCALAR MODEL

The action for a complex scalar field on curved space-
time is

Sϕ¼
Z

d4xLϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−gμνð∇μϕÞ†∇νϕ−UÞ; ð1Þ

where ∇μ is a covariant derivative, gμν the metric tensor,
g ¼ Det½gμν� and U is the potential. The flat space-time
metric is defined as ημν ≡ diagð−1; 1; 1; 1Þ. Note that for a
scalar field, the covariant derivative reduces to a partial
derivative: ∇μϕ ¼ ∂μϕ. The considered complex scalar is
not charged under a local transformation, and we consider a
quartic potential U ¼ − λ

4
jϕj4. We assume that the scalar

field is massless, which is justified if the considered
temperature in the thermal plasma is larger than the mass
of the scalar field.
On top of the action in Eq. (1) we need the Einstein-

Hilbert action

SEH ¼
Z

d4xLEH ¼
Z

d4x
1

16πG
ffiffiffiffiffiffi
−g

p
R; ð2Þ

where R is the Ricci scalar, and G≡ 1=m2
p is the gravi-

tational constant. In the following, we expand the metric
around flat space-time: gμν ¼ ημν þ hμν, with hμν ≪ 1. A
detailed expansion has been worked out before in Ref. [44]
and yields
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L ¼ LEH þ Lϕ ¼ −ημνð∂μϕÞ†∂νϕ −U þ 1

2
∂μhσν∂μhσν þ κhμνð∂μϕÞ†∂νϕ

þ κ

�
−
1

2
hαβ∂αhμν∂βhνμ − hαβ∂μhνα∂μhβν þ hβμ∂νhαβ∂μhνα

�

þ κ2
��

−hμλhλν þ
1

4
ημνhαρhρα

�
ð∂μϕÞ†∂νϕþ 1

4
hαρhραU

�
þOðh3Þ: ð3Þ

Note that the h fields in Eq. (3) have been rescaled with a
factor κ ≡ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

and have now mass dimension one.
Furthermore, we have adopted the so-called transverse-
traceless (TT) gauge, which includes the De Donder gauge:
∂αhαμ ¼ 1

2
∂μh together with the requirement that the trace

h ¼ hμμ is zero. In the first and second line of Eq. (3), we
wrote down the zeroth and first order terms coming from
LEH and Lϕ. In the second line, we only write down the
second order term coming from Lϕ since the second order
term from LEH will not be needed for our calculations. The
lowest order Feynman vertices for our theory are shown in
Fig. 1.

III. EVOLUTION EQUATIONS
FOR THE DISTRIBUTION FUNCTIONS

We describe the thermal plasma of ϕ particles and
the produced gravitons with two distribution functions
defined as

fϕðt; kÞ≡
Nk

ϕ

Vd3k=ð2πÞ3 ; fhðt; kÞ≡ Nk
h

Vd3k=ð2πÞ3 : ð4Þ

V is the considered volume, andNk
ϕ and N

k
h are the numbers

of ϕ-states and gravitons with momentum k ¼ jkj in the
interval d3k. Since we shall expand fϕ around an isotropic
equilibrium state, fh is understood to be the polarization-
averaged distribution function. Also we do not introduce a
distribution function for ϕ† since our model and initial
conditions are CP symmetric, and therefore, it would
always be equal to fϕ.
In the regime where the momentum k is on the order of

the hard scale that in equilibrium corresponds to the
temperature, i.e., k ∼ T, kinetic theory is expected to be
a good approximation for our system. The evolution
equations for the ϕ and graviton distribution functions
can thus be written in the following Boltzmann-like form:

ḟϕðt; kÞ ¼ Gϕðt; kÞ − Lϕðt; kÞ; ð5Þ

ḟhðt; kÞ ¼ Ghðt; kÞ − Lhðt; kÞ; ð6Þ

where the G and L terms describe the gain and loss terms
of particle states. A generic expression for the graviton
production term Gh is given by

Ghðt; kÞ ¼
1

4k

X
all processes r
with at least one
final state graviton

Sr

Z
dΩr jMrj2 × fϕðp0

1Þ � � � fϕðp0
mÞfhðk01Þ � � � fhðk0nÞ

× ð1þ fϕðp1ÞÞ � � � ð1þ fϕðpiÞÞð1þ fhðkÞÞ � � � ð1þ fhðkjÞÞ; ð7Þ

where the index r labels all possible processes. We call the
momenta of the incoming ϕ and graviton states p0

1;…; p0
m

and k01;…; k0n, respectively. The momenta of the outgoing
ϕ’s and gravitons are p1;…; pi and k1 ¼ k; k2;…; kj. In
our notation, them incoming and i outgoing ϕ states can be

ϕ or ϕ† states. In Eq. (7), the symmetry factor Sr has to be
included if two or more indistinguishable particles appear
in the initial or final state. We will make the symmetry
factor explicit in section Sec. IV where we calculate the
graviton rate. The sum in Eq. (7) runs over combinations of

FIG. 1. Lowest order vertices that arise from the expansion of the scalar field and Einstein-Hilbert Lagrangian. Scalars are represented
by dashed lines and gravitons by double lines.
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all processes with at least one graviton with momentum k in
the final state. The prefactor 1=ð4kÞ is a combination of
1=ð2kÞ from the phase space measure and 1=2 from the
graviton polarization degeneracy. We need the factor 2
from the polarization degeneracy since the matrix element
squared is summed over polarizations and the distribution
function is defined to be averaged over both polarizations.

The loss term is analogous to the gain term in Eq. (7) with
the difference that one sums over all processes with at least
one graviton in the initial state. The Boltzmann-like
Eqs. (5), (6), and (7) come with important caveats on their
validity beyond leading order, which we shall discuss later.
The integral that appears in Gh is the phase space integral
that has to be performed over all momenta, except k:

Z
dΩr ¼

Z
d3p0

1

ð2πÞ32p0
1

� � �
Z

d3p0
m

ð2πÞ32p0
m

Z
d3k01

ð2πÞ32k01
� � �

Z
d3k0n

ð2πÞ32k0n

Z
d3p1

ð2πÞ32p1

� � �
Z

d3pi

ð2πÞ32pi

×
Z

d3k2
ð2πÞ32k2

� � �
Z

d3kj
ð2πÞ32kj

× ð2πÞ4δð4ÞðP0
1 � � � þ P0

m þ K0
1 � � � þ K0

n − P1 � � � − Pi − K � � � − KjÞ; ð8Þ

where we use capital letters to denote four-vectors. For
further use, we introduce the shorthand notation:

Z
r
≔

Sr
4k

Z
dΩr jMrj2: ð9Þ

We have written Eqs. (5), (6), (7), and (8) in a rather generic
form which includes all possible processes. In our specific
model of a massless complex scalar field, 1 ↔ 2 processes
are only allowed in the collinear limit, i.e., when the three-
momenta of all three particles are exactly parallel. How-
ever, in this case, the thermal and vacuum masses of the
scalars have to be taken into account, which leads to the fact
that 1 ↔ 2 graviton production processes are not even
allowed in the collinear limit. The first kinematically
allowed processes for graviton production are 2 → 2 and
2 ↔ 3 processes, which have a lowest order matrix element
squared of Oðκ4Þ and Oðλ2κ2Þ, respectively.
We are interested in tracking the evolution of fh under

the assumption that it starts from an initially vanishing
value in a bath of equilibrated scalars.1 In our stated freeze-
in scenario, we further assume that throughout the entire
evolution fh ≪ 1 and jnB − fϕj ≪ 1, where nB is the
Bose–Einstein distribution nBðkÞ≡ 1=ðek=T − 1Þ. We can
thus expand the distribution functions up to fourth order in
λ and κ:

fϕðkÞ ¼ nBðkÞ þ fð2;2Þϕ ðkÞ; ð10Þ

fhðkÞ ¼ 0þ fð2;2Þh ðkÞ þ fð0;4Þh ðkÞ; ð11Þ

where the superscript stands for the order of λ and κ that
is considered, i.e., OðλiκjÞ ¼ ði; jÞ. Note that in our
expansion of the distribution functions, we have also
implicitly expanded the matrix element squared. As κ is

dimensionful, the expansion in κ ∼ 1=mp has to be under-
stood as an expansion in Tκ, the corresponding dimension-
less quantity. The zeroth order term of fϕ is set to be nB,
and the zeroth order term of the fh distribution function is
zero. We have suppressed the time arguments in Eqs. (10)
and (11). Note that in the expansion, we treat λ and Tκ on
equal footing, and for the distribution functions, we have
only written out the nonvanishing terms up to fourth order.
Terms of Oðλnκ2Þ with n > 2 are also expected, which—
depending on the temperature and the value for λ—can be
larger than Oðκ4Þ. However, as we discuss later in this
section, these terms cannot in general be included in a
straightforward manner into the Boltzmann-like ansatz,
cf. Eqs. (5), (6), and (7).
In the following, we discuss based on three examples why

the terms shown in Eqs. (10) and (11) are the only nonzero

contributions. The evolution Eqs. (5) and (6) yield ḟð2;0Þh ¼ 0

since, in order to produce or annihilate a graviton, one has to

go at least to second order in κ. Furthermore, ḟð0;2Þh ¼
0 ¼ ḟð0;2Þϕ , since massless 1 ↔ 2 processes are kinemati-

cally forbidden. Finally, ḟð2;0Þϕ vanishes because of detailed
balance arguments. As an example, consider the two termsR ð2;0Þ
ϕϕ→ϕϕ nBnBð1 þ nBÞð1 þ nBðkÞÞ −

R ð2;0Þ
ϕϕ→ϕϕ nBðkÞnBð1 þ

nBÞð1 þ nBÞ that appear in ḟð2;0Þϕ . After a redefinition of
variables in the phase space integral, one can show that both
terms cancel each other. Similar arguments hold for the other

terms in ḟð2;0Þϕ such that overall ḟð2;0Þϕ ¼ 0. Note that if

ḟði;jÞ ¼ 0, then fði;jÞ ¼ 0 for all times for ði; jÞ ≠ ð0; 0Þ,
which follows from the initial conditions: fhðt ¼ 0Þ ¼ 0

and fϕðt ¼ 0Þ ¼ nB. In complete analogy to the discussed
examples, one can show with kinematic and detailed balance
arguments that the other terms that are not shown in
Eqs. (10) and (11) also vanish.
Next we discuss the nonzero fourth order terms for the

graviton distribution function. The ḟð2;2Þh rate is nonzero,
and it is given by

1Although we consider the case of an initial vanishing
distribution function of gravitons, our framework is more generic,
as it is valid as long as fh ≪ 1.
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ḟð2;2Þh ¼
Z ð2;2Þ

ϕϕ→ϕϕh
nBnBð1þ nBÞð1þ nBÞ þ � � � ; ð12Þ

where the dots stand for other processes of the same order,
e.g., ϕϕ†ϕ → ϕh. All possible processes are written down
in Sec. IV. In Fig. 2, we show the Feynman diagrams for
the single graviton production process ϕϕ → ϕϕh at
order Oðλ2κ2Þ.
The contributions to ḟh at order Oðκ4Þ are sourced by

processes that have two gravitons in the final state. These
processes can be relevant in high-temperature early
Universe scenarios since the dimensionless expansion
parameter is T=mp, which can be relatively large if the
temperature is close to the Planck mass. The explicit form

of ḟð0;4Þh is

ḟð0;4Þh ¼
Z ð0;4Þ

ϕ†ϕ→hh
nBnB: ð13Þ

Processes with a graviton in the initial state do not
contribute since the initial state graviton always comes
with a factor fh, which makes the whole term of higher
order. The same holds for final state 1þ fh amplification
factors. The corresponding Feynman diagrams that con-
tribute to two graviton production are shown in Fig. 3. In
Sec. IV, we calculate these diagrams.

In the following, we discuss how one could extend our
calculation of fh to higher orders. In particular, we point out
the limitations and challenges that one would face. The
evolution Eq. (5) for the graviton distribution function can
definitively be used without problems at lowest order in
perturbation theory; i.e., in our case, these are the 2 → 2 and
2 ↔ 3 processes that are of the order Oðκ4Þ and Oðλ2κ2Þ,
respectively. These lowest order terms have real corrections
and virtual corrections. Virtual corrections are loop cor-
rection, while real corrections come from tree-level proc-
esses with extra initial- or final-state particles. If they are
finite, the latter are easily incorporated into the Boltzmann
equation formalism, i.e., Eq. (7). Incorporating the former,
on the other hand, is not straightforward as the matrix
elements squared contain not only standard vacuum fluc-
tuations but also statistical fluctuations, which, in turn,
depend on the distribution functions themselves [45].
Furthermore, while real and renormalized virtual correc-
tions might separately be finite in a standalone scalar
theory, in more complex systems such as the scalar theory
coupled to gravity or gauge theories, they are in general not
finite, with infrared (IR) divergences canceling between
the two, as in the case of the Kinoshita–Lee–Nauenberg
theorem [46,47]. In conclusion, it is a challenging task to
incorporate higher order effects with the Boltzmann-like
approach since it is only possible to incorporate the finite
higher order effects.
Virtual gravitons arise already at order Oðκ4Þ in the

graviton distribution function, cf. Fig. 3. Quantum gravity
effects start to play a role at order Oðλ2κ4Þ since at this
order, diagrams with graviton loops exist. The three
diagrams that we show in Fig. 4 are of order Oðλ1κ1Þ,
Oðλ1κ3Þ and Oðλ1κ2Þ, respectively. The interference term
of the first two diagrams is of order Oðλ2κ4Þ and is the first
virtual correction involving loops of gravitons. Conversely,
the square of the third diagram is Oðλ2κ4Þ and is part of the
real corrections at that order. This further exemplifies the
challenge in going beyond leading order: The real correc-
tions can be dealt with in a Boltzmann form in a rather
straightforward way, while the virtual corrections cannot,
as their matrix element squared will depend in nontrivial
ways on the statistical factors—see Ref. [48] for a recent
work on this problem in a nongravitational setting.
In an alternative way, one could systematically study

quantum effects in kinetic theory from first principles using
the Wigner-function formalism. By performing an expan-
sion in ℏ of the Wigner function, one can in principle derive
quantum corrections to the classical Boltzmann equation,
see, e.g., Refs. [49–53]. The development of such quantum
kinetic theory is left for future studies.
Along the lines that we discussed before, we want to

mention that it is possible to calculate ḟðall;2Þh in a full
quantum picture. As shown in Ref. [27] for the specific case
of GWs and more generally in Ref. [54] for any state that is
feebly coupled to a thermal bath, the Boltzmann-equation

FIG. 3. Lowest order Feynman diagrams for the process
ϕ†ϕ → hh. The matrix element squared is of the order Oðκ4Þ.
There is one additional diagram that is not shown since it can be
obtained by crossing the final state gravitons in the second
diagram.

FIG. 2. Lowest order Feynman diagrams for the ϕϕ → ϕϕh
process. The matrix element squared is of the order Oðλ2κ2Þ. In
addition to the diagrams shown, there are two more diagrams that
can be obtained by crossing the final state graviton.
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based approach that we use here agrees, atOðλ2κ2Þ, with the
thermal-field-theoretical approach of production and equili-

bration rates. Namely, for GWs, one has ḟðall;2Þh ðkÞ ¼
ΓðkÞ½nBðkÞ − fðall;2Þh ðkÞ�, [26] where the production/equili-
bration rate ΓðkÞ is proportional to κ2 times the imaginary
part of the retarded two-point function of the T12 component
of the energy-momentum tensor of the equilibrium particles,
i.e., in our case, the scalars. This formalism defines the
single-graviton production rate to all orders in λ. Within this
formalism, higher orders in λ naturally incorporate both real
and virtual corrections, without the issues that would plague
direct attempts in the Boltzmann-like approach. However
note that, in principle, we do not want to go to higher orders
in λ but to higher orders in κ to identify quantum gravity
effects. The discussed thermal-field-theoretical approach is
not suited for this, and new strategies have to be developed
for a full quantum treatment of the graviton production rate.
Finally let us discuss backreaction effects, which can be

incorporated into the Boltzmann-like formalism. If we stay
at orderOðκ4Þ and go to nonzero order in λ, we can identify
backreaction effects. These appear at lowest order at
Oðκ4λ4Þ. The graviton production rate at this order contains
the following backreaction terms:

ḟð4;4Þh ðkÞ ¼
Z ð2;2Þ

ϕϕ→ϕϕh
fð2;2Þϕ nBð1þ nBÞð1þ nBÞ

þ
Z ð0;4Þ

ϕϕ†→hh
fð4;0Þϕ nB þ � � � ; ð14Þ

where the dots above stand for other terms that we have
omitted here. We call the terms in Eq. (14) backreaction
terms since the small corrections on top of the Bose

Einstein distribution, fð2;2Þϕ and fð0;4Þϕ , appear in the phase
space integral. Backreaction effects also appear in the
ḟϕ rate.
We further note that the RHS in Eqs. (12) and (13) are

time independent. Therefore, fð2;2Þh and fð0;4Þh are linear in

time, and the backreaction rates, i.e., ḟð4;4Þh , are linear in

time. From this follows that fð4;4Þh has a quadratic time
dependence.

IV. MATRIX ELEMENTS AND PHASE SPACE
INTEGRALS

In this section, we calculate the matrix elements squared
for graviton production at order Oðλ2κ2Þ and Oðκ4Þ. Let us
start with the Oðλ2κ2Þ component. As argued previously, it
arises from 2 → 3 and 3 → 2 processes. The corresponding
expressions for the distribution functions are

ḟ2→3
h ðkÞ ¼ 1

16k

Z
dΩ2→3

X
abcd

jMab
cdhðp0

1;p
0
2;p1;p2;kÞj2

×nBðp0
1ÞnBðp0

2Þ½1þnBðp1Þ�½1þnBðp2Þ�; ð15Þ

ḟ3→2
h ðkÞ ¼ 1

24k

Z
dΩ3→2

X
abcd

jMabc
dh ðp0

1;p
0
2;p

0
3;p1;kÞj2

× nBðp0
1ÞnBðp0

2ÞnBðp0
3Þ½1þ nBðp1Þ�; ð16Þ

ḟð2;2Þh ðkÞ ¼ ḟ2→3
h ðkÞ þ ḟ3→2

h ðkÞ; ð17Þ

where at order Oðλ2κ2Þ, there is no fh on the right-hand
side. The sums run over all abcd scalar and antiscalar
degrees of freedom and thus over all ab → cdh and abc →
dh processes, with h denoting the graviton. The quantities
jMab

cdhðp0
1;p

0
2;p1;p2;kÞj2 and jMabc

dh ðp0
1;p

0
2;p

0
1;p1;kÞj2

are the corresponding matrix elements squared summed
over the graviton polarizations. For k ∼ T, the contribution
of the thermal mass mϕT ¼ ffiffiffiffiffiffiffiffiffiffi

λ=12
p

T is suppressed, so the
external states can be considered massless. The prefactor
1=ð16kÞ is a combination of 1=ð2kÞ from the phase space
measure, 1=2 for the graviton polarization degeneracy, and
1=ð2!Þ2 for the symmetry factors for identical initial and
final state particles. In the cases where a ≠ b or c ≠ d, the
sum over abcd counts the process two times and com-
pensates for this factor. Similarly, 1=ð24kÞ is a combination
of 1=ð2kÞ from the phase space measure, 1=2 for the
graviton polarization degeneracy, and 1=ð3!Þ for the sym-
metry factors for identical initial state particles.
The phase spaces can be read off from Eq. (8). For the

matrix element squared, we used the automated pipeline
introduced in Ref. [27]. We first used FeynRules [55] to derive
Feynman rules for the Lagrangian in Eq. (3). Using the
appropriate interface [56], FeynRules generates a model file

FIG. 4. The interference of the left and center diagrams yields a term Oðλ2κ4Þ in the matrix element squared. The right diagram
denotes a real correction that is on the same order when it’s squared.
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for FeynArts [57]. This package and its companion FormCalc [58] were then used to generate, evaluate and square all amplitudes.
Tensor boson polarization sums had to be implemented following the method discussed in Ref. [27]. For ϕϕ† → ϕϕ†h, the
result is

jMϕϕ†

ϕϕ†h
ðp0

1;p
0
2;p1;p2;kÞj2 ¼

κ2λ2

2

� ðP0
1 · P

0
2Þ2

P0
1 · KP0

2 · K
þ ðP1 · P2Þ2
P1 · KP2 · K

−
ðP0

1 · P2Þ2
P0
1 · KP2 · K

−
ðP1 · P0

2Þ2
P1 · KP0

2 · K

−
ðP0

1 · P1Þ2
P0
1 · KP1 · K

−
ðP0

2 · P2Þ2
P0
2 · KP2 · K

− 2

�
: ð18Þ

Equation (18) arises fromdiagrams such as the ones in Fig. 2.
The four structures in the denominator, e.g., P0

1 · K, corre-
spond to the propagator of the virtual, intermediate scalar
connecting theϕϕh vertex with theϕ4 one. It is reassuring to
see that thismatrix element squared is finite evenwhenone of
the scalar products in the denominators vanishes. For
example, the term P0

1 · K can vanish either for p0
1 → 0 or

when p0
1 is parallel tok. In the former case, the powers ofp0

1

at the numerator immediately remove the divergence, and
similarly the phase space is free of endpoint divergences for
p0
1 → 0, even in the presence of Bose enhancement

(nBðp0
1 → 0Þ ≈ T=p0

1). In the collinear case, p0
1kk, one

can show that the sum of the divergent terms is finite.
Let us now discuss the terms that are obtained by

crossing. By crossing an initial state ϕ (ϕ†) to the final
state, one obtains a ϕ† (ϕ). Hence, one finds

jMϕϕ†

ϕϕ†h
ðp0

1;p
0
2;p1;p2;kÞj2 ¼ jMϕϕ

ϕϕhðp0
1;p

0
2;p1;p2;kÞj2

¼ jMϕ†ϕ†

ϕ†ϕ†h
ðp0

1;p
0
2;p1;p2;kÞj2:

ð19Þ

Furthermore, jMϕϕ†

ϕϕ†h
j2 is symmetric under permutations

within the initial and final states of the ϕ and ϕ†. Hence,
in the sum over abcd of Eq. (15), it is counted four
times, whereas the ϕ-only or ϕ†-only processes are
counted once.
The 3 → 2 matrix elements squared can be obtained by

crossing Eq. (18), too. For instance, if we cross the final-
state ϕ† with momentum P2 into an initial-state ϕ with
momentum P0

3, we have

jMϕϕ†ϕ
ϕh ðp0

1;p
0
2;p

0
3;p1;kÞj2 ¼

κ2λ2

2

� ðP0
1 · P

0
2Þ2

P0
1 · KP

0
2 · K

þ ðP0
1 · P

0
3Þ2

P0
1 · KP0

3 · K
þ ðP0

2 · P
0
3Þ2

P0
2 · KP

0
3 · K

−
ðP1 · P0

1Þ2
P1 · KP0

1 · K
−

ðP1 · P0
2Þ2

P1 · KP0
2 · K

−
ðP1 · P0

3Þ2
P1 · KP0

3 · K
− 2

�
: ð20Þ

By further crossing, one finds

jMϕ†ϕ†ϕ
ϕ†h

ðp0
1;p

0
2;p

0
3;p1;kÞj2 ¼ jMϕϕ†ϕ

ϕh ðp0
1;p

0
2;p

0
3;p1;kÞj2: ð21Þ

The processes with two ϕ and with two ϕ† in the initial state are counted three times each in the sum over abcd. Putting
everything together, we then find

ḟ2→3
h ðkÞ ¼ 3

8k

Z
dΩ2→3 jMϕϕ

ϕϕhðp0
1;p

0
2;p1;p2;kÞj2nBðp0

1ÞnBðp0
2Þ½1þ nBðp1Þ�½1þ nBðp2Þ�; ð22Þ

ḟ3→2
h ðkÞ ¼ 1

4k

Z
dΩ3→2 jMϕϕ†ϕ

ϕh ðp0
1;p

0
2;p

0
3;p1;kÞj2nBðp0

1ÞnBðp0
2ÞnBðp0

3Þ½1þ nBðp1Þ�: ð23Þ

Details on the seven-dimensional numerical integration of the phase space can be found in the Appendix.
The Oðκ4Þ component is sourced by 2 → 2 processes:

ḟð0;4Þh ðkÞ ¼ 1

8k

Z
dΩ2→2

X
ab

jMab
hhðp0

1;p
0
2;k;k2Þj2nBðp0

1ÞnBðp0
2Þ; ð24Þ
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where 1=ð8kÞ is the product of the 1=ð2kÞ from the Lorentz
phase space measure, a factor of 1=2 for the two polar-
izations of the graviton and a factor of 1=ð2!Þ for possible
identical initial state particles.
The matrix element squared arises from four diagrams.

Three of them are shown in Fig. 3, and the fourth comes
from the u-channel analog of the second diagram. We have
computed the matrix element squared by using the pre-
viously described FeynRules, FeynArts and FormCalc machinery:

jMϕϕ†

hh ðp0
1;p

0
2;k;k2Þj2 ¼

κ4

8

t2u2

s2
; ð25Þ

where s, t and u are the standard Mandelstam invariants.
Note that the matrix element squared can also be extracted
from Refs. [59,60]2 and we have checked that our results
agree. Accounting for a factor of 2 from the sum in Eq. (24)
yields:

ḟð0;4Þh ðkÞ ¼ 1

4k

Z
dΩ2→2jMϕϕ†

hh ðp0
1;p

0
2;k;k2Þj2

× nBðp0
1ÞnBðp0

2Þ: ð26Þ

We refer again to the Appendix for details on the reduction
of the phase space integration to a two-dimensional integral
that we evaluate numerically.
The production rates for ði; jÞ ¼ ð2; 2Þ and ði; jÞ ¼

ð0; 4Þ can be written in a compact form as

ḟði;jÞh ðkÞ ¼ 1

2k
T2

�
T
mp

�
j
λinB

�
k
T

�
ψ ði;jÞ

�
k
T

�
; ð27Þ

where we have defined dimensionless ψ functions and used
the convention that nBðxÞ ¼ 1=ðex − 1Þ if the argument of
nB is dimensionless. The ψ functions are shown in Fig. 5
for the 2 → 3 (dotted black) and 3 → 2 (dashed black)
processes. We also show the sum of the 2 → 3 and 3 → 2
processes, which is labeled as 2 ↔ 3 and shown as a red
dot-dashed line. The 2 → 2 processes are shown as a solid
blue line. Note that while the ψ function for the 2 ↔ 3
processes has only a relatively mild k=T dependence
around k=T ≃ 1, this is not the case for the 2 → 2
processes. In the Appendix, we have derived an asymptotic

form for ḟð0;4Þh , i.e., ψ ð0;4Þ in the limit k > T. We find

ψ ð0;4Þ ¼ 32=ð15πÞðk=TÞ2 for k > T which is in agreement
with Fig. 5. ψ ð2;2Þ and ψ ð0;4Þ differ in their functional form
due to the fact that the underlying phase space structure and
matrix elements are different for single and graviton pair
production. The single gravitons are produced in 2 ↔ 3
processes, while graviton pair production is a 2 → 2
process. In addition, the nonrenormalizable nature of
gravity leads to a matrix element squared for single
graviton production that is proportional to κ2 ∼ 1

m2
p
times

an expression with dimensions ðenergyÞ2. Similarly the
matrix element squared for graviton pair production is
proportional to κ4 ∼ 1

m4
p
times an expression with dimen-

sions ðenergyÞ4. In the case of graviton pair production, the
2 → 2 phase space integration for large k translates this into
a quadratic dependence on momentum, which explains the
form of ψ ð0;4Þ for large k.
As Fig. 5 shows, the 2 → 3 contribution to ḟð2;2Þh leads to

ḟð2;2Þh ∝ k−3 for k ≪ T, which implies a naively IR-diver-
gent contribution to the number density of gravitons
(ngw ∝

R
dkk2fh) and a finite but enhanced contribution

to the energy density ρgw ∝
R
dkk3fh from the IR domain

k ≪ T. This IR contribution is an artifact of treating the
external and intermediate scalar states as massless. If we
would include their thermal massmϕT , then such a behavior
would go away, as the matrix element would no longer
behave like 1=k2 at small k. Scalars have the nice property
that their thermal mass behaves like an ordinary local mass
term in the Lagrangian, unlike gauge fields and fermions.

FIG. 5. We plot the ψ functions that have been obtained by
numerically integrating the phase space integrals. The results are
shown for the 2 → 3, 3 → 2 and 2 → 2 processes, respectively.
The sum of the 2 → 3 and 3 → 2 contributions is denoted as
2 ↔ 3. 2 ↔ 3 processes come from single graviton production
processes that have a lowest order matrix element squared of the
order Oðλ2κ2Þ ¼ ð2; 2Þ. 2 → 2 processes arise in graviton pair
production processes with a lowest order matrix element squared
of the order Oðκ4Þ.

2These papers show that the amplitudes for graviton produc-
tion factorize into simple products of photon amplitudes times
kinematic factors. The massless limit of Eq. (21) of Ref. [59]
gives the ϕγ → ϕγ scalar Compton amplitudes in the helicity
basis. Equation (62) of the same paper then gives the matrix
elements squared as the fourth power of these amplitudes,
multiplied by the second power of the kinematic factor F, given
in Eq. (61). The matrix elements squared for the two polar-
izations are identical and thus trivially summed. Finally, crossing
symmetry relates the ϕh → ϕh matrix element squared to the
ϕ†ϕ → hh matrix element squared.
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This in turn would make thermal mass resummation
relatively straightforward. For this paper, we limit ourselves
to unresummed (massless) results and consider the result
for ḟh to be a proper leading order determination in the
regime k≳mϕT ¼ ffiffiffiffiffiffiffiffiffiffi

λ=12
p

T. Furthermore, for smaller k,
k ≪ λ2T, the quasiparticle description breaks down com-
pletely, and gravitational waves are sourced from hydro-
dynamic fluctuations [26].

V. GRAVITATIONAL WAVE SPECTRUM

In this section, we embed the graviton production rate
into cosmological evolution. Our main assumption is that,
after the hot big bang, a thermal plasma of ϕ particles with
temperature Tmax is present. Throughout the expansion of
the Universe, the thermal plasma produces GWs. From the
definition of Eq. (4), it follows that the GW differential
energy density is dρgwðt; kÞ ¼ 2kfhðt; kÞ d3k

ð2πÞ3, where a flat
space-time metric has been assumed, and the factor of 2
takes the two polarization states into account which con-
tribute to the energy density. We can rewrite the equation for

the energy density as dρgw
dt d ln k ¼ k4

π2
ḟh. Generalizing to an

expanding Universe, the GWenergy density evolves as [26]

ð∂t þ 4HÞρgwðtÞ ¼
Z

d3k
ð2πÞ3 Rðt; kÞ; ð28Þ

where H is the Hubble parameter, and we have defined
Rðt; kÞ≡ 2kḟhðt; kÞ. Note that for the Oðλ2κ2Þ and Oðκ4Þ
contributions, which we shall discuss here, ḟh has no
explicit time dependence. We will therefore treat ḟh without
explicit time dependence in the following derivation. Now
that we consider a thermal plasma in an expanding
Universe, the temperature decreases over time. Therefore,
we have an implicit time/temperature dependence.
We further note that, in a radiation-dominated Universe,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρðTÞ

3

r
1

mp
; ð29Þ

with ρðTÞ ¼ g�ρðTÞπ2T4=30, and g�ρðTÞ ¼ 2 is the effec-
tive number of energy density degrees of freedom. The
scalars remain in thermal equilibrium3 as long as their
interaction rate, which is on the order λ2T, is at least as fast
as the Hubble rate H ∼ T2=mp. Therefore, we obtain the
equilibrium condition, λ2 ≳ T=mp, which has to be under-
stood as an order of magnitude estimate.

We can integrate Eq. (28):

ρgwðt1Þ
s4=3ðt1Þ

−
ρgwðt0Þ
s4=3ðt0Þ

¼
Z

t1

t0

dt
1

s4=3ðtÞ
Z

d3k
ð2πÞ3RðTðtÞ; kÞ;

ð30Þ

where we have used that the entropy density s fulfills
ṡþ 3Hs ¼ 0, and we have made the temperature/time
dependence explicit. We assume that at the beginning of
the GW production, no GWs are present, i.e., ρgwðt0Þ ¼ 0.
At t0, the thermal plasma was first in thermal equilibrium
and had its maximum temperature Tmax. The time t1 is the
time when the mass of the scalar field cannot be neglected
anymore. The temperature corresponding to the time t1 is
referred to as Tϕ in the following. In Eq. (30), we can only
integrate to t1 since the production rates that we have
calculated are only valid for temperatures above Tϕ. The
time integral in Eq. (30) can be transformed into an integral
over the temperature by using the relation [61]:

dT
dt

¼ −

ffiffiffiffiffiffiffi
4π3

45

r
g�ρðTÞ12

g�sðTÞ
g�cðTÞ

T3

mp
; ð31Þ

where g�s and g�c are the effective degrees of freedom
for the entropy density and heat capacity, which are
defined as sðTÞ≡ g�sðTÞ 2π245

T3 and cðTÞ≡ g�cðTÞ 2π215
T3.

In the following, we use the assumption of isotropy under
which we can simplify the d3k integral:

R
d3kRðT; kÞ ¼

4π
R
dk k2RðT; kÞ ¼ 4π

R
d lnðkÞk3RðT; kÞ. From Eq. (30),

we can then read off the GW energy density per loga-
rithmic momentum interval at Tϕ, normalized to the total

energy density: Ωgw ¼ 1
ρ
dρgw
d ln k. Redshifting all correspond-

ing quantities to today [28] yields

h20ΩgwðfgÞ ¼
15

ffiffiffiffiffi
45

p

4π11=2
mpg�sðT todayÞ1=3h20Ωγ

�
2πfg
T today

�
3

×
Z

Tmax

Tϕ

dT
1

T4

g�cðTÞ
g�ρðTÞ1=2g�sðTÞ4=3

× R

�
T; T

2πfg
T today

�
g�sðTÞ

g�sðT todayÞ
�

1=3
�
; ð32Þ

where fg is the current day GW frequency, h20Ωγ ¼
2.473 × 10−5 is the present fractional photon energy
density, h20 a factor that eliminates the experimental
uncertainty that is coming from measurements of the
Hubble constant, T today ¼ 2.7254 K is the current day
temperature [62] and g�sðT todayÞ ¼ 3.931 are the effective
entropy degrees of freedom today [63].
With the parametric form of ḟh from Eq. (27), we can

write R as
3By this, we mean that the zeroth order term of fϕ is a massless

Bose–Einstein distribution with the current temperature.
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RðT; kÞ ¼ 2kḟhðT; kÞ

¼ T2nB

�
k
T

�
T2

m2
p

�
λ2ψ ð2;2Þ

�
k
T

�

þ T2

m2
p
ψ ð0;4Þ

�
k
T

�
þ � � �

�
; ð33Þ

where the dots denote higher order terms. We plug Eq. (33)
in Eq. (32) and, in order to get an analytical result, we
approximate g�sðTÞ ¼ g�ρðTÞ ¼ g�cðTÞ ¼ g�ðTmaxÞ in the
region of temperatures above Tϕ. We thus obtain

h20ΩgwðfgÞ ¼ 5.54 × 10−12
�

fg
1010 Hz

�
3

×

�
2

g�ðTmaxÞ
�5

6

�
Tmax=mp

10−3

�
nBðymaxÞ

×

�
λ2ψ ð2;2ÞðymaxÞ þ

1

3

�
Tmax

mp

�
2

× ψ ð0;4ÞðymaxÞ þ � � �
�
; ð34Þ

where we have assumed Tmax ≫ Tϕ, and we have defined

ymax ≡ 2πfg
T today

ð g�sðTmaxÞ
g�sðT todayÞÞ

1=3 ¼ 0.14ð fg
1010 HzÞð

g�sðTmaxÞ
2

Þ1=3. Note

that models that can describe the entire thermal history
of the early Universe have g�ðTmaxÞ > g�sðT todayÞ. Wework
with a model that includes only one complex scalar field,
and therefore, g�ðTmaxÞ < g�sðT todayÞ. Nonetheless the

features in the GW spectrum that we work out here will
hold in general even with a more realistic model that can
describe the thermal history of the Universe consistently.
We comment on this aspect further below. The terms that
are represented by the dots in Eq. (34) include processes
which encode quantum gravity effects, cf. Fig. 4. These
effects arise at the order Oðλ2κ4Þ and would appear as a
term ψ ð2;4Þλ2ðTmax=mpÞ2 in the parantheses in the second
line in Eq. (34).
The single graviton production processes have a matrix

element squared of the order Oðλ2κ2Þ, i.e., it is propor-
tional to 1=m2

p. Since the GW production happens on a
timescale that is comparable with mp, the single graviton
production processes are proportional to Tmax=mp in the
GW spectrum. A similar argument applies to the contri-
bution from the graviton pair production. The matrix
element squared is of the order Oðκ4Þ, i.e., proportional
to 1=m4

p, and hence, the contribution to the GW spectrum is
of the order ðTmax=mpÞ3. We refer to this production
mechanism as GW freeze-in, since the GWs are produced
from the thermal plasma throughout the expansion of the
Universe. Note that while the GW production mechanism
is conceptually very similar to the production of dark
matter from the thermal plasma, the final GW spectrum is
very ultraviolet sensitive in the sense that it depends on the
maximum temperature.
In Fig. 6, we plot the GW spectrum coming from single

graviton production processes (red dot-dashed lines) and
from graviton pair production processes (blue dashed

FIG. 6. Gravitational wave spectrum with respect to the present day GW frequency. The single graviton production processes that are
of orderOðλ2κ2Þ ¼ ð2; 2Þ are shown as a red dot-dashed line. The graviton pair production processes are shown as a dashed blue line and
are of order Oðκ4Þ ¼ ð0; 4Þ. The total GW spectrum is shown as a solid black line. On the left, we show a scenario where the maximum
temperature is limited to 10−3 mp. In the right figure, we set the maximum temperature to Tmax ¼ 10−2 mp. In this case, the graviton pair
production processes yield an even larger contribution compared to the single graviton production processes. The GW spectra are
calculated for a complex scalar model with g�ðTmaxÞ ¼ 2.
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lines). The sum of both contributions, i.e., the total GW
spectrum, is shown as a black solid line. The quartic
coupling is always set to λ ¼ 10−1.4 When we evaluate the
GW spectrum, we also have to evaluate the ψ functions.
Since these functions have only been calculated reliably for
arguments that are larger than

ffiffiffi
λ

p ¼ 0.31, cf. Sec. IV, we
only show the GW spectrum in the corresponding fre-
quency regime. Note that the GW spectrum from the single
graviton production mimics to a good approximation a
black body spectrum since the function ψ ð2;2Þ is very flat in
the regime T=mp >

ffiffiffi
λ

p
. The graviton pair production

contribution has a significantly different shape since the
function ψ ð0;4Þ is not constant in the frequency interval of
interest.
Figure 6 (left) shows a scenario where the maximum

temperature is set to Tmax=mp ¼ 10−3. In this case, the
single graviton production contribution dominates over the
graviton pair production contribution. The total spectrum
has therefore mostly the form of the single graviton
production spectrum.
Figure 6 (right) shows the GW spectrum for a slightly

larger maximum temperature, Tmax=mp ¼ 10−2, which
requires a noninflationary scenario. Note that the chosen
maximum temperature is consistent with the equilibrium
condition for the scalar fields, i.e., λ2 ≳ T=mp. In the case at
hand, both contributions are parametrically equally impor-
tant, and around the peak frequency, the graviton pair
production contribution is even substantially larger than
the single graviton production contribution. This can be
seen explicitly from Eq. (34) by comparing the two terms in
the second line. The first term corresponds to single graviton
production processes, while the second one describes the
contribution due to graviton pair production. Comparing
both terms, we find as an order of magnitude estimate that
the contribution from graviton pair production processes are
equally important or even larger than the contribution from
the single graviton production processes if 10Tmax=mp ≳ λ.
Therefore, the relevance of the graviton pair production
processes depends crucially on the size of the coupling and
the maximum temperature. The GW spectra associated with
single graviton and graviton pair production processes peak
at slightly different frequencies and have a distinct func-
tional form. As a result, the total spectrum takes a very
characteristic form that is substantially different from the
single graviton production spectrum, i.e., an approximate
black body spectrum.
In the following, we derive analytic expressions for the

peak frequencies of the single graviton and graviton pair
production GW spectra. For the single graviton contribu-
tion, we find from Eq. (34) that the GW spectrum peaks at

2 × 1011 Hzð2=g�sðTmaxÞÞ1=3, where we have assumed that
ψ ð2;2Þ ¼ const, which is a good approximation in the
frequency interval of interest. The peak frequency of the
graviton pair production curve lies at a slightly higher
frequency: 3.5 × 1011 Hzð2=g�sðTmaxÞÞ1=3, where we have
used the asymptotic form ψ ð0;4Þ ¼ 32=ð15πÞðk=TÞ2 that
was derived in the Appendix.
The higher order terms that are depicted by the dots in

Eq. (34) are suppressed further by powers of Tmax=mp and λ.
For values of Tmax=mp and λ that are relatively close to unity,
one has to check in detail that the higher order ψ functions
are not larger than the leading order ψ functions such that the
suppression from the additional powers of Tmax=mp and λ is
not spoiled. The values of Tmax and λ that we consider in
Fig. 6 are much smaller than unity, and therefore, we do not
expect such a scenario to happen. For example, the ψ ð0;6Þ
function would have to be 4 orders of magnitude larger than
the ψ ð0;4Þ function for Tmax=mp ¼ 10−2. The higher order ψ
functions will be either phase space suppressed or have the
same phase space as the leading order processes. In both
cases, we do not expect an enhancement of the higher order
ψ functions by orders of magnitude.
The maximum of the CGMB spectrum is bounded from

above, h20Ωgw ≲ 10−6 [28], due to constraints on the addi-
tionally allowed amount of dark radiation. Both scenarios
that are shown in Fig. 6 do not saturate this bound and are
therefore not excluded. In the complex scalar model, the
dark radiation bound is saturated for Tmax=mp ≃ 0.5. Note
that in this case, the main contribution to the GW spectrum
is coming from graviton pair production processes, which
illustrates the importance to include these processes at high
temperatures. The SM predictions for the GW production
from the thermal plasma includes currently only single
graviton production processes, cf. Refs. [26–28], and yields
h20Ωgw ¼ 5 × 10−7 for Tmax ¼ mp. Therefore, adding grav-
iton pair production processes to the SM calculation can
already lead to a violation of the dark radiation bound for
Tmax < mp because the current prediction, which includes
only single graviton production processes, is already very
close to the dark radiation bound. In conclusion, this might
then be used to constrain the maximum temperature of the
Universe. We plan to work out the details in a follow-up
study where we will also address the aspect of thermal
equilibrium at ultra high temperatures in the SM and
beyond the SM theories.

VI. CONCLUSIONS AND OUTLOOK

The thermal plasma in the early Universe produced a
guaranteed stochastic GW background through thermal
fluctuations. At each time, the emitted GW spectrum peaks
at the respective temperature. Due to the temperature-
redshift relation, the peak frequencies of the GW spectra
are all redshifted to the same frequency today and therefore
add up. Conceptually, the GW production from the thermal

4In a more realistic model that can describe the entire history of
our Universe, one would have to use renormalization group
equations to run the parameters up to very high energy scales.
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plasma has many similarities with the so-called dark matter
freeze-in production from the thermal plasma. The GWs are
produced out of equilibrium, and their distribution function
is small at all times, fh ≪ 1. Furthermore, the fh distri-
bution function evolves much slower than the Hubble rate.
We therefore dubbed the GW production from the thermal
plasma GW freeze-in production. The GW freeze-in sce-
nario is ultraviolet dominated in the sense that it depends on
the maximum temperature of the Universe, as expected
from a nonrenormalizable coupling.
In this paper, we use a Boltzmann-like formalism to study

the microscopic particle collision processes that contribute
to the CGMB spectrum. We have done all calculations in a
model with a complex scalar field and quartic self-
interaction. Our basic assumption is that after the hot big
bang, a plasma of scalars with temperature Tmax is present,
and this plasma produced the CGMB spectrum. First, we
considered the contribution of single graviton production
processes to the CGMB spectrum. In a scalar theory with
quartic interaction, single graviton production processes are
2 ↔ 3 processes, which have not been calculated before.
Our calculation is motivated by the fact that a quartic
coupling exists in the Higgs sector of the SM and in many
BSM theories. The second class of processes that we
investigate are graviton pair production processes. These
are 2 → 2 processes and have not been considered before in
the context of GWs from the thermal plasma. We show
that their contribution to the CGMB spectrum can be larger
than the contribution from the single graviton production
processes. As an order of magnitude estimate, graviton pair
production processes dominate the GW spectrum if
10Tmax=mp ≳ λ. Note however that the maximum temper-
ature is also bounded from above by an equilibrium require-
ment for the scalar particles: λ2 ≳ Tmax=mp, which has to be
seen as a parametric estimate. Therefore, the degree towhich
graviton pair production processes contribute significantly
to the CGMB spectrum depends on the values of the
coupling coefficient and the maximum temperature. As
an example, we show the two different scenarios in Fig. 6.
On the left, single graviton production processes dominate
(Tmax=mp ¼ 10−3 and λ ¼ 10−1). When increasing Tmax by
one order of magnitude (Fig. 6, right), graviton pair
production processes yield a significant contribution to
the total GW spectrum.
The single graviton and graviton pair production proc-

esses are the lowest order contributions, which can easily
be incorporated into our Boltzmann-like formalism. We
have also discussed the first steps and problems that would
arise if one would add real and virtual quantum gravity
corrections to the presented results. While finite real
corrections can be incorporated in our formalism, virtual
corrections depend on the distribution functions them-
selves, and this complicates their inclusion into the
Boltzmann-like approach that we use here. A possible

future direction is to derive a quantum Boltzmann equation
from the Wigner function by performing a systematic ℏ
expansion. This would allow one to explicitly identify the
quantum corrections.
The results that we have worked out for a scalar model

are qualitatively also valid for more general theories. In this
case, the coupling coefficient λ would have to be replaced
with the heat bath couplings in the more general theory,
which we generically refer to as g. Then the contribution
from graviton pair production processes to the GW spec-
trum dominates over the single graviton contribution if
X × Tmax=mp ≳ g, where X is a model dependent constant.
Avalue X < 10 in the SM would indicate that graviton pair
production dominates at higher temperatures compared to
our scalar model. In a follow-up study, we will answer this
point with a full SM and BSM calculation. Confronting the
graviton pair production calculation in the SM and BSM
theories with existing dark radiation constrains can there-
fore already lead to constraints on Tmax. Constraints on
Tmax can be used to test different models of our Universe,
cf. Ref. [28]. For example, nonstandard inflationary cos-
mological models would be required if a Tmax ≳ 10−3mp

would be inferred from the GW spectrum. Furthermore, the
CGMB can be used to constrain nonstandard cosmological
histories, cf. Ref. [64]. The authors of Ref. [64] have only
considered single graviton production processes. It would
be interesting to add graviton pair production processes to
their calculation since it could lead to stronger constraints
on nonstandard cosmological histories.
A detection of the CGMB with Earth-based detectors

will be challenging, cf. Ref. [65]; however, there exist
detector proposals with sensitivities comparable to the dark
radiation bound, cf. Ref. [66]. Future experimental work
will have to show if the proposed detectors can be realized
and if their foreseen sensitivity can even be improved. Our
results motivate further work on high-frequency GW
detection since a detection of the CGMB in the future
would pave the way to probe our understanding of particle
physics and cosmology at ultra high energies.
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APPENDIX: DETAILS ON THE EVALUATION OF THE PHASE SPACE INTEGRALS

In this appendix, we provide some extra details on the phase space integrals of Sec. IV. Let us start from Eqs. (22)
and (23). In order to carry out the integrations numerically, we can rewrite the phase space as

Z
dΩ2→3 ¼ −

1

16ð2πÞ7
Z

∞

0

dp0
1p

0
1

Z
∞

0

dp0
2p

0
2

Z
1

−1
dcp0

1

Z
1

−1
dcp0

2

Z
1
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dcp1

Z
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0

dϕ1

Z
2π

0

dϕ2

p2
1θðp1Þθðp0

1 þ p0
2 − p1 − kÞ

P1 · P2

;

ðA1Þ

where k is chosen to point in the z direction, and the c variables are the cosines of the angles between k and the respective
momenta: cp ≡ cos θk;p. The ϕ’s are two azimuthal angles, where the third one was integrated out. p1 is fixed to

p1 ¼ ½P0
1 · P

0
2 − P0

1 · K − P0
2 · K�½kð1 − cp1

Þ − p0
1ð1 − ðcp0

1
cp1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
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and P0
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i
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1 · P
0
2 ¼ p0

1p
0
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1
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2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
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q
cosðϕ1Þ − 1Þ. Similarly, P0

i · P1 ¼ p0
ip1ðcp0

i
cp1
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i
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Þ
q

cosðδi1ϕ1 þ ϕ2Þ − 1Þ. The other inner products, including P1 · P2, follow from P2 ¼ P0
1þ

P0
2 − K − P1. The 3 → 2 analog of Eq. (A1) follows from simple crossings. These seven-dimensional integrals are

carried out numerically using the Monte Carlo algorithm Vegas+ [67]. The results are shown in Fig. 5.
Let us now consider the Oðκ4Þ contribution. Equation (26) can be evaluated using the standard “s-channel”

parametrization of Refs. [68,69]. We can arrange the phase space integral as

Z
dΩ2→2 ¼

1

ð4πÞ3k
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k
dq0

Z
q0

j2k−q0j
dq
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where we defined q� ≡ ðq0 � qÞ=2, and we chose q0; q such that p0
1 ¼ q0 − p0

2 and p0
1 þ p0

2 ¼ q. ϕp0
2
k is the azimuthal

angle between the p0
2;q and k, q planes. This corresponds to

s ¼ q20 − q2; t ¼ −
s
2q2

�
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We can perform the angular average h…iϕp0
2
k
≡ R

2π
0

dϕp0
2
k

2π … to get rid of odd powers of the cosine and find

ḟð0;4Þh ¼ κ4

32k
1
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∞
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dq0
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��
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We have used the identity nBðp0
2ÞnBðq0 − p0

2Þ ¼ nBðq0Þ½1þ nBðp0
2Þ þ nBðq0 − p0

2Þ�, which is useful for treating the p0
2

integration analytically.5 Carrying out the integration, we find

5The matrix element squared depends on p0
2 as function of q

0 − 2p0
2. It thus has a reflection symmetry around p0

2 ¼ q0=2, which is the
midpoint of the p0

2 integration range. We can then reflect the nBðq0 − p0
2Þ into an nBðp0

2Þ leaving the matrix element unchanged, further
simplifying the integration.
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ḟð0;4Þh ¼ κ4
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Note that the result of the integration is positive, though this might not appear obvious from this expression. For large
momenta, k ≫ T, Eq. (A6) asymptotes to

ḟð0;4Þh jk≫T ¼ κ4T4

15ð4πÞ3 e
−k=T

�
kþO

�
1

k2

��
: ðA7Þ

This result can be extracted by noting that in this asymptotic regime, nBðq0Þ ≈ e−q
0=T . This sharp exponential cutoff ensures

that only the q0 ≈ k and 2k − q0 < q < q0 (q ≈ k) ranges dominate the integral. Expanding the integrand for q0 − k ≪ k
and q − k ≪ k and then performing the integral, we recover Eq. (A7). We note that the form given in Eq. (A7), while valid
for k ≫ T, approximates the numerical results shown in Fig. 5 at better than 30% accuracy for k > T.
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