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We use the full-mission Planck PR4 data to construct maps of the thermal Sunyaev–Zel’dovich effect
(Compton-y parameter) in our Universe. To do so, we implement a custom needlet internal linear
combination (NILC) pipeline in a Python package, PYILC, which we make publicly available. We publicly
release our Compton-y maps, which we construct using various constrained ILC (“deprojection”) options
in order to minimize contamination from the cosmic infrared background (CIB) in the reconstructed signal.
In particular, we use a moment-based deprojection that minimizes sensitivity to the assumed frequency
dependence of the CIB. Our code PYILC performs needlet or harmonic ILC on mm-wave sky maps in a
flexible manner, with options to deproject various components on all or some scales. We validate our maps
and compare them to the official Planck 2015 y map, finding that we obtain consistent results on large
scales and 10–20% lower noise on small scales. We expect that these maps will be useful for many auto-
and cross-correlation analyses; in a companion paper, we use them to measure the tSZ—CMB lensing
cross-correlation. We anticipate that PYILC will be useful both for data analysis and for pipeline validation
on simulations to understand the propagation of foreground components through a full NILC pipeline.
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I. INTRODUCTION

Observations of the millimeter-wave sky contain contri-
butions frommany sources, both Galactic and extragalactic.
The signals of cosmological interest include, of course, the
primary cosmic microwave background (CMB) [1,2]—the
photons that have been free streaming since recombination
without scattering—along with the Sunyaev–Zel’dovich
(SZ) effect [3,4], which is sourced by the scattering of
the CMB photons from free electrons in the late Universe,
and the cosmic infrared background (CIB) [5–7], which is
the thermal radiation of dust grains in star-forming galaxies
that are heated by starlight. As we can extract very different
information from the different signals, it is useful to be able
to separate them. It is common to do so by observing the sky
at multiple frequencies and separating the signals based on
their differing frequency behavior. In particular, the CMB
intensity behaves as a perfect blackbody, with a temper-
ature of 2.726 K [8–10]. The thermal SZ (tSZ) effect—the
scattering of CMBphotons by high-temperature electrons—
induces a well-understood distortion in this spectrum,
allowing the tSZ anisotropies to be separated cleanly from
the primary CMB.
Many component separation algorithms exist for per-

forming such separation (see, e.g., [11–18]). In particular,

we focus on the internal linear combination (ILC), a
method that creates linear combinations of maps using
the well-understood frequency behavior of a signal of
interest, such as the blackbody CMB or the tSZ effect,
and which has been applied to CMB data for decades [11].
Importantly, this is a “blind” component separation tech-
nique, in that the frequency behavior of the contaminants
does not need to be known a priori. This is necessary, as the
CIB—while observed to generally behave as a modified
blackbody, with its emission dominant (with respect to the
CMB) at higher frequencies (≳353 GHz, although on small
scales the CIB anisotropies are dominant at lower frequen-
cies than this)—does not have a well-understood spectral
energy distribution (SED), or frequency dependence, that
can be derived from first principles. However, when the
SED of a contaminant is known, this information can be
used in the ILC to create a map that is completely
insensitive to this contaminant [19,20] (or partially less
sensitive than the unconstrained estimate [21]), although at
the expense of higher variance in the overall reconstruction.
This “deprojection” of foreground components, known as a
“constrained” ILC, is useful for example in the case of
cross-correlations, when one is cross-correlating a compo-
nent of interest with another signal that is highly correlated
with a contaminant.
In this work, we use a needlet ILC (NILC) algorithm to

construct maps of the tSZ effect using Planck PR4
(NPIPE) data [22]; we note that several y maps have
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previously been made with Planck data [23–26]. We
also release maps in which we have deprojected the
CIB in various ways, both with a standard CIB depro-
jection using an estimate of the CIB SED and in a
more theory-independent method where we deproject
the first moments of the CIB SED, following the methods
of [27]; in a companion paper [28], we use these maps to
measure the cross-correlation of the tSZ signal with CMB
lensing convergence (κ) in Planck PR4 data using a
publicly-available Planck κ reconstruction [29].
We validate our Compton-y maps and compare them

to that from the 2015 Planck release [24]. While this
work was in the final stages of preparation, a similar
analysis performing NILC on Planck PR4 data appeared
[26]. We defer a comparison to this map to future
work.
A central purpose of this paper is also to release a user-

friendly Python package PYILC, a flexible code that can
perform needlet and harmonic ILC on curved-sky maps
for various specifications of needlet domains. This is
(to our knowledge) the first publicly available needlet
ILC code.
This paper is structured as follows. In Sec. II, we

describe the datasets we use to construct the ILC
maps. Section III presents a pedagogical overview of
the NILC algorithm and the “ILC bias.” In Sec. IV, we
describe our pipeline to construct a y map from the data
using the NILC approach, including our exact analysis
settings. Section V discusses the various CIB deprojec-
tion options that we implement. In Sec. VI, we vali-
date our y maps, compute their power spectra, compare
them to that of the official Planck release, and quan-
tify the amount of CIB contamination in the various
deprojections. We discuss our results and conclude in
Sec. VII.

II. DATA

We use the single-frequency full-mission maps from the
Planck NPIPE data release (PR4) [22] in our analysis.
These maps are provided in μK (CMB thermodynamic
temperature units) at all frequencies, so we do not need to
convert between Jy=sr and μK (as might have been
necessary for previous releases of the Planck single-
frequency maps, some of which provided the highest-
frequency maps in Jy=sr). Note that the kinematic solar
dipole, which is sourced by the Doppler boosting of the
CMB monopole due to our proper motion with respect to
the CMB rest frame (in particular, our motion through the
Galaxy), is not subtracted from these maps. As this is much
brighter than the intrinsic CMB fluctuations (with an
amplitude of ≈3367 μK [22], cf. the characteristic CMB
fluctuation amplitude of ∼40 μK), we subtract it from the
maps before using them. To ensure we subtract the same
dipole from each map, we use the solar dipole estimation
from the Commander component-separation analysis of

the NPIPE maps.1 We also subtract the mean of each map
before further analysis.
We use the 30, 44, 70, 100, 143, 217, 353, 545, and

857 GHz single-frequency maps. The observed sky signal
in these maps is convolved with the Planck instrument
beam at the corresponding frequency. We approximate
these beams as being Gaussian, with full width at half
maximum values (FWHMs) given in Table I [30]. To
characterize fully the frequency response of each map, we
use the passbands given in Refs. [31,32].
We also use the half-ring split maps from the NPIPE

release. These maps are subset maps of the full-mission
maps described above, each with the same passbands,
beams, etc., as the full-mission maps described above, but
with independent noise realizations; as such, each half-ring
map is noisier than the full-mission map, but they are useful
for power spectrum analysis as their cross-power spectrum
does not contain bias due to correlations in the instrumental
noise. With these maps, we build two independent split
maps of the Compton-y signal.
We use a needlet ILC algorithm to construct a full-sky

tSZ map from these frequency maps, with various choices
for contaminant deprojection. We discuss the specific
details of our needlet ILC pipeline in detail in Sec. IV.

III. THE NEEDLET ILC ALGORITHM

In this section, we discuss the ILC and NILC in general,
beginning in Part III Awith a general definition of ILC and
describing the NILC in Part III B. We discuss the con-
strained ILC, which can be used to deproject specific

TABLE I. Characterizing features of the Planck experiment, in
particular, the beam FWHM and approximate white noise levels
for each frequency channel. We quote the noise both in μKarcmin
and in μK2; the latter is calculated from the former by converting
to μK radians [i.e., multiplying by π=ð180 × 60Þ] and then
squaring. This information comes from Table 4 of [30]. Note
that we have applied a Jy=sr-to-μK conversion factor to the values
quoted for 545 and 857 GHz, as we analyze the maps in μK.

Frequency
(GHz)

Beam FWHM
(arcmin)

Noise
(μKarcmin)

Noise power spectrum
amplitude (μK2)

30 32.29 150 0.00190
44 27.94 162 0.00222
70 13.08 210 0.00373
100 9.66 77.4 0.000507
143 7.22 33 9.21 × 10−5

217 4.90 46.8 0.000185
353 4.92 154 0.00200
545 4.67 806.7 0.0551
857 4.22 19115 30.9

1This is available on NERSC at $CFS/cmb/data/planck
2020/all_data/commander_dipole_templates/
planck/dipole_CMB_n4096_K.fits.
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foreground components with known frequency depend-
ence, in Part III C. Finally in Sec. III D, we discuss the ILC
bias. Note that in this section, we remain very general,
specializing to the specific details of our NILC pipeline
in Sec. IV.
Throughout, we use lowercase Latin indices i; j; k; l; m;

n;… to label components of vectors or matrices in
frequency space; subscript l; m indices refer to discrete
harmonic-space multipole coefficients (while the symbolm
may seem overloaded, it will always be clear from context
to what we refer). Greek indices α; β;… refer to compo-
nents in the space of sky components that we preserve or
deproject.

A. ILC

The internal linear combination (ILC) (see, e.g., [11] for
an early application reconstructing a CMB map using the
WMAP data) relies on knowledge of the frequency depend-
ence of a signal to isolate it by taking a linear combination
of multifrequency measurements. In particular, assuming
the temperature anisotropy T in frequency channel i in
direction n̂ is given by

Tiðn̂Þ ¼ aisðn̂Þ þ niðn̂Þ; ð1Þ

where sðn̂Þ is the signal of interest, ai is its known
frequency dependence or spectral energy distribution
(SED), and niðn̂Þ is all other sources of intensity, which
includes atmospheric or instrumental noise as well as
cosmological or Galactic foregrounds (or any other signal
that the detector measures). Any linear combination of the
temperature maps

s̃ðn̂Þ ¼
X
i

wiTiðn̂Þ ð2Þ

that obeys the condition

X
i

wiai ¼ 1 ð3Þ

is unbiased to the signal of interest, in that it can be
written as

s̃ðn̂Þ ¼ sðn̂Þ þ ñðn̂Þ; ð4Þ

where ñðn̂Þ is uncorrelated with the signal sðn̂Þ (provided
the noise and the foregrounds are uncorrelated with the
signal—note that this assumption is in fact broken for the
case of the tSZ effect, which is correlated with the cosmic
infrared background and other LSS-induced foregrounds).
The weights wi in Eq. (2) that result in a minimum-variance
estimate of the signal are

w ¼ ðaTC−1aÞ−1aTC−1; ð5Þ

where C is the covariance matrix of the data. These weights
can be found straightforwardly by a minimization with the
method of Lagrange multipliers to preserve the constraint
(e.g., [33]). In explicit index notation, this can be written

wi ¼
ajðC−1Þij
akðC−1Þklal

; ð6Þ

where, here and to follow, the Einstein summation con-
vention is assumed; i.e., repeated indices are summed over.
In the ILC approach, the frequency-frequency covari-

ance matrix is estimated directly from the data, and so the
only “external” knowledge that is needed is the knowledge
of the signal’s frequency dependence ai (hence, the
nomenclature “internal”). The covariance can be measured
and the weights applied in various bases: for example, in
real space, by measuring Cij over the entire maps (or
subregions of the maps) and calculating one weight for
each frequency map or in harmonic space, by calculating an
l-dependent covariance matrix Cijl and applying l-depen-
dent weights to the harmonic coefficients of the frequency
maps in separate multipole bins. The former is ideal if there
is no scale dependence to the noise properties, e.g., if the
noise and the signal all have power spectra with similar l
dependence. If the foregrounds have different l depend-
ence to the signal or if different foregrounds are relevant at
different scales in the different frequency channels or if the
instrumental noise becomes dominant at different values of
l, then a harmonic ILC is more appropriate. We describe
briefly each of these domains below.

1. Real-space ILC

In a real-space domain Dreal, the temperature in fre-
quency band i on the sphere TiðΩÞ is defined on a discrete
basis of pixels pðn̂Þ:

TiðΩÞ ¼
X
n̂

Tiðn̂Þpðn̂Þ: ð7Þ

In general, the pixelized coefficients Tiðn̂Þ can be found by

Tiðn̂Þ ¼
Z

dΩTiðΩÞpðn̂Þ; ð8Þ

in the most simple version, pðn̂Þ is a step function with
unit value within the area defined by the pixel and zero
elsewhere.
In this domain, the frequency-space covariance matrix C

is calculated according to

Cij ¼ hðTiðn̂Þ − hTiiÞðTjðn̂Þ − hTjiÞi ð9Þ

¼ 1

Npix-1

X
n̂∈Dreal

ðTiðn̂Þ − hTiiÞðTjðn̂Þ − hTjiÞ; ð10Þ
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where

hTii≡ 1

Npix

X
n̂∈Dreal

Tiðn̂Þ ð11Þ

denotes the mean (over Dreal) of Tiðn̂Þ, and Npix ¼P
n̂∈Dreal pðn̂Þ denotes the number of pixels in the domain

Dreal.
If Dreal covers the entire sphere (or the entire area of the

unmasked map), the ILC weights then only depend on the
frequency channel i and are applied uniformly to the entire
map. Alternatively, Dreal can be a subset of the map,
allowing for spatial dependence of the weights; this may
be appropriate for statistically anisotropic fields, such as
when dealing with the foreground emission from our own
galaxy, which is highly statistically anisotropic. However, it
should be noted that, while the true temperature is
preserved within the domains, correlations on scales larger
than each domain are lost in such an application.

2. Harmonic-space ILC

The basis of the harmonic domain is determined by the
spherical harmonic functions Ylmðn̂Þ, which are the sol-
utions to the Laplace equation on the sphere:

Tðn̂Þ ¼
X
lm

TlmYlmðn̂Þ: ð12Þ

The spherical harmonic coefficients Tlm are related to the
pixel coefficients Tðn̂Þ according to

Tlm ¼
X
n̂

Tðn̂ÞY�
lmðn̂Þ; ð13Þ

where Y�
lm denotes the complex conjugate of Ylm, and the

inverse transformation is

Tðn̂Þ ¼
X
lm

TlmYlmðn̂Þ: ð14Þ

In this domain, we can calculate the covariance matrix in
an l-dependent manner. Defining the measured power
spectrum Ĉij

l according to

Ĉij
l ¼ hTi

lmT
j
lmi ¼

X
m

Ti
lmT

j�
lm

2lþ 1
; ð15Þ

the covariance matrix at scale l, CijðlÞ, is given by

CijðlÞ ¼
2lþ 1

4π
Ĉij
l : ð16Þ

In practice, it can be useful to calculate C in a domain
Dharmðl0Þ defined by a band of multipoles, for example,

centered at some value l0 with width Δl. In this case,
Cijðl0Þ is given by

Cijðl0Þ ¼
Xl¼l0þΔl=2

l¼l0−Δl=2

2lþ 1

4π
Ĉij
l : ð17Þ

The l-dependent weights, calculated from Eq. (5), can
then be applied to the spherical harmonic coefficients Ti

lm
with l∈Dharmðl0Þ, i.e., with l0−Δl=2<l<l0þΔl=2.
Note that it is not necessary to define disjoint bands (they
can overlap, if desired); we could alternatively define a
separate such bin at every l, with Cijðl0Þ calculated using
information from the surrounding multipoles.2

Multipole-dependent weights are appropriate when there
is different scale-dependent behavior of the foregrounds
and instrumental noise, including foreground SEDs that
depend on l, to allow for the variance to be adaptively
minimized on all scales. However, the harmonic ILC, while
optimal for a statistically isotropic field, is not equipped to
deal with statistical anisotropy, such as that from Galactic
foreground components.

B. Needlet ILC (NILC)

To combine the advantages of both the real-space and
harmonic-space ILC approaches, the ILC domain can be
defined on a needlet frame [15]. Needlets [34] are a
construction of a spherical wavelet frame (a frame is
similar to an over-complete basis), which allows for
simultaneous localization in real and harmonic space.
The frame is defined first by a set of harmonic-space
window functions (indexed by capital Latin letters I; J;…)
hIl, which obey

X
I

ðhIlÞ2 ¼ 1 ð18Þ

at each l. Each I specifies a different “needlet scale.” The
needlets are further defined by real-space domains Dreal;I

n̂

associated with each needlet scale, where Dreal;I
n̂ can be

defined independently at each pixel n̂ (and Dreal;I
n̂ are not

disjoint over the pixels).
In practice, the needlet ILC consists of the follow-

ing steps:
(1) For each needlet scale I, each frequency map i is

filtered in harmonic space according to the window
function hIl:

TI
iðn̂Þ ¼

X
lm

hIlT
i
lmYlmðn̂Þ: ð19Þ

2However, currently our harmonic ILC implementation in
PYILC only uses disjoint l bands.
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The maps TI
iðn̂Þ are referred to as the “needlet

coefficients.” Equation (19) amounts to taking a
spherical harmonic transformation of each Tiðn̂Þ,
filtering the coefficients by multiplying them by hIl,
and taking the inverse spherical harmonic trans-
formation of the result.

(2) For each pixel n̂ at each needlet scale I, the local
frequency-frequency covariance matrix CijðI; n̂Þ is
calculated on a domainDreal;I

n̂ . This results in a set of
NI matrices of size Nfreq × Nfreq, at each pixel n̂:

CIijðn̂Þ ¼
1

Npix − 1

X
n̂0 ∈Dreal;I

n̂

ðTI
iðn̂0Þ − hTI

iiÞ

× ðTI
jðn̂0Þ − hTI

jiÞ; ð20Þ

where Npix is the number of pixels in Dreal;I
n̂ , and

hTI
ii is the mean of the temperature on Dreal;I

n̂ :

hTI
ii≡ 1

Npix

X
n̂0 ∈Dreal;I

n̂

TI
iðn̂0Þ: ð21Þ

(3) The needlet ILC weights wI
iðn̂Þ are then calculated at

each needlet scale I according to Eq. (5). Note that
the inverse of the covariance matrix CIijðn̂Þ is the
inverse in the frequency basis, and the inversion is
performed separately at each pixel n̂. These weights
are then applied to the needlet coefficients to build
the ILC estimate at each needlet scale:

TI
ILCðn̂Þ ¼

X
i

wI
iðn̂ÞTI

iðn̂Þ: ð22Þ

(4) The spherical harmonic coefficients of each ILC
estimate are then computed and filtered (again) by
the needlet window functions and then transformed
back to pixel space:

zIðn̂Þ ¼
X
lm

hIlT
I
ILC;lmYlmðn̂Þ: ð23Þ

These final maps are then added to arrive at the final
NILC estimate:

TNILCðn̂Þ ¼
X
I

zIðn̂Þ: ð24Þ

Note that the condition in Eq. (18) guarantees that
signal power is preserved in this series of operations.

C. Deprojection of foregrounds: Constrained ILC

The weights in Eq. (5) are chosen to minimize the
variance in the recovered map. However, sometimes certain
foregrounds can significantly bias a signal of interest, and

a slight increase in variance is an acceptable price to pay
for a significant reduction of this bias. This can be
particularly true for cross-correlation measurements using
ILC Compton-y maps, as some foregrounds are more
highly correlated with the field with which we are cross-
correlating than the signal we are trying to isolate. For
example, the CIB is a foreground for the tSZ effect and is
more highly correlated with CMB lensing than the tSZ
signal is [20]. In such cases, one may choose to build a
“constrained” ILC map, as described in the following.
If the SED of a foreground signal is known, we can

“deproject” it from our final map. In particular, let us now
say that the signal in the sky is

Tiðn̂Þ ¼ aisðn̂Þ þ bifðn̂Þ þ n0iðn̂Þ; ð25Þ

where fðn̂Þ is the foreground we wish to remove and bi is
its SED. If the weights in the linear combination obey the
condition

X
i

biwi ¼ 0; ð26Þ

the resulting signal will not contain fðn̂Þ. The weights that
obey both Eqs. (3) and (26) and result in a minimum-
variance estimate of the signal are

w ¼ eT ðATC−1AÞ−1ATC−1; ð27Þ

where the vector eT ¼ ½10�, and the matrix A ¼ ½ab�.
Written explicitly in terms of components, this is

wi ¼
ðbkðC−1ÞklblÞ−1ðC−1Þijaj − ðakðC−1ÞklblÞ−1ðC−1Þijbj

ðakðC−1ÞklalÞðbmðC−1ÞmnbnÞ − ðakðC−1ÞklblÞ2
:

ð28Þ

1. Multiply constrained ILC

This can be extended to the case where multiple
components are simultaneously deprojected (see, e.g.,
[21,35,36]). Let us consider a case where we deproject
Ndeproj foregrounds, such that there are 1þ Ndeproj con-
straints the ILC must obey: the signal-preserving ILC
constraint for the signal of interest in Eq. (3), along with
the nulling condition in Eq. (26) for the SEDs of each of the
Ndeproj components we wish to deproject. Note that there is
a maximum number of foregrounds we can deproject,
corresponding to Ndeproj ¼ Nfreq − 1, as an attempt to add
further constraints would overconstrain the system of
equations.
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In this case, the weights are given by [36]

wi ¼ ðC−1Þij
1

detQ
ðdetðQ1;2;…;Ndeproj;1;2;…;Ndeproj

ÞAj0

− detðQ0;2;…;Ndeproj;1;2;…;Ndeproj
ÞAj1

þ detðQ0;1;3;…;Ndeproj;1;2;…;Ndeproj
ÞAj2

− detðQ0;1;2;4;…;Ndeproj;1;2;…;Ndeproj
ÞAj3 þ � � �Þ; ð29Þ

where Q is an ðNdeproj þ 1Þ × ðNdeproj þ 1Þ-dimensional
symmetric matrix with components

Qαβ ≡ ðC−1ÞijAiαAjβ; ð30Þ

and where Aiα is an Nfreq × ðNdeproj þ 1Þ-dimensional
matrix with components given by the SEDs of the signals
we wish to preserve or deproject, with the α ¼ 0 column
that of the SED we are preserving and the α ¼ 1;…
components given by the SEDs we are deprojecting (note
that the Greek indices α; β;… refer to these Ndeproj þ 1

dimensions). The matrix Q…;1;2;…;Ndeproj
refers to the

Ndeproj × Ndeproj-dimensional submatrix of Q, which is
formed by removing the γ row and the 0th column, where
γ is the index that is dropped from the first component list.

D. The ILC bias

The ILC bias is a well-known issue in the ILC algorithm
[15], which is caused by the fact that the covariance matrix
is estimated directly from the maps, using only a finite
number of modes. Chance fluctuations lead to incorrect
estimates of the covariance and can lead to correlations
between the weights and the signal of interest. This can be
minimized by measuring the covariance over a large
enough domain with enough modes that the covariance
matrix estimation is immune to chance fluctuations.
We can define the ILC bias as follows. Recall the signal

estimate is

s̃ ¼
X
i

wiTi ¼ sþ ñ; ð31Þ

where ñ is given by

ñ ¼
X
i

wini: ð32Þ

The variance of s̃ is

hs̃2i ¼ hðsþ ñÞ2i ¼ hs2i þ 2hsñi þ hñ2i: ð33Þ

The contribution from hñ2i adds “noise bias” to the
estimation of a power spectrum from the map and depends
(to first order) on the foregrounds and the noise properties
of the maps. By “ILC bias,” we refer explicitly to the term

sourced by the correlation of the signal and the ñ term:
hsñi. For weights constructed from the true covariance
matrix of the underlying theory (and for cases where the
foregrounds and the signal are uncorrelated), this term
exactly vanishes. However, even in cases when the fore-
grounds and the signal are uncorrelated, this term can be
nonzero as the weights are constructed from a covariance
matrix that is measured from the data; thus, the signal
appears in ñ through wi. We define bILC exactly as

bILC ¼ hsñi: ð34Þ

The fractional size of the ILC bias bILC
hs2i can be estimated

from the number of modes used to calculate the covariance
matrix, Nmodes

3:

bILC
hs2i ¼

j1þ Ndeproj − Nfreqj
Nmodes

: ð35Þ

Note that this bias is negative [15], but it will be convenient
later in our work to have defined this quantity using an
absolute value such that it is positive definite. Generically,
increasing Nmodes suppresses this bias.
In a real-space domain Dreal, the number of modes

Nmodes is equal to the number of pixels in Dreal. In a
harmonic domain Dharm, the number of modes is given byP

lð2lþ 1Þ, with the sum taken over all l∈Dharm (here,
assuming full-sky data, with the number of harmonic
modes otherwise reduced by a factor of fsky).
In a needlet domainDreal;I

n̂ , the number of modes is given

by Npix

Npix;Ω

P
lð2lþ 1ÞðhIlÞ2, where Npix is the (effective)

number of real-space pixels in Dreal;I
n̂ ; Npix;Ω is the number

of pixels on the entire sphere; and the sum is taken over all
l, with the needlet filter function hIl appropriately weight-
ing the contributions from the different multipoles. Note
that this expression is only valid for real-space domains
defined by top-hat window functions in pixel space; it is
also possible to allow for more complicated real-space
domains, such as domains defined by a real-space Gaussian
window function, in which case, Npix does not just count
pixels but is weighted by the window function defin-
ing Dreal;I

n̂ .

IV. ESTIMATING THE tSZ SIGNAL

The tSZ spectral distortion is given by

ΔT tSZðn̂; νÞ
TCMB

¼ gνyðn̂Þ; ð36Þ

3Note that this expression corrects an error in Eq. (3) of
Ref. [24]—their numerator should be ðNchannels − 2Þ due to the
deprojection of the CMB component in their y map.
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where gν is the tSZ spectral function [4]:

gν ¼ x coth

�
x
2

�
− 4; ð37Þ

with x≡ hν
kBTCMB

. Here, h is Planck’s constant, kB is
Boltzmann’s constant, TCMB ¼ 2.726 K is the mean tem-
perature of the CMB [8–10], and yðn̂Þ is the dimensionless
(and frequency-independent) Compton y parameter that
quantifies the integral of the electron pressure along the line
of sight (LOS). An ILC map that preserves the SED given
by Eq. (37) is a map of the Compton-y anisotropies in our
Universe.
We construct a set of Compton-y maps from the single-

frequency maps of the Planck NPIPE data release (PR4)
[22]. In our “standard frequency coverage” (default) case,
we use the maps at frequencies f30; 44; 70; 100; 143; 217;
353; 545g GHz; i.e., we use all of the maps from the low
frequency instrument (LFI) and all of the maps from the
high frequency instrument (HFI) except for that at
857 GHz. We also make an extended-frequency-coverage
version, which includes 857 GHz, and additionally a
version which excludes both 545 and 857 GHz.
The NILC method has been previously applied to Planck

data to construct ymaps, e.g., in the official Planck analysis
of the PR1 (2013) [37] and PR2 (2015) data releases [24],
along with other component separation algorithms, in
particular, the modified internal linear combination
(MILCA) [24,25]. Reference [23] (hereafter HS14) used
a harmonic ILC (HILC) to construct a Compton-ymap with
which to measure the tSZ-CMB lensing cross-correlation,
Cyκ
l . Notably, Ref. [25] applied MILCA to the NPIPE

single-frequency maps to build a lower-noise y map than
the 2015 Planck map, and similarly Ref. [26] has recently
applied NILC to the NPIPE maps.
In this section, we describe our analysis settings for the

NILC algorithm. In Sec. IVA, we present the harmonic-
and real-space filters we use for our NILC. We present the

preprocessing steps that we apply before performing the
NILC analysis in Sec. IV B. We discuss our foreground
deprojection methods subsequently in Sec. V.

A. Harmonic- and real-space filter choices
for the NILC analysis

1. Harmonic-space filters

Following the official Planck NILC approach to con-
struct Compton-y maps [24], we use Nscales ¼ 10 Gaussian
needlet functions hIl (where 0 < I < Nscales) with scales
corresponding to full-width-at-half-maximum (FWHM)
values of f600;300;120;60;30;15;10;7.5;5g arcmin. To
construct these needlet filters, we first define Gaussian
filters GI

l for each scale 0 < I < Nscales and then construct
the needlet filters according to

hIl ¼

8>>><
>>>:

GI
l I ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGI

lÞ2 − ðGI−1
l Þ2

q
0 < I < Nscales − 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðGI
lÞ2

q
I ¼ Nscales − 1:

ð38Þ

The Gaussian filters are defined as usual according to

GI
l ¼ exp

�
−
lðlþ 1Þ
16 ln 2

ðΘI
FWHMÞ2

�
; ð39Þ

whereΘI
FWHM is the beam FWHM appropriate for scale I in

radians. We require the needlet filters to obey the unit-
transmission criterion [15]

X
I

ðhIlÞ2 ¼ 1 ∀ l: ð40Þ

The Gaussian filtersGI
l and the needlet filters h

I
l are shown

in Fig. 1.
Before performing the needlet decomposition of the

single-frequency maps, we convolve them to a common

FIG. 1. The nine Gaussian filter functions (left) used to construct the ten needlet harmonic-space filters (right) according to Eq. (38).
The FWHMs of the Gaussians are listed in Sec. IVA 1 (and repeated in Table II).
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beam. However, note that, while we perform the NILC with
many input frequency maps, the lowest-frequency maps
have much larger beam FWHMs than the highest-
frequency maps, and the signal is exponentially subdomi-
nant to the instrumental noise on small-to-intermediate
scales (after beam deconvolution). Thus, in practice, we
drop particular frequency maps from the NILC on the
needlet scales where we expect no information from these
maps. In particular, we define a “beam threshold criterion”
bthresh, which we take to be bthresh ¼ 10−3. If, for a given
needlet scale, the beam of a given frequency channel
reaches this threshold at a lower l than the needlet filter
does for that scale, we drop that frequency channel from the
NILC. Mathematically, we find the multipole lh, where
hIlh ¼ bthresh (on the decreasing side of the needlet filter),
and the multipole lb, where bilb ¼ bthresh. We then require
that lh < lb in order for a frequency map to be included in
the NILC at this needlet scale. If this criterion is not
satisfied for the beam of a given frequency channel, then
that channel is dropped from the NILC at this needlet scale.
Note that this procedure assumes monotonicity of the beam
function and also assumes that the filter function has a peak
(and thus a decreasing region). The latter assumption does
not hold for the smallest-scale needlet filter (see Fig. 1), so
for this scale, we simply use the same maps as used at the
penultimate needlet scale.

2. Real-space filters

Our real-space domains Dreal;I
n̂ (on which the frequency-

frequency covariances are computed) are also defined by
Gaussian kernels. We define their FWHM values by
calculating the number of modes Nmodes required to ensure
that the fractional ILC bias [defined in Eq. (35)] is always
below a tolerance btol, which we set to btol ¼ 0.01:

bILC
hs2i < btol; ð41Þ

where hs2i is the variance of the signal on the domain
Dreal;I

n̂ . At each needlet scale I, we convert the value of

Nmodes implied by Eqs. (35) and (41) into FWHMs for the
real-space Gaussian filters by first calculating the total
number of modes on the full sky at each needlet scale I
according to

NI
modes ¼

X
l

ð2lþ 1ÞðhIlÞ2: ð42Þ

Noting that the fractional sky area covered by the real-space
Gaussian is 2πσ2real;I=ð4πÞ ¼ σ2real;I=2, we then define a
variance σ2real;I for our real-space filters via

σ2real;I ¼ 2

�j1þ Ndeproj − Nfreqj
btolNI

modes

�
; ð43Þ

and convert this into a FWHM with

θ2FWHM;I ¼ 8 ln 2 σ2real;I : ð44Þ

The resulting real-space FWHM values that we use to
construct our NILC maps are listed in Table II; note that
they in principle depend on the number of foregrounds
deprojected Ndeproj, with smaller real-space FWHMs

TABLE II. Details of our NILC pipeline, including the FWHMs of the Gaussians used to construct the harmonic needlet filters as
described in Sec. IVA 1 and the FWHMs of the real-space filters used to define the domains on which we calculate the real-space
covariance matrices. The real-space domain size depends on the number of deprojected foregrounds Ndeproj, as indicated. Note that we
do not actually use the real-space filters specified here for Ndeproj > 0, as the larger filters calculated for Ndeproj ¼ 0 will automatically
satisfy the ILC bias threshold in these cases.

Needlet scale number I 0 1 2 3 4 5 6 7 8 9

Needlet scale FWHM
(arcminute) 600 600-300 300-120 120-60 60-30 30-15 15-10 10-7.5 7.5-5 5

Real-space FWHMs
(degrees)

Ndeproj ¼ 0 373.8 216.0 81.65 43.20 20.00 9.13 6.32 4.63 2.74 0.89
Ndeproj ¼ 1 346.1 200.0 75.59 40.00 18.26 8.16 5.48 3.78 2.24 0.72
Ndeproj ¼ 2 315.9 182.6 69.01 36.51 16.33 7.07 4.47 2.67 1.58 0.51

TABLE III. The frequency maps included in our NILC algo-
rithm at each needlet scale, given our beam threshold criterion of
10−3 (see Sec. IVA 1). The 857 GHz channel is listed in
parentheses as it is not included in our default NILC pipeline
but only in some variations thereof.

Needlet scale Frequencies included

0 f30; 44; 70; 100; 143; 217; 353; 545; ð857Þg GHz
1 f30; 44; 70; 100; 143; 217; 353; 545; ð857Þg GHz
2 f30; 44; 70; 100; 143; 217; 353; 545; ð857Þg GHz
3 f30; 44; 70; 100; 143; 217; 353; 545; ð857Þg GHz
4 f44; 70; 100; 143; 217; 353; 545; ð857Þg GHz
5 f70; 100; 143; 217; 353; 545; ð857Þg GHz
6 f100; 143; 217; 353; 545; ð857Þg GHz
7 f143; 217; 353; 545; ð857Þg GHz
8 f143; 217; 353; 545; ð857Þg GHz
9 f143; 217; 353; 545; ð857Þg GHz
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allowed when deprojecting more components (at fixed
btol). However, in practice, we compute the covariance
matrices only once, using the filters of the Ndeproj ¼ 0 case,
as the covariance matrix calculation and inversion is the
most computationally intensive part of the NILC. We then
save the covariance matrices and inverse covariance matri-
ces for use in the remaining NILC calculations for different
deprojection choices. As the real-space domains used in the
Ndeproj ¼ 0 case are larger than those required to satisfy the
ILC bias threshold for Ndeproj > 0, the ILC bias threshold
will be satisfied in all cases. Note that, in practice, Nfreq

depends on the needlet scale, as we drop the lower-
resolution maps from the higher-resolution needlet scales
according to Table III.
Once we have defined the domains Dreal;I

n̂ , we calculate
the mean and the frequency-frequency covariance of the
needlet coefficients TI

iðn̂Þ on them by smoothing each
quantity with a Gaussian beam of the appropriate FWHM.
In particular, the mean is simply given by the smoothed
needlet coefficient maps, while the covariance is calculated
by subtracting these means from the full needlet coefficient
maps and multiplying them together, then smoothing the
result.

B. Preprocessing details

Before applying the NILC algorithm to the data, we
apply a mask to each single-frequency map to remove very
bright Galactic emission and point sources. This prevents
the dominant emission from these regions (which, even if
retained, would be masked in the final analysis) from
significantly affecting the ILC weights calculated slightly
away from (but in the vicinity of) these regions and thus
allows for better component separation away from these
regions.
We inpaint the regions of each map covered by these

masks using a diffusive inpainting scheme, which itera-
tively replaces masked pixels with ≥ 4 unmasked neigh-
bors by the mean of the surrounding unmasked pixels. The
Galactic mask we use is the same as that used in the
preprocessing of the Planck 2015 NILC tSZ map [24],
which we download from the Planck Legacy Archive

(PLA).4 The point source mask we use is the point source
catalog mask from Planck, which we also download from
the PLA, using the low-frequency catalog for the LFI maps
and the high-frequency catalog for the HFI maps.5 These
preprocessing masks are shown in Fig. 2. The Galactic
mask covers 2.85% of the sky; the HFI point source mask
covers 1.37% of the sky; and the LFI point source mask
covers 5.41% of the sky. The combination of the Galactic
mask and the HFI point source mask covers 3.93% of the
sky and the combination of the Galactic mask and the LFI
point source mask covers 7.94% of the sky; the combina-
tion of all three covers 8.50% of the sky, which at the end,
defines the total masked sky area of our final NILC maps.
As the NPIPE single-frequency maps retain the dom-

inant contribution from the kinematic dipole, before
inpainting, we remove the kinematic dipole as measured
by the Commander component separation algorithm [22]
and then subtract the remaining monopoles of the maps.
Finally, following Ref. [24], we deconvolve the beams of
each map (the beams of the Planck maps are listed in
Ref. [30]; we repeat them in Table I) and reconvolve all
maps to a common beam of 100. Note that, as the
covariances are calculated in real space, the beam at which
the NILC is performed can significantly affect the final
result, as the needlet filters are so broad in scale that the
large variance of the small-scale modes can contribute
significantly if they are not sufficiently beam convolved.
Thus, the weights can spuriously adapt to mitigate the
variance sourced by the smallest-scale modes in these
frequency channels. Such an impact could be mitigated by
choosing needlet scales with less broad coverage in l
space. In this work, however, we choose to follow the
official Planck analysis and perform the NILC on maps at
100 resolution.

FIG. 2. The masks used in the preprocessing of our needlet ILC pipeline. These masks are applied to the single-frequency maps, which
are then inpainted by iteratively replacing each masked pixel with the mean of the surrounding unmasked pixels (neighbors for an
unmasked pixel) before we run the needlet ILC algorithm.

4This is available at http://pla.esac.esa.int/pla/aio/product-
action?MAP.MAP_ID=COM_CompMap_Compton-SZMap-
nilc-ymaps_2048_R2.00.fits (field ¼ 3).

5These are available at http://pla.esac.esa.int/pla/aio/product-
action?MAP.MAP_ID=HFI_Mask_PointSrc_2048_R2.00.fits
(HFI) and http://pla.esac.esa.int/pla/aio/product-action?
MAP.MAP_ID=LFI_Mask_PointSrc_2048_R2.00.fits (LFI).
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V. DEPROJECTION OF VARIOUS COMPONENTS

In Sec. III C, we discussed constrained ILC and fore-
ground deprojection. In this section, we present our specific
choices for foreground deprojection, in particular, for
removing the CMB and the CIB.

A. Deprojection of the CIB

For many cross-correlation analyses of the tSZ signal
with large-scale structure (LSS) tracers, it is necessary to
deproject the CIB, which is also correlated with LSS and
which can bias a hy × LSSi measurement if unmitigated.
However, unlike the tSZ and CMB signals, which display
no frequency decorrelation and which have SEDs that are
well understood from first principles and can thus be
calculated theoretically, the CIB is not described perfectly
by one SED. It is sourced by the line-of-sight integrated
thermal emission of different objects; in particular, different
frequency channels are sensitive to slightly different
objects, as source emission at different redshifts will be
redshifted into different frequency bands. This leads to
frequency decorrelation between the CIB channels.
However, as the correlation coefficients are ≳90% at the
frequencies of interest [38–41], it is still possible to clean
the CIB using multifrequency measurements. Its SED does
not need to be known for the unconstrained ILC; however,
if wewish to explicitly deproject it, we must model its SED.
Let us explicitly write the CIB intensity as

ICIBν ðn̂Þ ¼ ΘCIB
ν ACIBðn̂Þ; ð45Þ

where all frequency dependence is absorbed in the CIB
SED, ΘCIB

ν , and ACIBðn̂Þ is a template of the CIB anisot-
ropies. Here, we model the CIB as a modified blackbody,
with an SED given by

ΘCIB
ν ∝ νβBνðTeff

CIBÞ; ð46Þ

where BνðTÞ is the Planck function

BνðTÞ ¼
2hν3

c2
1

e
hν
kBT − 1

: ð47Þ

The SED depends on two parameters: the spectral index β
and the effective CIB temperature Teff

CIB. We stress that Teff
CIB

is not a physical temperature, but a parameter in this
effective description. Also note that the overall normali-
zation of the CIB SED in Eq. (46) is arbitrary.6 For
concreteness, we will thus write the CIB intensity as

ICIBν ðn̂Þ¼ΘCIB
ν ACIBðn̂Þ¼

�
ν

ν0

�
βþ3 1

exCIB −1
ACIBðn̂Þ; ð48Þ

where ACIBðn̂Þ is the underlying CIB component template,
and with xCIB ≡ hν

kBTeff
CIB
. We introduce a pivot frequency ν0

in Eq. (48), which one can choose arbitrarily; we set
ν0 ¼ 353 GHz. It is important to note that this quantifies
the CIB intensity, not temperature; natural units for the CIB
intensity are Jy/sr or MJy/sr. As we analyze our maps in
units of CMB thermodynamic temperature μK, we must
convert from intensity to μK in order to write the SED of
the CIB as is relevant for our maps. This is a frequency-
dependent conversion, which is obtained by differentiating
the Planck function [Eq. (47)] with respect to T and is
given by

�
dBν

dT

�
T¼TCMB

¼ 2hν3

c2
ex

ðex − 1Þ2
x

TCMB
; ð49Þ

where x≡ hν
kBTCMB

.
The parameters of the effective CIB SED (β; Teff

CIB) can be
fit to observations of the CIB. For use in our fiducial CIB
deprojections, we use a determination of the CIB SED
determined by a fit to the monopole predictions of the best-
fit halo model of Ref. [39], in particular, their Table 10. We
reproduce these predictions for the CIB SED in Table IV.
We write a simple Gaussian likelihood for the data in

Table IV with 1σ errors given by the quoted error bars and
no covariance between the different frequencies:

−2 ln Lðβ; Teff
CIB; AÞ ¼

X
ν

ðAΘCIB
ν ðβ; Teff

CIBÞ − dνÞ2
σ2ν

; ð50Þ

where dν are the data points in Table IV (with the units
appropriately converted), σν are the 1σ errors reported in
Table IV, and ΘCIB

ν ðβ; Teff
CIBÞ is the quantity defined in

Eq. (46). Note that the expression AΘCIB
ν is the monopole

analog of Eq. (45).
The parameters that maximize the likelihood are found

by straightforwardly minimizing the right-hand side of
Eq. (50). When we only include information from the three
lower frequencies ν ¼ f217; 353; 545g GHz in the like-
lihood, the maximum-likelihood parameters are given
by β ¼ 1.77, Teff

CIB ¼ 10.14 K; when we additionally
include 857 GHz, the best-fit parameters are β ¼ 1.59,
Teff
CIB ¼ 11.95 K. To quantify the uncertainty, we perform

TABLE IV. The predicted values of the CIB monopole in
Ref. [39], as calculated from the halo model fit to the CIB power
spectra in that work at ν ¼ f217; 353; 545; 857g GHz.

Frequency [GHz] 217 353 545 857

νIν½nW=m2=sr� 0.077�0.003 0.53�0.02 2.3�0.1 7.7�0.2

6One only needs to specify the overall normalization for the
component that is preserved in an ILC map so that the output map
is in the correct units; the components that are deprojected do not
need their normalization specified.
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Markov-chain Monte Carlo (MCMC) sampling of the
posterior, using flat, linear priors on all parameters, result-
ing in a posterior region shown in Fig. 3. For this, we use
the Metropolis-Hastings algorithm implementation of
[42,43] implemented in Cobaya

7 [44,45]. We run the chains
until they are converged with a Gelman-Rubin criterion
[46] of jR − 1j < 0.005. The marginalized means and
posteriors of β and Teff

CIB are shown in Table V, along with
the best-fit values.
We stress that these are not intended to be highly

accurate posteriors for the CIB SED parameters, as we
have not quantified appropriately the covariance of the data
points. Instead, they are intended to give an idea of a
realistic region of variation of the parameters. Note that for
the case when we do not include 857 GHz, we are fitting
three data points with three parameters, and so our reduced
χ2 is ill defined, and we do not have a proper notion of
goodness of fit (and, as expected, the χ2 approaches 0). For
the case when we do include 857 GHz, we find that the
model is a good fit, as quantified by the reduced χ2.
The best-fit SEDs are plotted in Fig. 4, along with the

SED previously used in Ref. [47] to deproject the CIB,
which used Teff

CIB ¼ 24 K and β ¼ 1.2. The latter SED
slightly overpredicts the 545 GHz emission and severely
overpredicts the 857 GHz emission, although, note that the
highest frequency channel used in Ref. [47] was the Planck
545 GHz channel (857 GHz was not used). Finally, note

that using these (approximate) CIB SEDs requires extrapo-
lation to lower frequencies (<217 GHz) where the SED is
not directly constrained.

1. A note on the best-fit β, Teff
CIB and the

halo model parameters

Often, the CIB emission is modeled with a halo model
with certain parameters that can be fit to data. Many of
these halo models model the SED of objects at a given
redshift as a modified blackbody and include in the model a
functional form for the (possibly z-dependent) physical
dust temperature TD and spectral index βD (see, e.g.,
[48,49]). Often TDðzÞ is parametrized as follows:

TDðzÞ ¼ T0ð1þ zÞα; ð51Þ

with T0 and α free parameters that are fitted in the analysis.
For example, the halo model analysis of [39] found
T0 ¼ 24.4� 1.9 K and α ¼ 0.36� 0.05, along with βD ¼
1.75� 0.06.
If one wants to directly use these parameters to deproject

the CIB sourced at a given redshift, it is important to
account for the appropriate redshifting of the CIB temper-
ature. For example, to deproject the CIB emission from
z ¼ 1, one can calculate the temperature of the modified
blackbody at z ¼ 1 as 31.31 K and then redshift it to today:
TðzÞ=ð1þ zÞ ¼ 15.66 K (βD is unaffected by the redshift-
ing operation and can be directly used in the CIB SED). For
α ¼ 1 (as for the evolution of the CMB temperature), this
would be equivalent to always using T0. The CIB monop-
ole is sourced at z ≈ 2, which would predict a redshifted
temperature of ≈12.1 K, not far from our best-fit effective
temperatures.

B. Deprojection of the first moments of the CIB

There is significant uncertainty on the parameters (β,
Teff
CIB) of the CIB SED; additionally, it is not a perfect

approximation to the CIB emission to describe it as an exact
modified blackbody described by a single set of these
parameters. For cross-correlations of the tSZ effect with
tracers that are more highly correlated with the CIB than
with the tSZ field itself (e.g., the CMB lensing potential),
imperfect removal of the CIB due to a deprojection with the
“incorrect” SED can result in a CIB residual that is still a
significant bias to the measurement. This systematic must
therefore be considered and mitigated when measuring
such a cross-correlation, such as in our companion paper
[28] where we measure the tSZ-CMB lensing cross-
correlation.
In Ref. [27], a moment-based approach for the descrip-

tion and removal of mm-wave foregrounds was introduced.
In particular, their method was designed to mitigate effects
due to SED uncertainty or variation of SED parameters due
to either spatial averaging within an instrument’s beam or
along the line of sight; the latter is particularly important for

FIG. 3. The posterior for the parameters of the inferred effective
CIB SED. There is significant degeneracy between the param-
eters β and Teff

CIB. For the without-857-GHz case, the likelihood is
maximized at β ¼ 1.77, Teff

CIB ¼ 10.14 K.

7https://cobaya.readthedocs.io/en/latest/.
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foregrounds such as the CIB, which is not emitted at only
one redshift but in fact has a wide redshift kernel and is a
superposition of imperfect modified blackbodies at various
redshifts.
In this approach, the underlying (fundamental) SED is

parametrized by some free parameters p, such as a modified
blackbody parametrized by ðβ; TÞ. One then considers
variations of these parameters within the instrument beam
(and/or sky map pixel) or along the line of sight, both of
which generically lead to deviations of the “measured”
SED away from the fundamental SED form. The observed
SED can be represented as a Taylor expansion (in the
parameters p) around a point in parameter space p̄ and
more accurately modeled using this Taylor expansion. The
zeroth-order moment of the observed SED is the average
SED, which can be written as the fundamental SED
evaluated at p̄. If there were no variations in the SED
parameters, then no further modeling would be needed.
However, in general, such variations lead to higher-order
terms (moments) in the Taylor expansion. Then, the more
appropriate SED to use for deprojection in a constrained
ILC would be not only the SED evaluated at p̄ but the entire
Taylor expansion. In particular, the SED and its first (and
higher-order) derivatives with respect to p (evaluated at p̄)

can be considered as independent components to be
deprojected in a constrained ILC. Of course, given a finite
number of frequency channels, we do not have the freedom
to deproject an infinite number of components, but with the
multifrequency coverage of Planck, it is possible to
deproject several components.
We will use this approach to deproject the CIB in a

robust manner from our y map. In particular, we deproject
the first moment of the CIB with respect to β, which in
practice, amounts to deprojecting an additional component

with an SED given by ∂ICIBν
∂β , and also the first moment of the

CIB with respect to Teff
CIB, which similarly amounts to

deprojecting an additional component with an SED given

by ∂ICIBν

∂Teff
CIB
.

These moments are given explicitly by

∂ICIBν ðn̂Þ
∂β

¼ ln

�
ν

ν0

�
ICIBν ðn̂Þ; ð52Þ

∂ICIBν ðn̂Þ
∂Teff

CIB

¼ ICIBν ðn̂Þ xCIB
Teff
CIB

exCIB

exCIB − 1
: ð53Þ

FIG. 4. The best-fit CIB SEDs, both including the 857 GHz data [green line, ðTeff
CIB; βÞ ¼ ð11.95 K; 1.59Þ] in the fit and excluding it

[orange line, ðTeff
CIB; βÞ ¼ ð10.14 K; 1.77Þ]. We also include for comparison the SED used in Ref. [47] [ðTeff

CIB; βÞ ¼ ð24 K; 1.2Þ], which
slightly overpredicts the 545 GHz emission and severely overpredicts the 857 GHz emission, but which is compatible with the data at the
1 − 2σ level (see the posteriors in Fig. 3). The left and right panels show the same data and theory curves but with a logarithmic (linear)
y axis on the left (right).

TABLE V. The marginalized means and best-fit values of the β, Teff
CIB parameters. We also indicate the reduced χ2

by explicitly writing the calculated χ2 and the number of degrees of freedom, which is equal to the number of data
points minus the number of fitted parameters (recall that we fit an amplitude along with β and TCIB

eff ).

Without 857 GHz With 857 GHz

Mean Best fit Mean Best fit

β 1.75þ0.39
−0.37 1.77 1.60� 0.16 1.59

Teff
CIB 11.87þ0.75

−4.94 K 10.14 K 12.01þ0.99
−1.38 K 11.95 K

χ2=d.o.f. 1.53 × 10−15=ð3 – 3Þ 0.302/ð4 − 3Þ
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For concision, we sometimes refer to these moment
components as δβ and δTeff

CIB, respectively. Note that, unlike
the SED of the CIB itself, the moment expansion of β
depends explicitly on the chosen pivot frequency ν0, as at
this frequency, the CIB SED does not depend on β and thus
the derivative exactly vanishes.8 In all cases, we use a pivot
frequency of ν0 ¼ 353 GHz.
We refer the interested reader to Ref. [28] for details of

how this moment deprojection technique stabilizes the
measurement of Cyκ

l even for different choices of the
CIB SED parameters ðβ; Teff

CIBÞ.

C. Deprojection of the CMB

The CMB, whose SED is known (nearly) perfectly, can
be deprojected in a constrained ILC tSZ map with no
uncertainty or need to consider additional moments. This
can be useful for large-scale cross-correlations of the tSZ
signal with LSS, as the large-scale CMB contains con-
tributions sourced by LSS arising from the integrated
Sachs-Wolfe (ISW) effect [50]. This ISW-LSS correlation
(e.g., [51–53]) can bias such measurements, including the
tSZ—CMB lensing cross-correlation. However, we do not
have enough frequency channels to deproject more than
three components at small scales (unless 857 GHz infor-
mation is included); see Table III. Thus, we elect to only
deproject the CMB from the first five needlet scales in some
cases, denoted CMB5. As the ISW is a large-scale effect,
this should mitigate essentially all of the LSS bias due to
the ISW contribution.
The (normalized) SEDs of various components of

interest are plotted in Fig. 5.

VI. COMPTON-y MAP VALIDATION
AND COMPARISON TO PLANCK MAP

In this section, we present and validate our Compton-y
maps, estimate their power spectra, and compare them to
the official Planck 2015 tSZ NILC map. We explicitly
compute the autopower spectra and 1D histograms of our
maps and compare them to those of the official Planck
analysis (on the same region of sky) in Sec. VI B. In
Sec. VI C, we quantify the variance increase resulting from
our various deprojections by comparing the power spectra
of our undeprojected and deprojected maps; we also
illustrate the effects of varying the frequency coverage in
the NILC. Finally, in Sec. VI D, we compare the level of
CIB contamination in our maps to that of the official Planck
release and also present the results of deprojecting the CIB.

We perform all power spectrum calculations throughout
with NaMaster [54].
Note that the 2015 Planck map was made with the CMB

deprojected, and so all direct comparisons between our
map and the Planck map are done with our CMB-
deprojected map.

A. Map images

We show our resulting tSZ maps in Fig. 6, including
various deprojection choices and also showing the official
Planck 2015 NILC tSZ map [24] for comparison. For the
cases when just the CIB or the CIBþ CMB are deprojected,
there is no significant change to the maps by eye. However,
when we deproject δβ, the map becomes visibly noisier; we
see that when we deproject both δβ and the CMB, themap is
even noisier, indicating that there is significant CMB
contamination in the CIBþ δβ-deprojected map. Finally,
the maps with both moments of the CIB deprojected have
significantly higher variance, and it becomes difficult to pick
out structures such as the Coma cluster, which appears as a
bright point in the northern hemisphere (right hand side of
the maps) by eye. In the legend of Fig. 6, and later, CMB5-
deprojection refers to the deprojection of the CMB on only
the first five needlet scales.

B. Comparison with Planck map: Histograms
and power spectra

To compare directly with the Planck y map, we consider
histograms of the Compton-y values in the maps and
also compute their autopower spectra (for our various

FIG. 5. The SEDs of various components of interest: the tSZ
effect (orange), which we want to isolate; the CIB (green), which
we wish to deproject; and the first moments of the CIB with
respect to β (red) and Teff

CIB, which we also wish to deproject. The
SEDs are shown in thermodynamic temperature units in which
the blackbody CMB is constant, as indicated by the CMB SED in
blue. Due to the logarithmic y axis, we show negative values with
dashed lines. We normalize all of the SEDs so that their absolute
value is unity at 143 GHz. In all cases, we use the best-fit CIB
SED parameters of β ¼ 1.77, Teff

CIB ¼ 10.14 K.

8When we deproject components in a constrained NILC, the
normalization of their SED does not matter (when we preserve a
component in the NILC, its normalization is important in order to
interpret correctly the units of the final map). In the case of the
SED of the CIB, ν0 appears as a normalization and can be divided
out. The same is not true for the first moment with respect to β, as
ν0 does not appear multiplicatively.
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deprojection choices) on the area of sky defined by the
Planck y map analysis mask, which is provided with the
Planck y map.9 This mask, which is apodized, covers 50%
of the sky. We multiply this mask by the point source mask,
defined by the union of the Planck HFI and LFI point
source masks as described in Ref. [24]. When we estimate

the power spectra, we apodize the point source mask with
an apodization scale of 300 before multiplying it with the
Planck analysis mask (for the histograms, we use an
unapodized point source mask). The resulting apodized
mask allows for analysis with an effective fsky ¼ 0.45.10

× × ×

× × × ×

××××

× × × ×

×

FIG. 6. Our needlet ILC maps, visualized in orthographic projection in equatorial coordinates. In all cases, the northern hemisphere is
on the right and the southern on the left. We also show, on the top left, the official Planck 2015 NILC tSZ map [24]. In all cases, we have
masked out the Galaxy with the Planck Galactic plane mask, which covers 20% of the sky. Note that for these visualizations, we show
Gaussian-beam-convolved maps, which have FWHM ¼ 100. We note that the Planck y map has deprojected the CMB; we do not show
our CMB-deprojected map here, but it is indistinguishable by eye from the no-deprojection, CIB-deprojected, and CIB+CMB-
deprojected maps. Indeed, it is only when we deproject δβ that adding the CMB deprojection makes a visible difference (as seen in the
third row). Note the increased ranges on the color bars in the bottom four plots due to their significantly increased variances.

9It can be found at http://pla.esac.esa.int/pla/aio/product-
action?MAP. MAP_ID=COM_CompMap_Compton-SZMap-
masks_2048_R2.01.fits, with field=1.

10Note that, at some level, the point source mask is correlated
with the tSZ field itself; however, any biases resulting from this
correlation (e.g., [55–57]) are expected to be negligible at Planck
sensitivity.
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1. Histograms

We show the histograms of the Compton-y pixel values in
Fig. 7 for our maps with no deprojection (standard ILC,
blue), fiducial CIB modified blackbody SED deprojected
(orange), and additionally with the first moment of the CIB
SED with respect to β deprojected (green) and with both
moments deprojected (red); we include all versions both
with and without the CMB deprojected, with the CMB-
deprojected versions shown in solid lines compared to the
dashed lines for the caseswhenwe do not deproject theCMB
(we only deproject the CMBon the first five needlet scales in
the casewherewe deproject both moments of the CIB due to
the insufficient frequency coverage on small scales to
deproject more components). We also show the histogram
for the officialPlanck 2015 tSZmap in black. The Compton-
y signal is highly non-Gaussian, and the strong positive tail is
indicative of the presence of tSZ signal due to groups and
clusters, which we see in all of the maps except for the case
whenwe deproject bothmoments of theCIB; in this case, the
large foreground contribution is larger than this signal. We
note that there ismore noise in theCIB-deprojectedmaps and
significantly more noise in the moments-deprojected maps,
as indicated by the broadening of the histograms. This is an
inevitable consequence of deprojecting more components in
a constrained ILC.

We note that the histograms of our no-deprojection
(standard ILC) and CMB-deprojected y maps agree very
well with that of the Planck map.

2. Autopower spectra

We measure the power spectra of our y maps to further
characterize their properties. We also construct NILC y
maps with, and measure the cross-power spectra of, two
independent split maps that have independent noise (and
therefore no noise bias in the power spectrum). We show
the results in Fig. 8. We also calculate the autopower
spectrum of the Planck y map on the same sky area. In all
cases, we calculate the power spectra using NaMaster to
decouple the mask mode-coupling matrix.
In Fig. 8, and in all subsequent plots with autopower

spectra, we include a theoretical calculation of the tSZ
power spectrum, calculated using CLASS_SZ

11 [60–62],
which is an extension of the cosmological Boltzmann
solver CLASS

12 [63]. This signal is computed in the
halo model using the pressure-mass relation of Ref. [64].

FIG. 7. Histograms of the Compton-y values of our tSZ maps (for various deprojection choices as labeled), as compared to that of the
official Planck 2015 tSZ map. These histograms are estimates of the one-point probability density function (PDF) of the tSZ effect
(which itself is a sensitive cosmological probe [58,59]). We show the histograms of the maps convolved with a FWHM ¼ 100 beam and
apply the Planck NILC analysis mask and the point source mask described in the text. The positive tails in the histograms indicate the
presence of tSZ signal, with the increased noise in the CIB-deprojected and CIBþ δβ maps evident as an increased spread around
the peak at y ¼ 0. The histogram of our no-deprojection and our CMB-deprojected maps agree very well with each other and with that of
the official Planckmap, demonstrating how small the signal-to-noise penalty is for deprojecting the CMB; the CIB-deprojected versions
are slightly noisier (note that the CIB+CMB-deprojected version is not meaningfully noisier than the CIB-deprojected version, with the
orange dashed and solid lines lying on top of each other). Once we deproject the moments of the CIB, there is a larger increase in noise,
although for the δβ-deprojected version, the non-Gaussian positive tail is still visible. When we deproject both moments, the
contribution from foregrounds is larger than this tail, and it cannot be seen by eye; we also see that for the case when both moments are
deprojected, there is a significant noise penalty when we also deproject the CMB (note that we do not deproject the CMB on all scales, as
we do not have enough frequency coverage; instead, we just do so on large scales, in particular, in the first five needlet scales, referred to
as “CMB5-deprojection” in the legend).

11https://github.com/borisbolliet/class_sz.
12https://lesgourg.github.io/class_public/class.html.
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We refer the reader to [28] for a detailed discussion of the
modeling of this signal.
In general, the power spectrum error bars can be

estimated with the Gaussian expression for the covariance:

CðĈαβ
l ; Ĉγδ

l0 Þ ¼
δll0

ð2lþ 1Þfsky
ððCαγ

l þ Nαγ
l ÞðCβδ

l þ Nβδ
l Þ

þ ðCαδ
l þ Nαδ

l ÞðCβγ
l þ Nβγ

l ÞÞ; ð54Þ

where Cαβ
l and Nαβ

l indicate the signal and noise including
all sources of foregrounds; in practice, we replace these
with the measured power Ĉαγ

l such that

σ2ðĈyy
l Þ ¼ 2ðĈyy

l Þ2
ð2lþ 1Þfsky

: ð55Þ

We do not calculate Eq. (54) directly but instead use
NaMaster, which computes the Gaussian covariance
accounting properly for the decoupling of the mask. Note
that this requires us to have an estimate of Cl þ Nl at every
l, which we achieve by unbinning our measured Ĉl.
The autopower spectrum of our standard ILC y map is

slightly lower (≈10–20%) on small scales than that of the
Planck 2015 y map, presumably due to the lower instru-
mental noise in the PR4 NPIPE data compared to PR3. In
addition, we also see a significant decrease in the cross-
power spectrum of our split maps compared to that of the
Planck 2015 y map splits, except for on the largest scales.
This is presumably due to the improved foreground
cleaning in our map, resulting from the lower noise in
the NPIPE maps.

We defer a full analysis of the tSZ autopower spectrum
from our maps to future work, as this will require careful
understanding of the propagation of foreground contami-
nants, likely using simulations (as in Ref. [24]).

C. Effect of various deprojections and varying
frequency coverage

In Fig. 9, we show how various contaminant deprojection
choices used in ourNILC analyses affect the final autopower
spectrum of the y map. In all cases, when we deproject the
CIB and its first moments, we use the best-fit CIB SED
parameters from Sec. VA, β ¼ 1.77 and Teff

CIB ¼ 10.14 K.
We see that deprojecting the CIB incurs a small increase in
noise power, but the CMB deprojection leaves the power
essentially unaffected, as long as either no other components
or the CIB alone is deprojected. This is because the CMB is
already the dominant astrophysical contaminant in the
standard ILC, so the weights are quite similar regardless
of whether it is deprojected. However, deprojecting the
moments of the CIB incurs much more serious noise
penalties, particularly if multiple moments are deprojected.
Note that, for the case when we deproject both moments of
the CIB, there are not enough frequency channels to also
deproject theCMBon small scales, and sowe only deproject
the CMB in the first five needlet scales; we refer to this in the
legends of Figs. 9–11 as CMB5.
Our fiducial y map includes information from all Planck

frequency channels except for 857 GHz. For comparison,
we also construct maps including 857 GHz in the NILC, as
well as dropping 545 GHz. We note that the official Planck
analysis (as well as the analysis of Ref. [26]) uses 857 GHz

FIG. 8. The autopower spectrum of our Compton-y maps, estimated by taking the auto-power of the full-mission y map (blue points)
and also of the split maps (orange and green points, which nearly coincide), and the cross-power spectrum of the split maps (red points).
We show the power spectra estimated both from our maps (circles) and from the 2015 Planck tSZ map (stars). Our maps show a clear
reduction in noise power, as assessed from the autospectra and also a reduction in the residual foreground power, as assessed from the
cross-spectra, compared to the 2015 Planck release. For reference, we also show a theoretical prediction of the tSZ power spectrum in
black (total signal in solid, one-halo term only in dashed).
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only at l < 300, due to its uncertain calibration. In
principle, one could co-add the l < 300 modes of our
with-857 GHz map with the l > 300 modes of our no-
857 GHz map to obtain such a map.

The effects of including 857 GHz and dropping 545 GHz
are shown in Figs. 10 and 11, respectively. As expected, as
there is more (less) data, including more (fewer) frequency
channels results in lower (higher) power in the final y map.

FIG. 9. Autopower spectra of our tSZ maps for different deprojection choices, on the region of sky defined by the Planck analysis
mask and our point source mask. Note that, to aid in distinguishability, we have offset horizontally the orange and red CMB-deprojected
and CIB+CMB-deprojected points slightly, as otherwise they would fall almost exactly on the blue and green points, respectively. We
have also connected these points with a dashed instead of a solid line so that the lines underneath are visible. We see that the first CMB
deprojection is almost free in terms of its noise penalty; for CIB deprojection, in contrast, there is a slight noise penalty, corresponding to
an increase of ≈10% in the power (although an additional CMB deprojection here continues to increase the power negligibly).
Deprojecting the first moments of the CIB, however, incurs a much larger noise penalty, with the power increasing by a factor of ≈5
compared to the no-deprojection power when we include δβ in the deprojection. Additionally, deprojecting the CMB is no longer “free”
in this case, with the brown points slightly higher than the purple points. Finally, deprojecting both δβ and δTeff

CIB incurs a serious penalty,
with the power increasing by orders of magnitude at low l, although surprisingly decreasing at high l compared to the CIB þ δβ
deprojection. As there are not enough frequency channels to simultaneously deproject all of these components and the CMB at high
resolution, we only do so for the first five needlet scales (grey points); this again incurs a small penalty compared to the case without
deprojecting the CMB.

FIG. 10. The effect of different deprojections on a y map constructed using a NILC that includes the 857 GHz channel. The noise
penalty incurred when deprojecting many moments of the CIB is lower here than in the case when 857 GHz is not included in the NILC
(see Fig. 9). Again, we have slightly offset the CMB-deprojected (orange) points from the undeprojected (blue) points and the
CIB+CMB-deprojected (red) points from the CIB-deprojected (green) points.
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However, we note that when more high-frequency channels
are included, more information about the CIB SED is
required in order to deproject it robustly, and it can be more
difficult to robustly remove all CIB contamination; we
discuss this issue in detail in our companion paper [28].

D. CIB contamination

We attempt to quantify the amount of residual CIB in our
Compton-y maps by directly cross-correlating them with
maps of the CIB. CIB maps are difficult to construct due to
the difficulty of separating CIB emission fromGalactic dust
emission, which is dominant on large scales and has a very
similar frequency dependence to the CIB. We use the CIB
maps of Ref. [41], which were constructed by using HI data
[65] as a tracer of the Galactic dust in order to clean the dust
emission from the highest-frequency (353, 545, 857 GHz)
Planck channels. The resulting maps of the CIB emission at
these frequencies are very clean of Galactic contamination.
For this investigation, we use only the 857 GHz CIB

map, as the maps were constructed with the PR3 Planck
data and thus do not have maps built from the same
independent noise realizations as the NPIPE maps. Thus,
we do not have two independent splits that are required to
make a measurement without instrumental noise bias.
However, as we do not use 857 GHz in our default
NILC y map construction, we can make a measurement
with the 857 GHz map that is immune to noise bias. It
would be interesting in the future to repeat or extend the
work of Ref. [41] to the NPIPE data in order to measure
cross-correlations with the lower frequencies that do not
contain noise bias. An additional advantage of using the
857 GHz map for the tSZ-CIB cross-correlation is that this
is the channel in which the intrinsic y signal is most

suppressed compared to the CIB. For lower frequencies
(particularly 353 GHz and below), we would have to
consider the hyCIB−mapyNILC−mapi contribution to the signal.
We show in Fig. 12 the cross-power spectra measured

with the 857 GHz CIB map and our standard-frequency-
coverage NILC y maps for several deprojection choices.
We also include the measurement using the official Planck
map. We perform these measurements with the cleanest
map provided by Ref. [41], which covers 8.71% of the sky.
We multiply the apodized mask provided by Ref. [41] with
the mask used previously throughout this work, i.e., the
official Planck NILC mask combined with the point source
masks. The final sky covarage is 8.47% in our tSZ-CIB
cross-correlation measurement.
In Fig. 12, it is clear that the CIB contamination in our y

maps is lower than that of the official Planck ymap. This is
consistent with the results of Ref. [26]. It is encouraging
that the lower instrumental noise in the NPIPE maps has
allowed for improved subtraction of the foregrounds in
this case.
In Fig. 12, we also include a theoretical prediction for the

intrinsic cross-power spectrum between the tSZ and the
CIB emission at 857 GHz Cy857

l . We note that there is
significant model uncertainty in this prediction. The meth-
odology that we use follows the halo model formalism used
to calculate the autopower spectrum. While we defer to our
companion paper [28] an in-depth presentation of the halo
model details, we note that the model in Fig. 12 (which was
calculated with CLASS_SZ) uses the pressure profiles of
Refs. [66,67] to predict the tSZ signal along with the halo
model of Ref. [48] with the parameter values of Ref. [39]
to predict the CIB signal (see Ref. [49] for a detailed
description of this incarnation of the CIB halo model). As

FIG. 11. The effect of different deprojections on a y map constructed using a NILC that excludes the 545 GHz channel (857 remains
excluded as well). There are not enough frequency channels to simultaneously deproject the CIB along with δβ and δTeff

CIB in this case.
Note that, in contrast to Fig. 9, we have not offset the orange CMB-deprojected points or the red CIB+CMB-deprojected points as they
are more distinguishable by eye here than they are in Fig. 9 due to the slightly increased noise penalty when deprojecting the CMB.
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the focus of this paper is not the CIB-tSZ cross-correlation,
we do not consider a wider range of models (although note
that a prediction for this signal was made in Ref. [68], and it
would be interesting to use this data to constrain this
model). We note that, if it is truly CIB-free, the fully
moment-deprojected ðCIB þ δβ þ δTCIB

eff þ CMB5) data
points in Fig. 12 can be interpreted directly as a measure-
ment of the intrinsic cross-correlation of Compton-y and
the CIB. Such a measurement was previously made with

Planck data in Ref. [69]. We defer to future work a
comparison between our data and the measurements in
this reference. Indeed, our work in Ref. [28] relies on the
assumption that the fully moment-deprojected y map is
indeed negligibly contaminated by CIB. We note that the
CIBþ δβ þ δTCIB

eff þ CMB5-deprojected points in Fig. 12
are indeed stable to variations in the assumed CIB SED, as
shown in Fig. 13 (the same is not true of the CIB
deprojection or the CIBþ δβ deprojection). In Fig. 12,

FIG. 12. The cross-correlation of our Compton-y maps with the 857 GHz CIB map of Ref. [41] for different deprojection choices,
along with the measurement for the official Planck NILC y map (in black). We also show a prediction for the intrinsic Cy857

l signal,
calculated in CLASS_SZ using the halo model (details in the main text). We note that the cross-correlation of our CMB-deprojected map
with the CIB is significantly lower than that of the official Planck map; a similar conclusion was found in Ref. [26].

FIG. 13. The fully moment-deprojected (CIBþ δβ þ δTCIB
eff þ CMB5-deprojected) ymap cross-correlated with the 857 GHz CIB map

from Ref. [41] for various choices of the CIB SED consistent with the posterior in Fig. 3. We also include data points from the Planck
detection of this signal [69], digitized from Fig. 15 of that reference. The different-colored points correspond to different samples drawn
from the posterior for β, T shown in Fig. 3.
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we also include the data points as measured by Ref. [69] for
Cy857
l , which we have digitized from their Fig. 15.13 As

such, we hope that these maps will make possible a fruitful
joint CIB-tSZ analysis.

VII. DISCUSSION

In this work, we have presented PYILC, a fully public
Python package to perform NILC on full-sky HEALPix maps.
We hope that PYILC will be useful both for analyses of real
data to isolate maps of the CMB and tSZ signals and any
other component whose spectral signature is known, as
well as for analyses of simulations, in particular, in cases
where one wants to test a signal-extraction pipeline on
realistic data and to understand biases due to foregrounds.
We have validated that our implementation in PYILC

produces maps that closely match the official Planck tSZ
maps (when making the same analysis choices), which
were produced with a nonpublic pipeline. Our code is fully
available and easily extensible to consider other sky
components and other deprojection options.
We have used PYILC to perform NILC on the Planck

NPIPE data to isolate the (almost) full-sky Compton-y
signal in our Universe. We note that ymaps have previously
been made with this data [25,26], as well as in the official
Planck analysis [24,37]. We have made several improve-
ments to the analysis, including a slightly different input-
map-processing step where we mask the point sources such
that they do not contribute to the calculation of the NILC
weights; as point sources are always masked in any final
analysis mask, this does not affect any science obtained
from the maps but improves their noise properties and
usable sky fractions. Additionally, we provide y maps
where we have explicitly removed the CIB by deprojecting
both a modified blackbody component and its first
moments. Our CMB-deprojected tSZ map has ≈10% lower
noise than that in the official Planck 2015 tSZ map.
Wequantify the amount ofCIB contamination in ourmaps

by directly cross-correlating them with maps of the CIB. We
find that ourmaps have lessCIB contamination than the 2015
Planck NILC map. We have also presented CIB-moment-
deprojected y maps, which we hope can be used to measure
hy − LSSi cross-correlations without CIB bias.
We use these y maps in our companion paper [28] to

detect the cross-correlation of the reconstructed CMB
lensing signal and the tSZ signal, for only the second time
[23], and with significantly more robustness against CIB
contamination [70]. We hope that our techniques for

removing the CIB from such a measurement will be useful
for a wide range of future tSZ cross-correlation analyses,
including the tSZ-CIB cross-correlation [68,69].
We note that Planck y maps, while currently state of the

art, will shortly be surpassed in signal-to-noise ratio by
upcoming data from ACT [71], SPT-3G [72], and soon the
Simons Observatory [73]. However, the Planck data will
remain dominant in the Compton-y reconstruction for the
foreseeable future at l≲ 1000, as atmospheric noise
becomes too large at low multipoles for ground-based
experiments to surpass Planck (in temperature) over this
range—see, e.g., Fig. 36 of Ref. [73]. A hybrid combina-
tion of the ground-based and space-based data will thus
become the standard approach in the near future (as already
demonstrated in Refs. [47,74]).

VIII. SUMMARY OF PUBLIC PRODUCTS

We make various configurations of our Compton-ymaps
publicly available at [75]. We also release our full NILC
pipeline at [76], which takes as input a set of single-
frequency maps and executes the NILC algorithms
described in this paper; we include as explanatory files
several input files we used to construct our NILC y maps
from the Planck data products. We note that the input is not
the raw single-frequency NPIPE maps but instead the
monopole- and dipole-subtracted, inpainted NPIPE maps
described earlier in this work. We also release our inpaint-
ing code in the same GitHub repository as PYILC, along
with our inpainting mask and several analysis masks, which
are also at [77].
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