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We study chirality production in the pseudoscalar inflation model of magnetogenesis, taking into
account the Schwinger effect and particle collisions in plasma in the relaxation time approximation. We
consider the Schwinger production of one Dirac fermion species by an Abelian gauge field in two cases:
(i) fermions carry only the weak charge with respect to the U(1) group and (ii) they are also charged with
respect to another strongly coupled gauge group. While the gradient-expansion formalism is employed for
the description of the evolution of the gauge field, plasma is described by a hydrodynamical approach,
which allows us to determine the number, energy density, and chirality of produced fermions. It is found
that, while chirality production is very efficient for both weakly and strongly interacting fermions, the
resulting gauge field is typically stronger in the case of strongly interacting fermions, due to suppression of
the Schwinger conductivity by particle collisions.
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I. INTRODUCTION

The gamma-ray observations of blazars [1–4] imply the
lower bound on the strength of the present large-scale
magnetic fields B0 given by B0 ≳ 10−16 G with coherence
length possibly exceeding 1 Mpc. These observations
strongly motivate the study of inflationary models of mag-
netogenesis because such models naturally explain the very
large coherence length of generated magnetic fields [5–13].
Among various inflationary models of magnetogenesis,

the axion inflation model is especially attractive because it
produces maximally helical magnetic fields. This is an
advantageous characteristic because the survival of helical
magnetic fields is more efficient in the primordial plasma
compared to the case of nonhelical magnetic fields [14].
The axion inflation model is characterized by the axial
coupling of the inflaton field ϕ to the electromagnetic field
by means of the interaction term βϕðE · BÞ=MP, whereMP
is the reduced Planck mass and β is the dimensionless
coupling constant [15–33].
Obviously, in view of the chiral anomaly ∂μj

μ
5 ¼

e2=ð2π2ÞðE · BÞ, axion inflation inevitably leads to chiral-
ity production. In turn, nonzero chiral density via the chiral
magnetic effect [34] affects the electromagnetic field

evolution. Thus, axion inflation magnetogenesis implies
a coupled evolutionary dynamics of the electromagnetic
field and chirality.
A first step in the study of this joint evolution was done

in Ref. [35], where it was found that chirality production is
indeed very efficient, leading to the generation of a large
chemical potential μ5 at the end of axion inflation. To
analyze the evolution of the electromagnetic field, the
gradient-expansion formalism [28] was employed to
account for the chiral magnetic effect (CME) [34] via an
additional term JCME ¼ e2=ð2π2Þμ5B in the expression for
the electric current. Such a contribution to the electric
current is induced in chirally asymmetric ultrarelativistic
fermion plasma in a magnetic field.
Reference [35] used the simple expressions for the elec-

tric conductivity σ induced by the Schwinger effect [36–38]
in collinear electric and magnetic fields in de Sitter space-
time [30] and assumed that a local thermodynamic equi-
librium was reached. According to the discussion in
Ref. [30], such an assumption is questionable in the
inflationary expanding Universe.
In the present paper, we extend the analysis performed

in [35] in a few directions. First of all, we take into account
the fact that the Schwinger induced current must be split
into two contributions [24], where the first contribution
originates from the lowest Landau level and, thus, corre-
sponds to the chiral magnetic effect, while the second
captures the contributions from higher Landau levels and is
described by the usual Ohmic conductivity.
Second, we derive the Schwinger production rate Γ

and fermion energy production rate Γρ, which enter the
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equations of motion for the fermion number and energy
densities, taking into account the fact that the electric and
magnetic fields generated during axion inflation are not
completely collinear. However, performing a Lorentz
boost, one can find an inertial frame where these fields
are collinear. Then, using the expressions for Γ and Γρ for
collinear fields [39,40] and returning to the comoving
reference frame, we obtain the corresponding expressions
that account for noncollinearity of electric and magnetic
fields generated during axion inflation.
The Schwinger effect [36–38] of charged particle-

antiparticle pair production by a strong electric field is
important for inflationary magnetogenesis because the
generated electric fields are as strong as or even larger
than the produced magnetic fields. We would like to note
also that the energy production rate was not taken into
account in [35]. However, the analysis in this paper has
shown that it plays an important role for the evolution of
plasma and electromagnetic fields. Finally, we have ana-
lyzed the impact of particle collisions on axion inflation
magnetogenesis via the standard expression for the electric
conductivity in the relaxation time approximation.
The paper is organized as follows. The axion inflation

model is introduced in Sec. II. The gradient-expansion for-
malism is described in Sec. III. The set of equations for the
evolution of plasma in the phenomenological hydrodynam-
ical approach is derived in Sec. IV. The Schwinger pair and
energy production rates are considered in Sec. V. The final
set of equations is presented in Sec. VI. Numerical results for
the chirality production and generated electromagnetic fields
in the pseudoscalar inflation model are presented in Sec. VII.
Section VIII is devoted to conclusions.

II. AXION INFLATION MODEL

In the axion inflation model, the inflaton field is
represented by a pseudoscalar (axionlike) field ϕ that is
coupled to an Abelian gauge field Aμ through the term of
the Chern-Simons type. The corresponding action reads as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ − 1

4
FμνFμν

−
1

4
IðϕÞFμνF̃μν þ Lchðχ; AμÞ

�
; ð1Þ

where g ¼ det gμν is the determinant of the spacetime
metric, VðϕÞ is the inflaton potential, IðϕÞ is the axial
coupling function, Fμν ¼ ∂μAν − ∂νAμ is the gauge-field
strength tensor, and

F̃μν ¼ 1

2
ffiffiffiffiffiffi−gp εμνλρFλρ ð2Þ

is the corresponding dual tensor; εμνλρ is the absolutely
antisymmetric Levi-Civita symbol with ε0123 ¼ þ1.

The last term in Eq. (1) is the Lagrangian for a generic
matter field χ charged under the U(1) gauge group and,
therefore, coupled to the gauge-field four-potential Aμ. For
the sake of generality, we will not specify this term and
assume that it describes all charged fields in the model.
Action (1) implies the following Euler-Lagrange equa-

tions for the inflaton and gauge field:

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂νϕ

�þ dV
dϕ

þ 1

4

dI
dϕ

FμνF̃μν ¼ 0; ð3Þ

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
Fμν

�þ dI
dϕ

F̃μν
∂μϕ ¼ jν; ð4Þ

where

jν ¼ −
∂Lchðχ; AμÞ

∂Aν
ð5Þ

is the electric four-current. Equation (4) should be supple-
mented by the Bianchi identity for the dual gauge-field
strength tensor

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
F̃μν

� ¼ 0: ð6Þ

The energy-momentum tensor equals

Tμν ¼
2ffiffiffiffiffiffi−gp δS

δgμν
¼ ∂μϕ∂νϕ − gλρFμλFνρ

− gμν

�
1

2
∂αϕ∂

αϕ − VðϕÞ − 1

4
FαβFαβ

�
þ Tχ

μν; ð7Þ

where the last term describes the contribution of charged
matter fields.
The inflationary stage of the early Universe is charac-

terized by the Friedmann-Lemaître-Robertson-Walker
metric gμν ¼ ð1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞÞ, where aðtÞ is the
scale factor. Further, it is convenient to use in the analysis of
inflationary magnetogenesis the temporal gauge for the
vector potential Aμ, where Aμ ¼ ð0;−AÞ. Then the three-
vectors of electric E ¼ ðE1; E2; E3Þ and magnetic B ¼
ðB1; B2; B3Þ fields can be defined as E ¼ − 1

a ∂0A and
B ¼ 1

a2 rotA. They are physical fields measured by a
comoving observer; therefore, we included the scale factor
in their definition. The gauge-field stress tensor and its dual
tensor are expressed in terms of electric and magnetic fields
as follows:

F0i ¼ aEi; Fij ¼ −a2εijkBk; F̃0i ¼ aBi;

F̃ij ¼ a2εijkEk: ð8Þ

The cosmic-expansion rate (the Hubble parameter
H ¼ ȧ=a) is determined by the Friedmann equation
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H2 ¼ ρ

3M2
P
; ð9Þ

where the total energy density ρ is given by the zero-zero
component of the energy-momentum tensor (7),

ρ ¼ T0
0 ¼

�
1

2
ϕ̇2 þ VðϕÞ

�
þ 1

2
hE2 þ B2i þ ρc: ð10Þ

Here the two terms in square brackets correspond to the
energy density of the spatially homogeneous inflaton
field, the next term describes the gauge-field contribution
(angular brackets denote the vacuum expectation value),
and the last term is the counterpart for the charged matter
fields.
The electric four-current can be represented as

jμ ¼
�
ρch;

1

a
J

�
: ð11Þ

We assume that charged particles were absent in the
Universe initially and were produced later in particle-
antiparticle pairs via the Schwinger effect by a strong
electric field connected with inflationary magnetogenesis.
Therefore, we set the charge density to zero, ρch ¼ 0. On
the other hand, the current density three-vector J may be
nonzero in the presence of the gauge field. Then the
equations of motion (3), (4), and (6) take the following
form in the three-vector notation:

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ I0ðϕÞhE · Bi; ð12Þ

Ėþ 2HE −
1

a
rotBþ I0ðϕÞϕ̇Bþ J ¼ 0; ð13Þ

Ḃþ 2HBþ 1

a
rotE ¼ 0; ð14Þ

divE ¼ 0; divB ¼ 0: ð15Þ

Finally, to close the system of Maxwell’s equations, we
need to specify the electric current. We will show below
that it can be represented in the form of the generalized
Ohm’s law,

J ¼ σEEþ σBB; ð16Þ

where σE is the electric conductivity and σB is related to the
chiral magnetic effect. We will derive expressions for these
conductivities below. The Maxwell equation (13) takes
the form

Ėþ ½2H þ σE�Eþ ½I0ðϕÞϕ̇þ σB�B −
1

a
rotB ¼ 0: ð17Þ

As mentioned in the Introduction, we employ the gradient-
expansion formalism to solve the Maxwell equations in an
inflating universe.

III. GRADIENT-EXPANSION FORMALISM

The gradient-expansion formalism proposed in Ref. [32]
allows one to describe self-consistently the gauge-field
production in the axial inflation model, including the
Schwinger effect and the backreaction of produced particles
on the gauge field. This method works in position space and,
instead of vector quantities E and B, operates with a set of
scalar functions in a form of vacuum expectation values of
scalar products of E and/or B with an arbitrary number
of spatial derivatives (curls). These functions are

EðnÞ ¼ 1

an
hE · rotnEi; ð18Þ

GðnÞ ¼ −
1

2an
hE · rotnBþ ðrotnBÞ · Ei; ð19Þ

BðnÞ ¼ 1

an
hB · rotnBi: ð20Þ

Using Eqs. (14) and (17), we get the following equations
of motion for bilinear electromagnetic functions:

ĖðnÞ þ ½ðnþ 4ÞH þ 2σE�EðnÞ − 2½I0ðϕÞϕ̇þ σB�GðnÞ

þ 2Gðnþ1Þ ¼ ½ĖðnÞ�b; ð21Þ

ĠðnÞ þ ½ðnþ 4ÞH þ σE�GðnÞ − ½I0ðϕÞϕ̇þ σB�BðnÞ

− Eðnþ1Þ þ Bðnþ1Þ ¼ ½ĠðnÞ�b; ð22Þ

ḂðnÞ þ ðnþ 4ÞHBðnÞ − 2Gðnþ1Þ ¼ ½ḂðnÞ�b: ð23Þ

The right-hand sides of Eqs. (21)–(23) contain contribu-
tions due to boundary terms. Their necessity is dictated
by the fact that the number of physically relevant modes
(beyond the horizon) constantly grows during inflation.
They have the following form:

½ĖðnÞ�b ¼
d ln khðtÞ

dt
1

4π2

�
khðtÞ
aðtÞ

�
nþ4X

λ¼�1

λnEλðξeffðtÞ; sðtÞÞ;

ð24Þ

½ĠðnÞ�b¼
dlnkhðtÞ

dt
1

4π2

�
khðtÞ
aðtÞ

�
nþ4X

λ¼�1

λnþ1GλðξeffðtÞ;sðtÞÞ;

ð25Þ

½ḂðnÞ�b ¼
d ln khðtÞ

dt
1

4π2

�
khðtÞ
aðtÞ

�
nþ4X

λ¼�1

λnBλðξeffðtÞ; sðtÞÞ;

ð26Þ
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where khðtÞ is the momentum of a mode that is crossing the
horizon at the moment of time t,

khðtÞ ¼ max
t0≤t

	
aðt0ÞHðt0Þ

h
jξeffðt0Þj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2effðt0Þ þ s2ðt0Þ þ sðt0Þ

q i

: ð27Þ

Here we introduced the following parameters:

ξeffðtÞ ¼
dI
dϕ

ϕ̇

2H
þ σBðtÞ

2H
; sðtÞ ¼ σEðtÞ

2H
: ð28Þ

The functions Eλ, Gλ, and Bλ were derived in Ref. [32] and
have the form

Eλðξeff ; sÞ ¼
eπλξeff

r2ðξeff ; sÞ
�����irðξeff ; sÞ − iλξeff − s


×W−iλξeff ;12þs

�
−2irðξeff ; sÞ


þW1−iλξeff ;12þs

�
−2irðξeff ; sÞ

����2; ð29Þ

Gλðξeff ; sÞ ¼
eπλξeff

rðξeff ; sÞ
	
ℜe

�
Wiλξeff ;

1
2
þs

�
2irðξeff ; sÞ


×W1−iλξeff ;12þs

�
−2irðξeff ; sÞ

�

− s

����W−iλξeff ;12þs

�
−2irðξeff ; sÞ

����2


; ð30Þ

Bλðξeff ; sÞ ¼ eπλξeff
����W−iλξeff ;12þs

�
−2irðξeff ; sÞ

����2; ð31Þ

with rðξeff ; sÞ ¼ jξeff j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2eff þ sþ s2

p
.

Note that the equation of motion for the nth order
function always contains at least one function with the
(nþ 1)th power of the curl. As a result, all equations are
coupled into an infinite chain that needs to be truncated in
practice. The easiest way to perform such a truncation is
to express higher order quantities in terms of the lower
order ones. For some maximal order nmax, we impose the
following conditions:

Xðnmaxþ1Þ ≈
�
kh
a

�
2

Xðnmax−1Þ ð32Þ

for X ¼ fE;G;Bg. This truncation rule respects transfor-
mation properties of XðnÞ under parity (i.e., relates either
scalars or pseudoscalars). The truncation order nmax must
be chosen in such a way that its further increase does not
lead to a significant change of the result.

IV. HYDRODYNAMICAL DESCRIPTION
OF PLASMA

To describe the dynamics of particles produced due to
the Schwinger effect and their backreaction on the gauge
field, we use the hydrodynamical approach and define
the corresponding system of hydrodynamical equations in
this section. Electromagnetohydrodynamics (EMHD) [41]
is an extension of the familiar magnetohydrodynamics
(MHD) [42] to the case where the displacement current
and the generation of electromagnetic waves is important.
Since the dynamics of the gauge field is definitely very
important in the study of inflationary magnetogenesis, we
adopt in this section the EMHD approach for the descrip-
tion of produced particles.
An important assumption of EMHD (as well as the more

familiar MHD) is that the corresponding plasma is strongly
collisional with the timescale of collisions shorter than
the other characteristic times in the system. Certainly, the
kinetic theory with its main ingredient in the form of the
particle distribution function fðp; x; tÞ in the phase space
would provide a more accurate approach to the description
of plasma; however, it is not easy to solve the correspond-
ing Boltzmann equation. Therefore, although the hydro-
dynamical approach is more coarse and may sometimes
miss the important physics, it is relatively simple because
the hydrodynamical variables depend only on spacetime
coordinates x and t. In addition, the hydrodynamical
approach captures many of the important properties of
plasma dynamics and is often qualitatively correct. There-
fore, we use in the present paper the EMHD approach,
paying special attention to the problem of attaining the
collisional regime in our numerical analysis and leaving the
implementation of the kinetic approach for future studies.
Since we consider a spatially uniform system with

vanishing pressure and temperature gradients, we could
set the hydrodynamical velocity vðx; tÞ to zero. Then we are
left with the following set of hydrodynamical variables that
describe the plasma of chiral fermions (with negligibly
small mass). These are the total number density of particles
and antiparticles n, chirality density n5, total energy density
ρc, and conduction current jcond. Let us define now the set of
equations that govern these hydrodynamical variables.
We begin with the equations of motion for the fermion

number and energy densities. The Schwinger effect is
characterized by the pair creation rate per unit volume
and unit time Γ and the energy production rate per unit
volume and unit time Γρ, which will be specified in the next
section. The equations of motion for the fermion number
and energy densities have the following form:

dn
dt

þ 3Hn ¼ 2Γ; ð33Þ

dρc
dt

þ 4Hρc ¼ Γρ þ ðE · jcondÞ; ð34Þ
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where terms withH take into account the redshift due to the
Universe expansion. The first term on the right-hand side of
Eq. (34) corresponds to the energy transfer from the gauge
field to fermions due to the pair creation process, while the
second term describes the increase of energy of produced
particles in an external electric field. The former term can
also be described as the scalar product of the electric field
with some effective current—the so-called polarization
current,

Γρ ¼ ðE · jpolÞ: ð35Þ

Therefore, the equation of motion for the energy density
can be rewritten as

dρc
dt

þ 4Hρc ¼ ðE · JÞ; ð36Þ

where

J ¼ jpol þ jcond ð37Þ

is the total electric current. Since we would like to combine
the hydrodynamical approach with the gradient-expansion
formalism, we represent the electric current in the form of
the generalized Ohm’s law

J ¼ σE;totalEþ σBB: ð38Þ

Then

σE;total ¼ σE þ Γρ

hE2i ; ð39Þ

where the second term can be considered as the polarization
conductivity. We will specify the explicit expressions for
conductivities σE;B below.
In order to write down the equation of motion for the

chirality density, we note that the Schwinger pair produc-
tion is insensitive to the chirality, i.e., it cannot produce the
net chirality. However, since we have, in general, non-
orthogonal electric and magnetic fields, the chiral anomaly
leads to chirality production. Finally, the chirality flipping
processes with the chirality flipping rate Γflip could lead
to the equilibration of the chiral imbalance. Taking into
account the above-mentioned effects, we find the following
equation for the chirality density n5:

dn5
dt

þ 3Hn5 ¼
e2

2π2
hE · Bi − Γflipn5: ð40Þ

In the Standard Model, the chirality flipping rate Γflip is
much less than the Hubble rate at temperatures above
80 TeV [43,44]; therefore, we will neglect these processes
in what follows.

V. SCHWINGER PAIR AND ENERGY
PRODUCTION RATES

In the previous section, we specified the equations that
govern the temporal evolution of hydrodynamical varia-
bles. These equations depend on the Schwinger pair and
energy production rates that we determine in this section.
The Schwinger pair creation rate

Γ ¼ 1

V

dNpairs

dt
ð41Þ

is a Lorentz scalar and the energy production rate

Γρ ¼
1

V
dW
dt

ð42Þ

transforms as the zeroth component of a contravariant four-
vector.
As mentioned in the Introduction, although electric and

magnetic fields generated during axion inflation are not
completely collinear, performing a Lorentz boost one can
find an inertial frame where these fields are collinear. Then,
following the analysis in [39,40], one can easily calculate
the Schwinger number and energy production rates in that
frame and return back to the initial frame performing the
corresponding Lorentz boost. This procedure allows us to
take into account noncollinearity of electric and magnetic
fields generated during axion inflation. Obviously, such a
procedure implicitly assumes that the spatial dependence of
electric and magnetic fields can be neglected.
The calculation of the Schwinger number and energy

production rates in the reference frame where electric and
magnetic fields are collinear is straightforward (we denote
electric and magnetic fields in this reference frame with
tilde). Then the production rates can be computed using the
semiclassical approximation. For the Dirac fermion with
mass m, the Schwinger pair production process can be
regarded as quantum tunneling through the energy gap
between the upper and lower continua. In the presence of
constant and collinear electric and magnetic fields directed
along the z axis, the semiclassical energy of the fermion has
the form

E� ¼ jeẼjz�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2jeB̃j

�
nþ 1

2
þ σ̂

�
þm2

s
; ð43Þ

where n ¼ 0; 1; 2;… is the Landau level number, σ̂ ¼ � 1
2

is the spin projection on the z axis, and pz is the continuous
momentum along the z axis. A fermion with energy E
and given values of n and σ̂ can propagate in the regions
of space where pz is real. However, there is a finite
region where pz can be only imaginary, which is the
classically forbidden region. The tunneling probability is
proportional to [39,40]
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P ∝ exp

�
−2

Z
zþ

z−

jpzjdz
�

¼ exp

�
−π

2jeB̃jðnþ 1
2
þ σ̂Þ þm2

jeẼj
�
; ð44Þ

where z� are classical turning points. This expression gives
the probability of the pair production at the nth Landau
level with the spin projection σ̂. Following Ref. [40], we
can use it to compute the pair and energy production rates.
For simplicity, let us consider fermions with vanishing
mass.1 Then we get

Γ ¼ jeẼjjeB̃j
4π2

X
n;σ̂

exp

�
−π

2jeB̃jðnþ 1
2
þ σ̂Þ

jeẼj
�

¼ jeẼjjeB̃j
4π2

�
1þ 2

X∞
k¼1

e−2π
jB̃j
jẼjk
�

¼ jeẼjjeB̃j
4π2

coth

�
π
jB̃j
jẼj

�
; ð45Þ

Γ̃ρ ¼
jeẼjjeB̃j
4π2

X
n;σ̂

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeB̃j

�
nþ 1

2
þ σ̂

�s

× exp

�
−π

2jeB̃jðnþ 1
2
þ σ̂Þ

jeẼj
�

¼ jeẼjjeB̃j
4π2

4

ffiffiffiffiffiffiffiffiffiffiffi
2jeB̃j

q X∞
k¼1

ffiffiffi
k

p
e−2π

jB̃j
jẼjk

¼ jeẼjjeB̃j3=2 ffiffiffi
2

p

π2
Li−1

2

�
e−2π

jB̃j
jẼj

�
; ð46Þ

where Li−1
2
is the polylogarithm of order − 1

2
. In the second

expression, factor 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeB̃jðnþ 1

2
þ σ̂Þ

q
is the energy differ-

ence between the positive and negative energy continua at
fixed z.
As stated above, electric E and magnetic B fields

generated during axion inflation are, in general, not
collinear. Let us assume without loss of generality that
E and B in the comoving frame lie in the xOy plane. Then
the velocity of boost leading to the collinear frame is
parallel to the z axis and equal to

v ¼ 2½E × B�
E2 þ B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − B2Þ2 þ 4ðE · BÞ2

p : ð47Þ

The corresponding Lorentz factor is given by

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ 1ffiffiffi
2

p
�
1þ E2 þ B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 − B2Þ2 þ 4ðE · BÞ2
p �

1=2
:

ð48Þ

The resulting values of electric and magnetic fields in the
collinear frame can be easily found from the invariants of
the gauge-field tensor, which are the same in both frames,

I1 ¼
1

2
FμνFμν ¼ B2 − E2 ¼ B̃2 − Ẽ2; ð49Þ

I2 ¼ −
1

4
FμνF̃μν ¼ E · B ¼ Ẽ B̃; ð50Þ

which gives

Ẽ ¼ 1ffiffiffi
2

p
h
E2 − B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − B2Þ2 þ 4ðE · BÞ2

q i
1=2

; ð51Þ

B̃ ¼ signðE · BÞ 1ffiffiffi
2

p
h
B2 − E2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − B2Þ2 þ 4ðE · BÞ2

q i
1=2

: ð52Þ

Note that Ẽ is defined as a positive quantity, while the
projection of magnetic field on the direction of electric field
B̃may have any sign, depending on the scalar product E · B
in the comoving frame.
Finally, expressing everything in terms of gauge fields in

the comoving frame, we obtain the sought expression for
the pair production rate per unit volume and unit time,

Γ ¼ e2jE · Bj
4π2

coth
2πjE · Bj

E2 − B2 þ Δ
;

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − B2Þ2 þ 4ðE · BÞ2

q
: ð53Þ

The energy production rate in the comoving frame can
be found by performing the inverse Lorentz boost and is
given by

Γρ ¼ γΓ̃ρ ¼
e5=2jE ·Bj
21=4π2

ðE2 þB2 þΔÞ1=2ðB2 −E2 þΔÞ1=4
Δ1=2

× Li−1
2

�
e−

4πjE·Bj
E2−B2þΔ

�

¼ e5=221=4

π2
ðE2 þB2 þΔÞ1=2

Δ1=2ðE2 −B2 þΔÞ1=4 jE · Bj3=2

× Li−1
2

�
e−

4πjE·Bj
E2−B2þΔ

�
: ð54Þ

1The mass can be neglected if m2 ≪ jeẼj, which is typically
satisfied during inflation. In the opposite case, the Schwinger pair
production is exponentially suppressed and, therefore, is not
interesting for the present study.
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Before proceeding to numerical analysis, it is useful to
collect everything and present the final set of equations.

VI. FINAL SET OF EQUATIONS

The system of equations governing the joint evolution of
the inflaton field, gauge field, and produced plasma has the
following form:

(i) the Friedmann equation for the Hubble rate

H2 ¼
�
ȧ
a

�
2

¼ 1

3M2
P

�
1

2
ϕ̇2 þ VðϕÞ

þ 1

2

�
Eð0Þ þ Bð0Þþ ρc

�
; ð55Þ

(ii) the Klein-Gordon equation for the inflaton field

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ −I0ðϕÞGð0Þ; ð56Þ

(iii) the gradient-expansion formalism equations for the
gauge-field bilinear functions

ĖðnÞ þ
�
ðnþ 4ÞH þ 2σE þ 2

Γρ

Eð0Þ

�
EðnÞ

− 2½I0ðϕÞϕ̇þ σB�GðnÞ þ 2Gðnþ1Þ

¼ d ln khðtÞ
dt

1

4π2

�
khðtÞ
aðtÞ

�
nþ4

×
X
λ¼�1

λnEλ

�
ξeffðtÞ; sðtÞ


; ð57Þ

ĠðnÞ þ
�
ðnþ 4ÞH þ σE þ Γρ

Eð0Þ

�
GðnÞ

− ½I0ðϕÞϕ̇þ σB�BðnÞ − Eðnþ1Þ þ Bðnþ1Þ

¼ d ln khðtÞ
dt

1

4π2

�
khðtÞ
aðtÞ

�
nþ4

×
X
λ¼�1

λnþ1Gλ

�
ξeffðtÞ; sðtÞ


; ð58Þ

ḂðnÞ þ ðnþ 4ÞHBðnÞ − 2Gðnþ1Þ

¼ d ln khðtÞ
dt

1

4π2

�
khðtÞ
aðtÞ

�
nþ4

×
X
λ¼�1

λnBλ

�
ξeffðtÞ; sðtÞ


; ð59Þ

where

ξeffðtÞ ¼
dI
dϕ

ϕ̇

2H
þ σB
2H

; sðtÞ ¼ σE þ Γρ=Eð0Þ

2H
;

ð60Þ

(iv) the equation for the fermion energy density

dρc
dt

þ 4Hρc ¼ Γρ þ σEEð0Þ − σBGð0Þ; ð61Þ

(v) the equation for the fermion chirality density

dn5
dt

þ 3Hn5 ¼ −
e2

2π2
Gð0Þ; ð62Þ

(vi) the equation for the fermion number density

dn
dt

þ 3Hn ¼ 2Γ: ð63Þ

Here

Γ ¼ e2jGð0Þj
4π2

coth
2πjGð0Þj

Eð0Þ − Bð0Þ þ Δ
; ð64Þ

Γρ ¼
e5=221=4

π2
ðEð0Þ þ Bð0Þ þ ΔÞ1=2

Δ1=2ðEð0Þ − Bð0Þ þ ΔÞ1=4

× jGð0Þj3=2Li−1
2

�
e
− 4πjGð0Þj
Eð0Þ−Bð0ÞþΔ

�
; ð65Þ

with

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEð0Þ − Bð0ÞÞ2 þ 4ðGð0ÞÞ2

q
: ð66Þ

Finally, for conductivities, we take the expressions from
Ref. [24], see Eqs. (4.11) and (4.12),

σE ¼ e3

3π2H

ffiffiffiffiffiffiffiffi
Bð0Þp

exp

�
2π

ffiffiffiffiffiffi
Bð0Þ
Eð0Þ

q �
− 1

; ð67Þ

σB ¼ −
e3

6π2H

ffiffiffiffiffiffiffiffi
Eð0Þ

p
signðGð0ÞÞ: ð68Þ

As we discussed in Sec. IV, the hydrodynamical
approach implies that plasma is in the collisional regime
with the timescale of collisions shorter than the other
characteristic times in the system. The characteristic
timescale of collisions τ of charged fermions in plasma
at thermal equilibrium with temperature T can be esti-
mated as [45,46]

τeq ¼
c0

T
�
e2
4π


2 ln jej−1 ; ð69Þ
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where e ¼ ffiffiffiffiffiffiffiffiffiffiffi
4παw

p
≈ 0.35 is the gauge charge2 and c0 is a

dimensionless constant of order unity.3

Equation (69) can be used for the system in the state of
thermodynamic equilibrium, in which the temperature can
be introduced. In the beginning of inflation, the system is
definitely not in the equilibrium state and it is not obvious
that it will come to equilibrium at the end of inflation.
On the other hand, collisions still may play an important
role during inflation. To deal with such a case, instead of
Eq. (69), we can estimate the collision time for charged
particles as follows:

τp ¼
ρ2c

ke4 lnðe−1Þn3 ; ð70Þ

where k is a model-dependent factor that accounts for the
number of charged particle species and their interaction
strength. In our analysis, we consider the two limiting cases
k ¼ 1 (for example, it could be a single lepton interacting
only via electroweak interactions in the Standard Model)
and k ¼ 104. The latter can be considered as the case of
strongly interacting particles, e.g., quarks in the Standard
Model, where k equals the product of the number of quark
species Nq and the square of the ratio of the strong and
weak coupling constants ðαs=αwÞ2. Clearly, factor k is quite
model dependent because neither the number of particle
species nor their interaction strength are fixed at the Hubble
scale of inflation. Therefore, our choice of two numerical
values of k is by no means definite, but serves only for
illustrative purposes.
We would also like to note that, while the gradient-

expansion method we use is based on the approximation of
homogeneous axion, it is known that including axion
inhomogeneity quantitatively changes the behavior in the
strong backreaction regime [47,48]. In the weakly interact-
ing fermion case, the analysis performed in [47,48] should
stay mainly intact, as particle collisions should not change
much the results obtained in these papers. On the other
hand, it is not immediately clear what happens in the case
where fermions interact strongly with other gauge fields.
Strong interaction results in more efficient equilibration in
the fermion sector and smoothing its inhomogeneity. This

suggests that inhomogeneities in the gauge and axion
sectors should be weakened too. Still, the dynamics in
the strongly interacting case is inherently nonlinear; there-
fore, definite conclusions on this question could be drawn
only via analyses like in [47,48] extended to the case of
strongly interacting fermions.
If the collision time is less than Hubble time τH ≃ 1=H,

then the expressions for conductivities can be modified by
replacing 1=ð3HÞ with the collision time τp [24],

σE ¼ e3τp
π2

ffiffiffiffiffiffiffiffi
Bð0Þp

exp

�
2π

ffiffiffiffiffiffi
Bð0Þ
Eð0Þ

q �
− 1

; ð71Þ

σB ¼ −
e3τp
2π2

ffiffiffiffiffiffiffiffi
Eð0Þ

p
signðGð0ÞÞ: ð72Þ

Having presented the complete system of equations, we
proceed now to its numerical analysis.

VII. NUMERICAL ANALYSIS

We consider two potentials for the inflaton field in our
analysis. The first is the α-attractor inflation potential

VðϕÞ ¼ V0th2
�

ϕffiffiffiffiffiffi
6α

p
MP

�
; ð73Þ

with α ¼ 1 and V0 ¼ 10−10M4
P, and the second is the

quadratic potential

VðϕÞ ¼ m2
ϕϕ

2

2
; ð74Þ

with mϕ ¼ 6 × 10−6MP. The amplitudes of both potentials
were chosen from the requirement that they imply the
correct amplitude of the curvature power spectrum con-
strained by the cosmic microwave background (CMB)
observations [49].4 The axial coupling function has the
simplest linear form for both potentials,

IðϕÞ ¼ βϕ

MP
; ð75Þ

where β is the dimensionless coupling constant typically
varying in the range 10–30.
The initial conditions for the inflaton and its derivative

are given by

2Here we used the value of the Standard Model hypercharge
coupling constant g0 at the energy scale of the Z-boson mass,
mZ ¼ 91.2 GeV. If view of the coupling constant running with
momentum, a better choice would be to take the value of the
hypercharge coupling constant at the Hubble scale. However, the
latter is model dependent, hence, the collision time is a model-
dependent quantity too.

3In general, it depends on particle’s momentum; however, for
simplicity, we will neglect this dependence and assume it to be
constant. Its numerical value also depends on the number of
charged degrees of freedom in plasma. We will keep it as a free
parameter that determines the intensity of collisions in plasma.

4Here we disregard the fact that the quadratic inflaton potential
(74) is strongly disfavored by the CMB observations [49] and use
it for illustrative purposes. Moreover, in many viable inflationary
models, when the inflaton approaches the minimum of its
potential, the latter can be well approximated by the ϕ2 term.
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ϕð0Þ ¼ 6.25MP;

ϕ̇ð0Þ ¼ −
MPV 0ðϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Vðϕ0Þ
p ≈ −1.13 × 10−7M2

P; ð76Þ

for potential (73) and

ϕð0Þ ¼ 15.55MP;

ϕ̇ð0Þ ¼ −
MPV 0ðϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Vðϕ0Þ
p ≈ −4.9 × 10−6M2

P; ð77Þ

for potential (74), where the inflaton initial value allows
us to get at least 60e-foldings of inflation and the value of
its initial derivative is computed assuming the slow-roll
approximation. Note that only the last 10 − 15e-foldings
are important for magnetogenesis and fermion production;
however, the initial conditions should be specified well
before this moment. The initial conditions for gauge-field
bilinear functions, energy density, chirality density, and the
number density of produced particles are set to zero.
Our numerical analysis revealed that the Hubble time is

much less than the collision time τH ≪ τp for weakly
interacting particles during the whole inflation; hence, the
corresponding plasma is in the collisionless regime and the
expressions for conductivities (67) and (68) should be
applied. For strongly interacting particles, vice versa, the
collision time is much less than the Hubble time τH ≫ τp
during inflation, i.e., this plasma in the collision regime;
hence, the expressions for conductivities (71) and (72)
should be used throughout the whole inflation.
The results of calculations for the α-attractor potential

(73) are presented in Figs. 1–3 and for quadratic potential
(74) in Figs. 4–6. The most general results of our analysis
could be summarized as follows. According to Figs. 1, 2(a),
4, and 5(a), as one could expect, the generated electric,
magnetic, Chern-Pontryagin, and fermion number densities
at a given value of β are larger for strongly interacting
particles compared to the case of weakly interacting
particles because smaller collision time reduces the

conduction electric current that tends to screen the electric
field. This makes generated electromagnetic fields stronger.
On the other hand, no such universal conclusion could be
drawn for the generated fermion energy density as Figs. 3
and 6 imply. As to chiral asymmetry ðn − n5Þ=n, its value at
the end of inflation at a given value of β, like the value of
generated electromagnetic fields, is larger for strongly
interacting particles compared to the case of weakly
interacting particles.
As to the role of the axial coupling constant β, Figs. 1–6

demonstrate a nonmonotonic dependence of the generated

(a) (b) (c)

FIG. 1. The electric energy density ρE (a), magnetic energy density ρB (b), and Chern-Pontryagin density 1
2
jhE · Bij (c) as functions of

the number of e-foldings counted from the end of inflation Ne for the α-attractor potential (73) and three different values of the axial
coupling parameter β ¼ 20 (red lines), β ¼ 25 (green lines), and β ¼ 30 (blue lines). The dependence for weakly interacting particles
(k ¼ 1) is shown by dashed lines and by solid lines for strongly interacting particles (k ¼ 104).

(a)

(b)

FIG. 2. The total number density n (a) and chiral asymmetry
ðn − n5Þ=n (b) as a function of the number of e-foldings counted
from the end of inflation Ne for the α-attractor potential (73) and
three different values of the axial coupling parameter β ¼ 20
(red lines), β ¼ 25 (green lines), and β ¼ 30 (blue lines). The
dependence for weakly interacting particles (k ¼ 1) is shown
by dashed lines and by solid lines for strongly interacting
particles (k ¼ 104).
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electromagnetic fields, fermion number and energy den-
sities, and chiral asymmetry on the number of e-foldings
Ne from the end of inflation for a sufficiently large value of
the axial coupling constant β.
Comparing Figs. 1–3 and 4–6 plotted for the α-attractor

and quadratic potentials, respectively, we see that the
corresponding results are rather similar, i.e., the character-
istics of generated electromagnetic fields and chiral asym-
metry do not show a significant dependence on the form of
the inflaton potential.
Let us provide more detailed quantitative information

on the obtained results. For weakly interacting particles in
the case of the α-attractor potential (73), the increase of
coupling constant β from 20 to 30 results in the increase of
the electric- and magnetic-field energy densities and Chern-
Pontryagin density 1

2
jhE · Bij (see Fig. 1), as well as in the

increase of the fermion number (see Fig. 2) and energy
densities (see Fig. 3). The chiral asymmetry ðn − n5Þ=n is
equal to 0.062, 0.040, and 0.049 for β ¼ 20, 25, and 30,
respectively; i.e., it is not monotonic as β changes.
For strongly interacting particles, where the collisional

regime is realized due to strong interactions, the magnitude
of the considered densities is more than 10 times larger than

that in the case of weakly interacting particles. In addition,
chiral asymmetry increases to 0.14, 0.29, and 0.38 and is
monotonic with β. Moreover, qualitative changes in the
time evolution are observed for β ¼ 25 and 30, namely, a
nonmonotonic behavior due to the backreaction of pro-
duced gauge fields. Indeed, while the highest value of the
magnetic energy density is observed for β ¼ 15, the other
considered quantities reach their highest values for β ¼ 20.
The largest value of chiral asymmetry is 0.57.
For the quadratic potential (74), the increase of β from 10

to 25 also leads to the increase of ρE, ρB as well as
1
2
jhE · Bij, n, and ρc (see Figs. 4–6). The most considerable

growth is observed between β ¼ 10 and 15. The value of
ðn − n5Þ=n is in the range from 0.095 to 0.15.
Concerning magnetogenesis, the important issue in its

study is to determine how magnetic fields generated during
inflation evolve through the sequence of cosmological
epochs until the present. After the end of inflation, the
preheating takes place when the inflaton field oscillates in
the potential minimum and decays into different particles.
Althoughtheelectromagnetic fieldcouldbeamplifiedduring
the preheating stage due to the interaction with the rapidly
oscillating inflaton, e.g., through the mechanism of para-
metric resonance, for simplicity, we could assume that the
magnetic field is not enhanced during the preheating stage.
Further, after reheating, the plasma of created particles

thermalizes and the Universe enters its hot radiation
dominated phase. If the turbulent regime does not take
place, then the magnetic field evolves adiabatically, i.e., the
corresponding comoving quantity remains constant,

B̃ðtrehÞ ¼ B̃ðtÞ ¼ BðtÞ
�
a0
ae

�
−2
; ð78Þ

where a is the scale factor. The analysis in Sec. VII of [28]
defines the ratio of scaling factors a0=ae and gives the
present day value of the magnetic field

B0 ≃ 4 × 10−15 G

�
Treh

1014 GeV

�
−1=3

: ð79Þ

FIG. 3. The dependence of the fermion energy density ρc on the
number of e-foldings counted from the end of inflation Ne in the
case of the α-attractor potential (73) and three values of the axial
coupling parameter β ¼ 20 (red lines), β ¼ 25 (green lines),
β ¼ 30 (blue lines). The dependence for weakly interacting
particles (k ¼ 1) is shown by dashed lines and by solid lines
for strongly interacting particles (k ¼ 104).

(a) (b) (c)

FIG. 4. The electric energy density ρE (a), magnetic energy density ρB (b), and Chern-Pontryagin density 1
2
jhE ·Bij (c) as functions of

the number of e-foldings counted from the end of inflation Ne for the quadratic potential (74) and four values of the axial coupling
parameter β ¼ 10 (red lines), β ¼ 15 (green lines), β ¼ 20 (blue lines), β ¼ 25 (purple lines). The dependence for weakly interacting
particles ðk ¼ 1Þ is shown by dashed lines and by solid lines for strongly interacting particles ðk ¼ 104Þ.
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VIII. SUMMARY

Our analysis of chirality production and its impact on
generated electromagnetic fields during axion inflation via
the gradient-expansion formalism and hydrodynamical
approach (taking into account particle collisions in the

relaxation time approximation) in the gauge-field and
fermion sectors, respectively, led to the following results.
Comparing the particle collision time with the Hubble

time, we found that local thermodynamic equilibrium is not
reached for weakly interacting particles equilibrating only
via the electroweak interactions and a realistically small
number of particle species. However, for strongly interact-
ing particles, the characteristic collision time appears to be
much smaller than the Hubble time. Although the intense
particle production due to the Schwinger effect may still
prevent the system from reaching the state of local
thermodynamic equilibrium, the particle collisions may
have a strong impact on the pair production process and,
consequently, on the outcome of magnetogenesis during
pseudoscalar inflation.
We found that the generated electric, magnetic, Chern-

Pontryagin, and fermion number densities at a given value
of the coupling constant β are larger for strongly interacting
particles compared to the case of weakly interacting
particles, as one could expect, because smaller collision
time reduces the conduction electric current, which tends to
decrease the electric field. Therefore, generated electro-
magnetic fields are stronger. Although the value of pro-
duced chiral asymmetry at the end of inflation at fixed β is
larger for strongly interacting particles compared to the
case of weakly interacting particles, chiral asymmetry
can be larger for weakly interacting particles for a few
e-foldings close to the end of inflation. For a sufficiently
large value of the axial coupling constant β, a nonmono-
tonic dependence of generated electromagnetic fields,
fermion number and energy densities, and chiral asymme-
try on the number of e-foldings is observed near the end of
inflation due to the strong backreaction of produced gauge
fields. In addition, the obtained results show that the values
of generated electromagnetic fields and chiral asymmetry
do not depend notably on the form of the inflaton potential.
We would like to note that the present study allows us to

draw only some general qualitative conclusions about
chirality production during axion inflation and does not
claim to provide an accurate quantitative description of the
process. The latter could be realized only in the framework
of the chiral kinetic theory with a realistic collision integral
describing the interaction processes in plasma. We plan to
address this issue elsewhere.
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(a)

(b)

FIG. 5. The total number density n (a) and chiral asymmetry
ðn − n5Þ=n (b) as a function of the number of e-foldings counted
from the end of inflation Ne for the quadratic potential (74) and
four different values of the axial coupling parameter β ¼ 10 (red
lines), β ¼ 15 (green lines), β ¼ 20 (blue lines), β ¼ 25 (purple
lines). The dependence for weakly interacting particles ðk ¼ 1Þ is
shown by dashed lines and by solid lines for strongly interacting
particles ðk ¼ 104Þ.

FIG. 6. The same dependences as shown in Fig. 3 for the
quadratic potential (74) and four different values of the axial
coupling parameter β ¼ 10 (red lines), β ¼ 15 (green lines),
β ¼ 20 (blue lines), β ¼ 25 (purple lines).
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