
Probing a scale dependent gravitational slip
with galaxy strong lensing systems

Sacha Guerrini *

Ecole Polytechnique, Palaiseau, F-91128, France

Edvard Mörtsell †

The Oskar Klein Centre, Department of Physics, Stockholm University,
Albanova University Center, Stockholm, SE-106 91, Sweden

(Received 31 October 2023; accepted 5 January 2024; published 29 January 2024)

Observations of galaxy-scale strong gravitational lensing systems enable unique tests of departures from
general relativity at the kilo- to megaparsec scale. In this work, the gravitational slip parameter γPN,
measuring the amplitude of a hypothetical fifth force, is constrained using 130 elliptical galaxy lens
systems. We implement a lens model with a power-law total mass density and a deprojected De
Vaucouleurs luminosity density, favored over a power-law luminosity density. To break the degeneracy
between the lens velocity anisotropy β and the gravitational slip, we introduce a new prior on the velocity
anisotropy based on recent dynamical data. For a constant gravitational slip, we find γPN ¼ 0.90þ0.18

−0.14 in
agreement with general relativity at the 68% confidence level. Introducing a Compton wavelength λg,
effectively screening the fifth force at small and large scales, the best fit is obtained for λg ∼ 0.2 Mpc and

γPN ¼ 0.77þ0.25
−0.14 . A local minimum is found at λg ∼ 100 Mpc and γPN ¼ 0.560.45−0.35. We conclude that there is

no evidence in the data for a significant departure from general relativity and that using accurate
assumptions and having good constraints on the lens galaxy model is key to ensure reliable constraints on
the gravitational slip.

DOI: 10.1103/PhysRevD.109.023533

I. INTRODUCTION

Together with quantum field theory, Einstein’s theory of
general relativity (GR) is a cornerstone of modern physics.
Those two theories yield a description of the history of the
Universe from a fraction of a second after the big bang to
today, in what is called the cosmological concordance
model [Λ cold dark matter (ΛCDM)] [1]. The latter model is
not fully understood however. In particular, the accelerated
cosmic expansion remains one of the most puzzling ques-
tions in cosmology and in physics in general [2]. It may be
formally understood as a cosmological constant added to
Einstein equations expressing the link between space-time
curvature and the stress-energy tensor Tμν. The required
cosmological constant is very small and presents a discrep-
ancy of ≳60 orders of magnitude with theoretical estimates,
referred to as the “cosmological constant problem” [3].
Another perspective for understanding cosmic acceler-

ation is to modify Einstein’s theory of gravity [4]. So far,
GR has been confirmed in all experiments, especially
at the Solar System scale [5–7] but the true gravity
theory might deviate from GR at cosmological scales.

Therefore, determining whether dark energy or modified
gravity (MG) drives cosmic expansion can potentially
be addressed with a test of GR at cosmological scales.
Many MG theories can be embedded in a phenomenologi-
cal description [8], allowing for measurements of general
departures from GR. The validity of GR can be tested by
constraining the gravitational slip parameter γPN [9], which
describes how much space curvature is provided by the unit
rest mass of objects. In addition, screening mechanisms
appear naturally in many MG theories and restore GR on
small and large scales [3].
Several cosmological probes allow tests of GR under

screening. Among them, strong gravitational lensing
(SGL) occurs due to the curving of space-time induced
by mass. Strong lensing more precisely refers to the
formation of multiple source images by a lens mass located
close to the line of sight toward the source. In recent years,
great efforts have been put into estimating cosmological
parameters [10,11], measuring the Hubble constant H0

[12,13] and the cosmic curvature [14], and the distribution
of matter in massive galaxies acting as lenses [15,16].
Provided reasonable prior assumptions and appropriate
descriptions of the internal structure of lensing galaxies,
it is possible to constrain the gravitational slip γPN
using SGL [17–20]. Recent publications introduced a
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phenomenological screening model as a step discontinuity
in γPN at a scale rV [20–22]. The obtained constraint in
Ref. [21] is jγPN − 1j ≤ 0.2 × ðrV=100 kpcÞ with rV ¼
10–200 kpc using two gravitationally lensed quasar time-
delay measurements. Fast radio burst time-delay simulations
[22] predict constraints jγPN − 1j ≤ 0.04 × ðrV=100 kpcÞ ×
½N=10�−1=2 where N is the sample size. Ten events alone
could place constraints at a level of 10% in the range
rV ¼ 10–300 kpc.
In this work, we take advantage of a recently compiled

sample of 130 SGL systems [16] to investigate a gravita-
tional slip under screening effects. Here, we assume that
only massless photons will be affected by the fifth force,
i.e., only the longitudinal potential Ψ varies. This is a
common assumption [16,20] motivated by the fact that
we only probe the difference between massive and massless
particles. We introduce a phenomenological description
of screening at small and large scales, respectively, para-
metrized by the Vainshtein radius rV and the Compton
wavelength of the theory λg. The combination of lensing and
stellar kinematics data is used to constrain possible discrep-
ancies in the gravitational effects on massless (photons) and
massive (stars, gas,…) particles.We introduce a deprojected
De Vaucouleurs luminosity density to be compared with the
commonly used power-law luminosity profile.We assess the
influence of the lens mass model on our estimation of the
gravitational slip and finally study the degeneracy between
the gravitational slip and the Compton wavelength of the
theory for λg ¼ 1 pc–100 Gpc.
This paper is organized as follows: In Sec. II, we

introduce the model used to evaluate the velocity dispersion
of lensing galaxies and our phenomenological screening
description. We further introduce our SGL sample, the
cosmological model, as well as the model parameters for
which we perform a Markov chain Monte Carlo (MCMC)
analysis. In Sec. III, we present and discuss our results. The
case without screening is first used to asses the influence
of the lens mass model on the fit before studying the
degeneracy between the Compton wavelength and the
gravitational slip. Conclusions are summarized in Sec. IV.

II. METHODOLOGY

A. The model

1. The general framework

The general idea is to measure the mass enclosed
inside the Einstein radius of the lens using both massless
photons and massive stars as probes of the gravitational
potential. In addition to the imaging data of the SGL,
spectroscopic data of the system are needed to measure the
velocity dispersion of the lens galaxy. The comparison of
the projected gravitational and dynamical masses (Mgrav
and Mdyn, respectively) provides a promising test of GR at
the galactic scales.

From the theory of gravitational lensing, the gravitational
mass is Mgrav ¼ ΣcrπR2

E;GR [23] in GR where RE;GR ¼
θE;GRDl is the Einstein radius wherein θE;GR is the
Einstein angle and Dl is the angular distance between
the observer and the lens. The critical surface density is
defined by

Σcr ¼
c2

4πG
Ds

DlDls
; ð1Þ

where Ds and Dls are the angular distances between the
observer and the source and between the lens and the source,
respectively.
Amass distributionmodel of the lens galaxy ½ρðrÞ; νðrÞ; β�

is required to compute the velocity dispersion in the lens
galaxy and the dynamical mass Mdyn. ρ is the total mass
density, ν is the luminosity density of stars, and β is the
anisotropy of the velocity dispersion assumed to be constant
in this work. Assuming spherical symmetry, the Jeans
equation [24] is given by

d
dr

½νðrÞσ2r � þ 2
β

r
νðrÞσ2r ¼ −νðrÞ dΦ

dr
; ð2Þ

where the gravitational potential is given by

dΦ
dr

¼ GMðrÞ
r2

; ð3Þ

where MðrÞ denotes the mass enclosed inside a sphere of
radius r. After integration,

σ2rðrÞ ¼
G
R∞
r dr0νðr0Þr02β−2Mðr0Þ

r2βνðrÞ : ð4Þ

In an observational context, we do not measure σ2r but
rather the luminosity-weighted average along the line of
sight (LOS) and over the effective spectroscopic aperture
RA [16]. This can be expressed mathematically,

σ2kð≤ RAÞ ¼
R RA
0 dR2πR

R∞
−∞ dZσ2LOSνðrÞR RA

0 dR2πR
R
∞
−∞ dZνðrÞ ; ð5Þ

where σLOS is the velocity dispersion along the line of sight,

σ2LOS ¼ ðσr cos θÞ2 þ ðσt sin θÞ2; ð6Þ

where σt is the tangential velocity dispersion, σr is the
radial velocity dispersion, and θ is the angle between the
line of sight and the radial direction. Note that σ2r contains
Mdyn since we use the equality Mgrav ¼ Mdyn to fix the
normalization constant of the density ρ.
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2. Lens mass models

In this work we use the following lens mass model:8>><
>>:

ρðrÞ ¼ ρ0ð rr0Þ−γ;
νðrÞ ¼ ν0ðraÞ−δ exp ð−ðraÞ1=4Þ;
β ¼ 1 − σ2t

σ2r
;

ð7Þ

where ρ follows a commonly used power-law distribution
[16,17,20] and ν is a deprojected De Vaucouleurs density
profile [25] where a ¼ Reff=b4 with b ¼ 7.66925 and
δ ¼ 0.8556. It will be compared to the commonly used
power-law νplðrÞ ¼ ν0ðr=r0Þ−δ. The latter is convenient
since the velocity dispersion can be expressed analytically
[16]. The case of the De Vaucouleurs deprojected lumi-
nosity density requires numerical integration,

σ2kð≤ RAÞ ¼
2c2ffiffiffi
π

p Ds

Dls
θE;GR

Γðγ=2Þ
Γðγ−1

2
Þ

�
Reff

RE

�
2−γ

×
1

b4ð2−γÞ
Aðγ; β;RA; ReffÞ
BðRA; ReffÞ

; ð8Þ

where

Aðγ;β;RA;ReffÞ ¼
Z RA

Reff
b4

0

Z
∞

−∞
dRdZ

R
ðR2 þZ2Þβ

× Γð4þ 4ð2β− γ − δþ 1Þ; ðR2 þZ2Þ1=8Þ

×

�
1− β

R2

R2 þZ2

�
; ð9Þ

and

BðRA; ReffÞ ¼
Z RA

Reff
b4

0

Z
∞

−∞
dRdZ

R

ðR2 þ Z2Þδ=2
× exp ð−ðR2 þ Z2Þ1=8Þ; ð10Þ

with Γð:; :Þ as the upper incomplete gamma function,

Γðs; xÞ ¼
Z

∞

x
ts−1e−tdt: ð11Þ

A andB are numerically expensive to compute. As shown
in Sec. II B, Eq. (22), A and B do not depend onRA andReff ,
as B is constant and A can be obtained through interpolation
in the ðγ; βÞ-plane.We use a Gaussian process with aMatern
5=2 kernel to avoid the untimely call to a numerical
integrator. We thus have an expression of the velocity
dispersion depending on the Einstein radius of GR. We will
mainly focus our interest on the De Vaucouleurs deprojected
luminosity profile, but will compare its results to those of the
power-law model [see Eq. (B1) in Appendix B].

3. Gravitational slip and screening mechanisms

So far, we have not introduced the gravitational slip.
This can be done by making the link between the

observed Einstein radius θE;obs and the one predicted by
GR θE;GR, given the lens mass distribution derived from the
observed velocity dispersion. The post-Newtonian varia-
bles are applied to quantify the behavior of gravity and
deviations from GR. We express the metric on cosmologi-
cal scales as [26]

ds2 ¼ a2ðηÞ½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞdu⃗2�; ð12Þ
where a2ðηÞ is the cosmological scale factor, η is the
conformal time, and Φ and Ψ are the Newtonian and
longitudinal gravitational potentials. In the weak-field
limit, GR predicts Φ ¼ Ψ making it possible to constrain
possible departures from GR using the gravitational slip
parameter γPN ¼ Ψ=Φ. MG theories such as fðRÞ [27],
Brans-Dicke gravity [8], or massive gravity [28,29] all
predict a difference between the two potentials Φ ≠ Ψ. In
many MG theories, γPN ¼ 1 is expected at small and/or
large scales due to screening effects and a limited range of
the additional fifth force. Gravitational screening sup-
presses the additional gravitational degrees of freedom
introduced by MG theories within a certain scale, in
massive gravity theory referred to as the Vainshtein radius
rV . At large scales, the Compton wavelength of the massive
graviton λg sets the characteristic length of the Yukawa
decay. Photons follow null geodesics, ds2 ¼ 0 and are thus
affected by a potential Σ≡ΦþΨ (12). We can model the
departure from GR phenomenologically,

Σ ¼ ½2þ ðγPN − 1Þϵðr; rV; λgÞ�ΦðrÞ; ð13Þ
where ϵ is a slip profile parametrized by rV and λg.
Note that the functional form of ϵ depends on the specific
MG theory studied. ϵ ¼ 1 corresponds to a scale indepen-
dent deviation from GR [17,19,30], discussed in Sec. III A.
In Refs. [20–22], a step function corresponding to
ϵðr; rV; λgÞ ¼ Θðr − rVÞ is employed. This description
covers a large variety of models. The key feature is the
computation of the deflection angle αðθÞ [29],

α ¼ 1

c2
Dls

Ds

Z
∞

−∞
∇⊥ΣdZ; ð14Þ

where ∇⊥ is the gradient perpendicular to the direction of
the photon. We distinguish the deflection angle in GR and
the additional contribution from the fifth force parametrized
by γPN, rV , and λg,

αGRðθÞ ¼
2

c2
Dls

Ds

Z
∞

−∞

∂Φ
∂R

dZ; ð15Þ

ΔαðθÞ ¼ γPN − 1

c2
Dls

Ds

Z
∞

−∞

∂

∂R
ðϵðr; rV; λgÞΦðrÞÞdZ: ð16Þ

The lens equation, with β the source angular position, is
given by
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βðθÞ ¼ θ − αGRðθÞ − ΔαðθÞ: ð17Þ
Setting β ¼ 0 draws a map from the observed Einstein

radius θE;obs and the one predicted by GR θE;GR. The slip
profile considered in this work is

ϵðr; rV; λgÞ ¼
rf

rfV þ rf
e−r=λg ; ð18Þ

where f is an additional parameter tuning the sharpness
of the cutoff at small scales. It models a polynomial
screening at small scales and an exponential decay at

large scales in keeping with bimetric gravity [29,31].
For consistency with the latter theory, we fix f ¼ 3
throughout this work. In more general terms, we model
γPN as radius dependent. ϵ encodes the radial profile of
γPN which goes to 1 for r ≪ rV and r ≫ λg and the
remaining degree of freedom is the maximum deviation
of the gravitational slip from unity. The deflection angle
associated with this screening function is

αGRðθÞ ¼ θγ−1E;GRθ
2−γ; ð19Þ

ΔαðθÞ ¼ γPN − 1

2
ffiffiffi
π

p Γðγ
2
Þ

Γðγ−1
2
Þ ðθE;GRDLÞγ−1θ

Z
∞

−∞
dZe−r=λgrf−γ

��
1 −

r
λgð2 − γÞ

�
1

rfV þ rf
þ f
2 − γ

rfV
ðrfV þ rfÞ2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IðDlθ;λg;rV ;γ;fÞ

; ð20Þ

giving, using (17),

θE;GR ¼
�
θ1−γE;obs þ

γPN − 1

2
ffiffiffi
π

p Γðγ=2Þ
Γððγ − 1Þ=2ÞD

γ−1
l IðDlθE;obs; λg; rV; f; γÞ

� 1
1−γ
: ð21Þ

B. Data sample

In this work, we recovered a subsample of the data used
in Ref. [16] (see Table A1 in the latter), having the benefit
of being a recently compiled dataset for strong lensing. It
contains 130 galaxy-scale SGL systems selected to approx-
imately comply with the assumption of spherical symmetry
via the following criteria:

(i) The lens galaxy should be an early-type galaxy with
E/S0 morphologies.

(ii) The lens galaxy should not have significant sub-
structure or close massive companion.

Among those 130 systems, 57 come from the SLACS
survey [32], 38 from the SLACS extension SLACS for the
Masses (S4TM) survey [33], 21 from BELLS [34], and 14
from the BELLS GALLERY sample [35].
This dataset provides the following information of

relevance to compute the theoretical velocity dispersion
from equations (B1) or (8):

(i) zl, the lens redshift.
(ii) zs, the source redshift.
(iii) θE;obs, the observed Einstein angle.
(iv) σap, the velocity dispersion of the lens galaxy in the

corresponding spectroscopic aperture.
(v) Δσap, the associated measurement error.
(vi) θap, the spectroscopic aperture angular radius.
(vii) θeff , the half-light angular radius of the lens galaxy.
(viii) δ, power-law index of the luminosity density.1

To take into account the effect of the aperture size on the
measurements of the velocity dispersions σap, we normalize
all velocity dispersions to the typical physical aperture θeff=2,

σobsk ¼ σap

�
θeff
2θap

�
η

: ð22Þ

We adopt the best-fit value of η ¼ −0.066� 0.035 from
Ref. [36]. The total uncertainty of σobsk can thus be written
[19] as

ðΔσtotk Þ2 ¼
�
Δσ2ap
σ2ap

þ Δσ2sys þ
�
ln

�
θeff
2θap

�
Δη

�
2
�
ðσobsk Þ2;

ð23Þ
where we include a systematic error of Δσsys, e.g., taking
into account possible extra mass contributions from matter
along the LOS [37]. Previous work introduced a systematic
error of 3%. To assess the uncertainty linked to the mass
model, we run anMCMCanalysiswith γPN ¼ 1 andΔσsys as
an additional parameter. The fitted value for the systematic
error is Δσsys ¼ 9.52� 0.01% larger than the one used in
previous work. In what follows, the latter value for the
systematic error is used. The corresponding theoretical
prediction of thevelocity dispersion is obtained by evaluating
Eqs. (B1) and (8) at RA ¼ Reff=2,

σthk ¼ σkð≤ Reff=2Þ: ð24Þ
In our analysis, we assume a Gaussian likelihood,

L ∝ e−χ
2=2; ð25Þ

1When required, this index has been fitted on the high-
resolution Hubble Space Telescope imaging data for the galaxies
in our sample, see [16] for details.
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where

χ2 ¼
XN
i¼1

�σthk;i − σobsk;i
Δσtotk;i

�2

; ð26Þ

with N being the number of SGL systems. In the following
analysis, we derive the posterior probability distributions
of model parameters using an affine-invariant MCMC
ensemble sampler (EMCEE [38]).

C. Cosmological model

In Eqs. (B1) and (8), we use a ΛCDM cosmology
such that the angular distance between redshift z1 and z2 is
given by

Dðz1; z2;H0;ΩmÞ ¼
c

H0ð1þ z2Þ
Z

z2

z1

dz
Eðz;ΩmÞ

; ð27Þ

Eðz;ΩmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1 −ΩmÞ

q
; ð28Þ

where H0 ¼ 67.37 km=s=Mpc and Ωm ¼ 0.315 [39].
It is common in the literature to use a cosmology

independent approach to compute the angular distance,
usually using type Ia supernova data to get luminosity
distances up to redshift z ≃ 2 (see Refs. [14,16,20]). We
chose not to adopt such an approach and argue that the
cosmological model has only negligible influence on
the results. Also, since we only need ratios of angular
distances Ds=Dls, the results do not depend on the Hubble
constantH0. As evident from Fig. 2 in [16], the influence of
Ωm on the ratio is quite small, at least for lenses at small
redshift. Finally, Fig. 4 and Table 1 in [19] show that the use
of distance calibration yields only minor modifications to
the fitted values. The reader should nevertheless keep in
mind that using ΛCDM to measure distances and constrain
GR should be considered an approximation employed for
simplicity, motivated by the fact that a polynomial fit of
type Ia supernova data will only yield small differences in
the estimation of angular distances.

D. Model parameters and priors

We runMCMC chains to fit the gravitational slip γPN, the
mass density slope γ, and the velocity anisotropy β. The
gravitational slip is our main interest, but it requires
accurate constraints on the lens mass model [15,17]. γ
corresponds to a common total density slope across our
sample. We adopt flat priors for γPN and γ on sufficiently
wide ranges. We cannot independently measure β for an
individual lensing system with the spectroscopic data
available. The latter is thus considered as a nuisance
parameter and therefore needs an informative prior.

1. Prior on the velocity anisotropy

A truncated Gaussian prior on the velocity anisotropy β
is commonly used with β ¼ 0.18� 0.13 truncated at

½β̄− 2σβ; β̄þ 2σβ� [16,19,20,30]. This constraint is obtained
from a well-studied sample of nearby elliptical galaxies
[40]. We assess the influence of the prior on β by
introducing a new prior based on the most recent dynamical
data of E/S0 galaxies from the combined analysis of
the dynamical and stellar population (DynPop) for the
MaNGA survey in the final SDSS data release 17 [41].
It contains dynamical data of ∼104 galaxies in the local
Universe analyzed using the axisymmetric Jeans anisotropic
modeling (JAM) method. The latter is based on the Jeans
equation with the velocity anisotropy β as a parameter. In
line with our spherically symmetric assumption, we con-
sider the models using JAMsph. We moreover only use
the Navarro-Frenk-White (NFW) and generalized NFW
(gNFW) mass models since the mass-follows-light and the
fixed NFW do not recover the density profiles very well.
Finally, to avoid bias, we only select E/S0 galaxies using the
method in Ref. [42]. To only select themost reliable data, we
further impose

jβNFW − βgNFWj < 0.05: ð29Þ
The threshold has been chosen to ensure a reasonable

trade-off between the amount of data and the quality of the
fit of β. Our final sample contains 1136 galaxies to which
we fit several distributions in order to find the most realistic
prior. We finally chose a logistic prior to be compared with
the histograms of our data in Fig. 1,

fðx; μ; sÞ ¼ e−ðx−μÞ=s

sð1þ e−ðx−μÞ=s2Þ ; ð30Þ

where f is the logistic’s density and μ and s are the location
and scale parameters fitted to the histograms. The logistic’s

FIG. 1. Distribution of the anisotropy parameter β from
MaNGA DynPop modeling [41]. The blue and green histograms
correspond to the distribution obtained with an NFW and a
gNFW model, respectively. The red solid curve corresponds to
the best fit of the histograms obtained with a logistic distribution
[see Eq. (30)].
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wings are wider than the Gaussian’s so it will allow the
MCMC analysis to allow for larger range of values for the
velocity anisotropy. The logistic is truncated at 3σ to
prevent β from taking nonphysical values, e.g., β > 1.

2. Grid analysis of screening mechanisms

In Sec. III B, we will introduce screening mechanisms by
performing the fit for various values of the Compton wave-
length of the theory, λg. The latter will span orders of
magnitude from the parsec scale to the gigaparsec scale.
Motivated by bimetric theory, wemake theVainshtein radius
rV dependent on λg and the mass of the lens galaxy [29],

rV ¼ ðrSλ2gÞ1=3; ð31Þ

where rS is the Schwarzschild radius of the lens considered
given by the mass inside its Einstein radius θE;obs. The
Vainshtein radius is therefore different for each galaxy in our
sample. Varying λg explores regimes where the lenses in our
samples are screened or unscreened, explaining why we
rather perform sampling of the gravitational slip for various
λg rather than including it in our parameters. The former case
allows us to study the dependency of the constraints of γPN on
λg, whereas the latter would not sample the full range of λg.

III. RESULTS AND DISCUSSION

We first assess the influence of the lens mass model
in the case of a scale independent gravitational slip in
Sec. III A. We then study the constraints on a scale
dependent gravitational slip (Sec. III B) and discuss the
results in Sec. III C.

A. Constant gravitational slip

For ϵðr; rV; λgÞ ¼ 1, the relation between θE;GR and
θE;obs is obtained from (21) with rV ¼ 0 and λg → ∞,

θE;GR ¼ θE;obs

�
γPN þ 1

2

�
− 1
γ−1
: ð32Þ

We perform the analysis for a power-law luminosity
density and a De Vaucouleurs luminosity density (Fig. 2).
We moreover study the influence of the prior on the
velocity anisotropy β by considering three priors:
(P1)Logistic distribution fitted to MaNGA DynPop

dynamical data (see Sec. II D and Fig. 1) truncated
at ½μ − 3σ; μþ 3σ� with ðμ; σÞ ¼ ð0.22; 0.2Þ.

(P2)Truncated Gaussian with ðμ; σÞ ¼ ð0.3; 0.14Þ be-
tween ½μ − 3σ; μþ 3σ�.

(P3)Truncated Gaussian with ðμ; σÞ ¼ ð0.18; 0.13Þ be-
tween ½μ − 2σ; μþ 2σ� used in previous work.

The results are summarized in Table I. We use the Akaike
information criterion (AIC) [43] and the Bayesian infor-
mation criterion (BIC) [44] as statistical criterion for model
selection,

AIC ¼ 2kþ χ2min; ð33Þ

BIC ¼ k lnðNÞ þ χ2min; ð34Þ

where k is the number of parameters and N is the number
of data points. They award models with few parameters
giving good fits to the data. Here, models containing
additional parameters for either screening or the lens mass
are penalized in terms of the ICs, unless they supply

FIG. 2. 1D and 2D marginalized probability distribution at the 1σ and 2σ confidence level for the gravitational slip parameter γPN and
the lens mass model parameters in the case of a power-law profile (left) or a De Vaucouleurs profile (right) for the luminosity density.
The dashed lines represent γPN ¼ 1 predicted by GR and γ ¼ 2 expected for a singular isothermal sphere.
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significant better fits compared to the baseline model. Only
the relative difference in AIC and BIC is relevant to favor a
model over another.
The best-fit values of a constant γPN are all consistent

with GR at the 68% confidence level. Particularly, in the
case of a logistic prior (P1), we find a best-fit value of the
gravitational slip of γPN ¼ 1.14þ0.22

−0.18 in the case of power-
law luminosity densities and γPN ¼ 0.90þ0.18

−0.14 in the case of
deprojected De Vaucouleurs luminosity densities.
The gravitational slip and the velocity anisotropy are

positively correlated and the prior on β can influence the
fitted value of γPN in the case of a power-law luminosity
density (see Fig. 2). Our choice of prior based on recent
dynamical data [41] is slightly favored upon commonly
used Gaussian priors but the ICs are not significantly
better. We however underline that the posterior of the
velocity anisotropy β is biased toward low values in the
case of a logistic prior. The fitted value of the gravitational
slip γPN is therefore prior dependent. The best-fit values
of the gravitational slip in the case of a deprojected De
Vaucouleurs profile depend less on the prior choice for β.
We find γPN ¼ 0.90, 0.96, and 0.88 for priors (P1), (P2),
and (P3), results agreeing at the 68% confidence level and
being consistent with GR. We further note that the De
Vaucouleurs luminosity profile improves the AIC with a
value of 146.8 against 156.2 in the power-law case using a
logistic prior on β. Hereafter, we use the logistic prior
on the velocity anisotropy β since it represents well the
most recent dynamical data. In the GR case (γPN ¼ 1)
with this logistic prior, the fitted lens mass model gives
an AICGR;DV ¼ 151.1 and χ2GR;DV ¼ 147.1 for a De
Vaucouleurs luminosity profile. The GR case is favored
over the constant gravitational slip case, since adding a
constant gravitational slip does not give a significantly
better representation of the data. The GR case will serve as
our reference model. In the case of a power-law luminosity
density, we get AICGR;PL ¼ 158.8 and χ2GR;PL ¼ 154.8
which performs better than the case with a gravitational
slip parameter.

We underline that the value of γ is positively correlated
with the gravitational slip. Our result γ ∈ ½1.9; 2.1� is
consistent with previous studies fitting density slope values
of E/S0 galaxies close to the singular isothermal sphere
value of γ ¼ 2 [45].

B. Gravitational slip under screening

We now introduce a scale dependent slip parametrized
by the Compton wavelength λg. The Vainshtein radius
is computed using Eq. (31). We fit the gravitational slip
and the lens mass parameters for values of the Compton
wavelength spanning from parsec to gigaparsec scales. Our
interest here is how constraints on γPN evolve with the
Compton wavelength λg. Figure 3 shows the 95% confi-
dence region of γPN depending on λg for a deprojected De
Vaucouleurs luminosity density only. As we can see in the
bottom panel of Fig. 3, there are two competing local χ2

minima for λg ∼ 0.2 and λg ∼ 100 Mpc. Note that the
contour plot obtained with the Compton wavelength λg
as a free parameter would look different since the two local
minima correspond to slightly different best-fit values for
the gravitational slip and the samples are drawn from a
different region of phase space. Gridding over λg’s allows
for an analysis of the degeneracy between the Compton
wavelength and the gravitational slip.
The dependence of the gravitational slip on the Compton

wavelength allows us to draw qualitative conclusions.
We first highlight the inability of our model to constrain
γPN for λg ≤ 10−4 and λg ≥ 103 Mpc. In the latter case, the
Vainshtein radius for a galaxy of mass M ∼ 1011M⊙ is of
the order rV ∼ 103–104 kpc. As a result, lens galaxies in
our sample are completely screened from fifth force
lensing effects. Analogously, for Compton wavelengths
below ∼100 pc, Einstein radii ∼10 kpc correspond to large
numbers of e-folds of the fifth force Yukawa decay. In both
regimes, we end up fitting models effectively equivalent
to the reference GR case. We note some discrepancies
from GR when fixing the Compton wavelength to order

TABLE I. The 1D marginalized limit (68% confidence regions) for model parameters constrained from the truncated sample with 130
SGL systems with various priors on β for two different models of the luminosity density. The bottom two rows correspond to the case of
GR where we fit the lens mass model to the data with γPN ¼ 1.

Luminosity density Prior on β Parameters χ2min AIC BIC

Power law (P1) γPN ¼ 1.14þ0.22
−0.18 γ ¼ 1.99þ0.04

−0.04 β ¼ −0.02þ0.16
−0.19 156.2 162.2 170.8

Power law (P2) γPN ¼ 1.31þ0.20
−0.17 γ ¼ 2.00þ0.04

−0.04 β ¼ 0.14þ0.12
−0.12 158.4 164.4 173.0

Power law (P3) γPN ¼ 1.22þ0.17
−0.15 γ ¼ 2.00þ0.04

−0.04 β ¼ 0.06þ0.12
−0.12 157.2 163.2 171.8

De Vaucouleurs (P1) γPN ¼ 0.90þ0.18
−0.14 γ ¼ 1.92þ0.04

−0.05 β ¼ 0.23þ0.19
−0.19 146.8 152.8 161.4

De Vaucouleurs (P2) γPN ¼ 0.96þ0.15
−0.14 γ ¼ 1.92þ0.04

−0.05 β ¼ 0.31þ0.14
−0.13 146.8 152.8 161.4

De Vaucouleurs (P3) γPN ¼ 0.88þ0.14
−0.13 γ ¼ 1.92þ0.05

−0.05 β ¼ 0.19þ0.13
−0.13 146.8 152.8 161.4

Power law (P1) γPN ¼ 1 γ ¼ 1.97þ0.03
−0.03 β ¼ −0.15þ0.11

−0.08 154.8 158.8 169.4
De Vaucouleurs (P1) γPN ¼ 1 γ ¼ 1.94þ0.04

−0.03 β ¼ 0.30þ0.14
−0.11 147.1 151.1 161.7
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λg ∼ 10−2 and λg ∼ 1 Mpc. However, for these λg and
values between, the obtained constraints on the gravita-
tional slip have no statistically significant departures
from GR.
Quantitatively, for intermediate Compton wavelength λg,

various constraints on the gravitational slip are obtained,
but computing the χ2 hints at the most likely configuration.
The best fit is obtained for λg ∼ 0.2 Mpc, i.e., rV ∼ 1 kpc.
The corresponding gravitational slip γPN ¼ 0.77þ0.43

−0.23 at the
95% confidence level with χ2min ¼ 134.9 yielding AICmin ¼
142.9. Including screening mechanisms provides a better
fit to the data, but the result is consistent with GR at the
95% confidence level. Note that the bottom panel of
Fig. 3 shows that λg ∼ 100 Mpc presents a local minimum
with a χ2 ¼ 136.5, slightly larger than for λg ∼ 0.2 Mpc
(see Table II). It appears that the AIC is significantly
decreased when we take screening effects into account.
Screening mechanisms modify the shape of the likelihood
used in the GR case, adding sharp variations of the χ2

sensitive to both γPN and the lens mass model ðγ; βÞ.
However, the likelihood only slightly varies in some
direction in the ðγPN; γÞ plane up to the GR case where
the χ2GR amounts to ∼147, explaining the size of the error
bars on the gravitational slip. This phenomenon will be
further discussed in Sec. III C.

Comparing our result with theoretical predictions from
bimetric massive gravity which motivated our choice of slip
profile, from [46],

γPN ¼ ð1þ 2
3
tan2ðθÞϵðrÞÞ

ð1þ 4
3
tan2ðθÞϵðrÞÞ ; ð35Þ

where θ is the mixing angle between massless and massive
modes. The gravitational slip takes values between 0.5
and 1. The local minima at λg ∼ 0.2 Mpc with γPN ∼ 0.77
correspond to a best-fit mixing angle of θ ∼ 39°, albeit
with large errors. For λg ∼ 100 Mpc where γPN ∼ 0.56, the
best-fit bimetric mixing angle is θ ∼ 67°, again largely
unconstrained. For comparisons with other analytical and
observational constraints on bimetric massive gravity, we
refer the reader to [46,47].
We finally underline that the tightening of the constraints

for λg ∼ 1 and λg ∼ 10−3 Mpc corresponds to the cases
where the Vainshtein radius and the Compton wavelength
cross the typical Einstein radii in our samples, respectively.
As a result, only part of the systems are screened, yielding
tighter constraints on the gravitational slip.

C. Discussion

1. General discussion

Our above results present no statistically significant
departure from GR, except for possible hints at λg ∼
1 kpc and λg ∼ 1 Mpc. However, these Compton wave-
lengths are not favored in terms of the quality of their fits,
or χ2min, meaning that if the Compton wavelength was fitted
as a parameter in the MCMC analysis, the obtained
contours would not include those values of the Compton
wavelength.
The obtained results, however, present important

lessons regarding the importance of systematic uncertain-
ties. These systematic uncertainties could be linked to the
dependency of the gravitational slip on the lens mass
model. In this work, we fit a common total density slope
γ for all the lens galaxies, possibly a too simplified
approximation. Figure 4 shows confidence regions for a
Compton wavelength λg ¼ 100 Mpc, from which it is

FIG. 3. Fitted values of γPN for various Compton wavelength λg
using a De Vaucouleurs luminosity profile. The upper panel
shows the evolution of the estimated γPN as well as its confidence
interval at the 68% and 95% levels. Shaded areas correspond to
regions of phase space ruled out by our constraints at the
95% confidence level. The lower panel shows the corresponding
value of the χ2 − χ2min for each Compton wavelength. The dashed
purple line corresponds to the minimum of the χ2min ¼ 134.9.

TABLE II. The 1D marginalized limit of the gravitational slip
constrained from the truncated sample with 130 SGL systems
with confidence regions at the 68% confidence level for relevant
Compton wavelengths λg. The ΔAIC is computed between the
best-fit values reported and the AIC obtained in GR χ2GR ¼ 147.1
and AICGR ¼ 151.1.

λg (Mpc) Gravitational slip γPN χ2min ΔAICGR

0.2 0.77þ0.25
−0.14 134.9 8.2

100 0.56þ0.45
−0.35 136.5 6.6
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evident that the gravitational slip γPN is negatively corre-
lated with the total density slope γ. This degeneracy
explains the width of error bars even though the likelihood
has important variations along γPN. This degeneracy could
be broken by having independent constraints on the total
density slope from more detailed lens mass modeling and
shows that the lens mass model is a key feature to obtain
good constraints on the gravitational slip.
To further assess the influence of the lens mass model on

the best-fit value of the gravitational slip, we run an MCMC
analysis where the total density slope of each galaxy in our
sample is a model parameter for a Compton wavelength
λg ¼ 100 Mpc. Together with the gravitational slip and the
velocity anisotropy, we thus fit 132 parameters where we
assume a De Vaucouleurs luminosity density and a logistic
prior on β. By doing so, we are able to study whether fitting
a common matter density slope is a good assumption.
Figure 5 presents a scatter plot of the fitted velocity
dispersion against the observed one for the model with a
common γ and the case of different γ’s for each lens. It first
appears that the case where all γ’s are free performs better
than the case studied in this work with a χ2min of ∼70 against
∼135 even though the ICs are worse. Moreover, it measures
no departure from GR with a best-fit gravitational slip
of γPN ¼ 0.99þ0.027

−0.033 . The latter shows that a single total
density slope γ poorly takes into account outliers (see black
boxes in Fig. 5) listed in Table III (Appendix A). Most of
them come from the BELLS survey and Ref. [45] fitted
the total density slope for those lenses. We note that, for
each of those outliers, the power-law index γ is either
poorly constrained or deviates significantly from γ ¼ 2,
which is the mean power-law index fitted in Ref. [45].

Correctly constraining the lens mass model is therefore key
to find anunbiased estimate of the gravitational slip. Previous
work added extra degrees of freedom using dependency
on the lens redshift or its surface density [16,19]. Those
correlations are, however, not evident in MaNGA DynPop
data [41] and should be used with caution.
Fitting the power-law index γ for each lens, convergence

of the MCMC analysis is difficult to assess and, even
though we were able to reduce the χ2 with this method, it is
likely that the lens mass model has not converged for
every lens in our sample.2 Further investigations of the lens
mass modeling should lead to significant improvement in
the measurement of the gravitational slip. We suggest two
directions to further investigate gravitational slip con-
straints, the first being an approach where we ensure a
good control of the mass model. To do so, we select a small
number of systems for which we have the required photo-
metric and spectroscopic data to constrain the lens mass
model individually for each system, e.g., using packages
like LENSTRONOMY [48]. We argue that this approach could
prevent the presence of outliers in our dataset and yields

FIG. 4. Confidence regions at the 68% and 95% confidence
level of the fitted parameters for a Compton wavelength
λg ¼ 100 Mpc using a De Vaucouleurs luminosity density.

FIG. 5. Scatter plot of the predicted velocity dispersion by the
model against the observed velocity dispersion for λg ¼ 100Mpc.
The red solid line corresponds to the ideal case where the model
fits perfectly the observations. The blue dots correspond to a
model where we fit a power-law index γ for each lens system in
our sample. Green crosses are obtained with a single total density
slope γ. Black boxes correspond to empirically identified outliers
listed in Table III. They were selected as manifest outliers in both
the De Vaucouleurs model and the model where all density slopes
are fitted.

2With so many parameters, the curse of dimensionality does
not allow us to know if we sufficiently explored parameter space.
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more reliable constraints on the slip by lifting the degen-
eracy between the gravitational slip and the total density
slope. Second, it could be worthwhile to keep investigating
ways to model as precisely as possible lens galaxies for
larger samples of systems. Implementing an NFW total
density profile could, for example, improve the modeling of
galaxy-scale strong lensing systems. On the other hand,
stage IV surveys will likely increase the amount of
available strong lensing data by several orders of magni-
tude, possibly mitigating the effect of outliers and thus
potentially overcoming issues related to the lens mass
model. We finally underline that our model is good at
constraining the gravitational slip with fixed screening
scales, but yields poor constraints on cosmological param-
eters such as the curvature, dark densities, or matter density.
This can be attributed to the poor sensitivity of the angular
distances ratio to cosmological densities. Time-delay cos-
mography measurements could, however, be of interest to
constrain the Hubble constant H0.

2. Comparison with other methods

This section provides comparisons with constraints on
modified gravity using other probes, possibly for specific
MG theories. Stage IV surveys such as Euclid or LSST
will detect up to tens of thousands of SGL systems.
Simulated LSST simulated data indicate constraints as
tight as γPN ¼ 0.998þ0.003

−0.007 [20], although one should keep
in mind the importance of controlling systematic effects
when modeling the lens systems.
Weak lensing around galaxy clusters is a promising

alternative to galaxy-galaxy strong lensing to constrain
gravity theories. Similar to strong lensing, it measures the
mismatch in the mass estimate obtained following photon
trajectories (e.g., using weak lensing maps) and gas
(e.g., using x-ray observations) in the galactic potential.
Sakstein et al. [49] used 58 high-redshift clusters to
constrain parameters ϒ1 and ϒ2 which modify gravity
for photons and stars/gas, respectively, in the context of
beyond Horndeski theories. The latter theory is one of the
most general scalar-tensor theories that give rise to second-
order field equations for both the scalar and the metric. The
authors were able to obtain constraints on the parameters
Υi in agreement with GR at the 1σ confidence level: ϒ1 ¼
−0.11þ0.93

−0.67 and ϒ2 ¼ −0.22þ1.22
−1.19 . Forthcoming stage IV

survey data will likely bring more constraining power:

Pizzuti et al. [50,51] used simulations to asses the amount
of clusters needed to reach the percent level constraints on
the gravitational slip γPN. They found that 15 clusters could
place constraints at the 5% level for a scale independent slip
and at the 10% level for a scale dependent slip in the
absence of any systematic effect. The latter, in practice,
have an important influence for clusters of galaxies where
the nongravitational physics makes the modeling cumber-
some. It will be a key stake in future works using Euclid
and/or LSST data to control the systematics to obtain
reliable constraints on the gravitational slip parameter.
Gravitational wave observations provide useful data

to study MG theories because of a one-to-one relation-
ship between tensor propagation and the gravitational
slip sourced by perfect-fluid matter perturbations at the
linear level [52]. The speed of gravitational waves is the
main observable to discard MG theories. Comparing
the arrival time of the gravitational wave signal by the
Laser Interferometer Gravitational Wave Observatory and
the electromagnetic signal following the merger of two
neutron stars (events GW170817 and GRB170817A) con-
strained jcT=c − 1j ≤ 1 × 10−15, where cT is the gravita-
tional wave speed [53]. Within those constraints, vector-
tensor theories generate negligible gravitational slip.
However, other MG thoeries will generate a non negligible
gravitational slip.
Finally, in [54], supernova, weak lensing, clustering, and

redshift space distortions data are combined to constrain a
constant gravitational slip to γPN ¼ 0.49� 0.69 using three
redshift bins and a polynomial regression. Those results are
compatible with ours at the 1σ confidence level, but still
suffer from large error bars.

IV. CONCLUSION

In this work, we used galaxy-scale strong gravitational
lensing to constrain deviations from general relativity at
the kilo- to megaparsec scale. A zoo of modified gravity
theories have been developed in the past decades to come
up with solutions to one or several drawbacks of the
concordance model of cosmology ΛCDM, e.g., to unveil
the nature of dark matter and dark energy. We used a
phenomenological description of modified gravity theories
in the weak-field limit where the gravitational slip param-
eter γPN captures the deviation from general relativity.
Strong lensing data from Early-Type Galaxies (ETGs)

with E/S0 morphologies from SLACS and BELLS samples
constrain the gravitational slip by measuring the mass of the
lens galaxy with two different messengers: on the one hand,
using the deflection angle of massless photons in the
lens potential and, on the other hand, by measuring the
velocity dispersion of stars and gas in the galactic potential.
To do so, a power-law index γ models the total density in
the lens galaxy. The luminosity density of stars is modeled
with a deprojected De Vaucouleurs profile to be compared
with the commonly used power-law luminosity density.

TABLE III. Outlier system identified in Fig. 5.

Lens name zl zs θE;obs σ Δσ γ in [45]

SDSSJ0237 − 0641 0.4859 2.2491 0.65 290 89 2.32� 0.27
SDSSJ0856þ 2010 0.5074 2.2335 0.98 334 54 2.55� 0.23
SDSSJ0801þ 4727 0.483 1.518 0.49 98 24 1.54� 0.27
SDSSJ1234 − 0241 0.49 1.016 0.53 122 31 1.90� 0.45
SDSSJ0935 − 0003 0.347 0.467 0.87 396 35 � � �
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A degeneracy exists between the gravitational slip γPN and
the velocity anisotropy β; the greater β, the greater γPN. The
power-law luminosity density model is sensitive to β’s prior
and can lead to biased estimates of the γPN, whereas the De
Vaucouleurs profile leads to results quite independent of the
prior. A logistic prior on β correctly fits recent ETGs data
fromMaNGADynPop dynamical modeling. For a constant
slip, γPN ¼ 1.14þ0.22

−0.18 at the 68% confidence level for a
power-law luminosity density and γPN ¼ 0.90þ0.18

−0.14 for a
deprojected De Vaucouleurs profile, consistent with GR.
Screening effects are ubiquitous in modified gravity

theories and appear in high-density regions where general
relativity is tested with great precision, e.g., in the Solar
System. Inspired by bimetric massive gravity, we para-
metrize a scale dependent slip by introducing the
Vainshtein radius rV and the Compton wavelength λg of
the theory which represent characteristic scales for screen-
ing at small and large scales, respectively. We fit the
gravitational slip and the power-law index of the total
density for various values of the Compton wavelength λg
from parsec to gigaparsec scales, making the Vainshtein
radii of the lens galaxies depend on their mass and λg. We
find no statistically significant deviation from GR. Using a
De Vaucouleurs deprojected luminosity density, the best fit
is obtained for λg ∼ 0.2 Mpc with γPN ¼ 0.770.25−0.14 at the
68% confidence level. We also find a local minimum for
λg ∼ 100 Mpc with γPN ¼ 0.560.45−0.35. We shed light on the
fact that the best fit obtained for the gravitational slip is
correlated with the lens mass model. Having realistic
constraints on the lens mass model is a key feature to find
good and reliable constraints on the gravitational slip γPN
and, a fortiori, any other cosmological parameter of
interest. Further investigations on the influence of the lens
mass model on cosmological parameters would be worth-
while. Restraining the dataset to fewer samples with
excellent knowledge of the lens mass model should reduce
the effects associated with outliers and provide more
reliable measurements of the gravitational slip.
Constraining the deviation from GR is of rising interest

with the cosmological surveys to come, e.g., Euclid and
LSST. Euclid, for example, is expected to provide millions
of photometric and spectroscopic galactic observations,
leading to a sample of strong lenses several orders of
magnitude larger than the one employed in this study. It
will thus prove of interest, in the years to come, to apply our
model to larger samples to see if such an amount of data is
able to smooth out effects attributed to outliers. Moreover,
strong lensing is not the only way to probe gravity. Fast
radio bursts [22] or time-delay cosmography [21] are

but examples of useful probes to detect gravitational
discrepancies from the current concordance model.
Time-delay measurements would be of interest since they
allow us to study the existence of degeneracies between the
Hubble constant and the gravitational slip. Let alone our
use of strong lensing data, our work has investigated ways
to constrain the lens mass model on one hand and to include
screening mechanisms on the other hand.
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APPENDIX A: EMPIRICALLY IDENTIFIED
OUTLIERS IN OUR FITTED DATA

In Fig. 5, we identified persistent outliers between the
analysis using a common power-law index γ and individual
γ’s for each lens system. Most of those systems were
observed in the BELLS survey and studied in Ref. [45].
The density slope γ fitted is either outside the range
γ ∈ ½1.9; 2.1� usually obtained or has unusually large error
bars Δγ ∼ 0.5.

APPENDIX B: ANALYTICAL EXPRESSION
OF THE VELOCITY DISPERSION

FOR A POWER-LAW LUMINOSITY DENSITY

The velocity dispersion in the case of a power-law
luminosity density is obtained in Ref. [16] using the
Jeans equation (2) to obtain the radial velocity dispersion
(4). The luminosity-weighted average along the line of
sight and over the effective spectroscopic aperture RA is
obtained with Eq. (5) and yields a luminosity density
νpl ¼ ν0ðr=r0Þ−δ,

σ2k;plð≤ RAÞ ¼
c2

2
ffiffiffi
π

p Ds

Dls
θE;GR

3 − δ

ðξ − 2βÞð3 − ξÞ

×

�
Γðξ−1

2
Þ

Γðξ=2Þ − β
Γðξþ1

2
Þ

Γðγþ2
2
Þ

�
Γðγ=2ÞΓðδ=2Þ
Γðγ−1

2
ÞΓðδ−1

2
Þ

×

�
θA

θE;GR

�
2−γ

; ðB1Þ

where ξ ¼ γ þ δ − 2, Γ is the Gamma function, and θA is
the angular spectroscopic aperture.

PROBING A SCALE DEPENDENT GRAVITATIONAL SLIP WITH … PHYS. REV. D 109, 023533 (2024)

023533-11



[1] A. Blanchard, S. Camera, C. Carbone, V. F. Cardone, S.
Casas, S. Clesse, S. Ilić, M. Kilbinger, T. Kitching, M. Kunz
et al., Euclid preparation—VII. Forecast validation for
Euclid cosmological probes, Astron. Astrophys. 642,
A191 (2020).

[2] S. Weinberg, The cosmological constant problem, Rev.
Mod. Phys. 61, 1 (1989).

[3] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Beyond the
cosmological standard model, Phys. Rep. 568, 1 (2015).

[4] S. Shankaranarayanan and J. P. Johnson, Modified theories
of gravity: Why, how and what?, Gen. Relativity Gravit. 54,
44 (2022).

[5] S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach,
and E. G. Adelberger, Test of the equivalence principle
using a rotating torsion balance, Phys. Rev. Lett. 100,
041101 (2008).

[6] I. I. Shapiro, Fourth test of general relativity, Phys. Rev.
Lett. 13, 789 (1964).

[7] R. V. Pound and G. A. Rebka, Apparent weight of photons,
Phys. Rev. Lett. 4, 337 (1960).

[8] K. Koyama, Cosmological tests of modified gravity, Rep.
Prog. Phys. 79, 046902 (2016).

[9] K. S. Thorne and C. M. Will, Theoretical frameworks for
testing relativistic gravity. I. Foundations, Astrophys. J. 163,
595 (1971).

[10] S. Cao, M. Biesiada, R. Gavazzi, A. Piórkowska, and Z.-H.
Zhu, Cosmology with strong-lensing systems, Astrophys. J.
806, 185 (2015).

[11] M. H. Amante, J. Magaña, V. Motta, M. A. García-Aspeitia,
and T. Verdugo, Testing dark energy models with a new
sample of strong-lensing systems, Mon. Not. R. Astron.
Soc. 498, 6013 (2020).

[12] S. Birrer, T. Treu, C. E. Rusu, V. Bonvin, C. D. Fassnacht,
J. H. H. Chan, A. Agnello, A. J. Shajib, G. C. F. Chen, M.
Auger et al., H0LiCOW—IX. Cosmographic analysis of the
doubly imaged quasar SDSS 1206þ 4332 and a new
measurement of the Hubble constant, Mon. Not. R. Astron.
Soc. 484, 4726 (2019).

[13] K. C. Wong, S. H. Suyu, G. C. F. Chen, C. E. Rusu, M.
Millon, D. Sluse, V. Bonvin, C. D. Fassnacht, S.
Taubenberger, M.W. Auger et al., H0LiCOW—XIII. A
2.4 per cent measurement of H0 from lensed quasars: 5.3σ
tension between early- and late-Universe probes, Mon. Not.
R. Astron. Soc. 498, 1420 (2020).

[14] T. Liu, S. Cao, J. Zhang, M. Biesiada, Y. Liu, and Y.
Lian, Testing the cosmic curvature at high redshifts: The
combination of LSST strong lensing systems and quasars as
new standard candles, Mon. Not. R. Astron. Soc. 496, 708
(2020).

[15] S. Cao, M. Biesiada, M. Yao, and Z.-H. Zhu, Limits on the
power-law mass and luminosity density profiles of elliptical
galaxies from gravitational lensing systems, Mon. Not. R.
Astron. Soc. 461, 2192 (2016).

[16] Y. Chen, R. Li, Y. Shu, and X. Cao, Assessing the effect of
lens mass model in cosmological application with updated
galaxy-scale strong gravitational lensing sample, Mon. Not.
R. Astron. Soc. 488, 3745 (2019).

[17] S. Cao, X. Li, M. Biesiada, T. Xu, Y. Cai, and Z.-H. Zhu,
Test of parametrized post-Newtonian gravity with galaxy-
scale strong lensing systems, Astrophys. J. 835, 92 (2017).

[18] J.-J. Wei, Y. Chen, S. Cao, and X.-F. Wu, Direct estimate of
the post-Newtonian parameter and cosmic curvature from
galaxy-scale strong gravitational lensing, Astrophys. J. Lett.
927, L1 (2022).

[19] X.-H. Liu, Z.-H. Li, J.-Z. Qi, and X. Zhang, Galaxy-scale
test of general relativity with strong gravitational lensing,
Astrophys. J. 927, 28 (2022).

[20] Y. Lian, S. Cao, T. Liu, M. Biesiada, and Z.-H. Zhu,
Direct tests of general relativity under screening effect with
galaxy-scale strong lensing systems, Astrophys. J. 941, 16
(2022).

[21] D. Jyoti, J. B. Muñoz, R. R. Caldwell, and M.
Kamionkowski, Cosmic time slip: Testing gravity on super-
galactic scales with strong-lensing time delays, Phys. Rev. D
100, 043031 (2019).

[22] T. Adi and E. D. Kovetz, Probing gravitational slip with
strongly lensed fast radio bursts, Phys. Rev. D 104, 103515
(2021).

[23] P. Schneider, C. S. Kochanek, and J. Wambsganss, Gravi-
tational Lensing: Strong, Weak and Micro, edited by G.
Meylan and P. Jetzer, Saas-Fee Advanced Courses Vol. 33 (
Springer, Berlin, Heidelberg, 2006).

[24] J. Binney and S. Tremaine, Galactic Dynamics: Second
Edition (Princeton University Press, Princeton, NJ, 2008).

[25] Y. Mellier and G. Mathez, Deprojection of the de Vaucou-
leurs R exp 1=4 brightness profile, Astron. Astrophys. 175,
1 (1987).

[26] C.-P. Ma and E. Bertschinger, Cosmological perturbation
theory in the synchronous and conformal Newtonian
gauges, Astrophys. J. 455, 7 (1995).

[27] T. P. Sotiriou and V. Faraoni, F(R) theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[28] A. Schmidt-May and M. von Strauss, Recent developments
in bimetric theory, J. Phys. A 49, 183001 (2016).

[29] J. Enander and E. Mortsell, Strong lensing constraints on
bimetricmassive gravity, J.HighEnergy Phys. 10 (2013) 031.

[30] J. Schwab, A. S. Bolton, and S. A. Rappaport, Galaxy-scale
strong-lensing tests of gravity and geometric cosmology:
Constraints and systematic limitations, Astrophys. J. 708,
750 (2010).

[31] E. Babichev and M. Crisostomi, Restoring general relativity
in massive bigravity theory, Phys. Rev. D 88, 084002 (2013).

[32] A. S. Bolton, S. Burles, L. V. E. Koopmans, T. Treu, R.
Gavazzi, L. A. Moustakas, R. Wayth, and D. J. Schlegel,
The Sloan lens ACS survey. V. The full ACS strong-lens
sample, Astrophys. J. 682, 964 (2008).

[33] Y. Shu, J. R. Brownstein, A. S. Bolton, L. V. E. Koopmans,
T. Treu, A. D. Montero-Dorta, M.W. Auger, O. Czoske, R.
Gavazzi, P. J. Marshall et al., The Sloan lens ACS survey.
XIII. Discovery of 40 new galaxy-scale strong lenses,
Astrophys. J. 851, 48 (2017).

[34] J. R. Brownstein, A. S. Bolton, D. J. Schlegel, D. J.
Eisenstein, C. S. Kochanek, N. Connolly, C. Maraston, P.
Pandey, S. Seitz et al., The BOSS emission-line lens survey
(BELLS). I. A large spectroscopically selected sample of
lens galaxies at redshift ∼0.5, Astrophys. J. 744, 41 (2012).

[35] Y. Shu, A. S. Bolton, S. Mao, C. S. Kochanek, I. Pérez-
Fournon, M. Oguri, A. D. Montero-Dorta, M. A.
Cornachione, R. Marques-Chaves, Z. Zheng et al., The
BOSS emission-line lens survey. IV. Smooth lens models

SACHA GUERRINI and EDVARD MÖRTSELL PHYS. REV. D 109, 023533 (2024)

023533-12

https://doi.org/10.1051/0004-6361/202038071
https://doi.org/10.1051/0004-6361/202038071
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1007/s10714-022-02927-2
https://doi.org/10.1007/s10714-022-02927-2
https://doi.org/10.1103/PhysRevLett.100.041101
https://doi.org/10.1103/PhysRevLett.100.041101
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevLett.4.337
https://doi.org/10.1088/0034-4885/79/4/046902
https://doi.org/10.1088/0034-4885/79/4/046902
https://doi.org/10.1086/150803
https://doi.org/10.1086/150803
https://doi.org/10.1088/0004-637X/806/2/185
https://doi.org/10.1088/0004-637X/806/2/185
https://doi.org/10.1093/mnras/staa2760
https://doi.org/10.1093/mnras/staa2760
https://doi.org/10.1093/mnras/stz200
https://doi.org/10.1093/mnras/stz200
https://doi.org/10.1093/mnras/stz3094
https://doi.org/10.1093/mnras/stz3094
https://doi.org/10.1093/mnras/staa1539
https://doi.org/10.1093/mnras/staa1539
https://doi.org/10.1093/mnras/stw932
https://doi.org/10.1093/mnras/stw932
https://doi.org/10.1093/mnras/stz1902
https://doi.org/10.1093/mnras/stz1902
https://doi.org/10.3847/1538-4357/835/1/92
https://doi.org/10.3847/2041-8213/ac551e
https://doi.org/10.3847/2041-8213/ac551e
https://doi.org/10.3847/1538-4357/ac4c3b
https://doi.org/10.3847/1538-4357/ac9d36
https://doi.org/10.3847/1538-4357/ac9d36
https://doi.org/10.1103/PhysRevD.100.043031
https://doi.org/10.1103/PhysRevD.100.043031
https://doi.org/10.1103/PhysRevD.104.103515
https://doi.org/10.1103/PhysRevD.104.103515
https://doi.org/10.1086/176550
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1088/1751-8113/49/18/183001
https://doi.org/10.1007/JHEP10(2013)031
https://doi.org/10.1088/0004-637X/708/1/750
https://doi.org/10.1088/0004-637X/708/1/750
https://doi.org/10.1103/PhysRevD.88.084002
https://doi.org/10.1086/589327
https://doi.org/10.3847/1538-4357/aa9794
https://doi.org/10.1088/0004-637X/744/1/41


for the BELLS GALLERY sample, Astrophys. J. 833, 264
(2016).

[36] M. Cappellari, R. Bacon, M. Bureau, M. C. Damen, R. L.
Davies, P. T. de Zeeuw, E. Emsellem, J. Falcón-Barroso, D.
Krajnović et al., The SAURON project—IV. The mass-to-
light ratio, the virial mass estimator and the fundamental
plane of elliptical and lenticular galaxies, Mon. Not. R.
Astron. Soc. 366, 1126 (2006).

[37] G. Jiang and C. S. Kochanek, The baryon fractions and
mass-to-light ratios of early-type galaxies, Astrophys. J.
671, 1568 (2007).

[38] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.
Goodman, Emcee: The MCMC hammer, Publ. Astron.
Soc. Pac. 125, 306 (2013).

[39] P. Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J.
Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B.
Barreiro et al., Planck 2018 results. VI. Cosmological
parameters, Astron. Astrophys. 641, A6 (2020).

[40] O. Gerhard, A. Kronawitter, R. P. Saglia, and R. Bender,
Dynamical family properties and dark halo scaling relations
of giant elliptical galaxies, Astron. J. 121, 1936 (2001).

[41] K. Zhu, S. Lu, M. Cappellari, R. Li, S. Mao, and L. Gao,
MaNGA DynPop—I. Quality-assessed stellar dynamical
modelling from integral-field spectroscopy of 10K nearby
galaxies: A catalogue of masses, mass-to-light ratios,
density profiles and dark matter, Mon. Not. R. Astron.
Soc. 522, 6326 (2023).

[42] K. Zhu, S. Lu, M. Cappellari, R. Li, S. Mao, and L.
Gao, MaNGA DynPop—III. Accurate stellar dynamics vs.
stellar population relations in 6000 early-type and spiral
galaxies: Fundamental plane, mass-to-light ratios, total
density slopes, and dark matter fractions, arXiv:2304
.11714.

[43] H. Akaike, A new look at the statistical model identification,
IEEE Trans. Autom. Control 19, 716 (1974).

[44] G. Schwarz, Estimating the dimension of a model, Ann.
Stat. 6, 461 (1978).

[45] R. Li, Y. Shu, and J. Wang, Strong-lensing measurement
of the total-mass-density profile out to three effective radii
for z ∼0.5 early-type galaxies, Mon. Not. R. Astron. Soc.
480, 431 (2018).

[46] M. Högås and E. Mörtsell, Analytical constraints on
bimetric gravity, J. Cosmol. Astropart. Phys. 05 (2021) 001.

[47] M. Högås and E. Mörtsell, Constraints on bimetric gravity.
Part II. Observational constraints, J. Cosmol. Astropart.
Phys. 05 (2021) 002.

[48] S. Birrer and A. Amara, Lenstronomy: Multi-purpose
gravitational lens modelling software package, Phys. Dark
Universe 22, 189 (2018).

[49] J. Sakstein, H. Wilcox, D. Bacon, K. Koyama, and R. C.
Nichol, Testing gravity using galaxy clusters: New con-
straints on beyond Horndeski theories, J. Cosmol. Astropart.
Phys. 07 (2016) 019.

[50] L. Pizzuti, I. D. Saltas, S. Casas, L. Amendola, and A.
Biviano, Future constraints on the gravitational slip with the
mass profiles of galaxy clusters, Mon. Not. R. Astron. Soc.
486, 596 (2019).

[51] L. Pizzuti, B. Sartoris, S. Borgani, and A. Biviano, Cali-
bration of systematics in constraining modified gravity
models with galaxy cluster mass profiles, J. Cosmol.
Astropart. Phys. 04 (2020) 024.

[52] I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz,
Anisotropic stress as signature of non-standard propagation
of gravitational waves, Phys. Rev. Lett. 113, 191101 (2014).

[53] L. Amendola, M. Kunz, I. D. Saltas, and I. Sawicki, The fate
of large-scale structure in modified gravity after GW170817
and GRB170817A, Phys. Rev. Lett. 120, 131101 (2018).

[54] A. M. Pinho, S. Casas, and L. Amendola, Model-
independent reconstruction of the linear anisotropic
stress η, J. Cosmol. Astropart. Phys. 11 (2018) 027.

PROBING A SCALE DEPENDENT GRAVITATIONAL SLIP WITH … PHYS. REV. D 109, 023533 (2024)

023533-13

https://doi.org/10.3847/1538-4357/833/2/264
https://doi.org/10.3847/1538-4357/833/2/264
https://doi.org/10.1111/j.1365-2966.2005.09981.x
https://doi.org/10.1111/j.1365-2966.2005.09981.x
https://doi.org/10.1086/522580
https://doi.org/10.1086/522580
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1086/319940
https://doi.org/10.1093/mnras/stad1299
https://doi.org/10.1093/mnras/stad1299
https://arXiv.org/abs/2304.11714
https://arXiv.org/abs/2304.11714
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1093/mnras/sty1813
https://doi.org/10.1093/mnras/sty1813
https://doi.org/10.1088/1475-7516/2021/05/001
https://doi.org/10.1088/1475-7516/2021/05/002
https://doi.org/10.1088/1475-7516/2021/05/002
https://doi.org/10.1016/j.dark.2018.11.002
https://doi.org/10.1016/j.dark.2018.11.002
https://doi.org/10.1088/1475-7516/2016/07/019
https://doi.org/10.1088/1475-7516/2016/07/019
https://doi.org/10.1093/mnras/stz825
https://doi.org/10.1093/mnras/stz825
https://doi.org/10.1088/1475-7516/2020/04/024
https://doi.org/10.1088/1475-7516/2020/04/024
https://doi.org/10.1103/PhysRevLett.113.191101
https://doi.org/10.1103/PhysRevLett.120.131101
https://doi.org/10.1088/1475-7516/2018/11/027

