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Javier de Cruz Pérez† and Antonio L. Maroto ‡

Departamento de Física Teórica and Instituto de Física de Partículas y del Cosmos (IPARCOS-UCM),
Universidad Complutense de Madrid, 28040 Madrid, Spain

(Received 4 December 2023; accepted 22 December 2023; published 31 January 2024)

In this work we present a unified model for the cosmological dark sector. The theory is based on a simple
minimally coupled scalar field whose action only contains a canonical kinetic term and is invariant under
transverse diffeomorphisms (TDiff). The model has the same number of free parameters as lambda cold
dark matter (ΛCDM). We confront the predictions of the model at the background level with data from
Planck 2018 CMB distance priors, Pantheonþ and SH0ES SNIa distance moduli, BAO data points from
6dFGS, BOSS, eBOSS and DES and measurements of the Hubble parameter from cosmic chronometers.
The model provides excellent results in the joint fit analysis, showing strong and very strong evidence
compared to ΛCDM in the Bayesian evidence and deviance information criterion (DIC) respectively. We
also show that the Hubble tension between Planck 2018 and SH0ES measurements can be alleviated in the
unified TDiff model although further analysis is still needed.
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I. INTRODUCTION

General relativity’s (GR) symmetry group is the group of
diffeomorphisms (Diff). This symmetry arises as a conse-
quence of Einstein’s equivalence principle (EEP) which
states geodesic motion, Lorentz invariance and local
position invariance (LPI) [1,2]; which in turn translates
into the principle of general covariance. This principle
essentially means that a physical equation is generally
covariant, i.e., it remains in the same form under a general
coordinate transformation [2]. When performing an infini-
tesimal diffeomorphism generated by the vector field ξμðxÞ

x̂μ ¼ xμ þ ξμðxÞ; ð1Þ

the metric tensor transforms with the Lie derivative, i.e.,
δgμν ¼ Lξgμν ¼ −2∇ðμξνÞ. Consider now the action

S ¼ SEH½gμν� þ Sm½gμν;ψ i�; ð2Þ

where

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p
R; ð3Þ

is the Einstein-Hilbert action, g≡ jdetðgμνÞj and Sm½gμν;ψ i�
is the matter action that depends on the metric tensor as
well as on the matter fields ψ i. Diffeomorphism invariance
implies δξS ¼ 0, which, in turn, implies the conservation of
the energy-momentum tensor over solutions of the equa-
tions of motion of the matter fields [3],

∇μTμν ¼ 0: ð4Þ

The purpose of this work is to study the breaking of this
symmetry down to transverse diffeomorphisms (TDiff) in
the matter sector. In 1919 Einstein himself was the first to
introduce unimodular gravity [4], where the determinant of
the metric tensor is subject to the condition g ¼ 1. As a
result, the dynamical equations are the traceless Einstein’s
equations and the symmetry group is TDiff, i.e. diffeo-
morphisms subject to the condition

∂μξ
μ ¼ 0: ð5Þ

The main appeal of this theory is that a cosmological
constant-type term does not gravitate which could provide a
solution to the vacuum-energy problem [5]. Note that in
these theories the symmetry is broken in the geometrical
sector, however more recently the effects of Diff breaking
in the matter sector have been explored in [6–8] for simple
scalar field theories. There, it is shown that these models
behave as ordinary Diff invariant theories in the geometric
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optics approximation, i.e., for modes well inside the
Hubble radius, where we recover the standard propagation
properties of free particles along geodesics, together with
the standard scaling of energy density for relativistic and
nonrelativistic particles. However for long-wavelength
modes, with frequencies smaller than the Hubble param-
eter, the behavior can be drastically different from that of
the Diff models, thus opening a new avenue for cosmo-
logical model building.
Particularly simple cases are the minimally coupled TDiff

scalar theories with purely kinetic terms. These models are
modifications of the Diff scalar theories parametrized by a
single function of the metric determinant fðgÞ. They have
been seen to be equivalent to perfect adiabatic fluids with an
effective equation of state given by [7,8]

ωϕ ¼ F
1 − F

; ð6Þ

with

F ¼ d ln f
d ln g

; ð7Þ

In particular, for simple power law models fðgÞ ¼ gα,
the equation of state is just a constant given by

ωϕ ¼ α

1 − α
; ð8Þ

which as expected, recovers the standard stiff fluid behavior
ωϕ ¼ 1 in the Diff case with α ¼ 1=2. However, other
choices are possible. Thus models with α ¼ 0would behave
as nonrelativistic matter fluid, not only at the background
level but also for perturbations, since in this simple case
c2s ¼ ωϕ ¼ 0 (being cs the speed of sound) providing an
extremely simple model for dark matter based on a purely
kinetic scalar field.
The simplicity of these results suggests the possibility of

using these kinetic TDiff models for a unified description
of the dark sector with a single field. With that purpose,
appropriate fðgÞ functions which allow an interpolation
between a dark matter behavior at early times and a dark
energy behavior at late times should be identified.
The first unification models considered in the literature

were based on the so called generalized Chaplygin gas [9].
These models are based on a single perfect fluid description
of the dark sector with an equation of state given by

p ¼ −A
1

ρα
; ð9Þ

with A a positive constant so that for α > 0 the behavior is
the expected for the dark sector. As a matter of fact, at the
background level, the cosmological evolution in this model
allows to reduce the H0 tension to the 1σ level [10].

The model contains one extra parameter compared to
ΛCDM. When comparing the matter power spectrum with
LSS data a stringent limit on the extra parameter is
introduced, so that jαj≲ 10−5, [11]. This constraint implies
that the model effectively behaves as ΛCDM and the
solution of the tension is no longer achieved. Imperfect
fluid models with bulk viscosity have also been considered
for an unified description in [12].
Unified models built out of a single scalar field have also

been proposed in recent years. Thus, certain k-essence
models with a Lagrangian density

L ¼ GðXÞ; ð10Þ

with X ¼ 1
2
gμν∂μϕ∂νϕ and GðXÞ a quadratic function of X

have been proposed in [13]. The model avoids the problem
with the matter power spectrum measurements, although
the price to pay in this case is the inclusion of four extra
parameters as compared to ΛCDM.
In this work we will start the analysis of the possibilities

of purely kinetic TDiff theories for the construction of
viable unification models. We will limit ourselves to the
background evolution and the comparison with observables
related to the expansion history, in particular Hubble
diagrams from SNIa Pantheon+&SH0ES, cosmic chro-
nometers, BAO measurements and CMB distance priors.
This paper is organized as follows: in Sec. II we present

some general aspects of TDiff invariant actions for scalar
fields, we derive the equations of motion for the field and
the consistency condition that ensures conservation of the
energy-momentum tensor for TDiff theories. In Sec. III we
build the unified model for the dark sector, where we find
Einstein’s equations for our universe, which take the simple
usual form of the Friedmann and acceleration equations.
We give the expression for the energy density of the scalar
field, treated as a perfect fluid and present the Hubble rates
of the theory. In Sec. IV we present the cosmological data
we used to build the likelihood to find the constraints on the
parameters of the model. Section V is devoted to present
and discuss the results of the fitting process and in Sec. VI
we present our conclusions. Finally, in the Appendix we
show the basic derivation of the TDiff invariant action for a
scalar field.
Throughout this manuscript we will use the metric

signature ðþ;−;−;−Þ and natural units ℏ ¼ c ¼ 1.1

II. TDiff INVARIANT ACTION
FOR A SCALAR FIELD

Let us start by writing the TDiff invariant action for a
simple minimally coupled scalar field in the kinetic regime
(see the Appendix for details)

1The Hubble parameter H0 will be expressed sometimes in
units of km/s/Mpc to ease the comparison with other results in the
literature where this convention is commonly used.
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S ¼ SEH þ Sϕ

¼ −
1

16πG

Z
d4x

ffiffiffi
g

p
Rþ

Z
d4xfðgÞ 1

2
gμν∂μϕ∂νϕ; ð11Þ

where fðgÞ is a positive function of the metric determinant.
This guarantees a stable theory which respects the weak
equivalence principle in the geometric optics approximation
[7]. The gravitational sector is described by the standard
Einstein-Hilbert action so that only the scalar sector breaks
Diff invariance down to TDiff.2 Notice that the standard Diff
invariant theory is recovered in the case fðgÞ ¼ ffiffiffi

g
p

.

A. TDiff models in cosmological backgrounds

We now would like to specify the geometry in order to
build cosmological models for homogeneous scalar fields,
i.e. coupled to a homogeneous and isotropic spacetime such
as Robertson-Walker (RW). In this cosmological case, in
which we have a spacetime whose constant time hyper-
surfaces are maximally symmetric subspaces, symmetry
implies that, in the general case, only 2 metric components
are truly independent, up to the sign of the curvature of
these hypersurfaces. We will work with flat spatial sections,
so the line element of the most general homogeneous and
isotropic spacetime is [2]

ds2 ¼ b2ðτÞdτ2 − a2ðτÞdx⃗2; ð12Þ
where aðτÞ and bðτÞ are the two independent components
of the metric.
It is most common to define a new time coordinate,

known as cosmological time dt ¼ bðτÞdτ which finally
leaves us with only one function aðtÞ to solve for. Note that
this is only possible in the case of a full Diff theory. In
general there is no way to perform a coordinate trans-
formation satisfying the TDiff condition that allows us to
write (12) using cosmological time tðτÞ.

B. Equations of motion for ϕðτÞ
The scalar field equations of motion obtained from (11)

read

∂νðfðgÞgμν∂μϕÞ ¼ 0: ð13Þ
Let us consider the evolution of a homogeneous scalar

field only depending on time, so that the equations of
motion satisfied by ϕðτÞ in the geometry (12) are [7]

ϕ00 þ
�
f0

f
− 2

b0

b

�
ϕ0 ¼ ϕ00 þ L0

L
ϕ0 ¼ 0; ð14Þ

where the prime denotes the derivative with respect to the
coordinate time τ, and

LðτÞ ¼ fðgðτÞÞ
b2ðτÞ : ð15Þ

It is easy to check that in the fðgÞ ¼ ffiffiffi
g

p
case, we recover

the well-known results for a Diff invariant scalar field.
Equation (14) can be rewritten as a total derivative

d
dτ

ðLϕ0Þ ¼ 0; ð16Þ

so one immediately obtains [7]

ϕ0ðτÞ ¼ Cϕ

LðτÞ : ð17Þ

with Cϕ a constant.
Even though it is not possible to set b ¼ 1 with a TDiff

coordinate transformation, we can always rewrite (14) in
cosmological time dt ¼ bðτÞdτ so that we obtain

ϕ̈þ J̇
J
ϕ̇ ¼ 0; ð18Þ

where

J ¼ Lb ¼ f
b
¼ a3

fffiffiffi
g

p ð19Þ

and dot denotes derivative with respect to the cosmological
time t.

C. Einstein’s equations and
the energy-momentum tensor

The field equations derived from the action (11) with
unconstrained variations with respect to the metric tensor

−
2ffiffiffi
g

p δS
δgμν

¼ 0; ð20Þ

are the Einstein’s equations

Gμν ¼ 8πGTϕ
μν; ð21Þ

where

Tϕ
μν ¼ fðgÞffiffiffi

g
p ð∂μϕ∂νϕ − FðgÞgμνgαβ∂αϕ∂βϕÞ: ð22Þ

with FðgÞ given in (7).
Notice that because of the breaking of Diff invariance

in the scalar sector, Tϕ
μν is not necessarily conserved on

solutions of the scalar field equations of motion. In spite of
that, since Einstein’s equations (21) still hold, Bianchi
identities imply the conservation of the energy-momentum
tensor (22) over solutions of the Einstein’s equations.

2See [14] for a detailed study of gravity models which break
Diff invariance in the geometrical part of the action.
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Since our goal is to build a cosmological model, we
would like to interpret our field as a perfect fluid,3

whose energy-momentum tensor is well-known to be
parametrized as

Tμν
ϕ ¼ ρϕuμuν − pϕhμν; ð23Þ

where uμ is the 4-velocity of the fluid, and as such it must
obey the normalization condition gμνuμuν ¼ 1, and
hμν ¼ gμν − uμuν is the metric tensor on the hypersurfaces
orthogonal to the direction of the timelike vector uμ.
We can read the energy density ρϕ and the pressure pϕ

of our fluid to be

ρϕ ¼ T00
ϕ g00 ¼

fðgÞ
b2

ffiffiffi
g

p ð1 − FðgÞÞϕ02; ð24Þ

pϕ ¼ −
Ti
ϕi

3
¼ fðgÞ

b2
ffiffiffi
g

p FðgÞϕ02: ð25Þ

From these two expressions we are able to define an
equation of state for the fluid in the usual way
pϕðaÞ ¼ ωϕρϕðaÞ, where

ωϕ ¼ F
1 − F

: ð26Þ

Notice that the equation of state parameter solely depends
on our choice of fðgÞ. It is worth mentioning that the
problematic case F ¼ 1 is excluded since it implies ρϕ ¼ 0

in (24). It is already possible to draw some conclusions on
how the fluid behaves from (26). If we had a power law
f ∝ gα, then

ωϕ ¼ α

1 − α
; ð27Þ

which is time independent. In order to have positive energy
density we must have α < 1. To recover a nonrelativistic/
dark matter type behavior we simply need α ¼ 0, whereas
α → ∞ implies a cosmological constant behavior
ωϕ ¼ −1. We can interpolate between these two limiting
cases with an exponential function fðgÞ ∝ e−βg, resulting in

ωϕ ¼ −
βg

1þ βg
; ð28Þ

where βg ≪ 1 ⇒ ωϕ ¼ 0 while βg ≫ 1 ⇒ ωϕ ¼ −1. The
condition required for a positive energy density is now
βg > −1 [7].

Computing ∇μT
μν
ϕ yields4

∇μT
μν
ϕ ¼ uνðuμ∇μρϕ þ ðρϕ þ pϕÞ∇μuμÞ

¼ uν

b

�
ρ0ϕ þ 3

a0

a
ðρϕ þ pϕÞ

�
¼ 0: ð29Þ

As expected for a RW geometry, there is actually just one
independent equation5

ρ0ϕ þ 3
a0

a
ðρϕ þ pϕÞ ¼ 0: ð30Þ

The compatibility of Eq. (30) and the equations of motion
of the field (14) will impose a condition on bðτÞ. Though
not always possible to find such a condition in an explicit
way, in the kinetic domination regime it can actually be
realized [7]. By expressing ρ0ϕ in terms of ρϕ, which
requires the use of the equations of motion (14), since ρϕ þ
pϕ ¼ ρϕ=ð1 − FÞ we get rid of the energy density explicit
dependence and only terms involving the geometry b, a,
and fðgÞ will appear. After some manipulations we find

g0

g

�
F −

1

2

�
þ F0

1 − F
¼ 6

�
a0

a

�
F − 1

2

1 − F
; ð31Þ

which is written in such a way that is trivially satisfied
when F ¼ 1=2 ⇒ F0 ¼ 0. Multiplying both sides by
ð1 − FÞ=ðF − 1=2Þ we finally arrive at6

g0

g
ð1 − FÞ − 2F0

1 − 2F
¼ 6

a0

a
: ð32Þ

Integration yields [7]

g
fðgÞ ð1 − 2FðgÞÞ ¼ Cga6; ð33Þ

with Cg a constant. For TDiff invariant models, we must
solve this equation for a given fðgÞ in order to have a
conserved energy-momentum tensor. This will give us a
relation between the two functions bðτÞ and aðτÞ, i.e., bðaÞ.

3See [8] for a discussion of the condition to be met in order to
describe the scalar field component that breaks Diff invariance
down to TDiff as a perfect fluid.

4We have used the fact that for a homogeneous and isotropic
geometry there are no pressure gradients at a given spacelike
hypersurface of τ ¼ const, i.e., hμν∇μp ¼ 0; which ensures
geodesic motion uμ∇μuν ¼ 0.

5Note that despite the fact that b0 does not explicitly appear on
(30), the energy density and the pressure of the fluid do depend
on bðτÞ, and hence a dependence on b0 is implicit in ρ0ϕ.

6Note that this expression no longer recovers the GR identity
as a consequence of implicitly dividing by zero when F ¼ 1=2 in
the last step of the derivation.
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III. A UNIFIED MODEL FOR THE DARK SECTOR

Once we have discussed what it means to have a TDiff
invariant action for a scalar field, and what conditions must
be satisfied in order to build a consistent model with it,
we shall put this knowledge to use to construct a TDiff
invariant theory for the dark sector in cosmology. Wewould
like to extend the action in (11) to also account for the
well-known physics, that is, the particles of the Standard
Model. To do so, we proceed as usual by including a full
Diff action for baryonic matter (B) and photons plus
massless neutrinos, which will be referred to as radiation
(R), all of them treated as perfect fluids.
So, how to model dark matter and dark energy with a

single TDiff invariant scalar field? As discussed in last
section, we saw that for an exponential function

fðgÞ ¼ e−βg ð34Þ

we could interpolate between a matter-type behavior at
early times (ωϕða → 0Þ ¼ 0) and a cosmological constant-
type one (ωϕða → 1Þ ¼ −1) at late times. This will be our
choice since it allows for a unified description for both dark
matter and dark energy. The action reads

S ¼ SEH þ SBþR þ Sϕ; ð35Þ

where SEH is given in (3), SBþR takes into account the
baryon and radiation contributions, and

Sϕ ¼
Z

d4xe−βg
�
1

2
gμν∂μϕ∂νϕ

�
; ð36Þ

for the TDiff scalar sector. This means that Einstein’s
equations are

Gμν ¼ 8πGðTBþR
μν þ Tϕ

μνÞ; ð37Þ

where TBþR
μν corresponds to the energy-momentum tensor

of baryons and radiation and Tϕ
μν represents the contribution

from the dark sector. As a good approximation we can
consider that baryons and radiation do not interact at the
background level with each other which means that both
are self-conserved. In the case of baryons the energy
density evolves according to ρBðaÞ ¼ ρBa−3

7 whereas its
equation of state is ωB ¼ 0. The energy density, as a
function of the scale factor, of radiation can be written in
terms of photon’s energy density [ργðaÞ] as follows

ρRðaÞ ¼
�
1þ 7

8
Neff

�
4

11

�
4=3

�
ργðaÞ; ð38Þ

where Neff ¼ 3.046 is the effective number of neutrino
species and ργðaÞ ¼ ργa−4. The equation of state for the
radiation fluid is ωR ¼ 1=3. As for the dark sector we can
take advantage of the novel result obtained in [8]. In this
reference it is shown that, as long as the derivative of the
scalar field ∂μϕ is a timelike vector, from the conservation
of the energy-momentum tensor, in the kinetic domain, the
energy density associated to the scalar field can be
expressed as follows

ρϕðaÞ ¼
Cϕ

ðωϕ − 1Þ ffiffiffi
g

p ; ð39Þ

where Cϕ is a constant that needs to be fixed so that the
cosmic sum rule is fulfilled.
The two independent components of the Einstein

tensor are

G00 ¼ 3

�
a0

a

�
2

; ð40Þ

Gii ¼ −2
�
a
b

�
2
�
a00

a
−
a0

a
b0

b
þ 1

2

�
a0

a

�
2
�
: ð41Þ

Using T00 ¼ b2½ρBðaÞ þ ρRðaÞ þ ρϕðaÞ� and Tii ¼
a2½pRðaÞ þ pϕðaÞ� we get

�
a0

a

�
2

¼ 8πG
3

½ρBðaÞ þ ρRðaÞ þ ρϕðaÞ�b2; ð42Þ

a00

a
−
a0

a
b0

b
þ 1

2

�
a0

a

�
2

¼ −4πG½pRðaÞ þ pϕðaÞ�b2: ð43Þ

As we have mentioned before, if we had set b ¼ 1 from
the beginning, no simultaneous solutions for the field
equations (14) and the conservation of energy (33) could
have been found [7]. However, once we have obtained the
equations of motion, it is possible to perform a change of
variables to cosmological time dt ¼ bðτÞdτ. After doing so
we obtain the equivalent to the usual Friedmann and
acceleration equations that take the standard form

H2 ¼ 8πG
3

½ρBðaÞ þ ρRðaÞ þ ρϕðaÞ�; ð44Þ

ä
a
¼ −

4πG
3

½ρBðaÞ þ ρRðaÞ þ ρϕðaÞ þ 3pRðaÞ þ 3pϕðaÞ�;
ð45Þ

where we have used (44) to obtain (45) andH ¼ ȧ=a is just
the Hubble rate. Notice that although at first glance it might
look as if there was no explicit bðtÞ dependence, the energy
density and pressure of the dark sector do depend on it. It is
there were the consistency relation bðaÞ (33) comes into

7When we do not indicate the explicit dependence in the scale
factor or in the redshift, for the energy densities we are referring
to the corresponding present value.
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play. Imposing fðgÞ ¼ e−βg and FðgÞ ¼ −βg it can be
written as

b2eβa
6b2ð1þ 2βa6b2Þ ¼ Cg: ð46Þ

We can fix the value of the constant Cg by evaluating the
left hand side at present time, namely a ¼ b ¼ 1, which
automatically implies that the determinant of the metric is
normalized as gða ¼ 1Þ ¼ 1. We end up with the following
expression for the constraint

b2eβða6b2−1Þ
ð1þ 2βa6b2Þ

1þ 2β
¼ 1: ð47Þ

Thanks to the above expression we will be able to
get b ¼ bða; βÞ.
The Hubble rate can be obtained from (44)

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩBa−3 þΩRa−4 þ ΩϕðaÞ

q
; ð48Þ

where we have considered the definitions ΩiðaÞ≡ ρiðaÞ
ρc

,8

with i ¼ B;R;ϕ and being ρc ¼ 3H2
0=ð8πGÞ the value

today of the critical energy density.
The cosmic sum rule evaluated at present time reads

1 ¼ ΩB þΩR þΩϕ: ð49Þ

As stated before Cϕ in (39) can be fixed with relation (49).
By doing so we get

ΩϕðaÞ ¼ Ωϕ

�
ωϕða ¼ 1Þ − 1

ωϕðaÞ − 1

�
1ffiffiffi
g

p : ð50Þ

Once we have (47) and (50) we can study the high
redshift limit. From (47) we get the following approxima-
tion b ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β

p
e
β
2 which in turn allows us to find an

approximate expression for the energy density of the scalar
field valid at short times

ΩϕðaÞ ≃ Ωeff
DMa

−3; ð51Þ

where we have used

Ωeff
DM ≡Ωϕe−

β
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β

p
1þ β

: ð52Þ

This does not come as a surprise since as we have stated
previously when βg ≪ 1 the equation of state tends to the
value ωϕ ¼ 0, therefore it behaves as nonrelativistic matter.
At the background level we can separate the contribution

of the scalar field as if it were composed of an effective dark

matter contribution, whose expression is determined by
Eq. (51) and an effective dark energy component:

ρϕðaÞ ¼ ρeffDMðaÞ þ ρeffDEðaÞ ¼ ρcΩeff
DMa

−3 þ ρeffDEðaÞ; ð53Þ

pϕðaÞ ¼ peff
DMðaÞ þ peff

DEðaÞ ¼ ωeff
DEðaÞρeffDEðaÞ: ð54Þ

As stated previously, due to the form of the equation of state
parameter (28) the scalar field behaves as nonrelativistic
matter at early times and as dark energy at late times.
Therefore, considering the above equations we can tell
when the effective dark energy component has a quintes-
sencelike behavior and when it has a phantomlike behavior.
The expression for the equation of state parameter is the
following one

ωeff
DEðaÞ ¼ ωϕðaÞ

ρϕðaÞ
ρϕðaÞ − ρeffDMðaÞ

: ð55Þ

As an example, in Fig. 1 we plot its evolution for the values
of the cosmological parameters in Table III. As it can be
seen, ωeff

DEðaÞ ≃ −2, at high redshift, something that can be
checked from the analytical expression (55). This asymp-
totic value is determined by the particular form of the fðgÞ
function in (34) regardless the specific value of β. The value
of ωeff

DEðaÞ remains in the phantom region for most of the
cosmic history, however, as we get closer to present time its
value starts to increase until it crosses the phantom divide.
This is the opposite of other unified models such as the
generalized Chaplygin gas in which no crossing of the
phantom divide line occurs in the effective dark energy
equation of state. The crossing of the phantom divide line
has been shown in [15] to be a necessary condition to solve
the H0 and σ8 tensions in models of dark energy.

FIG. 1. The effective equation of state parameter of the dark
energy component for the TDiff model (55). The values of the
cosmological parameters can be seen in Table III.

8It is important to note that with this definition the cosmic sum
rule is only fulfilled at present time.
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Despite the different behavior of the TDiff effective dark
energy equation of state with respect to a cosmological
constant, the full dark sector behaves similarly to ΛCDM.
Thus in Fig. 2 we compare the dark sector equation of state
given by

ωΛCDMðzÞ ¼
pDMðzÞ þ pΛ

ρDMðzÞ þ ρΛ
ð56Þ

in ΛCDM with ωϕðzÞ written in (28) for the TDiff model
for the cosmological parameters in Table III.

A. Preferred coordinate time

A unique feature arising from the breaking of the full
Diff symmetry is the existence of a preferred coordinate
time. In general relativity the lapse function bðτÞ is a pure
gauge component in cosmological space-times which can
be set to bðtÞ ¼ 1 with a time coordinate transformation.
However, in TDiff models bðτÞ is a physical metric
component which sets the privileged coordinate time which
is related to the cosmological time (that measured by
comoving observers) by b ¼ dt

dτ. We can interpret this
timescale factor as the rate of change of cosmological time
with respect to the privileged time τ, so that, whenever b is
constant, means that the two times are essentially the same
up to a constant factor. In Fig. 3 we show bðzÞ for the TDiff
model with the cosmological parameters in Table III. We
see the constant behavior from the early universe up until
the beginning of the accelerated expansion, where it starts
to quickly decrease. Notice that the preferred time is unique
up to time translations since no time reparametrization was
possible via a coordinate transformation satisfying the
TDiff condition (A7) while maintaining the spatial coor-
dinates that ensure homogeneity and isotropy.

We can now define the analogue to the usual (space)
Hubble rate H ≡ ȧ

a, but for the lapse function bðtÞ, i.e., a
time Hubble rate

HbðaÞ≡ ḃ
b
¼ d ln b

d ln a
HðaÞ ¼ BðaÞHðaÞ; ð57Þ

where BðaÞ can be written in terms of the following
combination of FðgÞ

BðaÞ ¼ 3Fð3þ 2FÞ
1 − Fð5þ 2FÞ : ð58Þ

FIG. 2. Comparison of the equation of state for the dark sector.
For the ΛCDM ωΛCDMðzÞ ¼ ðpDMðzÞ þ pΛÞ=ðρDMðzÞ þ ρΛÞ
whereas for the TDiff model ωϕðzÞ is written in (28). The values
of the cosmological parameters can be seen in Table III.

FIG. 3. Time scale factor b as a function of redshift z ¼
1=a − 1 given by the consistency relation (47) that follows from
the conservation of the energy-momentum tensor and the
equations of motion of the field. The values of the cosmological
parameters can be found in Table III.

FIG. 4. The normalized Hubble rate EðzÞ ¼ 1
H0

ȧ
a and Eb ¼ 1

H0

ḃ
b.

The values of the cosmological parameters can be found in
Table III.
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We find that both Hubble rates are related via the
function BðaÞ≡ a

b
db
da. This is a consequence of the con-

sistency relation (33), which essentially implies that the
timescale factor is a function of the spatial scale factor. We
then conclude that b cannot evolve with time unless a does.
Nonetheless this is not necessarily true the other way
around, as seen in Fig. 3.
Figure 4 shows both Hubble rates in units of H0 as a

function of redshift. HðzÞ decreases with time whereas
HbðzÞ goes to zero at large redshifts, so bðzÞ is constant at
the matter dominated era, which is consistent with the
discussion above. This is in agreement with the fact that at
early times fðgÞ ¼ e−βg ≃ g0, so it behaves as a power law
for which bðaÞ ∝ a

3α
1−α with α ¼ 0, so b ≃ const [7]. The fact

that Hb is negative implies that BðaÞ < 0.

IV. DATA AND METHODOLOGY

The model we have just introduced contains the same
number of free parameters as ΛCDM. Thus, in the flat
ΛCDM, we have at the background level, three free
parameters: ðΩM;ΩB;H0Þ where ΩM ¼ ΩB þ ΩDM con-
tains the contribution from baryons and dark matter.9 As for
the TDiff cosmological model, we also have three free
parameters ðβ;ΩB;H0Þ, where the parameter β, somehow,
plays a similar role to ΩM in ΛCDM [see (52)]. It is
important to note that in addition to the main cosmological
parameters that we have just mentioned we also have to
consider the nuisance parameter M which stands for the
absolute magnitude in the supernovae data. We shall
provide more details about it when we describe the
corresponding likelihood. In the following we describe
the cosmological datasets employed in this work.
CMB: Instead of considering the full likelihood for

Planck 2018 data here we use the CMB distance priors,
which for those models that do not depart too much from
the ΛCDM predictions at high redshift, turns out to be
an efficient way of compressing the information (see
Sec. 5.1.6 of [16] for more details). The two distance
priors that we utilize here are the shift parameter R and the
acoustic length la that can be computed from

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q
ð1þ z�ÞDAðz�Þ; ð59Þ

la ¼ πð1þ z�Þ
DAðz�Þ

rs
: ð60Þ

The above expressions contain the angular distance

DAðzÞ ¼
1

ð1þ zÞ
Z

z

0

dz0

Hðz0Þ ; ð61Þ

evaluated at the decoupling redshift z�, which depends on
the free cosmological parameters. In order to get its value
we consider the fitting formulas presented in [17]:

z� ¼ 1048½1þ 0.00124ω−0.738
b �½1þ g1ω

g2
m �; ð62Þ

g1 ¼
0.0783ω−0.238

b

1þ 39.5ω0.763
b

; ð63Þ

g2 ¼
0.560

1þ 21.1ω1.81
b

; ð64Þ

where ωb ≡ ΩBh2 and ωm ≡ΩMh2. For the TDiff model
we do not have the parameter ΩM, however, since the
above formulas are meant to compute z� ∼Oð103Þ, we are
allowed to use (52) hence Ωeff

M ≡Ωeff
DM þ ΩB. The term rs

stands for the radius of the sound horizon

rðzÞ ¼
Z

∞

z

csðz0Þdz0
Hðz0Þ ; ð65Þ

evaluated at the decoupling epoch rs ≡ rðz�Þ being csðzÞ
the speed of sound in the photon-baryon fluid. In addition
to the two distance priors we also consider the value of
the baryon density ωb. For the Planck 2018 TT;TE;
TEþ lowEþ lensing [18] data we obtain:

ωb ¼ 0.02239� 0.00015; ð66Þ

la ¼ 301.529� 0.083; ð67Þ

R ¼ 1.7497� 0.0041; ð68Þ

with the corresponding correlation matrix

CCMB ¼

0
BB@

1 −0.2164 −0.6417
−0.2164 1 0.3553

−0.6417 0.3553 1

1
CCA: ð69Þ

BAO: From isotropic and anisotropic estimators we
consider 12 data points, probing the redshif range
0.122 ≤ z ≤ 2.334. Here we consider the likelihoods with-
out the growth rates points. The list of measurements
utilized in our analysis (for the sake of convenience in some
cases we do not show all the decimals of the measurements
and the covariance matrices though in the analysis all of
them have been considered) can be seen in Table I, and the
quantities that appear are, the transverse comoving distance

DMðzÞ ¼ ð1þ zÞDAðzÞ; ð70Þ

9We consider that the radiation contribution is precisely known
from the CMB temperature measurement and the effective
number of neutrino species and is given in (38). Since we work
in natural units the Hubble parameter is defined by
H−1

0 ¼ 2997.9h−1 Mpc−1.
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the Hubble radius

DHðzÞ ¼
1

HðzÞ ; ð71Þ

and the angle-averaged distance

DVðzÞ ¼ ½zD2
MðzÞ=HðzÞ�1=3: ð72Þ

As usual the observational data points obtained from the
BAO analysis are provided as relative distances with
respect to the radius of the sound horizon evaluated at
the drag epoch rd ≡ rðzdÞ. In order to compute the value of
zd, which depends on the value of the cosmological
parameters, we make use of the fitting formulas provided
in [17]:

zd ¼ 1345
ω0.251
m

1þ 0.659ω0.828
m

½1þ b1ω
b2
b �; ð73Þ

b1 ¼ 0.313ω−0.419
m ½1þ 0.607ω0.674

m �; ð74Þ

b2 ¼ 0.238ω0.223
m : ð75Þ

Finally we provide the corresponding covariance matrices.
The covariance matrix between measurements for the

BOSS Galaxy data [20] is given by

CovBOSS-Galaxy ¼

0
BBB@

0.02860520 −0.04939281 0.01489688 −0.01387079
−0.04939281 0.5307187 −0.02423513 0.01767087

0.01489688 −0.02423513 0.04147534 −0.04873962
−0.01387079 0.01767087 −0.04873962 0.3268589

1
CCCA: ð76Þ

For the two data-points obtained with eBOSS LRG data
[20,21] the covariance matrix is

CoveBOSS-LRG ¼
�

0.1076634 −0.0583182
−0.0583182 0.2838176

�
ð77Þ

whereas for the eBOSS Quasar data [23,24]

CoveBOSS-Quasar ¼
�
0.63731604 0.1706891

0.1706891 0.30468415

�
: ð78Þ

Finally the covariance matrix for the Lyα forest data is
given by

CovLyα ¼
�

1.3225 −0.1009
−0.1009 0.0380

�
: ð79Þ

Cosmic chronometers: We include in our analysis 32
measurements of HðziÞ, covering the redshift range
0.07 ≤ z ≤ 1.965, obtained with the differential age tech-
nique. For those data points that are correlated with each
other (see [26] for more details) the corresponding

covariance matrix can be computed with the script provided
here.10 The list ofmeasurements of theHubble parameter can
be seen in Table II. Those that appear without the corre-
sponding error bars are the ones that are correlated with
each other.
SNIa: We employ the data from the Pantheonþ

&SH0ES compilation [32,33] which contains 1701 light
curves obtained from 1550 distinct SNIa with redshifts in
the range 0.001 ≤ z ≤ 2.26. Within these 1550 SNIa
there are 42 SNIa (with 77 light curves associated) in
37 Cepheid host galaxies, whose distance moduli have
been obtained by measuring the characteristic period-
luminosity relation of these variable stars. These
measurements have been carried out by the SH0ES
collaboration [34]. The fact of using the 77 distance
moduli provided by the SH0ES team turns out to be
fundamental to break the well-known degeneracy between
the Hubble parameter H0 and the absolute magnitude,
which here we denote byM. Let us provide some specifics
of the formulation used in the corresponding likelihood.

TABLE I. BAO measurements.

zeff Measurement References

0.122 DVðrd;fid=rdÞ½Mpc� ¼ 539� 17 ½Mpc� [19]
0.38 DM=rd ¼ 10.2341� 0.1691 [20]
0.38 DH=rd ¼ 24.9806� 0.7285 [20]
0.51 DM=rd ¼ 13.3660� 0.2037 [20]
0.51 DH=rd ¼ 22.3166� 0.5717 [20]
0.698 DM=rd ¼ 17.8582� 0.3281 [20,21]
0.698 DH=rd ¼ 19.3258� 0.5327 [20,21]
0.835 DM=rd ¼ 18.92� 0.51 [22]
1.48 DM=rd ¼ 30.6876� 0.7983 [23,24]
1.48 DH=rd ¼ 13.2609� 0.5520 [23,24]
2.334 DM=rd ¼ 37.5þ1.2

−1.1 [25]
2.334 DH=rd ¼ 8.99þ0.20

−0.19 [25]

Note: For the data point at z ¼ 0.122 the sound horizon size (at
the drag epoch), for the fiducial values, computed using (65) is
rd;fid ¼ 148.11 Mpc [19].

10https://gitlab.com/mmoresco/CCcovariance/-/blob/master/
examples/CC_covariance.ipynb.
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The basic observable is the apparent magnitude m which
can be expressed as follows

mðzHD; zHELÞ ¼ μðzHD; zHELÞ þM; ð80Þ

being μ the distance modulus

μðzHD; zHELÞ ¼ 25þ 5 log10

�
d̃LðzHD; zHELÞ

1 Mpc

�
; ð81Þ

where the quantity d̃LðzHD; zHELÞ can be understood as a
corrected luminosity distance. Therefore we have:

d̃LðzHD; zHELÞ ¼
�
1þ zHEL
1þ zHD

�
dLðzHDÞ; ð82Þ

being the expression for the luminosity distance in a
spatially flat universe the usual one

dLðzHDÞ ¼
ð1þ zHDÞ

H0

Z
zHD

0

dz0

Eðz0Þ : ð83Þ

In the above expressions zHD stands for the Hubble diagram
redshift whereas zHEL represents the heliocentric redshift.
When the light curve considered is one of the 77 mentioned
before (they are labeled with IS CALIBRATOR ¼ 1 in the
data file) instead of using (81) to compute the distance
modulus, we consider SH0ES’ measurement for this quan-
tity. This constraints greatly the value of the absolute
magnitude M (which in our analysis has the role of a
nuisance parameter) thus breaking the existing degeneracy
between H0 −M.
We consider the following joint χ2-function

χ2tot ¼ χ2CMB þ χ2BAO þ χ2H þ χ2SNIa ð84Þ

in order to study the performance of the ΛCDM and TDiff
cosmological models when they are confronted with the
dataset previously described. The dataset considered
in (84) will be referred to as baseline. We explore the
parameter-space that characterizes each of the models
with the Markov chain Monte Carlo analysis, making use
of the Metropolois-Hastings algorithm [35,36]. Once the
converged chains have been obtained we utilize the GetDist

code [37] to obtain the mean values of the different
cosmological parameters, the associated confidence inter-
vals and the posterior distributions. When exploring
the parameter-space we have set the following priors
for the three common parameters 0.01 < Ωb < 0.1, 40 <
H0 ½km=s=Mpc� < 100 and −20 < M < −18. In the
ΛCDM case we have considered 0.1 < Ωm < 0.5 whereas
for the TDiff model 1.7 < β < 2.3. We want to compare
the performance of the ΛCDM model and the TDiff
model, therefore in this work we use the deviance
information criterion (DIC) [38], whose value can be
computed from

DIC ¼ χ2ðθ̄Þ þ 2pD: ð85Þ

In the above expression, pD ¼ χ2 − χ2ðθ̄Þ stands for the

effective number of parameters, χ2 is the mean value of the
χ2-function and θ̄ contains the mean value of the free
parameters. We define the difference with respect to the
ΛCDM model as follows

ΔDIC ¼ DICΛCDM − DICTDiff ; ð86Þ

as a consequence if we obtain positive values of ΔDIC
means that the TDiff model is favored over the ΛCDM
models whereas negative values indicate the other way
around. Having defined the difference in the DIC values as
in (86), according to the usual standards if we find values
0 ≤ ΔDIC < 2 we say there is weak evidence in favor of
the TDiff model. If we get values 2 ≤ ΔDIC < 6 we speak

TABLE II. Hubble parameter data.

z HðzÞ (km s−1 Mpc−1) References

0.07 69.0� 19.6 [27]
0.09 69.0� 12.0 [28]
0.12 68.6� 26.2 [27]
0.17 83.0� 8.0 [28]
0.2 72.9� 29.6 [27]
0.27 77.0� 14.0 [28]
0.28 88.8� 36.6 [27]
0.4 95.0� 17.0 [28]
0.47 89.0� 50.0 [29]
0.48 97.0� 62.0 [30]
0.75 98.8� 33.6 [31]
0.88 90.0� 40.0 [30]
0.9 117.0� 23.0 [28]
1.3 168.0� 17.0 [28]
1.43 177.0� 18.0 [28]
1.53 140.0� 14.0 [28]
1.75 202.0� 40.0 [28]
0.1791 74.91 [26]
0.1993 74.96 [26]
0.3519 82.78 [26]
0.3802 83.0 [26]
0.4004 76.97 [26]
0.4247 87.08 [26]
0.4497 92.78 [26]
0.4783 80.91 [26]
0.5929 103.8 [26]
0.6797 91.6 [26]
0.7812 104.5 [26]
0.8754 125.1 [26]
1.037 153.7 [26]
1.363 160.0 [26]
1.965 186.5 [26]
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of positive evidence whereas values 6 ≤ ΔDIC < 10 point
out to strong evidence in favor of the TDiff. Finally,
finding values ΔDIC > 10 would allow us to claim very
strong evidence. As we mentioned before negative values
would indicate evidence in favor of the standard model.
In order to complement the DIC we also make use of the

Bayesian evidence which has been computed following the
procedure detailed in [39]. Herewe define the Bayes’ ratio as

B≡ ETDiff

EΛCDM
; ð87Þ

where E stands for the Bayesian evidence. With the above
definition, and as with the DIC, positive values indicate that
the TDiff model is favored over the ΛCDM model with
different levels of significance. Therefore if lnB ≤ 1 there is
inconclusive evidence, for 1 < lnB ≤ 2.5 we get moderate
evidence whereas if we obtain 2.5 < lnB ≤ 5 we speak of
strong evidence. Finally if we find values lnB > 5 we are
allowed to claim very strong evidence in favor of the TDiff
model. For negative values of lnB is the other way around.

V. RESULTS

The best-fit values and the corresponding 68% confi-
dence intervals, obtained after considering the baseline
dataset [see Eq. (84)], can be found in Table III and in
Figs. 5 and 6. We see that the TDiff model provides an
excellent fit to the considered dataset with a minimum χ2

below that of ΛCDMwith same number of free parameters.
As a matter of fact ΔDIC ¼ 10.39 indicates very strong
evidence whereas lnB ¼ 4.02 indicates strong evidence in
favor of the TDiff model when it is confronted against the
ΛCDM. The main difference appears in the mean value of
the Hubble parameter which is larger than in the ΛCDM
and with similar error bars. As wewill show below, this will
mainly explain the better fit to the complete dataset.

As commented before, at high redshift, the TDiff scalar
field mimics the nonrelativistic matter behavior as it is clear
from (51) and consequently the effective matter density
parameter at that time is Ωeff

M ¼ Ωeff
DM þ ΩB ¼ 0.3005�

0.0043 (computed as a derived parameter obtained with the
Baseline dataset), which can be compared with the ΛCDM
value ΩM ¼ 0.3012� 0.0049. Therefore, the behavior of
the TDiff model is very similar to the ΛCDM model at
high-redshift, when the contribution from dark energy is
negligible.
On the other hand if we want to study the behavior of the

TDiff model at late times, we may look at the equation
of state parameter, which at present time, takes the value
ωϕðz ¼ 0Þ ¼ −0.6746� 0.0029. The equivalent quantity
for the ΛCDM model would be ωΛCDMðz ¼ 0Þ ¼
−0.7383� 0.0044 with ωΛCDM defined in (56). The low-
redshift evolution of both parameters can be seen in Fig. 2.
The fact that the value in the ΛCDM model is, in absolute
value, greater than the value in the TDiff model indicates
that the behavior of the scalar field is quintessencelike. This
is confirmed thanks to the effective equation of state
parameter for the dark energy component defined in
Eq. (55), whose present value ωeff

DEðz ¼ 0Þ ¼ −0.9156�
0.0016 lies in the quintessence region. As shown in Fig. 1,
the TDiff model evolves from a phantom effective dark
energy equation of state ωeff

DEðzÞ ¼ −2 at high redshift to a
quintessencelike value at present.
We also find some differences between themodels when it

comes to the redshift value that marks the transition from a
decelerated to an accelerated expanding universe. Whereas
for the ΛCDM we have zt ≃ 0.668 for the TDiff we get
zt ≃ 0.794 and the correspondingvalue of thebðaÞ parameter
bt ≃ 3.1314. In Fig. 3 we show the behavior of bðzÞwhich is
constant in the matter dominated era, being this constant

value bðz ≫ 1Þ ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β

p
e
β
2 ≃ 6.272.

A. The H0-tension

The persisting mismatch between the value obtained by
the Planck collaboration (H0 ¼ 67.36� 0.54 km=s=Mpc
from TT;TE;EEþ lowEþ lensing data [18]) and the
SH0ES measurement (H0 ¼ 73.04� 1.04 km=s=Mpc [34]
which hereafter will be denoted by HSH0ES

0 ), obtained with
the inverse cosmic distance ladder method, has become a
central topic of study in cosmology in recent years. In order
to calculate the tension between two given values we utilize
the following estimator

TH0
¼

���Hð1Þ
0 −Hð2Þ

0

���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ð1Þ þ σ2ð2Þ

q : ð88Þ

Therefore the tension between the mentioned values
reaches the astonishing level of TH0

≃ 4.85σ. At this stage
it is still not clear whether the tension is somehow caused

TABLE III. Mean values with the 68% confidence interval for
the cosmological parameters considered obtained by analyzing
the Baseline dataset [see Eq. (84)]. We also show the minimum
value of the χ2-function, the incremental value of the DIC and the
value of lnB.

Baseline

ΛCDM TDiff

ΩB 0.04775� 0.00042 0.04647� 0.00035
ΩM 0.3012� 0.0049 � � �
H0 [km=s=Mpc] 68.82� 0.38 69.46� 0.34
β � � � 2.045� 0.027
M −19.398� 0.011 −19.369� 0.010
χ2min 1338.34 1327.97
ΔDIC � � � 10.39
lnB � � � 4.02
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by some sort of unknown systematic or if it is actually
the clearest hint we have so far of physics beyond the
standard model.
This section is specifically aimed to check how the TDiff

model deals with the H0-tension. It has been argued [40]
that no low-redshift solution can completely solve the
tension. The authors consider a very flexible parametrization
of the equation of the state parameter to prove that the
1-dimensional posterior distribution of the H0 parameter
(H0 ¼ 68.08� 0.97 km=s=Mpc), obtained from a CMBþ
BAOþ SNIa (the SNIa data do not contain SH0ES meas-
urement unlike the one we consider here) dataset, does not
overlap with SH0ES’ measurement posterior distribution.
For the sake of comparisonwehave tested theTDiffmodel

with a combination of data CMBþ BAOþ SNIa�, where
the � indicates that in this occasion the SNIa data do not
contain the SH0ES contribution. Regarding the Hubble
parameter we get the following result H0 ¼ 68.95�
0.37 km=s=Mpc, which is perfectly compatible with the
value provided in [40].

If we have a look at Tables IV and V we can see the
results obtained when first only the CMB and then only the
SNIa data (in addition we consider a model-independent
BBN prior for the density of baryons ωb ¼ 0.02244�
0.00069 [41] determined by D/H abundances) are consid-
ered, whereas in Table VI we provide the results when both
of these datasets are jointly considered. In Table IV we can
see that for the TDiff model we get H0 ¼ 69.49�
0.51 km=s=Mpc which is in 3.1σ tension with HSH0ES

0 ,
representing a clear reduction with respect to the result
obtained for the ΛCDM (H0 ¼ 67.72� 0.57 km=s=Mpc
showing a discrepancy of 4.5σ with the SH0ES measure-
ment). On the other hand, when only the likelihood for the
SNIa data is taken into account we get almost the same
results for both models (see Table V). It is when we analyze
both datasets together (results provided in Table VI) when
we are able to appreciate the different performance of the
two models when it comes to fitting the data. We obtain
Δ DIC ¼ 15.80 and lnB ¼ 6.90 which according to the
statistical standards indicates a very strong evidence in

FIG. 5. For the ΛCDM model contour plots at 1σ, 2σ and 3σ confidence level, as well as, the one-dimensional posterior distributions
for the Baseline dataset. The H0 parameter is expressed in km=s=Mpc units.
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favor of the TDiff model when it is compared with the
standard model. In Figs. 7 and 8 we display the contour
plots for the ΛCDM and the TDiff models respectively.
While for the standard model there are panels where the
contours do not overlap at more than 3σ c.l., which is of
course a reflection of the previously presented H0-tension,
in the case of the TDiff we observe that the model shows

greater capacity to fit both datasets, CMB and SNIa,
simultaneously. It is worth noticing that the TDiff model
can alleviate the H0-tension without including extra
parameters, with respect to the ΛCDM model, which
normally increases the size of the error bars thus reducing

FIG. 6. Same as in Fig. 5 but for the TDiff model.

TABLE V. Mean values with the 68% confidence interval for
the cosmological parameters when only SNIa data and the prior
ωb ¼ 0.02244� 0.00069 [41] are considered.

SNIaþ prior on ωb

ΛCDM TDiff

ΩB 0.0414� 0.0019 0.0415� 0.0019
ΩM 0.329� 0.020 � � �
H0 [km=s=Mpc] 73.7� 1.1 73.6� 1.1
β � � � 1.92þ0.10

−0.15
M −19.244� 0.033 −19.243� 0.032
χ2min 1277.13 1277.48
ΔDIC � � � 0.23
lnB � � � −0.16

TABLE IV. Meanvalueswith the 68%confidence interval for the
cosmological parameters when only CMB data are considered.

CMB

ΛCDM TDiff

ΩB 0.04882� 0.00062 0.04638� 0.00049
ΩM 0.3158� 0.0078 � � �
H0 [km=s=Mpc] 67.72� 0.57 69.49� 0.51
β � � � 2.049� 0.041
χ2min 0 0
ΔDIC � � � −0.97
lnB � � � −0.09
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the tension. In fact, they are smaller than in the standard
model which means that the softening of the tension
actually comes from an increase of the mean value.
Additionally, this goes hand-in-hand with a fit of

observational data comparable, if not better, to the one
of the ΛCDM model, something that despite the number of
cosmological models studied in the literature [10], is not
easy to achieve.
Even in the light of these promising results we are not

claiming that the H0-tension is solved within the context
of the TDiff cosmological model. When CMB data are
considered the level of tension, with respect to the local
measurement HSH0ES

0 , is still ∼3σ which although it is not
as alarming as the ∼5σ tension found for the ΛCDM when
the full Planck 2018 TT;TE;EEþ lowEþ lensing like-
lihood is analyzed, it is still quite high and consequently it
cannot be ignored. It is also important to remember that in
this work we have used an approximation for the CMB
likelihood [see (66) and (69)] therefore some variations in
the cosmological parameter constraints may be expected
when considering the full likelihood, something that the
authors are currently studying. All in all, we find that the
TDiff model presents an interesting flexibility when it

TABLE VI. Meanvalueswith the 68%confidence interval for the
cosmological parameters when SNIaþ CMB data are considered.

CMBþ SNIa

ΛCDM TDiff

ΩB 0.04770� 0.00053 0.04587� 0.00044
ΩM 0.3007� 0.0064 � � �
H0 [km=s=Mpc] 68.86� 0.49 70.10� 0.45
β � � � 2.098� 0.036
M −19.396� 0.014 −19.351� 0.013
χ2min 1310.06 1294.13
ΔDIC � � � 15.80
lnB � � � 6.90

FIG. 7. For the ΛCDM model contour plots at 1σ, 2σ, and 3σ confidence level for the SNIaþ prior on ωb, CMB and SNIaþ CMB
data. The H0 parameter is expressed in km=s=Mpc units.
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comes to push up the value of the H0 parameter, thus
loosening the discrepancy with the HSH0ES

0 measurement
but more detailed studies are needed in order to confirm
these results.

VI. CONCLUSIONS

In this work we have presented a unified model for the
dark sector with a simple canonical kinetic term in the
action. This theory is based on a scalar field ϕ that
explicitly breaks the full diffeomorphism invariance of
the action down to transverse diffeomorphisms, i.e., the
action (11) is invariant under coordinate transformations
that do not change the determinant of the metric tensor.
The function characterizing the Diff breaking is a simple
exponential fðgÞ ¼ e−βg. The model has the same number
of free parameters as ΛCDM, being the common ones ΩB,
H0 and the nuisance parameter M and where the β
parameter replaces the ΩM parameter of ΛCDM.

Unlike General Relativity, in the TDiff case there are two
physical scale factors in the metric tensor at the background
level, namely: aðτÞ and bðτÞ, being τ a privileged time,
established by the TDiff symmetry and related with the
cosmological time t through b ¼ dt=dτ. This is so because
no time reparametrizations with fixed spatial coordinates
(to maintain homogeneity and isotropy) are allowed by the
symmetry. Even at the background level, the TDiff time τ
differs from the time t that a comoving observer would
measure, so that for a process that takes a fixed Δτ amount
of time, since b decreases with cosmological time t, the
corresponding Δt becomes smaller. This can be thought of
as some kind of time dilation of τ with respect to t.
As stated previously we consider a unified fluid playing

the role of both dark matter and dark energy, therefore, the
expression chosen for fðgÞ is such that the equation of state
parameter (28) of the fluid interpolates between a matter-
type behavior and a cosmological constant-type one. In
fact, at the background level we can effectively separate the
contribution from the scalar field into two components,

FIG. 8. Same as in Fig. 7 but for the TDiff model.
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one mimicking the evolution of the nonrelativistic matter
and another one behaving as if it were a dark energy
component which evolves from a phantom phase in the
early universe to a quintessencelike behavior at present.
Other forms of the fðgÞ function can be analyzed, but the
simple exponential expression considered in this work
already shows the flexibility of TDiff models to describe
the dark sector without introducing additional parameters.
Previous works [6–8,14] aim at presenting viable models

on cosmological backgrounds with this reduced TDiff
symmetry, however, this is the first time that a consistent
model is actually compared with experiment and constraints
on its parameters are presented.We have considered different
datasets in order to test the model in different scenarios. The
results obtained after analyzing the baseline dataset, com-
posed by the chain of data CMBþ BAOþHðzÞ þ SNIa,
can be seen in Table III and in Figs. 5 and 6. Encouraging
signals are gathered indicating that the TDiff model can
surpass the performance of the standardΛCDMmodel when
it comes to fitting the data. However, these promising results
are to be confirmed by including in the analysis the full
likelihood for the CMB data and by considering the
perturbation equations. The potential modification in the
evolution of perturbations could affect some of the observ-
ables considered in the analysis. In particular, the CMB
distance priors and BAO scales could be affected a priori.
Those observables are determined by the acoustic scale at the
timeof recombination (drag epoch), however at high redshift,
the TDiff scalar behaves exactly as a matter fluid, so that we
do not expect any modification in the evolution of perturba-
tions in the radiation or matter eras with respect to ΛCDM.
Nevertheless, a confrontation with growth rate data or the
full matter power spectrum would require a more detailed
determination of the evolution of perturbations at low red-
shift which could deviate from ΛCDM.
We have also delved into the study of the well-known

H0-tension. Interestingly we observe that the TDiff model
is able to alleviate the tension, when compared with the
ΛCDM model, not stretching the error bars but rather
pushing the mean value of Hubble parameter toward
higher values.
In light of the results obtained in this work we conclude

that the general class of transverse diffeomorphism invariant
models not only present an appealing theoretical framework,
where there may be a way out of the cosmological constant
problem, but also provides an interesting alternative to
explain the cosmological data and what is more to alleviate
some tensions that affect the ΛCDM model.
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APPENDIX: TDiff INVARIANT SCALARS

Let us consider an infinitesimal general coordinate
transformation

x̂μ ¼ xμ þ ξμðxÞ: ðA1Þ

The corresponding transformation law for the metric
tensor reads

ĝμνðx̂Þ ¼
∂xα

∂x̂μ
∂xβ

∂x̂ν
gαβðxÞ; ðA2Þ

so that its determinant transforms as a tensor density

ĝðx̂Þ ¼
���� det

�
∂xα

∂x̂μ

�����
2

gðxÞ: ðA3Þ

At an infinitesimal level, by using the identity
detð1þ AÞ ¼ 1þ trðAÞ þOðA2Þ, we get

����det
�
∂xα

∂x̂μ

�����
2

¼
����det

�
δαμ−

∂ξα

∂x̂μ

�����
2

¼ 1−2∂μξ
μðxÞþOðξ2Þ;

ðA4Þ

where we have also made use of the fact that the derivatives
of ξμðxÞ with respect to the new coordinates x̂μ can be
replaced with the derivatives with respect to the old
coordinates to linear order in ξμðxÞ. This means that since

ĝðx̂Þ ¼ ð1 − 2∂μξ
μÞgðxÞ; ðA5Þ

d4x̂ ¼ ð1þ ∂μξ
μÞd4x; ðA6Þ

for any coordinate transformation that satisfies

∂μξ
μ ¼ 0; ðA7Þ

then any action term of the form

S ¼
Z

d4xfðgÞL; ðA8Þ

where fðgÞ is an arbitrary function of the metric determinant
and L is a scalar function of the matter fields, its derivatives
and the metric tensor, is invariant under these transforma-
tions. Coordinate transformations that satisfy the condition
(A7) are referred to as transverse diffeomorphisms.
Thus, to lowest order in metric derivatives, the most

general TDiff invariant action up to quadratic terms in
derivatives of a real scalar field reads [6,7]
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Sϕ ¼
Z

d4xL¼
Z

d4x

�
1

2
fKðgÞgμν∂μϕ∂νϕ−fVðgÞVðϕÞ

�
; ðA9Þ

where fKðgÞ and fVðgÞ are arbitrary functions of the metric determinant. Notice that in principle, other (nonminimal) terms
could be included involving derivatives of the metric tensor, but we will limit ourselves to the simplest minimal couplings.
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