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What would a parity-violating universe look like? We present a numerical and theoretical study of mirror
asymmetries in the late universe, using a new suite of N-body simulations: QUIJOTE-ODD. These feature
parity-violating initial conditions, injected via a simple ansatz for the imaginary primordial trispectrum and
evolved into the nonlinear regime. We find that the realization-averaged power spectrum, bispectrum, halo
mass function, and matter PDF are not affected by our modifications to the initial conditions, deep into the
nonlinear regime, which we argue arises from rotational and translational invariance. In contrast, the parity-
odd trispectrum of matter (measured using a new estimator), shows distinct signatures proportional to the
parity-violating parameter, pNL, which sets the amplitude of the primordial trispectrum; furthermore, the
statistic cannot be sourced by any conventional gravitational or baryonic processes. We additionally find
intriguing signatures in the angular momentum of halos, with the primordial trispectrum inducing a
nonzero correlation between angular momentum and smoothed velocity field, proportional to pNL. Our
simulation suite has been made public to facilitate future analyses.
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I. INTRODUCTION

Parity describes the transformation properties of a
system under point reflections; roughly speaking, a sym-
metric universe is one that looks identical when left and
right are exchanged. From a terrestrial viewpoint, viola-
tions of this symmetry are commonplace: examples include
neutrinos (which are solely left handed), amino acid
chirality, and the handedness of the brain. Physically, many
of these effects are sourced by the weak interaction, which,
as discovered empirically in 1957 [1,2], does not obey
parity symmetry (unlike other standard model forces), but
rather the more general symmetry of charge-parity-time
conservation.
More broadly, one may ask whether parity-symmetry

should be broken also on cosmological scales. In this
instance, physics is dominated not by the weak force but
by gravitation, which is invariant under reflections (in the
Einsteinian paradigm).As such, a boundon large-scale parity
asymmetries provides a probe of the Universe’s initial
conditions. In the simplest models of inflation, single-field
slow-roll, parity symmetries are obeyed [3,4]; however,
violation can occur as a result of exotic physics, which

would indicate phenomena such as new forces, interactions
with novel particles, or loop corrections [5–14]. Indirect
evidence for mirror asymmetries may already exist; the
known asymmetry of baryons over antibaryons requires a
charge-parity- and charge-violating process, as described by
the Sakharov conditions [15], which could occur via some
form of gravitational parity violation [16–19].
Ascertaining whether the Universe is parity symmetric is

a topic of particular current relevance. Using data from
large spectroscopic surveys, recent works have revealed a
slight asymmetry in the distribution of chiral tetrahedra of
galaxies [20,21], using a method first presented in [22].
Whilst it is important to bear in mind that various
systematic effects could cause this result, there remains
an intriguing possibility that this signal is physical. As
discussed above, this could indicate parity-violating proc-
esses at work in inflation or at late times (e.g., via some
flavor of chiral gravity), though the latter requires an
exceedingly large characteristic length scale [23]. As
shown in [24], the former explanation is also disfavored,
since the relevant signal does not show up in the cosmic
microwave background (CMB) trispectrum, where it would
be expected to arise at some 50σ (under some limiting
assumptions, such as approximate scale invariance). This
suggests that systematics (mischaracterization of noise in
particular), may be to blame. Future data will shed much
more light on such results, and there remains the possibility
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that robust signatures could be detected with future surveys
such as DESI, Euclid, MegaMapper and beyond [e.g.,
[25–27]].
If an early-Universe source of parity violation exists,

how best can it be searched for? Put another way: how do
mirror asymmetries in inflation manifest themselves in the
distribution of matter and galaxies today? Previous obser-
vational studies have principally focused on the four-point
correlation function or trispectrum (though see also
[28,29]), which, in the linear regime, directly probes the
(parity-sensitive) primordial trispectrum of inflation. At late
times however, the Universe is significantly more complex
due to nonlinear gravitational evolution. Does this leak
information into lower-point functions? Or change the
masses of galaxies? Or their angular momenta? To probe
such effects, we require numerical codes to simulate
gravitational effects down to redshift zero and thus assess
the impact on cosmological statistics such as power spectra,
halo mass functions, and beyond.
In this work, we will present the first numerical study of

cosmologies with primordial scalar parity violation. To this
end, we will consider the generation of asymmetric initial
conditions from a fiducial template and generate their low

redshift counterparts, creating an extension to the QUIJOTE

suite [30], dubbed QUIJOTE-ODD. By way of introduction,
we show a slice through an analogous (enlarged) simulation
in Fig. 1, comparing to its parity-even counterpart; an
associated movie can be found online.1 Using these
realizations, we can robustly compute the late-time man-
ifestations of parity-violating initial conditions and com-
pare them to theoretical predictions, made possible in part
by novel trispectrum estimators. Here, we will consider a
range of statistics: the power spectrum, bispectrum, tris-
pectrum, halo mass function, matter PDF, and halo angular
momentum statistics. Each will be measured from both
parity-conserving and parity-violating simulations, which
will allow us to test theoretical expectations and uncover
various future avenues for exploration.
The remainder of this work is as follows. We begin with

a general introduction to scalar parity violation, presenting
theoretical arguments for the parity sensitivity of various
observables in Sec. II. In Sec. III, we consider how to

FIG. 1. We show two N-body simulations: one with standard initial conditions (top left) and one with parity-violating initial conditions
(bottom left) with pNL ¼ 107. Both simulations follow the evolution of 5123 particles on a periodic volume of ð50h−1 MpcÞ3 down to
z ¼ 0, and they share the same underlying Gaussian density field. The parity-violating simulation has been flipped along the horizontal
axis to give the impression that there is a mirror at the center of the image. The panels on the right part show the difference between the
densities of the two simulations. As can be seen, parity violating induces non-negligible differences in the distribution of matter in the
Universe, the statistical implications of which will be discussed in this work. The images are generated from a full ray-tracing calculation
at redshift zero from blender.

1Movie available at www.youtube.com/watch?v=4bnKGFYo
LpA&t=2s&ab_channel=FranciscoVillaescusa-Navarro.
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generate parity-violating initial conditions, before Sec. IV
discusses the associated simulation suite. Section V shows
results of various correlators extracted from our simula-
tions, and compares to theoretical predictions, before we
conclude in Sec. VI, with Appendixes A and B discussing
mathematical minutiae pertaining to trispectrum estimation
and theory modeling.

II. PARITY VIOLATION IN THEORY

A. Definition

Consider a scalar function, ζ, depending on n displace-
ment vectors r1;…; rn. The action of a three-dimensional
parity transformation, denoted P, is the following:

P½ζðr1;…; rnÞ� ¼ ζð−r1;…;−rnÞ; ð1Þ

which is equivalent to a point reflection. If P½ζ� ¼ �ζ, we
describe the statistic as parity even or parity odd respec-
tively. Assuming isotropy, the scalar function ζ can depend
only on the position vectors rai , derivatives ∂

a, and rota-
tionally invariant quantities, i.e. δabK and ϵabc (for Cartesian
indices a; b; � � �). Under the parity transformation, all
vectors pick up a factor of −1; this implies that parity-
odd correlators must contain an odd number of Levi-Cevita
symbols, ϵabc, since there is no other way to combine an
odd number of vectors to form a scalar.
In Fourier space, ζ depends on some set of wave vectors,

k1;…;kn (each associated to a single ri), which transform
as follows under parity:

P½ζðk1;…;knÞ� ¼ ζð−k1;…;−knÞ: ð2Þ

Often, ζ is the correlation of some number of real fields; in
this case, ζð−k1;…;−knÞ ¼ ζ�ðk1;…;knÞ; thus parity-
even (parity-odd) correlators are purely real (imaginary).
Analogously to before, any parity-odd correlator in Fourier-
space requires a Levi-Cevita symbol, leading to a term of
the form ki · kj × kk (since k derivatives are killed by
locality). Importantly, the scalar triple product is the
simplest geometric object that is (a) parity sensitive,
(b) isotropic and (c) a scalar. This immediately gives rise
to an important conclusion (which we prove below): for
scalar observables parity violation can be probed only in
the four-point function and above (for three-point func-
tions, e.g., bispectra Bðk1;k2;k3Þ, the three vectors sum to
zero; thus the triple product is trivial).

B. Correlators: Heuristic argument

Physical symmetries place strong restrictions on the
parity sensitivity of various observables. Here, we will
consider explicitly the general form of the power spectrum,
bispectrum, and trispectrum of real fields, and argue that, in
expectation, only the latter is parity sensitive. Our argu-
ments are nonperturbative, and thus apply in arbitrarily
nonlinear regimes, though require all observables to be
averaged over realizations.
By translation invariance, the two-, three-, and four-point

correlators of real fields X, Y, Z,W must satisfy momentum
conservation:

hXðk1ÞYðk2Þi ¼ PXYðk1Þð2πÞ3δDðk1 þ k2Þ
hXðk1ÞYðk2ÞZðk3Þi ¼ BXYZðk1;k2;k3Þð2πÞ3δDðk1 þ k2 þ k3Þ

hXðk1ÞYðk2ÞZðk3ÞWðk4Þi ¼ TXYZWðk1;k2;k3;k4Þð2πÞ3δDðk1 þ k2 þ k3 þ k4Þ: ð3Þ

Asserting rotational invariance (ignoring, e.g., wide-angle effects), each correlator can depend only on scalar functions
derived from the ki wave numbers, as discussed above. In three dimensions, these comprise only jkj≡ k, μij ≡ k̂i · k̂j,

k̂i · k̂j × k̂k leading to the definitions

PXYðk1Þ ¼ PXYðk1Þ
BXYZðk1;k2;k3Þ ¼ BXYZðk1; k2; k3; μ12; μ13; μ23; k̂1 · k̂2 × k̂3Þ ¼ BXYZðk1; k2; k3Þ

TXYZWðk1;k2;k3;k4Þ ¼ TXYZWðk1; k2; k3; k4; jk1 þ k2j; jk1 þ k3j; μ12; μ13; μ14; μ23; μ24; μ34; k̂1 · k̂2 × k̂3Þ
¼ TXYZWðk1; k2; k3; k4; jk1 þ k2j; jk1 þ k3j; k̂1 · k̂2 × k̂3Þ; ð4Þ

where we eliminate degenerate variables to reach the
second definitions, using conservation of momentum. As
above, parity inversion leads to the mapping k → −k,
and, if the fields are real, a complex conjugation; it is
immediately apparent that PXY and BXYZ are invariant

under this transformation, and are thus parity insensitive
and real. In contrast, the trispectrum (and any higher-
order correlators) contains the irreducible triple product
k̂1 · k̂2 × k̂3, which allows it to be parity sensitive, and, in
general, complex.
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C. Correlators: Formal proof

Whilst the above argument suffices to demonstrate that
(realization-averaged) power spectra and bispectra cannot
probe parity-violating physics, due to their lack of
dependence on the scalar triple product, some readers

may wish for a more formal argument. To this end, let us
assume some primordial source of parity violation,
through the gravitational potential ϕ. By the above argu-
ments, this must involve a scalar triple product, taking the
heuristic form

ϕNGðkÞ ¼ ϕGðkÞ þ ipNL

Z
p1þp2þp3¼k

ðp1 · p2 × p3Þf½ϕG�ðp1;p2;p3Þ þ � � � ; ð5Þ

where ϕG is the Gaussian potential,
R
p ≡

R
d3p=ð2πÞ3, and

the scalar functional f will be discussed in Sec. III. Here, the
magnitude of parity violation is set by the imaginary
parameter ipNL. Searching for late-time manifestations of
parity violation is thus equivalent to finding realization-
averaged observables that depend on ipNL. Notably, those
depending on even powers of ipNL are not signatures of
parity violation, since the square of a parity-odd contribution

is parity even. For this reason, we will consider simulations
with both positive and negative pNL to validate our argu-
ments below, since their difference removes any quadratic
(and higher) ipNL contributions.
Any late-time field XðkÞ is uniquely determined by the

primordial potential ϕNG, and can thus bewritten as a formal
Taylor series:

XðkÞ ¼
X∞
n¼0

ZP
i
qi¼k

XðnÞðq1;…;qn;kÞϕNGðq1Þ � � �ϕNGðqnÞ; ð6Þ

where the nth order piece involves n primordial potentials. The deterministic kernel XðnÞ is fixed by the equations of motion
(independently of inflationary physics); ignoring late-time parity violation, it can depend only on magnitudes jqij
and angles q̂i · q̂j.

2 Expanding the potentials to first order in ipNL leads to the formal contribution to the power spectrum
(which remains nonperturbative and could include arbitrary nonlinearity, loops, counterterms, and beyond):

PXYðkÞ ⊃
X∞
n¼1

ZP
i
qi¼k

½ipNLðq1 · q2 × q3Þ� × KðnÞ
XYðqi; k; k̂ · q̂; q̂i · q̂jÞ × ½PϕðqiÞPϕðjk − qijÞ � � ��; ð7Þ

where KðnÞ
XY is the nth order kernel which is built from XðnÞ

and Yðn0Þ and Pϕ is the power spectrum of ϕNG. Here, the
parity-violating initial conditions source the square bracket,
including both ipNL and a scalar triple product. Under the
transformation k → −k and a relabeling qi → −qi, we find

PðipNLÞ
XY ð−kÞ ¼ −PðipNLÞ

XY ðkÞ, since KðnÞ
XY depends only on

magnitudes and angles so is invariant, yet q1 · q2 × q3

changes sign. Since rotational invariance restricts us to
power spectra of the form PXYðkÞ ¼ PXYðkÞ, this implies
that the order ipNL contribution must vanish. An analogous
argument implies that higher odd powers of ipNL vanish;

thus the overall power spectrum is parity insensitive. By a
similar line of reasoning, the bispectrummust also be parity
even; however, the trispectrum can exhibit signatures of
parity violation, since rotational symmetry does not de-
mand it to be independent of k̂.
Before continuing, we briefly remark on violations

of the above assumptions. The most pertinent of these is
the breaking of rotational invariance through redshift-
space distortions. In this case, the problem contains an
additional vector: the (assumed global) line of sight n̂. For
the power spectrum, symmetry then dictates PXYðk1Þ ¼
PXYðk1; k̂1 · n̂Þ. Note that as exchanging X ↔ Y is equiv-
alent to k1 → −k1, a signature of parity violation can occur
only for cross spectra with X≠Y [as PXXðkÞ−PXXð−kÞ¼0

by definition]. Furthermore, parity violation is equivalent to
replacing the line of sight n̂ with −n̂: however, this is an
isometry of the equations of motion; thus there again can be
no signal proportional to ipNL. To see this, note the formal
expansion for the redshift-space power spectrum:

2If there were late-time parity violation, the XðnÞ kernels would
include a parity-odd triple product of the form ðiσÞq1 · q2 × q3,
for amplitude parameter iσ. The coupling of this to the ipNL triple
product in the initial conditions would source parity-even physics
linear in ipNL (via i2pNLσ). However, since the underlying
equations of gravitation and hydrodynamics are parity even, this
cannot be sourced by standard physics at any order.
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PXYðk; k̂ · n̂Þ ⊃
X∞
n¼1

ZP
i
qi¼k

½ipNLðq1 · q2 × q3Þ� × KðnÞ
XYðqi; k; k̂ · q̂; q̂i · q̂j; bqi · n̂; k̂ · n̂Þ½PϕðqiÞPϕðjk − qijÞ � � ��: ð8Þ

Here the line of sight n̂ enters only in the kernels (since it
impacts the transformation between observables and initial
conditions). Importantly, these kernels are invariant under
n̂ → −n̂due to cylindrical symmetry (i.e. the fact that the line
of sight is defined only up to 180° rotations).3 Since n̂ does
not couple to the initial conditions, we find that, under

k → −k, n̂ → −n̂ and relabeling q → −q, PðipNLÞ
XY ðk; k̂ · n̂Þ

transforms to −PðipNLÞ
XY ðk; k̂ · n̂Þ; thus the contribution must

vanish. The same logic applies to the bispectrum, whence

parity violation is equivalent to n̂ → −n̂ as before, but the
kernels remain invariant under n̂ → −n̂.

D. Halo mass function

Next, we consider the halo mass function, nðMÞ. Once
again, this is not parity sensitive. Formally, an explicit
expression for nðMÞ is given by as a Taylor series in Fourier
space (cf. (6):

n̂ðMÞ ¼
X∞
n¼0

ZP
i
qi¼0

NðnÞðq1;…;qn;MÞϕNGðq1Þ � � �ϕNGðqnÞ; ð9Þ

for some kernel NðnÞ. Averaging over the initial conditions, we find the following schematic contribution at first order
in ipNL:

nðMÞ ⊃
X∞
n¼1

ZP
i
qi¼0

½ipNLðq1 · q2 × q3Þ� × NðnÞðqi; q̂i · q̂j;MÞ × ½Pϕðq1Þ � � ��; ð10Þ

with new kernel N̄ðnÞ. Under the relabeling q → −q, we
find nðipNLÞðMÞ ¼ −nðipNLÞðMÞ; thus the contribution is
zero. The same holds at higher (odd) orders.

E. Halo angular momenta

In the above discussion, we have considered only scalar
observables, such as the matter density or mass function.
Different behavior can arise if one instead works with
tensor observables, since these carry additional directional
information, bypassing the above symmetry constraints.
For the CMB, the principal example is polarization, which
allows for parity-sensitive two-point correlators (TB and
EB spectra) [6,7,9–11,13,31–35]. In the context of the late
Universe, the simplest tensor fields at our disposal are the
shapes of galaxies, as well as the velocity and angular
momentum fields of tracer particles, such as halos or
galaxies. The former are difficult to probe using N-body
simulations; thus we will restrict our attention to the latter
in this work.
Under a parity transform, velocity transforms as a vector

(with P½vðrÞ� ¼ −vð−rÞ), whilst the angular momentum

transforms as an axial vector (with P½JðrÞ� ¼ Jð−rÞ). As
such, the combination J · v is a pseudoscalar, which
changes sign under point reflections. This enables a
convenient test: averaging over a sufficiently large number
of objects, the cosine Ĵ · v̂ can take nonzero values only if
parity symmetry is broken. In the above language, Ĵ · v̂
must be proportional to odd powers of the parity-breaking
amplitude ipNL. We will use this notion to probe parity
violation in Sec. V.
Furthermore, one can decompose (axial) vectors such as

the angular momentum into left- and right-handed compo-
nents, and thus evaluate their chirality. This was demon-
strated in [29] (and later works [28,36–38]), considering the
quantity μL;R ≡ Ĵ · ĴL;R, where Ĵ is the observed halo
angular momentum, and ĴL;R is a proxy constructed from
the primordial density field. From the sum μL þ μR, one
can probe if galaxy angular momentum is correlated with
the initial conditions; from the difference, one can probe
parity-violating processes. This will again be explored
in Sec. V.

F. Summary

The conclusion of the above discussion is that the parity
violation is difficult to observe when considering only
scalar observables, such as the mass and halo density fields.

3This can be violated with wide-angle effects, since there are
then two distinct lines of sight. Such an effect cannot be probed
with standard N-body simulations however.
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At arbitrarily nonlinear scales, the power spectrum, bispec-
trum, and halo mass function are unaffected by parity
violation injected in the initial conditions, i.e. they are
independent of the sign of pNL. As such, suites of
simulations with þjpNLj and −jpNLj should yield the same
averaged statistics in arbitrarily nonlinear regimes, a
prediction that we verify in Sec. V. To probe parity violation
with scalar observables, we require quantities which
depend on at least three independent vector coordinates
(e.g., k1, k2, k3, needed to form a scalar triple product),
the simplest of which is the parity-odd trispectrum.
Importantly, parity-odd statistics such as this cannot be
sourced by canonical gravitational or hydrodynamic phys-
ics (which is parity odd); any detection would thus indicate
strong evidence for new physics.
In contrast, tensorial observables can probe parity

violation with simpler statistics. A particularly notable
example is the angular momentum of tracers, which probes
the mirror asymmetries both via its helicity decomposition,

and its scalar product with the velocity field (and cannot be
sourced by conventional physics).4 Such quantitiesmay have
limitations in practice however, since we have access only to
projected velocity fields, and canmeasure only the tangential
angular momentum, through galaxy spin [e.g. [36]]. Though
beyond the scope of this work, EB galaxy shear correlations
may also be an intriguing probe of parity violation.

III. PARITY VIOLATION IN PRACTICE:
INITIAL CONDITIONS

A. Definition

We now consider how to create simulations with injected
parity violation. Analogously to the case of three-point
non-Gaussianities (proportional to fNL) [39], our procedure
is to first generate a Gaussian primordial potential, ϕð1ÞðxÞ,
and then modulate it to source the correlators of interest.
Definitively, we perform the following transformation:

ϕNGðxÞ ¼ ϕð1ÞðxÞ → ϕð1ÞðxÞ þ pNL½ϵijkð∂ij∂jαϕð1ÞÞð∂jj∂jβϕð1ÞÞð∂kj∂jγϕð1ÞÞ�ðxÞ; ð11Þ

where α ≠ β ≠ γ are integers, pNLAs controls the amplitude
of parity violation (for inflationary amplitude As), and j∂jα
corresponds to a Fourier-space multiplication by kα. As
discussed in Sec. II, this is parity violating due to the
presence of a Levi-Cevita symbol, which must be con-
tracted with three different fields. If the initial conditions
are to be scale invariant, we require a trispectrum scaling as
ðPϕÞ3: this is achieved by setting αþ β þ γ ¼ −3.5

Below, we will set fα; β; γg ¼ f−2;−1; 0g. Notably, (11)
does not represent all possible parity-violating initial

conditions, much as the local bispectrum shape does not
represent all types of three-point primordial non-
Gaussianity (PNG). Different models of new physics
generate distinct primordial signatures which can be
more complex than the above; the only generic prediction
is that the modification to the potential must contain an
odd number of Levi-Cevita symbols (to ensure parity-
violation).
Defining the Fourier-space field by ϕðkÞ≡R
dx e−ik·xϕðxÞ, the correction term in (11) can be written:

ϕð3ÞðkÞ ¼ ipNL

Z
p1p2p3

ð2πÞ3δDðk − p1 − p2 − p3Þ½p1 · p2 × p3�pα
1p

β
2p

γ
3ϕ

ð1Þðp1Þϕð1Þðp2Þϕð1Þðp3Þ; ð12Þ

as in (5). Practically, this is easiest to compute as a summation
in real space, having first computed the gradient fields
∂ij∂jαϕð1Þ via Fourier transforms. We stress that such

simplifications are possible only due to our assumption of
a separable form for the primordial parity-odd distortion.
The above modification to the primordial potential

generically leads to corrections to the power spectrum at
Oðp2

NLÞ, which become relevant on small scales.6 These
may be optionally removed by rescaling the non-Gaussian
initial conditions via

4It is interesting to consider whether the angular momentum
field can impart parity sensitivity on power spectra (and beyond)
via observational selection effects, such as δ ∝ n̂ · Ĵ (i.e. a
tendency to observe more face-on than edge-on galaxies). Since
the statistics of the angular momentum field are themselves
isotropic and there is only one global axis in the problem (n̂), any
contractions with the Levi-Cevita symbol must vanish; thus such
phenomena cannot affect matter correlators.

5This can also be implemented by acting on the above with
j∂j−α−β−γ−3.

6As discussed in Sec. II, rotation and translation invariance
forbids any OðpNLÞ corrections from appearing. Since the
residual corrections do not depend on the sign of pNL, they
are not parity sensitive.
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ϕNGðkÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕð1ÞðkÞϕð1Þ�ðkÞi
hϕNGðkÞϕNG�ðkÞi

s
ϕNGðkÞ; ð13Þ

which ensures that the output power spectrum is invariant, upon averaging over realizations. Since this factor is
1þOðp2

NLÞ, we will ignore it in computation of the theoretical parity-odd trispectrum below.

B. Correlators

Our ansatz for the primordial potential of (12) generates a parity-violating trispectrum that is the sum of four components,
each of the form

T1113ðk1;k2;k3;k4Þ ¼ hδð1Þðk1Þδð1Þðk2Þδð1Þðk3Þδð3Þðk4Þi
¼ −ipNL½k1 · k2 × k3�Pϕðk1ÞPϕðk2ÞPϕðk3Þfkα1kβ2kγ3 − kα1k

γ
2k

β
3 þ ð4 perms:Þg; ð14Þ

summing over a total of six permutations. The full trispectrum becomes

Tϕðk1;k2;k3;k4Þ ¼ −ipNL½k1 · k2 × k3�Pϕðk1ÞPϕðk2ÞPϕðk3Þkα1kβ2kγ3 þ 23 perms:þOðp2
NLÞ; ð15Þ

where odd permutations of fk1;k2;k3;k4g pick up a
negative sign due to the cross product. As discussed in
Sec. II, this is odd under the exchange of k → −k (which
leads to parity violation) and purely imaginary. Whilst this
polynomial form is not the most general parity-odd
trispectrum considered, it is likely that other physical
models of parity violation (such as those considered in
[20,23,24]), can be projected onto templates such as the
above, and thus efficiently constrained (analogous to the
use of equilateral, orthogonal, and local shapes in bispec-
trum studies).
It is further instructive to consider the other primordial

correlators. First, there is strictly a parity-even contribution
to the trispectrum: this appears only one-loop however,
requiring diagrams of the form T3311, which are suppressed

by a factor of pNLAs. In contrast, the primordial bispectrum
is zero at all orders in pNLAs; this occurs since ϕNG contains
only pieces linear and cubic in ϕð1Þ; thus all Wick
contractions contain an odd number of fields, and hence
evaluate to zero. Finally, we note that the power spectrum
naïvely contains a parity-sensitive 13-diagram, but this is
equal to zero:

P13ðkÞ ¼ ipNLkαPϕðkÞ
Z
p
½k · p × −p�pβþγPϕðpÞ

þ 2 perms: ¼ 0: ð16Þ

At two-loop order, there exists a 33-diagram, given by

P33ðkÞ ¼ p2
NL

Z
p1p2p3

ð2πÞ3δDðk − p1 − p2 − p3Þ½p1 · p2 × p3�2Pϕðp1ÞPϕðp2ÞPϕðp3Þ

× pα
1p

β
2p

γ
3fpα

1p
β
2p

γ
3 þ pβ

1p
γ
2p

α
3 þ pγ

1p
α
2p

β
3 − pα

1p
γ
2p

β
3 − pβ

1p
α
2p

γ
3 − pγ

1p
β
2p

α
3g: ð17Þ

This is generically suppressed by ðpNLAsÞ2 compared to the
tree-level Pϕ prediction. One can show that the contribution
scales as k2 in the infrared (k → 0) and, at most, as
k2 maxfα;β;γgþ2PϕðkÞ in the ultraviolet (k → ∞); thus our
modification to the initial conditions is well defined.7

In practice, this contribution is removed via the rescaling
of (13).

C. Validation

To validate the initial condition generation procedure we
generate 1000 simulations of the primordial potential: 500
with pNL ¼ þ106 and 500 with pNL ¼ −106. We then
performed a range of tests including verifying that our
rescaling, (13), removes the majority of the Oðp2

NLÞ power
spectrum contribution and verifying that we did not
generate a spurious primordial bispectrum. A key test is
to examine the primordial trispectrum, and compare its

7This differs from [39], who find large divergences in P22 for
some forms of initial condition generation. The difference here is
that, due to the imposed condition αþ β þ γ ¼ −3, we do not
have derivative operators acting on the entire ϕð3Þ, which would
yield reciprocal powers of k in the infrared limit.
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FIG. 2. As a validation of the parity-violating initial conditions, we measure the binned parity-even and parity-odd trispectrum signals
from the primordial potential, canceling sample variance by computing the difference between this measurement and a Gaussian
simulation with matched phases (here and hereafter denoted ΔT). Here, we compare the mean trispectrum to the error on the mean, on a
bin-by-bin basis (using 500 simulations of each type). It can be seen that the parity-even results are consistent with the noise distribution
shown in black (as expected, since the signal appears only at second order), but there is clear evidence of a leading-order parity-odd
trispectrum.

FIG. 3. A comparison of the theoretical and simulated parity-odd trispectrum signals. To reduce noise we compute the difference in the
trispectra (ΔT) between simulations with pNL ¼ 106 and Gaussian simulations with an identical random seed. Theoretical predictions
are obtained as in Appendix B (for the input value pNL ¼ 106), discretizing each bin into a number of sub-bins and averaging the
corresponding trispectra (which is not an exact solution, but approximately correct). The high level of agreement provides a stringent test
that our initial condition generation produces the correct signal with the relevant value of pNL.
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amplitude to the above theory model. Thus we applied
estimators for the binned parity-even and parity-odd
trispectrum, described in detail in Appendix A, to test that
we did not generate a parity-even trispectrum and that we
generated the correct parity-odd signal. For both estimators
we used six bins linearly spaced with bin centers spaced
between k ¼ 0.02h Mpc−1 and k ¼ 0.12h Mpc−1.
In Fig. 2 we show the significance of the detection of the

parity-even and parity-odd trispectra. We find no evidence
for a parity-even trispectrum, which matches expectations,
since this signal should appear only at Oðp2

NLÞ. In contrast,
there is strong evidence for a parity-odd trispectrum. To
validate that the correct parity-odd trispectrum signal is
generated, we compare the measured trispectrum to the
theoretical expectation—the computation of the expected
binned signal is given in Appendix B 2. As can be seen in
Fig. 3, the theoretical trispectrum and measured trispectrum
show great agreement across a range of scales and
tetrahedron configurations for our input value of pNL.

8

IV. PARITY VIOLATION IN PRACTICE:
SIMULATIONS

Armed with the parity-violating initial conditions, we
now proceed to run the forward model, i.e. to generate
parity-violating N-body simulations. These are generated
in an identical manner to the QUIJOTE simulations [40,41].
We provide a brief summary of the suite below and refer the
reader to [40] and [42] for more details. Table I summarizes
the key simulation parameters used in this work.
First a realization of the primordial potential is generated

on a 10243 grid, and the parity-violating trispectrum is
added, via (11). In this work we generate simulations with
pNL ¼ �106. These values were chosen as the size of the
induced trispectrum is large enough to generate measurable
signals, but small enough such that the higher order
corrections (∼Oðp2

NLÞ) are still small. We ran a small
number of simulations with different pNL values to validate
this choice. Next, we perform a rescaling of the initial
conditions to mitigate the impact of the p2

NL terms using
(13). The initial conditions are then evolved to z ¼ 0 using

a transfer function computed by CAMB [43] and then
rescaled back to z ¼ 127 using a scale-independent growth
factor. The density field at z ¼ 127 is then combined with
2LPT to compute particle displacements and peculiar
velocities for glass-distributed particles.
The particles are then evolved using GADGET-3, a treePM

code [44]. In total we run 1,000 simulations: 500 with
pNL ¼ þ106 and 500 with pNL ¼ −106. All simulations
contain 5123 particles in a comoving periodic box of
ð1000h−1 MpcÞ3. The value of the parameters used to
control the accuracy and precision of the different integra-
tors are identical to those used for the QUIJOTE simulations
[40]. Halos are identified using both the Friends-of-Friends
(FoF) algorithm [45] and ROCKSTAR [46]. We note that
while FoF halo catalogs only include positions, masses, and
velocities, the Rockstar catalogs include a much richer set
of properties such as angular momentum and radius, which
will be of great use in Sec. V. Finally, we create over-
density grids from the output particle positions and halo
catalogs. This uses the “Cloud-in-Cell” grid assignment
scheme [47] to produce grids of size 5123.

V. PARITY VIOLATION IN PRACTICE:
LATE-TIME OBSERVABLES

In this sectionwe explore a range of commonly considered
statistical probes and examine how they are changed by the
presence of the parity-violatingprimordial trispectrum.Here,
our focus is on the z ¼ 0 universe; similar results were found
at z ¼ 1. Furthermore, to isolate the terms linear in pNL and
remove any p2

NL terms, which are not parity violating, we
showmost of the results as the difference between thepNL ¼
106 and pNL ¼ −106 simulations.

A. Power spectrum

We compute the power spectrum of the halo and matter
field using PYLIANS [48], in a similar manner to [41,49]. In
Fig. 4 we show the impact of the parity violation PNG on
the power spectrum: averaging over realizations, there is
seen to be no effect in either the matter or halo power
spectrum. Note that the matter power spectrum shows a
small dip at small scales, and similar effects were seen in
the initial conditions. This is not thought to be a signature
of pNL in the power spectrum. This deviation arises as the
quadratic (parity-even) terms in pNL lead to strong corre-
lations between PðkÞ and Pðk0Þ and an increase in the small

TABLE I. Simulation parameters for the QUIJOTE-ODD suite. These use the same parameters as the QUIJOTE and QUIJOTE-PNG
simulations [40,41], but feature nonzero parity-violation parameters pNL. In each case, the initial conditions are generated with a
suitably modified version of the 2LPTIC code [39].

Type Ωm ΩΛ Ωb σ8 h ns
P

mν (eV) w Lbox (Mpc/h) N
1
3

particles Realizations pNL Mmin (M⊙=h)

Parityþ 0.3175 0.6825 0.049 0.834 0.6711 0.9624 0.0 −1 1000 512 500 þ106 6.56 × 1011

Parity− 0.3175 0.6825 0.049 0.834 0.6711 0.9624 0.0 −1 1000 512 500 −106 6.56 × 1011

8We have further verified that our parity-odd estimator is
unbiased by computing the null χ2 ≡ T2

odd=σ
2ðToddÞ for Gaussian

simulations (without cosmic variance cancellation), and verifying
that it is consistent with the expected value, Nbins, to ≈1%.

SIGNATURES OF A PARITY-VIOLATING UNIVERSE PHYS. REV. D 109, 023531 (2024)

023531-9



scale power spectrum variance. This effect will thus
average down with a very large number of simulations.
In smaller ensembles, this can give rise to features that
appear significant as many highly correlated bins can
deviate from zero. In our case, the deviation of any single
bin is ∼1σ (in the mean), and an examination of the
correlation matrix shows these bins are strongly correlated.

B. Matter probability density function
and the halo mass function

In Fig. 5 we explore how the matter PDF and HMF are
affected. The PDF is computed from the matter density
grids, as discussed in Sec. IV, whilst the halo mass function

is computed from the FoF halo catalogs as in [50]. As can
be seen, we find no detectable average signal of pNL in
either statistic. This agrees with the conclusions of Sec. II.

C. Bispectrum

Next, we compute the binned bispectrum in a similar
manner to [41,49,51], using 10 bins linearly spaced
between k ¼ 0.013h Mpc−1 and k ¼ 0.19h Mpc−1. In
the left panel of Fig. 6, we show the ratio of the difference
in bispectrum bin value between 500 pNL ¼ 106 and pNL ¼
−106 simulations to the error on the mean of that bin. Once
again, we find no evidence of an induced bispectrum.

FIG. 4. The response of the z ¼ 0matter power spectrum, left panel, and the halo power spectrum, right panel, to parity-violating non-
Gaussianity. This is computed as the difference between 500 simulations with pNL ¼ 106 and pNL ¼ −106. The halo power spectrum
uses all halos withM ≥ 3.2 × 1013M⊙=h. At leading order in pNL both statistics are unchanged. The error bars on both plots denote the
error on the mean, as measured with the 500 simulations.

FIG. 5. The response of the z ¼ 0 probability density function (PDF, left panel) and the halo mass function (HMF, right panel,
computed using the difference of 500 simulations with pNL ¼ 106 and pNL ¼ −106. Despite the presence of a large level of primordial
non-Gaussianity, both statistics are unaffected. The error bars are the error on the mean. Note that we consider the PDF of 1þ ρ=ρ̄,
where ρ̄ is the mean density, to allow the logarithmic axis.

COULTON, PHILCOX, and VILLAESCUSA-NAVARRO PHYS. REV. D 109, 023531 (2024)

023531-10



D. Trispectrum

Using the estimators in Appendix A, we measure the
parity-even andparity-odd trispectrumwith the samebinning
scheme as for the primordial trispectrum in Sec. III C. As
shown in Fig. 6, the parity-even trispectrum measurements
are consistent with no induced trispectrum signal, as
expected. In contrast, the parity-odd trispectrum shows
strong evidence of a signal, though, as expected, none is
present if pNL ¼ 0. Note that this is computed from the
difference of simulations with pNL ¼ 106 and pNL ¼ −106,
which cancels most of the cosmic variance. Without this
technique, the signal-to-noise on the parity-odd signal would
be dramatically reduced. In its presence, we find a combined
detection significance of around 40σ for a single simulation.9

Whilst this scales linearly withpNL, we caution that the value
considered in this work would be essentially impossible to
detect from a single 1 h−3 Gpc3 simulation volume if one
does not perform cosmic variance cancellation.

E. Halo angular momenta

As discussed in Sec. II E, the angular momenta of
simulated tracers can be parity sensitive. Here, we consider
two associated tests: (a) correlating halo angular momen-
tum, J, with the velocity field, and (b) correlating halo
angular momentum with a chiral proxy derived from the
initial conditions. In each case, we use the angular
momenta measured from the ROCKSTAR code [52],

dropping any subhalos, and considering a minimum mass
cut of 3 × 1013h−1M⊙.
In the first case, we compute thevelocity field, vRðrÞ, from

the z ¼ 127 snapshot [as vðk; zÞ ¼ ð−ik=k2ÞfðzÞHðzÞ×
δðk; zÞ for growth rate fðzÞ and conformalHubble parameter
HðzÞ], smoothing on a scale R∈ f2; 5; 10gh−1 Mpc. The
resulting field is interpolated to the halo positions, and then
the cosine Ĵ · v̂R is computed for each halo in the dataset
(dropping the moduli of J and vR, since they are scalar
quantities, and thus parity insensitive). Figure 7 shows the
resulting distribution of Ĵ · v̂R at redshift zero, averaged over
500 simulations with pNL ∈ f0;�106g. We find a distinctly
nonuniform distribution for small smoothing scales (close to
the Lagrangian radii of low mass halos), indicating that halo
angular momenta correlate with the primordial density field.
The Gaussian PDF appears symmetric (indicating no detect-
able signal for parity-conserving universes, as expected);
when pNL is nonzero, we see asymmetries, which are
characteristic signatures of parity violation. This is clearly
seen in the binned Ĵ · v̂R statistic, which is expected to be
(statistically) zero in the absence of parity violation. For
M ≲ 3 × 1014h−1M⊙, we find a highly significant signal for
pNL ¼ �106, indicating that the angular-momentum-veloc-
ity cosine is a good probe of parity violation, matching the
conclusion of Sec. II.
An alternative approach is to construct the Ĵ · v̂ statistic

from halo velocities measured by ROCKSTAR, removing
the need for the initial conditions.10 The results for this

FIG. 6. The impact of the parity-violating trispectrum on the z ¼ 0 matter bispectrum (left panel) and the parity-even and parity-odd
matter trispectrum (right panel) normalized by the standard error on the mean for each bispectrum/trispectrum bin. As the distribution of
bispectrum measurements is consistent with no signal (the blue line), we can conclude that no detectable bispectrum is sourced. The
parity-even trispectrum shows a similar result—no signal is detectable, and we match the expected noise distribution shown in black.
However, we find strong evidence for a parity-odd trispectrum, implying that this quantity is preserved through cosmic time (though its
amplitude is modulated by nonlinear effects). Note that as we show the distribution of the difference between the pNL ¼ 106 and
pNL ¼ −106 simulations (denoted ΔT), we cancel most of the cosmic variance.

9This is parametrized by
P

ΔT2=σ2ðΔTÞ − Nbins, for parity-
odd trispectrum ΔT ≡ TðpNL ¼ 106Þ − TðpNL ¼ −106Þ in a
total of Nbins (assumed independent) bins.

10An alternative approach is to perform some flavor of
reconstruction to obtain the velocity field, such as via baryon
acoustic oscillations reconstruction techniques (using the con-
tinuity equation) or fully Bayesian methods [cf., [36]].
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approach are shown in Fig. 8. This measurement shows
reduced signal to noise, which we attribute to the con-
tamination of the velocity effect by uncorrelated effects
such as the Fingers-of-God contributions. It is expected that
measurements using galaxy velocities, closer still to direct
observations, would also be a clean probe for parity-
violating signals. However, galaxies are expected to exhibit
even larger noise. To examine this, we analyzed galaxies
from the CAMELS [53] simulation suite to support these
statements. Unfortunately, the small size of these simu-
lations, with boxes of side length 25h−1 Mpc, prevents a
quantitative analysis. Qualitatively, variations of the cos-
mological parameters or the type of subgrid model in the

CAMELS suite led to symmetric changes in the Ĵ · v̂h
distribution and so cannot mimic the parity-violating
signal.
For a second probe, we correlate the halo angular

momentum J, with the JL;R proxy defined from the
smoothed initial potential ϕ and density δ, as discussed
in [28,29,36,37]. This is given by

Jtheoryi ðxÞ ¼ ϵijk∂
j
∂
mϕRðxÞ∂k∂mδRðxÞ;

JiL;RðkÞ ¼
1

2
½ðδijK − k̂ik̂jÞ � iϵijkk̂k�Jtheoryj ðkÞ ð18Þ

FIG. 7. Correlation between redshift zero halo angular momentum, J, and the velocity field, vR, measured from the initial conditions,
smoothed on some scale R. Left panel: PDF of Ĵ · v̂R from all halos in the three suites of simulations withM > 3 × 1013h−1M⊙. Results
are shown for Gaussian simulations (solid line), pNL ¼ 106 (dashed lines) and pNL ¼ −106 (dotted lines). The Gaussian distribution is
symmetric, but we find asymmetry for the parity-breaking simulations, with some dependence on the smoothing scale R. Right panel:
mean correlation averaged across eight mass bins for each suite of 500 simulations. We observe a clear nonzero signal for pNL ¼ �106

(particularly at low masses), with a negative correlation coefficient.

FIG. 8. Correlation between redshift zero halo angular momentum, J, and the halo velocity, vh, at z ¼ 0. As in Fig. 7, we plot the PDF
of all the ROCKSTAR halos (left panel) and the differential change (right panel). Whilst noisier than the equivalent correlation with the
initial condition velocity field, this demonstrates that the parity-violating signals can be seen using late-time measurements only.

COULTON, PHILCOX, and VILLAESCUSA-NAVARRO PHYS. REV. D 109, 023531 (2024)

023531-12



explicitly projecting onto the helical basis in the second
equation. In Fig. 9, we plot the cosines μL;R ≡ Ĵ · ĴL;R for
each set of simulations, and a variety of smoothing scales.
The parity-conserving contributions show a clear signal,
echoing the conclusion of [29]; the angular momenta of
halos correlates with the primordial density field. Here, we
observe largest correlations for smoothing scales
R ¼ 5h−1 Mpc, which is somewhat larger than that sug-
gested in [29], since the halos in our simulations are more
massive and have larger Lagrangian radii. We do not
observe any differences between the two sets of simula-
tions, indicating that any contributions quadratic in p2

NL are
small. Considering μL − μR, we find no evidence for parity
violation sourcing a helical angular momentum, with
results consistent with zero for all values of pNL, mass bins,
and smoothing. This result is not obvious a priori, since
μL − μR could contain terms linear in pNL (cf. Sec. II E).
We conclude that any signatures are too small to see in our
choice of initial conditions, likely due to the strong scale
dependence of the assumed primordial correlator.

VI. CONCLUSION

By probing the parity properties of the late-time
Universe, we can place constraints on nonstandard physics
occurring during inflation or low-redshift structure growth.
In this work, we have performed the first numerical study of
mirror asymmetries in large-scale structure by generating
and analyzing simulations with a particular form of parity-
violating initial conditions. This corresponds to injecting an
imaginary inflationary four-point function, proportional to
an amplitude ipNL, and computing various statistics on the
evolved simulations at low redshift.

Our principal conclusion is that early-Universe parity
violation is difficult to detect in the late Universe. Owing to
homogeneity and isotropy, the realization-averaged power
spectrum, bispectrum, and halo mass function are not
affected by our modifications to the initial conditions, even
on arbitrarily nonlinear scales and including redshift-space
distortions. This has been explicitly verified with simu-
lations, carefully accounting for parity-conserving Oðp2

NLÞ
contributions. To measure parity violation from scalar
observables, we must look to four-point functions or
beyond (since no lower-point functions can carry the all-
important scalar triple product), such as those used in the
large-scale structure analyses of [20,21], following the
methodology of [22], and, the CMB analyses of [24,54].
Whilst nonlinear evolution modifies the shapes of late-time
trispectra, it does not source parity-breaking correlators,
and we find a clear detection of a late-Universe parity
violation using a novel trispectrum estimator.
A conceptually simpler test for parity violation comes

from tensorial quantities, such as the angular momentum of
halos. Theoretically, parity violation can be probed using
both the correlation of halo angular momenta with velocity
fields (a naturally occurring pseudoscalar), and helical
proxies extracted from the initial conditions [29]. In our
setup, we find a strong correlation of angularmomentum and
velocity, scaling linearly with pNL, but no signal in the latter
observable (though this is allowed theoretically).Whilst such
quantities can be straightforwardly extracted from N-body
simulations, the realistic measurement is a little more
nuanced, since we usually have access only to projected
velocity fields (themselves contaminated with nonlinear
effects such as the Fingers-of-God effect), and there are
nontrivial baryonic effects at play. These complications have,

FIG. 9. Cosine between redshift zero halo angular momentum, J, and the helical templates, JL;R defined from the initial density field,
smoothed on some scale R, with μL;R ≡ Ĵ · ĴL;R. Left panel: parity-conserving contribution, μL þ μR, binned in mass and averaged over
500 simulations. We find a strong correlation, matching the results of [29]; this is not seen to depend on pNL. Right panel: parity-
violating contribution, μL − μR, binned as before. We find no discernible signal in this case, regardless of pNL, even though it is not
nulled by symmetry arguments.
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to some extent, already been solved in [28,29,36,37], for
example using reconstructions of the local density field,
making the underlying statistic a potentially promising
observable for future study.
Finally, we make publicly available our simulation suite,

QUIJOTE-ODD, together with different data products such as
halo catalogs and power spectra, to allow future exploration
of simulations. A description of the data products and how
to access them is available at https://quijote-simulations
.readthedocs.io/en/latest/odd.html. We envisage that a
number of other tests can be explored, for example,
machine learning determinations of the subtle signatures
of inflationary parity violation. Another intriguing pos-
sibility is that our primordial injection could impact galaxy
intrinsic alignments, due to the correlation between galaxy
shapes and local properties such as angular momenta.
Though one would require hydrodynamic simulations for
a full study, this could potentially lead to unexplored
signals in the EB cross-correlation of galaxy shear.
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APPENDIX A: TRISPECTRUM ESTIMATORS

Following the discussion in Sec. II, a general trispectrum
of some real field δ can be written as

hδðk1Þ � � �δðk4Þi¼ ð2πÞ3δDðk1þk2þk3þk4Þ½τþðk1;k2;k3;k4;K;K0Þþ iðk1 ·k2×k3Þτ−ðk1;k2;k3;k4;K;K0Þ�; ðA1Þ

where τ� give parity-even and parity-odd components, and
we have factorized out the scalar triple product in the latter.
Each component depends on four side lengths (ki) and two
diagonals (K ≡ jk1 þ k2j and K0 ≡ jk1 þ k3j); in practice,
it is necessary to parametrize by only one diagonal, else the
trispectrum estimators are not separable. Below, we con-
sider how to estimate each component, and, in Appendix B,

relate this to theoretical trispectra. The parity-even estima-
tor is additionally described in [55].

1. Parity-even estimator

Considering bins qi in ki andQ inK, a general estimator
for the parity-even component is given by

T̂þðq1; q2; q3; q4; QÞ ∝
Z
ki ∈ qi;K∈Q

�Y4
i¼1

δðkiÞ
�
ð2πÞ3δDðk1 þ k2 −KÞð2πÞ3δDðk3 þ k4 þKÞ; ðA2Þ

where we explicitly integrate over the internal momentum K and drop a normalization factor. This can be efficiently
implemented by rewriting the Dirac deltas as exponential integrals, yielding

T̂þðq1; q2; q3; q4; QÞ ∝
Z
K∈Q

�Z
dx

�Z
k1 ∈ q1

δðk1Þe−ik1·x

��Z
k2 ∈ q2

δðk2Þe−ik2·x

�
eiK·x

�
×

�Z
dy

�Z
k3 ∈ q3

δðk3Þe−ik3·y

��Z
k4 ∈ q4

δðk4Þe−ik4·y

�
e−iK·y

�
: ðA3Þ

Practical computation is achieved via repeated Fourier transforms, first computing theNk transforms of δ (forNk bins), then
assembling the NkðNk þ 1Þ=2 pairs (from the x, y integrals), and lastly summing over K for all Q bins of interest. The
typical normalization includes the same functions but with the δðkÞ fields replaced with unity, such that the normalization
counts the total number of tetrahedra in a given bin.
The above estimator has the following symmetries:

T̂þðq1; q2; q3; q4; QÞ ¼ T̂þðq2; q1; q3; q4; QÞ ¼ T̂þðq3; q4; q1; q2; QÞ; ðA4Þ

in addition, modes with T̂þðq1; q3; q2; q4; QÞ are partially covariant with T̂þðq1; q2; q3; q4; QÞ, due to the labeling
degeneracy of the internal (diagonal) momentum. Via the triangle conditions on ki;K, nontrivial components are
specified by
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q1 ≤ q2; q3 ≤ q4; q1 ≤ q3; jq1 − q2j ≤ Q ≤ q1 þ q2; jq3 − q4j ≤ Q ≤ q3 þ q4: ðA5Þ

2. Parity-odd estimator

To estimate the parity-odd trispectrum components, we use a similar scheme, but insert a factor of k1 · k2 × k3 to pick
out only the imaginary component:

T̂−ðq1; q2; q3; q4; QÞ ∝
Z
ki ∈ qi;K∈Q

�Y4
i¼1

δðkiÞ
�
ð2πÞ3δD ðk1 þ k2 −KÞð2πÞ3δDðk3 þ k4 þKÞ ðk1 · k2 × k3Þ: ðA6Þ

Note that parity-even contributions are nulled in this estimator due to k → −k labeling symmetries. To form a practical
estimator, the triple product can be rewritten as a Cartesian sum, leading to

T̂−ðq1; q2; q3; q4; QÞ ∝ ϵijk

Z
K∈Q

�Z
dx

�Z
k1 ∈ q1

ki1δðk1Þe−ik1·x

��Z
k2 ∈ q2

kj2δðk2Þe−ik2·x

�
eiK·x

�
×

�Z
dy

�Z
k3 ∈ q3

kk3δðk3Þe−ik3·y

��Z
k4 ∈ q4

δðk4Þe−ik4·y

�
e−iK·y

�
: ðA7Þ

This is computed similarly to before, but now requires computing four Fourier transforms per k bin (for i ¼ 1, 2, 3 and
without k). The normalization factor is defined as for the even case, without the triple product, though the particular choice
is, to an extent, arbitrary.
An alternative (but equivalent) approach to compute the estimator is to expand the triple product in spherical harmonics,

via the standard relation

k1 · k2 × k3 ¼ −
ffiffiffi
6

p
i

�
4π

3

�
3=2

k1k2k3
X

m1m2m3

�
1 1 1

m1 m2 m3

�
Y1m1

ðk̂1ÞY1m2
ðk̂2ÞY1m3

ðk̂3Þ: ðA8Þ

This separates the ki dependence, allowing for the estimator to be written as

T̂−ðq1; q2; q3; q4; QÞ ∝ −
ffiffiffi
6

p
i

�
4π

3

�
3=2 X

m1m2m3

�
1 1 1

m1 m2 m3

�

×
Z
K∈Q

�Z
dx

�Z
k1 ∈ q1

k1Y1m1
ðk̂1Þδðk1Þe−ik1·x

��Z
k2 ∈ q2

k2Y1m2
ðk̂2Þδðk2Þe−ik2·x

�
eiK·x

�
×

�Z
dy

�Z
k3 ∈ q3

k3Y1m3
ðk̂3Þδðk3Þe−ik3·y

��Z
k4 ∈ q4

δðk4Þe−ik4·y

�
e−iK·y

�
; ðA9Þ

formi ∈ f−1; 0; 1g andm1 þm2 þm3 ¼ 0. This again requires four FFTs per k bin, though only a total of seven terms need
to be combined together.
The above estimator has various symmetry properties:

T̂−ðq1; q2; q3; q4; QÞ ¼ −T̂−ðq2; q1; q3; q4; QÞ ¼ T̂−ðq3; q4; q1; q2; QÞ ðA10Þ

(noting the negative sign under q1 ↔ q2 or q3 ↔ q4 interchange); as before, modes with T̂−ðq1; q3; q2; q4; QÞ are partially
covariant with T̂−ðq1; q2; q3; q4; QÞ, due to the labeling degeneracy of the internal (diagonal) momentum. Finally we note
that, if q1 ¼ q2 or q3 ¼ q4, the trispectrum must vanish, based on the above symmetries. This modifies the condition for
nontrivial bins to

q1 < q2; q3 < q4; q1 ≤ q3; jq1 − q2j ≤ Q ≤ q1 þ q2; jq3 − q4j ≤ Q ≤ q3 þ q4; ðA11Þ

and one can additionally impose q2 ≤ q4 if q1 ¼ q3.
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APPENDIX B: THEORETICAL PRIMORDIAL TRISPECTRA

In the below, we consider how to relate the above trispectrum estimators to theoretical models, i.e. to compute the
expectation of T� for a given model for hδðk1Þ � � � δðk4Þi, specified by τ�, as in (A1).

1. Parity-even trispectrum

In expectation, the parity-even trispectrum estimator yields

E½T̂þðq1; q2; q3; q4; QÞ� ∝
Z
ki ∈ qi;K∈Q

τþðk1; k2; k3; k4; K; K0Þð2πÞ3δDðk1 þ k2 −KÞ ð2πÞ3δDðk3 þ k4 þKÞ: ðB1Þ

Assuming τþ to be independent of the second diagonal K0 ≡ jk1 þ k3j, this can be simplified by rewriting the Dirac deltas
as exponentials and using the result

R
k̂ e

−ik·x ¼ j0ðkxÞ:

E½T̂þðq1; q2; q3; q4; QÞ� ∝
Z
ki ∈ qi;K ∈Q

τþðk1; k2; k3; k4; KÞ

×

�
4π

Z
x2dxj0ðk1xÞj0ðk2xÞj0ðKxÞ

��
4π

Z
y2dyj0ðk3yÞj0ðk4yÞj0ðKyÞ

�
: ðB2Þ

Further noting that

4π

Z
x2dxj0ðaxÞj0ðbxÞj0ðcxÞ ¼

π2

abc
Δða; b; cÞ; ðB3Þ

where Δ ¼ 1 if fa; b; cg obey triangle conditions and zero otherwise, this can be written as

E½T̂þðq1; q2; q3; q4; QÞ� ∝
Z
ki ∈ qi;K∈Q

π4

ðk1k2k3k4ÞK2
τþðk1; k2; k3; k4; KÞΔðk1; k2; KÞΔðk3; k4; KÞ; ðB4Þ

where the factors ofΔ can be dropped if all modes in the bin obey triangle conditions. The normalization is identical, except
without the factor of τþ.
In the thin-bin limit, we can drop the ki and K integrals, giving a normalization of q1q2q3q4ðδkÞ5=ð32π6Þ, and thus the

full trispectrum

E½T̂þðq1; q2; q3; q4; QÞ� ≈ τþðq1; q2; q3; q4; QÞ: ðB5Þ

In the limit of a K0-independent τþ, the parity-even trispectrum is thus an unbiased estimator of τþ in the thin-bin limit.

2. Parity-odd trispectrum

A similar procedure can be performed for the parity-odd trispectrum estimator, starting from the general form

E½T̂−ðq1; q2; q3; q4; QÞ�≡ i
Z
ki ∈ qi;K∈Q

ðk1 · k2 × k3Þ2τ−ðk1; k2; k3; k4; K; K0Þ

× ð2πÞ3δDðk1 þ k2 −KÞð2πÞ3δDðk3 þ k4 þKÞ: ðB6Þ

To simplify this, we first rewrite the squared triple product in spherical harmonics, starting from (A8)

ðk̂1 · k̂2 × k̂3Þ2 ¼ −6ð4πÞ3=2
X
LiMi

YL1M1
ðk̂1ÞYL2M2

ðk̂2ÞYL3M3
ðk̂3Þ

�
L1 L2 L3

M1 M2 M3

�

×

�
1 1 L1

0 0 0

��
1 1 L2

0 0 0

��
1 1 L3

0 0 0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L1 þ 1Þð2L2 þ 1Þð2L3 þ 1Þ

p 8><>:
L1 L2 L3

1 1 1

1 1 1

9>=>;; ðB7Þ

COULTON, PHILCOX, and VILLAESCUSA-NAVARRO PHYS. REV. D 109, 023531 (2024)

023531-16



where Li ∈ f0; 2g and we have used the product identity of spherical harmonics as well as the definition of the
Wigner 9j symbol. Next, we rewrite the Dirac deltas as exponentials and perform the k̂i integrals viaR
k̂ e

�ik·xYLMðk̂Þ ¼ i�LjLðkxÞYLMðx̂Þ. Assuming the trispectrum to be K0 independent, as before, this yields

E½T̂−ðq1;q2;q3;q4;QÞ�∝−6ið4πÞ1=2
Z
ki∈qi;K∈Q

k21k
2
2k

2
3τ−ðk1;k2;k3;k4;KÞ

×
X
LiMi

�
4π

Z
x2dxjL1

ðk1xÞjL2
ðk2xÞjL3

ðKxÞ
�
i−L1−L2−L3

�
L1 L2 L3

M1 M2 M3

�

×

�Z
dx̂YL1M1

ðx̂ÞYL2M2
ðx̂ÞYL3M3

ðx̂Þ
��

4π

Z
y2dyjL3

ðk3yÞj0ðk4yÞjL3
ðKyÞ

�

×

�
1 1 L1

0 0 0

��
1 1 L2

0 0 0

��
1 1 L3

0 0 0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L1þ1Þð2L2þ1Þð2L3þ1Þ

p 8><>:
L1 L2 L3

1 1 1

1 1 1

9>=>;; ðB8Þ

where we have integrated over ŷ then K̂. All ki and K integrals are performed with respect to the Lebesgue measure
k2dk=ð2π2Þ. Finally, we note that the x̂ integral is a Gaunt factor, and use 3j completeness to yield the result

E½T̂−ðq1;q2;q3;q4;QÞ�∝−6i
Z
ki∈qi;K∈Q

k21k
2
2k

2
3τ−ðk1;k2; k3; k4;KÞ

X
L1L2L3

ð2L1þ 1Þð2L2þ 1Þð2L3þ 1Þ

× i−L1−L2−L3

�
L1 L2 L3

0 0 0

��
1 1 L1

0 0 0

��
1 1 L2

0 0 0

��
1 1 L3

0 0 0

�8><>:
L1 L2 L3

1 1 1

1 1 1

9>=>; ðB9Þ

×

�
4π

Z
x2dxjL1

ðk1xÞjL2
ðk2xÞjL3

ðKxÞ
��

4π

Z
y2dyjL3

ðk3yÞj0ðk4yÞjL3
ðKyÞ

�
: ðB10Þ

This is just a collection of coupled one-dimensional integrals, and the full spectrum can be evaluated with two-dimensional
quadrature. We note that the x and y integrals are analytic, taking the form [56]

4π

Z
x2dxjl1ðaxÞjl2ðbxÞjl3ðcxÞ ¼

π2

abc
Δða; b; cÞ

�
l1 l2 l3

0 0 0

�−1
il1þl2−l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l3 þ 1

p �
a
c

�
l3

×
Xl3
L¼0

�
2l3

2L

�
1=2�b

a

�
L Xl2þL

l0¼jl2−Lj
ð2l0 þ 1Þ

�
l1 l3 − L l0

0 0 0

��
l2 L l0

0 0 0

�

×

�
l1 l2 l3

L l3 − L l0

�
Ll0

�
a2 þ b2 − c2

2ab

�
; ðB11Þ

where Ll is a Legendre polynomial, and Δ ensures triangle conditions, as before. This involves both 3j and 6j Wigner
symbols, and here requires only li ∈ f0; 2g. The y integrals always involve l3 ¼ 0, yielding

4π

Z
y2dyjlðKyÞjlðk3yÞj0ðk4yÞ ¼

π2

k3k4K
Δðk3; k4; KÞLl

�
K2 þ k23 − k24

2Kk3

�
; ðB12Þ

where l∈ f0; 2g is required. We note that this makes the separability in fk3; k4; Kg less trivial (though still sum separable,
since the Legendre functions are polynomial).
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In the thin-bin limit, we can write

E½T̂−ðq1; q2; q3; q4; QÞ� ≈ −
6

π2
iq31q

3
2q

2
3Qτ−ðq1; q2; q3; q4; QÞ

X
L1L2L3

i−L1−L2−L3ð2L1 þ 1Þð2L2 þ 1Þð2L3 þ 1Þ

×

�
L1 L2 L3

0 0 0

��
1 1 L1

0 0 0

��
1 1 L2

0 0 0

��
1 1 L3

0 0 0

�8><>:
L1 L2 L3

1 1 1

1 1 1

9>=>;
×

�
4π

Z
x2dxjL1

ðq1xÞjL2
ðq2xÞjL3

ðQxÞ
�
LL3

�
Q2 þ q23 − q24

2Qq3

�
; ðB13Þ

assuming triangle conditions to be satisfied. This is much more complex than the parity-even equivalent (B5), due to the
ðk1 · k2 × k3Þ2 factor. If this was additionally included in the normalization, the limit would be simply
iτ−ðq1; q2; q3; q4; QÞ; however, this is likely to be unstable for close-to-coplanar tetrahedral configurations, whence ðk1 ·
k2 × k3Þ2 vanishes.
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