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The ∼5σ mismatch between the value of the Hubble parameter measured by SH0ES and the one inferred
from the inverse distance ladder (IDL) constitutes the biggest tension afflicting the standard model of
cosmology, which could be pointing to the need of physics beyond ΛCDM. In this paper, we study the
background history required to solve the H0 tension if we consider standard prerecombination physics,
paying special attention to the role played by the data on baryon acoustic oscillations (BAO) employed to
build the IDL. We show that the anisotropic BAO data favor an ultra-late-time (phantomlike) enhancement
ofHðzÞ at z≲ 0.2, accompanied by a transition in the absolute magnitude of supernovae of type IaMðzÞ in
the same redshift range. This agrees with previous findings in the literature. The effective dark energy (DE)
density must be smaller than in the standard model at higher redshifts. Instead, when angular BAO data
(claimed to be less subject to model dependencies) is employed in the analysis, we find that the increase of
HðzÞ starts at much higher redshifts, typically in the range z ∼ 0.5–0.8. In this case,MðzÞ could experience
also a transition (although much smoother), and the effective DE density becomes negative at z ≳ 2. Both
scenarios require a violation of the weak energy condition (WEC) but leave an imprint on completely
different redshift ranges and might also have a different impact on the perturbed observables. They allow
for the effective crossing of the phantom divide. Finally, we employ two alternative methods to show that
current data from cosmic chronometers do not exclude the violation of theWEC but neither do they add any
strong evidence in its favor. Our work puts the accent on the utmost importance of the choice of the BAO
data set in the study of the possible solutions to the H0 tension.
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I. INTRODUCTION

It is not possible to constrain the Hubble parameter, H0,
with uncalibrated data on supernovae of type Ia (SNIa) or
baryon acoustic oscillations (BAOs). One needs to calibrate
first these data sets with a measurement of the absolute
magnitude of SNIa, M, and the comoving sound horizon
at the baryon-drag epoch, rd, respectively. These are the
calibrators of the so-called direct and inverse cosmic
distance ladders, which are two of the main ways we have
of measuring the current expansion rate of the Universe.
The latter, despite not being fundamental, is of course a
very important quantity, since it enters the computation of
cosmic times and distances.
The SH0ES team has measured MR22 ¼ ð−19.253�

0.027Þ mag using calibrated Cepheid variable stars in

galaxies that also host SNIa. This leads to the measurement
of HR22

0 ¼ ð73.04� 1.04Þ km=s=Mpc making use of the
supernovae in the Hubble flow [1]. On the other hand, the
Planck Collaboration finds rP18d ¼ ð147.09� 0.26Þ Mpc
and HP18

0 ¼ ð67.36� 0.54Þ km=s=Mpc under the
assumption of ΛCDM and using the TT;TE;EEþ lowEþ
lensing cosmic microwave background (CMB) likelihood
[2]. This implies a ∼5σ mismatch between the local
measurement by SH0ES and the Planck=ΛCDM infer-
ence. A similar level of tension with SH0ES is found when
rP18d is employed to calibrate the anisotropic [or three-
dimensional (3D)] BAO data in fitting analyses of the
standard model (see e.g. Ref. [3]) or by using these
calibrated data with SNIa apparent magnitudes in para-
metric and cosmographical analyses [4–8]. We refer the
reader to the reviews [9–11] for further details.
The discrepancy between the two cosmic ladders in the

context of the standard model could be due to some issue
with their calibrators [12–15], either by unaccounted-for
systematic errors or by new physics. In order to grasp the
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possible origin of the Hubble tension, it is useful to analyze
the constraints in the M − rd plane that are obtained by
studying the compatibility of uncalibrated SNIa and 3D
BAO data. This forces the calibrators of the direct and
inverse distance ladders to lie in a quite narrow degeneracy
band; see the grey contours in Fig. 1. In that figure, we also
plot the SH0ES constraint MR22 (in cyan) and the
Planck=ΛCDM constraint rP18d (in purple). The mismatch
between the overlapping region of these two bands and the
SNIaþ BAO degeneracy band is nothing other than the
clear manifestation of the Hubble tension.
In the absence of systematics in the data, one possibility

to try to solve the tension is to consider a departure from the
standard model before the decoupling of the CMB photons,
capable of decreasing the distance traveled by the sound
waves in the photo-baryon fluid.1 This can be achieved in
different ways: by changing the strength of gravity [18–26],
by modifying the recombination time with the help of
primordial magnetic fields [27] or varying atomic constants
[28–31], by altering the shape of the primordial power
spectrum [32], or by considering different forms of early
dark energy [33–41] or dark radiation [12]. See the reviews
[42–44] for a more extended bibliography. These options
are appealing, but it is important to mention that their
ability to loosen the tension is in general limited by e.g.
their impact on photon diffusion [45] or the early integrated
Sachs-Wolfe effect [46] and typically require much larger

values of the spectral index of the primordial power
spectrum of scalar perturbations [20,26,34,46], closer to
ns ∼ 1. This is welcome by small-scale CMB experiments
as the Atacama Cosmology Telecope, but not by Planck
[47–49], especially when CMB polarization data are
included in the fitting analyses; see e.g. Refs. [12,24,25].
Figure 1 tells us that if there is no new physics before

recombination, i.e. if rd ∼ 147 Mpc, the absolute magni-
tude of SNIa, considered to be constant in time, must be
M ∼ −19.4 mag. This value is in clear tension with the one
measured by SH0ES in the second rung of the direct
distance ladder (at z≲ 0.02). According to this very well-
known result and taking for granted the absence of
systematics in the SH0ES measurement of M, Planck,
and the SNIa data sets, it seems that there are only three
possible routes to try to explain the H0 (orM) tension with
low-z solutions:
(1) Systematics in the anisotropic BAO data. The 3D

BAO data could be affected by biases due e.g. to
some model dependence introduced in the
reconstruction of the BAO peak. It is therefore
interesting to explore alternative BAO data sets, as
the transversal or angular BAO [also known as two-
dimensional (2D) BAO] data set, which is perhaps
less subject to model dependencies [50]; see also
Refs. [51,52]. This could open the window to
solutions that keep a large value of M ∼MR22 in
a wider redshift range and introduce some new
physics at z≳ 2 to keep the location of the first
peak of the CMB temperature power spectrum
unaltered. This would move the gray band upwards
in Fig. 1, toward the overlapping region of SH0ES
and Planck.
In this work, we will study how the low-redshift

solution to the Hubble tension changes when the
2D BAO data set is considered instead of the 3D
BAO data set. The work [53] already reported the
existing tension between these two data sets and
showed that there is a better agreement between
SH0ES and the 2D BAO data, considering a
constant M (see also Ref. [54]). Here, we will
show what is the shape ofHðzÞ required not to spoil
the description of the CMB and the possible
implications for the effective dark energy fluid.
In addition, we will see that the data do not exclude
a mild evolution of MðzÞ.

(2) A sudden transition inM at some point of the second
rung of the direct distance ladder (at z≲ 0.01)
leading to M ∼ −19.4 mag in the Hubble flow. This
would automatically reestablish the concordance
between the SH0ES measurement and the value
H0 ∼ 67.5 km=s=Mpc obtained from the fit of the
ΛCDM to the 3D BAO and Planck 2018 data,
essentially erasing the Hubble tension. The study
[55] does not exclude this possibility, but neither

FIG. 1. Degeneracy band at 68% and 95% C.L. in the M − rd
plane (in gray) inferred from uncalibrated BAO and SNIa data.
We have obtained these constraints using the method previously
employed in Ref. [15], which is based on the Index of Incon-
sistency by Lin and Ishak [16]; see Appendix A for details. We
also include the vertical band with the SH0ES measurement ofM
(MR22) [1] and the horizontal band with the ΛCDM value of rd
obtained by Planck (rP18d ) [2], both at 1σ C.L. It is evident that the
intersection of these two bands lie far away from the region
preferred by the uncalibrated 3D BAO and SNIa data.

1This has to be complemented also by changes in the late
Universe with respect to the Planck=ΛCDM best-fit cosmology,
of course. To understand why, see e.g. Ref. [17].
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does it find any compelling evidence in its favor, as it
is clear from Fig. 16 of that reference. There is
actually room for this transition to happen at higher
redshifts, and this is a possibility that we will discuss
below, in point 3.
Such a rapid transition could be due, for instance,

to some difference of color correction between the
SNIa in the calibration and cosmological samples, or
to another unaccounted for refinement of the SNIa
standardization procedure (the so-called Tripp cal-
ibration [56]) [55,57–60]. The ultimate physical
origin of these effects remains unknown, though.
Alternatively, this transition in M could also be

caused by an ultra-late-time change of G achieved
through some modified theory of gravity [61–64];
see also Refs. [65,66]. Nevertheless, it seems
unnatural that such a transition in redshift, at both
cosmological and local scales, leads to Newton’s
constant in the local environment, exactly as in the
cosmological regime at higher redshifts. We would
expect this transition to alter the gravitational
strength entering the Friedmann equation, therefore
changing the ΛCDM background evolution and
the ability of the model to fit the CMB and the
anisotropic BAO data.2 Explaining the phenomenol-
ogy as due only to local (screening) effects is also
contrived, since one would expect them to be present
also at higher redshifts, leading to a more stable
value of M. A natural implementation of these ideas
might not be easy.3

(3) A smoother transition inM together with an increase
ofHðzÞ happening at z≲ 0.2. If we assume, as in the
previous scenario, that the 3D BAO data are not
affected by significant biases but instead assume that
the value ofM at the beginning of the third rung of the
cosmic distance ladder is given by the SH0ES
measurement, how should we change the shape of
HðzÞ to explain the CMB and 3D BAO observations
while keeping HR22

0 ∼ 73 km=s=Mpc? Two condi-
tions have to be satisfied: (i) HðzÞ has to increase at
small redshifts to reach the region of H0 preferred by
SH0ES, and (ii) at some redshift, HðzÞ has to go
below the ΛCDM curve preferred by Planck in order
to compensate the previous increase and leave the

value of the angular diameter distance to the last
scattering surface DAðz�Þ intact. These modifications
must respect the good description of the 3D BAO
data. In addition, taking into account that the latter,
when calibrated with rP18d , lead to angular diameter
distances and values of HðzÞ in good agreement with
the standard model, we expect our result for HðzÞ to
automatically force the redshift evolution of M in
order to match the low-z and high-z estimates of this
quantity. Otherwise, the inverse distance ladder keeps
the tension between CMB and SH0ES high at the
level of M, even if the model is able to produce a
value close to HR22

0 . Therefore, we need to consider,
on top of a modified Hubble expansion, a variation in
M. This is a very important result, first noted in
Ref. [67] and further explored in Ref. [68]. If the
inverse distance ladder (built with 3D BAO) and
SH0ES are free from systematic errors, in the context
of standard prerecombination physics, we cannot
avoid the variation of M, regardless of the nature
of the late-time new physics required at cosmological
level to solve the Hubble tension.
The data still give room for this variation to happen

at z > 0.01. We will see in Sec. III that the transition
in HðzÞ and MðzÞ is allowed to happen at z≲ 0.2 at
most. Apart from that, we will also assess in this work
the real need of a crossing of the phantom divide of
the effective dark energy fluid. We will show that
there is no clear evidence for a deviation from a
cosmological constant before the transition. Our
conclusions are in some sense aligned with
Refs. [67,69,70]. The aim is to proceed in a
model-independent fashion to try to constrain the
shape of HðzÞ at low redshifts using 3D BAO data
calibrated with the measurement of rd from Planck
2018, the SH0ES prior onH0, and the CMB distance
prior on DAðz�Þ from Planck. We will also study
the impact of cosmic chronometers (CCH). The
reconstruction of HðzÞ will be used then to recon-
struct the shape of MðzÞ needed to avoid the inverse
distance ladder bottleneck.
A few comments about other references on these

matters are now in order. Based on Ref. [71], in
Refs. [72–74], the authors explored transitions hap-
pening at z ¼ 0.1 in the context of models with a
change from a cosmological constant to phantom
dark energy. They found that, although these models
can alleviate the Hubble tension, they are unable to
reconcile the values of M measured with the direct
and inverse distance ladders. This presumably hap-
pens, too, in the scenarios analyzed in e.g.
Refs. [75,76]. Similar transitions, from quintessence
to phantom, were also studied in Refs. [77,78], and in
Ref. [79], the authors explored a modified gravity
parametrization with a transition at z ¼ 0.1 as well

2Notice that H2
0 ¼ 8πGρ0c=3. Hence, if we keep H0 as in the

Planck=ΛCDMmodel and consider aG different from Newton’s
constant, we need to change also the critical energy density ρ0c to
properly fit the 3D BAO and CMB data. The only way of doing
so by keeping Ωm ¼ ρ0m=ρ0c to the value preferred by the SNIa
data is by changing, at least, the matter density ρ0m. This would
alter the amplitude and location of the CMB peaks.

3However, in this work, we will not focus on the ultimate
physical cause of the modifications of HðzÞ required to solve the
Hubble tension. Our study will be mainly phenomenological,
leaving a more theoretical analysis for the future.
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and found evidence in its favor, with an increase
of H0. However, they used only BAO and CMB data
to constrain their model. The inclusion of SNIa data
in their analysis would produce exactly the same
problems found in Refs. [72–74], since the resulting
value ofM would be at odds withMR22. These works
do not solve the M tension, since they did not
consider the redshift evolution of this quantity.

As already mentioned in the first point, in this work, we
will study how the shape of HðzÞ required to solve the
Hubble tension changes with the BAO data set, assuming
standard physics before recombination. In particular, we
will show that the shape preferred by the 2D BAO data set
is quite different from the one preferred by the 3D BAO
data. In the former case, the deviations from the ΛCDM
appear also at much higher redshifts (z≳ 2), and the
transition is much smoother. In addition, we will also
reconstruct the shape of the deceleration parameter.
This work is organized as follows. In Sec. II, we explain

the methodology used in the reconstruction of HðzÞ and
MðzÞ, as well as the data sets employed in our analyses. We
also describe two methods to test the violation of the weak
energy condition (WEC) with the help of cosmic chro-
nometers. In Sec. III, we present the results obtained using
the anisotropic and angular BAO data sets in combination
with CMB priors, with and without the addition of cosmic
chronometers. We also discuss in detail the violation of the
WEC required by these low-z solutions. Finally, in Sec. IV,
we provide our conclusions. Appendixes A–D complement
the content of the main body of the paper.

II. METHODOLOGY AND DATA

A. Fitting function for HðzÞ
We assume throughout this paper a flat Friedmann-

Lemaître-Robertson-Walker (FLRW) Universe and use the
following fitting expression for the Hubble function,

HðzÞ ¼

8>><
>>:

H̄ðzÞ þ δH1ðzÞ if 0 < z ≤ zp

H̄ðzÞ þ δH2ðzÞ if zp < z < zmax

HΛðzÞ if z ≥ zmax

ð1Þ

with

H̄ðzÞ≡ H̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̄m½ð1þ zÞ3 − 1�

q
; ð2Þ

HΛðzÞ≡ H̃0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̃m½ð1þ zÞ3 − 1� þ Ω̃r½ð1þ zÞ4 − 1�

q
;

ð3Þ

and

δH1ðzÞ≡ aþ bzþ cz2; δH2ðzÞ≡ dþ ezþ fz2: ð4Þ

It is a versatile fitting expression, which can reproduce
phantom and quintessence behaviors, and also permits the
crossing of the phantom divide.4 It allows us to avoid
the use of any DE or modified gravity model and also the
choice of how to split the energy budget of the dark sector
at late times, while sticking to ΛCDM at higher redshifts.
The parameters ðΩ̄m; H̄0Þ ¼ ð0.3153; 67.36Þ entering

Eq. (2) are fixed to the best-fit values obtained in
the TT;TE;EEþ lowEþ lensing ΛCDM analysis by
Planck [2]. The quadratic polynomials δH1ðzÞ and
δH2ðzÞ in the first and second rows of Eq. (1) [given in
Eq. (4)] parametrize deviations with respect to the mean
Hubble function in the ΛCDM at z < zmax.

5 All the
freedom of the model in this redshift range is transferred
to the parameters fa; b; c; d; e; fg. For the part of HðzÞ at
z ≥ zmax [see Eq. (3)], we use a Gaussian prior from Planck
on ðΩ̃m; H̃0Þ, taking into account their correlation; see
Sec. II D for details. We leave these parameters free in the
fitting analyses. The prior allows us to make sure that at
z > zmax the shape of the Hubble function does not depart
from the standard one, keeping also the physics at recom-
bination untouched. The uncertainties of ðΩ̃m; H̃0Þ have an
impact on the observables at z > zmax and also propagate to
the uncertainties of the parameters entering the Hubble
function at smaller redshifts. This is why it is important to
consider them. The radiation parameter appearing in the
last row of Eq. (1) reads Ω̃r ¼ 4.18343 × 10−5=h̃2, with
h̃ ¼ H̃0=ð100 km=s=Mpc). The numerical coefficient is
fixed by the current CMB temperature [81], assuming
for the sake of simplicity three relativistic neutrino species.
We impose the following six constraints, which allow us

to compute the parameters fa; b; c; d; e; fg entering the
functions δH1ðzÞ and δH2ðzÞ,

δH1ðz ¼ 0Þ ¼ H0 − H̄0 ≡ δH0; ð5Þ

δH1ðzpÞ ¼ δH2ðzpÞ≡ δHp; ð6Þ

∂δH1

∂z

����
z¼zp

¼ ∂δH2

∂z

����
z¼zp

¼ 0; ð7Þ

δH2ðzmaxÞ ¼ HðzmaxÞ − H̄ðzmaxÞ≡ δHmax; ð8Þ

with zp the pivot redshift at which we have the extrema of
δH1 and δH2. The two conditions in Eqs. (6) and (7) are
obtained by demanding at zp the continuity of HðzÞ and its

4For more complicated forms of HðzÞ, see e.g. Ref. [80]. Our
fitting function allows us to study the problem at hand with a
minimal set of parameters.

5In Appendix B, we explore a similar parametrization of
δHiðzÞ, a second-order polynomial in terms of a − 1 instead of z,
with a ¼ ð1þ zÞ−1 the scale factor. More tests on the robustness
of our fitting function are performed in Appendix C.
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derivative, respectively, whereas the condition (8) enforces
the continuity of the Hubble function at zmax.
We consider the suite of parameters fΩ̃m; H̃0; H0; zp;

δHp; zmaxg. The pair fΩ̃m; H̃0g and H0 will be mainly
controlled by the Planck and SH0ES priors, respectively.
The triad fzp; δHp; zmaxg is a priori more uncertain.
However, we can already understand that if we set zmax
to a value smaller than the smallest redshift in the BAO data
set, zBAO;min, we will be unable to put strong constraints on
the pair fzp; δHpg, since in this case there exists a full
degeneracy between these two parameters. This degeneracy
is essentially fixed by the CMB prior on the angular
diameter distance to the last scattering surface; see
Sec. II D. Thus, for zmax ≤ zBAO;min, we can only constrain
the direction of the degeneracy line. For zmax > zBAO;min,
the situation could be different, of course. We use unin-
formative flat priors for fzp; δHpg, much wider than the
constraints we get from the fitting analyses.
The conditions (5)–(8) can be written in a very

simple way,0
B@

δH0

δHp

0

1
CA ¼

0
B@

1 0 0

1 zp z2p
0 1 2zp

1
CA
0
B@

a

b

c

1
CA ð9Þ

and

0
B@

δHmax

δHp

0

1
CA ¼

0
B@

1 zmax z2max

1 zp z2p
0 1 2zp

1
CA
0
B@

d

e

f

1
CA; ð10Þ

so the constants fa; b; c; d; e; fg needed to compute HðzÞ
can be obtained straightforwardly. We reconstruct the
Hubble function by means of Monte Carlo analyses carried
out with Mathematica [82], making use of Eq. (1) and the
baseline data sets described in Sec. II D.6 We employ the
Metropolis-Hastings algorithm [84,85] and stop the routine
when the Monte Carlo performs 2 × 104 jumps in param-
eter space, which is more than sufficient to achieve
convergence in all the runs carried out in this work, with
values of the Gelman-Rubin convergence statistic [86,87]
R − 1 < 0.02 for all the sampled parameters. We set zmax to

different values in order to study its impact in our analyses
and sample the five parameters contained in the vector
fΩ̃m; H̃0; H0; zp; δHpg. Using the resulting HðzÞ, it is also
possible to reconstruct in a trivial way higher-order
cosmographical functions as the deceleration parameter.
The latter reads

qðzÞ ¼ −1þ ð1þ zÞ
HðzÞ

dH
dz

: ð11Þ

We will show results for qðzÞ, too, in Sec. III.

B. Reconstruction of MðzÞ
Let us consider the relation between the luminosity

distance to a given object in a flat FLRW Universe,

DLðzÞ ¼ cð1þ zÞ
Z

z

0

dz̃
Hðz̃Þ ; ð12Þ

its apparent magnitude m; and its absolute magnitude M,
which is given by

M ¼ m − 25 − 5 log10

�
DL

1 Mpc

�
: ð13Þ

For standardizable objects, the standardized absolute mag-
nitude is just a constant and, hence, does not depend on the
position nor the redshift. This is what it is usually assumed
for SNIa. Here, though, we abandon this assumption and
consider that the usual standardization method of SNIa can
still receive an unknown correction, making the absolute
magnitude evolve with the redshift. We use Gaussian
processes [88] to generate samples of mðzÞ from the
Pantheonþ SNIa compilation (see Sec. II D) and combine
them with our Markov chains of HðzÞ to reconstruct MðzÞ.
This allows us to assess whether the low-z solutions to the
H0 tension require the evolution of M.
For the reconstruction of mðzÞ, we use the public

package Gaussian Processes in Python (GaPP)7 [89]. In
particular, we use the Matérn 32 kernel and the optimiza-
tion of its hyperparameters. This procedure has been
already tested and employed in Ref. [90].
We present the results obtained using anisotropic and

angular BAO data in Secs. III A and III B, respectively.

C. Assessing the fulfillment of the weak energy
condition with the aid of CCH

The weak energy condition is fulfilled if the null energy
condition

Tμνkμkν ≥ 0 ð14Þ

6Our approach is similar to the one employed in Ref. [83], but
in this study, we will show explicitly the need for an evolving
MðzÞ on top of the new physics at cosmological level. In addition,
it is very important to notice that the authors of Ref. [83] did not
employ a CMB prior on DAðz�Þ. They made use of a prior
on HðziÞ at several high redshifts (z > 4) obtained with the
Planck=ΛCDM cosmology. This is insufficient if we want to
study the Hubble tension in a robust and unbiased way, since by
considering only the constraints on HðziÞ at z > 4 from Planck
we obtain curves of HðzÞ that do not respect in general the very
tight constraint we have on DAðz�Þ and, hence, spoil the good
description of the CMB data. 7https://github.com/carlosandrepaes/GaPP.
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is satisfied for any null vector (kμkμ ¼ 0) together with

Tμνuμuν ≥ 0; ð15Þ

where Tμν is the energy-momentum tensor and uμ is a
timelike four-vector. For a perfect fluid with density ρ and
pressure p in a FLRWuniverse, Eqs. (15) and (14) translate
into the two conditions

ρ ≥ 0 and
dρ
dz

≥ 0; ð16Þ

which essentially stand for the positivity of the energy
density and its constant or decaying nature. They are
satisfied by all the fluids considered in the ΛCDM model,
so the violation of the WEC would automatically imply the
existence of physics beyond the standard model.8 Here, we
are interested in testing the fulfillment of the WEC by the
effective dark energy fluid in charge of the accelerated
expansion of the Universe, considering that it is covariantly
self-conserved and, hence, that matter is diluted according
to the usual law,9

ρmðzÞ ¼ ρ0mð1þ zÞ3: ð17Þ

It was shown in Ref. [91] that in this case the Friedmann
equation together with the second inequality of Eq. (16)
leads to

Ωm ≤
E2ðzÞ − 1

ð1þ zÞ3 − 1
; ð18Þ

with EðzÞ ¼ HðzÞ=H0 the normalized Hubble rate. We
denote the right-hand side of this inequality asΩmax

m . It is an
upper bound that cannot be surpassed if the effective dark
energy fluid is not phantom. As already shown in Ref. [91],
one can use cosmic chronometers in combination with a
prior on H0 to obtain as many estimates of Ωmax

m as data
points we have on CCH.10 One can sample the Gaussian
distributions of H0 and the CCH data to obtain a chain
with Ωmax

m ðziÞ.
We aim to improve the analysis of Ref. [91] in several

ways, namely:
(i) We take advantage of the larger sample of CCH

measurements (we have now 33 data points instead
of 9); see Sec. II D.

(ii) We also employ their corresponding covariance
matrix.

(iii) We apply an advanced method to get a single
representative value of Ωmax

m , duly accounting for
the correlations and assessing the impact of non-
Gaussian features in the multivariate distribution.

The latter is done by means of the so-called Edgeworth
expansion. It allows us to compute an analytical approxi-
mation of the underlying (exact) distribution,

fðx⃗Þ ¼ Gðx⃗; λÞ
�
1þ 1

6
kijkhijkðx⃗; λÞ

þ 1

24
kijklhijklðx⃗; λÞ þ � � �

�
; ð19Þ

see Ref. [94] and references therein. Here, xi ¼ di − μi,
with di ¼ Ωmax

m ðziÞ and μ⃗ the mean vector, i.e. μi ¼
hΩmax

m ðziÞi. λ ¼ C−1 is the inverse of the covariance matrix,
with elements Cij ¼ hxixji. Gðx⃗; λÞ is the multivariate
Gaussian distribution built from that mean and covariance
matrix, and kijk¼hxixjxki and kijkl¼hxixjxkxli−CijCkl−
CikCjl−CilCjk are the elements of the higher-order cumu-
lant matrices, called skewness and kurtosis matrices,
respectively. On the other hand,

hij…ðx⃗; λÞ ¼ ð−1ÞrG−1ðx⃗; λÞ∂ij…Gðx⃗; λÞ ð20Þ

are the Hermite tensors of order r, with r the number of
indices. The Hermite tensors of order 3 and 4 appearing in
Eq. (19) read, respectively,

hijkðx⃗Þ¼ λinλjtλklxnxtxl−ðλijλktþλikλjtþλjkλitÞxt; ð21Þ

hlijkðx⃗Þ ¼ λlnxnhijkðx⃗Þ þ λijλkl þ λikλjl þ λjkλil

− ðλilλjtλkn þ λinλjlλkt þ λinλjtλklÞxnxt: ð22Þ

In this calculation, we have made use of the fact that
∂iG ¼ −Gλijxj and of Einstein’s summation convention.
All these objects can be directly computed from the chain
of Ωmax

m ðziÞ, with i the index that runs over the CCH data
points. Once we have Eq. (19), we can sample it, treating it
as a one-dimensional distribution for Ωmax

m (instead of a
multivariate distribution for the array fΩmax

m ðziÞg). If the
non-Gaussian features are negligible, then it reduces of
course to a Gaussian with the following weighted mean and
variance,

Ω̄max
m ¼

P
33
i;j¼1 μ

iλijP
33
i;j¼1 λij

; σ2 ¼ 1P
33
i;j¼1 λij

: ð23Þ

Otherwise, Eq. (19) introduces some corrections in the
computation of the central value and confidence intervals
of Ωmax

m .

8The strong energy condition reads, instead, ρþ p ≥ 0 and
ρþ 3p ≥ 0. The cosmological constant satisfies the weak energy
condition but not the strong one.

9Scenarios with a coupling with matter are also interesting, but
the analysis would depend on the choice of the source vector,
which controls the transfer of energy and momentum between the
dark components.

10Similar methods, as theOm andOmh2 diagnostics, have also
proved useful to test the ΛCDM model [92,93].
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Another possibility to test the WEC is to consider the
following relation,

ρdeðzÞ
ρ0de

¼ E2ðzÞ −Ωmð1þ zÞ3
1 −Ωm

; ð24Þ

which is directly obtained from the Friedmann equation.
Sampling HðzÞ from the CCH data and combining this
information with a prior onH0 and ωm that lets us compute
Ωm, it is possible to constrain Eq. (24) at the redshifts of the
CCH. Negative values of this quantity hint at a violation of
the first WEC of Eq. (16). Instead, 0 < ρdeðzÞ=ρ0de < 1

means that the second condition is not fulfilled.
We provide the results of these analyses in Sec. III C.

D. Data

In this work, we make use of the following data sets:

(i) The SH0ES prior on the Hubble parameter,HR22
0 [1].

(ii) The anisotropic (3D) BAO data listed in Table I.
(iii) The transversal (angular, 2D) BAO data listed in

Table II. Angular BAO might be less model depen-
dent than 3D BAO but have larger error bars [51,52].

(iv) The Planck 2018 CMB TT;TE;EEþ lowEþ
lensing ΛCDM Gaussian priors on the quantities
fDAðz�Þ; rd; Ω̃m; H̃0g, including the corresponding
covariance matrix C. This information can be
obtained from the Planck Legacy Archive.11 They
read, respectively,

0
BBB@

DAðz�Þ½Gpc�
rd½Mpc�
Ω̃m

H̃0½Mpc=km=s�

1
CCCA ¼

0
BBB@

13.872

147.09

0.3153

67.36

1
CCCA; ð25Þ

C ¼

0
BBB@

6.11 × 10−4 6.42 × 10−3 −1.49 × 10−4 9.84 × 10−3

− 7.04 × 10−2 −1.51 × 10−3 9.85 × 10−2

− − 5.44 × 10−5 −3.94 × 10−3

− − − 2.90 × 10−1

1
CCCA; ð26Þ

where the units of the elements of C are set by those employed in Eq. (25), and we omit the lower half of the
covariance matrix, since it is obviously symmetric. The use of this prior is fully justified by our assumption of
standard physics before recombination. We generate samples of these parameters and the BAO data out of the

TABLE I. List with the 13 anisotropic BAO data points used in this work. The fiducial values of the comoving
sound horizon appearing in the third column are rfidd ¼ 147.5 Mpc for Ref. [97] and rfidd ¼ 148.6 Mpc for Ref. [98].
DMðzÞ ¼ ð1þ zÞDAðzÞ is the comoving angular diameter distance, and DVðzÞ ¼ ½D2

MðzÞcz=HðzÞ�1=3 is the so-
called dilation scale. We have duly taken into account the existing internal correlations between the data points of
WiggleZ, BOSS DR12, and QSOs and Lyα eBOSS DR16. See the quoted references for details.

Survey z Observable Measurement References

6dFGSþ SDSS MGS 0.122 DVðrfidd =rdÞ 539� 17 (Mpc) [97]

WiggleZ 0.44 DVðrfidd =rdÞ 1716.4� 83.1 (Mpc) [98]

0.60 DVðrfidd =rdÞ 2220.8� 100.6 (Mpc)

0.73 DVðrfidd =rdÞ 2516.1� 86.1 (Mpc)

BOSS DR12 0.32 rdH=ð103 km=sÞ 11.549� 0.385 [99]
DA=rd 6.5986� 0.1337

0.57 rdH=ð103 km=sÞ 14.021� 0.225
DA=rd 9.389� 0.103

DES Y3 0.835 DM=rd 18.92� 0.51 [100]

Quasars eBOSS DR16 1.48 DM=rd 30.21� 0.79 [101]
c=ðHrdÞ 13.23� 0.47

Lyα-Forests eBOSS DR16 2.334 DM=rd 37.5þ1.2
−1.1 [102]

c=ðHrdÞ 8.99þ0.20
−0.19

11http://pla.esac.esa.int/pla/#home.
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respective multivariate Gaussian distribution and
obtain a joint data vector which incorporates the
BAO angular diameter distances, dilation scales,
HðziÞ, together with fDAðz�Þ; Ω̃m; H̃0g, and their
joint covariance matrix. The prior from SH0ES can
be easily added, considering 0 correlation with the
other parameters, since it is independent. We build
the resulting vector of data and covariance matrix
before performing the fitting analysis, of course.
This will constitute our Baseline_3D or Base-
line_2D data sets, depending on the BAO data set
that we consider. They are 17 and 19 dimensional,
respectively.

(v) The data on cosmic chronometers and covariance
matrix used in Ref. [90]. We add the new data point
Hðz ¼ 1.26Þ ¼ ð135� 65Þ km=s=Mpc [95], for
completeness. See Table III and references therein.
In some of our analyses, we have tried the combi-
nation Baselineþ CCH. In Sec. III C, we employ
CCH together with the SH0ES or Planck priors on
the Hubble parameter (HR22

0 and HP18
0 , respectively)

to study the weak energy condition applying the
methods described in Sec. II C.

(vi) The SNIa data from the Pantheonþ compilation
[96]. As explained in Sec. II B, we do not employ
them in the fitting analyses but to reconstruct MðzÞ
with the help of the shapes of HðzÞ obtained in the
Monte Carlo runs.

III. RESULTS AND DISCUSSION

In Fig. 2, we plot the cosmic distances and values of
HðzÞ obtained from the angular and anisotropic BAO data
after their calibration with rP18d , together with the best-fit

Planck=ΛCDM curves of the corresponding cosmological
functions. The agreement between the latter and the vast
majority of the 3D BAO data is clear, and this is why in
order to accommodate the SH0ES measurement one has to
modify the model at redshifts below ∼0.1, which is the
minimum BAO redshift in the 3D data set; cf. Table II.12

TABLE III. List with the 33 CCH data points on HðzÞ used in
this work, obtained from the references quoted in the last column.
In the case of Refs. [127,128], the central values of HðzÞ are
computed by performing the arithmetic mean of the measure-
ments obtained with the BC03 [129] and MaStro [130] stellar
population synthesis models.a The covariance matrix is computed
using the method presented in Ref. [131], which incorporates
both the statistical and systematic errors. See the quoted refer-
ences for details.

z HðzÞ (Km=s=Mpc) References

0.07 69.0� 19.6 [133]
0.09 69.0� 12.0 [134]
0.12 68.6� 26.2 [133]
0.17 83.0� 8.0 [135]
0.1791 78.0� 6.2 [127]
0.1993 78.0� 6.9 [127]
0.2 72.9� 29.6 [133]
0.27 77.0� 14.0 [135]
0.28 88.8� 36.6 [133]
0.3519 85.5� 15.7 [127]
0.3802 86.2� 14.6 [128]
0.4 95.0� 17.0 [135]
0.4004 79.9� 11.4 [128]
0.4247 90.4� 12.8 [128]
0.4497 96.3� 14.4 [128]
0.47 89.0� 49.6 [136]
0.4783 83.8� 10.2 [128]
0.48 97.0� 62.0 [137]
0.5929 107.0� 15.5 [127]
0.6797 95.0� 10.5 [127]
0.75 98.8� 33.6 [138]
0.7812 96.5� 12.5 [127]
0.8754 124.5� 17.4 [127]
0.88 90.0� 40.0 [137]
0.9 117.0� 23.0 [135]
1.037 133.5� 17.6 [127]
1.26 135.0� 65.0 [95]
1.3 168.0� 17.0 [135]
1.363 160.0� 33.8 [139]
1.43 177.0� 18.0 [135]
1.53 140.0� 14.0 [135]
1.75 202.0� 40.0 [135]
1.965 186.5� 50.6 [139]

aThis is the origin of the differences with Table 1.1 of
Ref. [132], in which the author reported the BC03 values,
which are in most cases larger than those obtained with MaStro.

TABLE II. List with the 15 2D BAO data points used in this
work, with θBAOðzÞ½rad� ¼ rd=½ð1þ zÞDAðzÞ�. We employ a
diagonal covariance matrix. See the quoted references for details.

z θBAO (deg) σBAO (deg) References

0.11 19.8 3.26 [51]

0.235 9.06 0.23 [103]
0.365 6.33 0.22

0.45 4.77 0.17 [104]
0.47 5.02 0.25
0.49 4.99 0.21
0.51 4.81 0.17
0.53 4.29 0.30
0.55 4.25 0.25

0.57 4.59 0.36 [105]
0.59 4.39 0.33
0.61 3.85 0.31
0.63 3.90 0.43
0.65 3.55 0.16
2.225 1.77 0.31 [106]

12There are only mild tensions with the DES Y3 data point at
z ¼ 0.835 and the Lyα-Forest data at z ¼ 2.334 from eBOSS
DR16, but they are much less significant than the Hubble tension.
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Conversely, there is an obvious tension between the best-fit
Planck=ΛCDM cosmology and the 2D BAO data in the
redshift range 0.4≲ z≲ 0.7, since all the blue points of the
upper-left plot in that redshift range fall below the black
curve. These 2D BAO angular diameter distances are
smaller than preferred by the standard model. This implies
that 2D BAO data prefer larger values of the Hubble
function, more in agreement with SH0ES [53]. Hence, in
order to reestablish the concordance in the context of the
distance ladder built with Planck and the 2D BAO data, we

need to modify the shape of HðzÞ at much higher redshifts,
too, z ∼ 1. We devote Secs. III A and III B to showing all
this explicitly, together with the shapes of MðzÞ needed to
keep the consistency with the SNIa data.

A. Analysis with Baseline_3D

We present in the left plot of Fig. 3 the reconstructed
curves of HðzÞ obtained from the fit to the Baseline_3D
data set, following the method explained in Sec. II A. More
concretely, we show only the 68% curves with lowest χ2.

FIG. 2. Calibrated 3D and 2D BAO data, in red and blue, respectively. The calibration is carried out with the Planck=ΛCDM value of
the sound horizon rP18d ; see Sec. II D. We also plot (in black) the curves of the various observables computed with the best-fit
Planck=ΛCDM cosmology. See the comments in the first paragraph of Sec. III.

FIG. 3. On the left, curves of HðzÞ obtained with the Baseline_3D data set, using Eq. (1) and fixing zmax ¼ 1; cf. Sec. II A. We show
the 68% curves with smallest χ2. On the right, the corresponding absolute magnitude of SNIa, MðzÞ; see Sec. II B. We zoom in the
region z < 0.5 to better appreciate the increase of HðzÞ and MðzÞ at small redshifts. At z≳ 0.2, HðzÞ ≃HΛðzÞ [see Eq. (3)], and MðzÞ
becomes compatible with the value obtained with the inverse distance ladder assuming the ΛCDM, M ∼ −19.4 mag.
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The right plot of Fig. 3, instead, contains the associated
curves of MðzÞ, obtained as described in Sec. II B.13

In this analysis, we have fixed zmax ¼ 1, but we have
checked that values of zmax ¼ 0.5, 2, 4 do not introduce any
significant change in the shape of the reconstructed
function and the minimum values of the χ2. Therefore,
the results obtained with the Baseline_3D data set are stable
and basically insensitive to the parameter zmax. We find in
all cases a phantomlike increase of HðzÞ at z≲ 0.2 with
respect to the best-fit Planck=ΛCDM model and slightly
smaller values ofHðzÞ at higher redshifts. This is consistent
with the results reported in Ref. [67]. This upper bound is
close to the minimum redshift of the 3D BAO data, as
expected from Fig. 2. In contrast, there is no lower bound
on the redshift at which the nonstandard growth of HðzÞ
starts. This means that the Baseline_3D data set is not
capable of arbitrating between an ultra-late-time transition
at z≲ 0.01 and a late-time transition at 0.01≲ z≲ 0.2,
corresponding to the scenarios 2 and 3 discussed in the
Introduction, respectively. We denote this (transition)

redshift as zt and define it as the redshift at which
HðztÞ ¼ 1.005HΛðztÞ; see its posterior distribution in the
upper plot of Fig. 4. The smaller zt is, the faster the increase
of HðzÞ and MðzÞ in the transition is, of course.
Although there is a clear trend toward the value of M

measured by SH0ES at z ∼ 0, MR22, it is not easy to grasp
the details of the transition for a fixed zt due to the large
number of curves contained in the plots of Fig. 3. This is
why we choose to show in Fig. 5 only those curves with
0.09 < zt < 0.15, as an illustrative example.
Also, we study an additional consequence of the fast

increase of the Hubble function at those very low redshifts:
a natural drop in the deceleration parameter, given by
Eq. (11). Its shape is shown in the bottom plot of Fig. 5. The
values of qðz ¼ 0Þ≡ q0 are typically two or three times

FIG. 4. Posterior distributions of the transition redshift zt
obtained with the Baseline_3D and Baseline_2D data sets from
the corresponding Monte Carlo analyses. Triangle plots for the
parameters entering the two analyses are provided in Appendix D.

FIG. 5. Same as in Fig. 3, but only for the curves with
0.09 < zt < 0.15. The vertical red band indicates the range of
values of zt covered. In the middle plot, we include the constant
values MR22 (in cyan) and M ¼ −19.40 (in purple), the latter
being close to the ΛCDM best-fit value obtained from a CMBþ
BAOþ SNIa analysis (see e.g. Ref. [107]). In the bottom plot, we
present the corresponding shapes of the deceleration parameter
qðzÞ, Eq. (11), and include an inner plot with the positive
correlation between its value at z ¼ 0, q0, and zt.

13We do not show in this work the mean and the corresponding
confidence intervals of the various reconstructed functions, since
they complicate the interpretation of the results due to the non-
negligible impact of volume effects.
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smaller than the one preferred by ΛCDM, q0 ≈ −0.55, and
can be even larger for lower values of zt.

14 We also observe
a positive correlation between the transition redshift and q0,
as expected. We show this in the inner plot. The smaller the
value of zt is, the more accelerated the Universe has to be to
transition to HR22

0 and, hence, the more negative the value
of q0 is.
It is also a good exercise to study what is the typical

shape of the density of a hypothetical effective dark energy
fluid in these low-redshift solutions, provided that such a
fluid is covariantly self-conserved. We define

H2ðzÞ≡ 8πG
3

½ρ̃0mð1þ zÞ3 þ ρdeðzÞ�

¼ Ω̃mH̃2
0ð1þ zÞ3 þ 8πG

3
ρdeðzÞ; ð27Þ

with HðzÞ given by Eq. (1) and also use

H2
ΛðzÞ ¼

8πG
3

½ρ̃0mð1þ zÞ3 þ ρ̃Λ�

¼ Ω̃mH̃2
0ð1þ zÞ3 þ 8πG

3
ρ̃Λ; ð28Þ

where HΛðzÞ takes the same form already assumed for
HðzÞ at z > zmax [cf. Eq. (3)] and ρ̃Λ is the energy density
associated to the cosmological constant in the ΛCDM
model. Using these two expressions, we find the following
relative difference between the effective dark energy
density ρdeðzÞ and ρ̃Λ:

ΔðzÞ≡ ρdeðzÞ − ρ̃Λ
ρ̃Λ

¼ H2ðzÞ −H2
ΛðzÞ

H2
ΛðzÞ − Ω̃mH̃2

0ð1þ zÞ3 : ð29Þ

In Fig. 6, we show some shapes of ΔðzÞ obtained with
zmax ¼ 0.5 and zmax ¼ 1. They have been selected from the
group of 68% curves with lowest χ2 in the Monte Carlo
Markov chains, and their form can be considered to be quite
representative of the behavior that is required to explain the
data and alleviate the Hubble tension. By construction of
Eq. (1), we always find a crossing of the phantom divide, of
course. Nevertheless, we want to remark that the steepness
of the quintessence evolution between zp and zmax depends
on both parameters. Larger values of zp and smaller values
of zmax favor a transition from quintessence to phantom, but
the Baseline_3D data set cannot exclude a solution with an
almost constant ρ̃de before the transition for some combi-
nations of these two parameters. What is always needed
is a very fast phantom evolution in the last stages of the
cosmic expansion, which is faster for smaller values of zt.
Our results resonate well with the conclusions of
Refs. [67,69,70] and also with Refs. [77,78]. In addition,

if we decrease zmax, we can find more negative values of Δ
at its minimum.
In order to study the goodness of fit, we have computed

the reduced χ2,

χ2red ¼ χ2min=ðN − nÞ; ð30Þ

with N ¼ 17 the number of data points and n ¼ 5 the
number of fitting parameters; cf. Secs. II A and II D. We
obtain χ2red ∼ 1.3, slightly above 1. This can be explained
essentially by the ∼2σ tension between ΛCDM and the
BAO data from DES and Lyα eBOSS DR16 and also by
the fact that the effective number degrees of freedom can be
significantly larger due to the existence of strong correla-
tions between the parameters; see e.g. Ref. [109]. If we
remove the aforesaid data points, we get χ2red ≲ 1. In any
case, the value χ2red ∼ 1.3 corresponds to a p-value ¼ 0.21
for N − n ¼ 12 degrees of freedom; hence, we can con-
clude that our fitting function is performing well.
Finally, we have also checked that the inclusion of the

CCH data does not alter our results in a significant way. We
will explain why in Sec. III C.

FIG. 6. Curves of ΔðzÞ [Eq. (29)] obtained in the analysis of the
Baseline_3D data set with zmax ¼ 0.5 (upper plot) and zmax ¼ 1
(lower plot). They have been selected from the group of 68%
curves with lowest χ2 in the Monte Carlo Markov chain and
represent the typical behavior of ΔðzÞ required to solve the
Hubble tension. The transition happens in both analyses at
zt ≲ 0.2. See the main text for details.

14These small values of q0 would be excluded if we considered
a fixed M [108].
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In the context of concrete cosmological models, one can
in principle study the evolution of perturbations to put
tighter constraints on the class of viable ultra-low-redshift
solutions to the H0 tension. We expect the growth data to
prefer an effective crossing of the phantom divide in order
not to worsen the tension with galaxy clustering and weak
lensing observations [69,70].15 For the sake of generality,
this study is left for future research, but we remark that a
joint solution to the Hubble and growth tensions in the

context of models with a transition in the redshift range
0.01≲ z≲ 0.2 implies the existence of a late-time effective
phantom regime accompanied by a fast increase of the
absolute magnitude of SNIa, and most probably also a
crossing of the phantom divide. A transition in the Hubble
rate alone is certainly unable to address the H0 tension
according to the Baseline_3D data set; see also Ref. [111].
These effects at very small redshifts would most probably
introduce a new coincidence (or “why now”) problem. The
simultaneous increase of H and M could indicate a
gravitational origin of these transitions and a hint of
deviations from General Relativity. If, instead, the tran-
sition happens at z≲ 0.01, we retrieve scenario 2 of the
Introduction and the possible solutions discussed therein.

B. Analysis with Baseline_2D

The reconstructions of HðzÞ and MðzÞ obtained with
the Baseline_2D data set are presented in Fig. 7. We set
zmax ¼ 4 and show again the 68% of the total number of
curves saved in the Monte Carlo Markov chain, only those
with smallest χ2. In Fig. 8, one can see what is the decrease
of the χ2 as a function of zmax. The former remains stable
for values of zmax ≳ 4. Indeed, we find that in these cases
the transition happens always at 0.5≲ zt ≲ 0.8 and, hence,
at a much higher redshift than in the case of the 3D BAO
analysis studied in the preceding section; see again Fig. 4. It
is easy to understand why. Transversal BAO data calibrated
with rP18d leads to smaller angular diameter distances than
in ΛCDM [and larger values of HðzÞ] at z≲ 0.7. Thus, the
shape of the Hubble function has to go below the standard
one after these redshifts in order to compensate these
effects and respect the CMB preferred value of DAðz�Þ.
For sufficiently large values of zmax, one can increase the

compatibility with MR22 within a larger redshift range, up

FIG. 7. Same as in Fig. 3, but with the Baseline_2D data, using
zmax ¼ 4. The curves of HðzÞ deviate from the Planck=ΛCDM
prediction in a broader redshift range, with a transition from
H < HΛCDM to H > HΛCDM happening now at zt ∼ 0.5–0.8 (see
the zoomed-in middle plot). This is reflected also in the transition
ofMðzÞ (bottom plot), which happens also at much higher z than
in the 3D BAO case; cf. again Fig. 3.

FIG. 8. Values of the minimum χ2 obtained in the fitting
analyses with the Baseline_2D data set, as a function of zmax. We
also show the reduced χ2 [Eq. (30)] in the inner plot. The
goodness of fit reaches a plateau at zmax ∼ 4. This explains why
the transition redshift remains stable for zmax ≳ 4, with 0.5≲
zt ≲ 0.8. The value χ2red ∼ 1.1 (p-value ¼ 0.38) in the plateau
proves the appropriateness of the fitting function, Eq. (1). See the
comments in the main text.

15For details on this tension, see e.g. Refs. [10,110] and
references therein.
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to z≳ 0.5, and the deviation at higher redshifts cannot be
considered to be statistically significant. The shapes of
HðzÞ andMðzÞ leading to a potential solution to the Hubble
tension are therefore quite different from those required by
the 3D BAO data. In this case, we do not find significant
departures of the deceleration parameter from the ΛCDM
value at z ≪ 1. Again, our results remain stable under the
inclusion of CCH data.
If interpreted in terms of an effective self-conserved dark

energy fluid, the change ofHðzÞ with respect to the ΛCDM
requires in this case negative values of the dark energy
density at z≳ 2. The matter energy density at these red-
shifts is very large, so we need also a large value of jρ̃dej to
have a sizable effect on the Hubble function, and ρ̃de has to
be negative in order the change to happen in the right
direction. A couple of representative plots showing this
characteristic behavior are presented in Fig. 9. The crossing
of the phantom divide is also allowed by the angular BAO
data set.
Models with a negative DE density at these redshifts are

available in the literature. Some examples are the sign-
switching cosmological constant model of Refs. [112–115],
the self-conserved dark energy model of Ref. [116], or
models that consider dynamical dark energy on top of an

anti-de Sitter vacuum with negative cosmological constant
[117–120].16 In addition, it is interesting to note that several
works have pointed to the possibility of the presence of
unaccounted systematics in the standardization method of
SNIa [124–126].17 This could potentially explain the smooth
evolution of MðzÞ hinted at by our analysis when we
consider the SH0ES prior and 2D BAO data are employed
instead of 3D BAO to build the inverse cosmic ladder.

C. WEC

The results presented in Secs. III A and III B tell us that
all the low-z solutions to the Hubble tension that involve
new physics at z≳ 0.01 require a violation of the weak
energy condition, regardless of the BAO data set employed
to build the inverse distance ladder. In both cases, there
must be a phantomlike evolution of the effective dark
energy component, which manifests itself at very different
moments of the cosmic expansion. Baseline_3D requires
this to happen at z≲ 0.2, whereas for Baseline_2D, the
transition happens somewhere in the range 0.5≲ z≲ 0.8.
Moreover, in the latter case, the effective DE density takes
negative values at z≳ 2.
Now, we apply the method of Ref. [91] (see Sec. II C) to

determine whether CCHs, which are independent from the
baseline data sets, require the violation of the WEC given
by Eq. (18), assuming a self-conserved effective dark
energy fluid. This condition must be obeyed if its energy
density does not grow with the expansion, i.e. if DE is not
phantom. We study how the result changes when we
employ the SH0ES and Planck priors on H0. The 33
constraints onΩmax

m obtained from the sampling of the CCH
data listed in Table III and the priors on H0 are shown in
Fig. 10. In this calculation, we have duly accounted for the
correlations between the CCH data points. From the list of
values of Ωmax

m , we extract a single representative upper
bound on the matter parameter Ωm. Some of the error bars
in Fig. 10 are quite asymmetric, which means that the
underlying multivariate distribution has some non-
Gaussian features. Nevertheless, the deviation from
Gaussianity in the case of the most precise values of
Ωmax

m is small, so we do not expect this to have a big
effect on the final result. Wewill quantify its impact making
use of the Edgeworth expansion, Eq. (19), and will
compare these results with those obtained assuming that
the underlying distribution is a multivariate Gaussian with
mean and covariance matrix given by Eq. (23).

FIG. 9. Same as in Fig. 6, but using in this case the Base-
line_2D data set with zmax ¼ 4 (upper plot) and zmax ¼ 7 (lower
plot). The transition happens in both cases at zt ≲ 1, with the dark
energy density becoming negative (Δ < −1) at z ∼ 2.

16These models are encompassed inside the more general
category of ΛXCDM models [121–123], which consider both a
dynamical (running) Λ term and a dynamical cosmon X with
equation of state parameter different from −1, eventually inter-
acting with Λ.

17See e.g. Fig. 6 in Ref. [125], in which the authors report an
evolution of the mean SNIa stretch parameter as a function of
redshift at z < 1.
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Neglecting the non-Gaussian features we obtain, using
the SH0ES and Planck priors on H0, respectively,

Ωmax
m ¼ 0.250� 0.031 ½CCHþHR22

0 �; ð31Þ

Ωmax
m ¼ 0.314� 0.036 ½CCHþHP18

0 �: ð32Þ

We want to know whether current constraints on Ωm fall
below or above these upper bounds in order to determine
whether they force the violation of the WEC, according to
the CCH data set and the local values of H0 considered in
the computation of Ωmax

m . It is natural to check this for the
value of Ωm derived from CMB. If we consider standard
physics before recombination, we can take Planck’s con-
straint ωP18

m ¼ 0.1415� 0.0009 and combine it with
SH0ES and Planck priors on H0, yielding

Ωm ¼ 0.265� 0.008 ½ωP18
m þHR22

0 �; ð33Þ

Ωm ¼ 0.315� 0.007 ½ωP18
m þHP18

0 �: ð34Þ

These two results represent the constraints on Ωm preferred
by CMB, depending on whether we rely on a small or large
value of the Hubble constant. To ensure full consistency, we
should compare Eqs. (33) and (34) with Eqs. (31) and (32),
respectively. Although the central values of Ωm lie slightly
above the upper bounds Ωmax

m , there is no important
evidence for the violation of the WEC according to the
CCHþHR22

0 and CCHþHP18
0 data sets if we assume

standard prerecombination physics, since the values (33)
and (34) fall below the upper bounds (31) and (32),
respectively, at 1σ C.L. This is at odds with the results
reported in Ref. [140].

Our conclusions still hold true if we consider the
non-Gaussian corrections of Eq. (19), meaning that the
impact of the non-Gaussian features in the distribution of
Ωmax

m is practically negligible, as expected. Indeed, we
find Ωmax

m ¼ 0.240� 0.030 and Ωmax
m ¼ 0.308� 0.036 at

68% C.L. using the HR22
0 and HP18

0 priors, respectively.
These results are fully compatible with those in Eqs. (31)
and (32).
In order to further illustrate all this, we have fitted the

flat ΛCDM model using CCH and provide the 68% C.L.
contours in Fig. 11.18 It is clear from that plot that,
according to the data on cosmic chronometers, it is possible
to explain a large value of H0 ∼HR22

0 and a small value of
Ωm as the one in Eq. (33) within ΛCDM. In the standard
model, the WEC is automatically fulfilled due to the
constancy of the DE density. Hence, we can explain the
CCH data with the aforesaid values of H0 and Ωm without
requiring phantom DE.19 This is the same conclusion
reached applying the method of Ref. [91]. The CCHþH0

data themselves do not exclude the violation of the weak
energy condition but also do not require its fulfilment. At
the moment, they cannot be used to strongly discriminate
among possible solutions to theH0 tension, and this is why

FIG. 10. Upper bounds on the present value of Ωm imposed by
the WEC; see Eq. (18). Only the (physical) range of positive
values of Ωmax

m is shown. We employ the method explained in
Sec. II C. Since the distributions for Ωmax

m at some redshifts are
highly non-Gaussian, we indicate their corresponding peaks
(with dots) and the confidence intervals at 68% C.L. We show
the results when H0 is sampled using the Planck=ΛCDM value
HP18

0 (in blue) and the SH0ES measurement HR22
0 (in orange).

FIG. 11. Contour plot at 68% C.L. derived from the fit of the
ΛCDM model to CCH and CMB data (in blue and green,
respectively). We also include: (i) the constraint on Ωm obtained
by combining HR22

0 with the value of ωP18
m inferred by Planck

assuming standard prerecombination physics, Eq. (33) (in pur-
ple); (ii) the SH0ES measurement HR22

0 (in red); and (iii) the
upper bound on Ωmax

m , Eq. (31) (in black). All of them at 1σ C.L.

18We obtain the following mean value and standard deviation:
H0 ¼ ð71.2� 4.2Þ km=s=Mpc and Ωm ¼ 0.29� 0.06.

19A similar conclusion is reached in Ref. [141] by combining
CCH with cluster counts and gas fraction in galaxy clusters, some
astrophysical constraints on Ωm with priors from big bang
nucleosynthesis measurements, as well as from CMB correlations
on ns and As.
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the addition of CCH on top of Baseline_2D and
Baseline_3D does not have a major impact on our results.20

Figure 12 gives more support to our conclusions. We
present there the constraints on the ratio ρdeðzÞ=ρ0de at
68% C.L. obtained by using Eq. (24) and sampling the
CCH data together with the priors ωP18

m and HR22
0 . Any of

these measurements points to a clear violation of the WEC.
We note, though, that the vast majority of the central points
below z ¼ 1 fall in the range 0 < ρdeðzÞ=ρ0de < 1, which
could be an indication of the preference of the data for a
phantom behavior of the effective DE fluid. Moreover, the
central point at z ¼ 1.53 is one sigma away from the
positive region and two sigma away from the border
between the phantom and quintessence regions. This
resonates very well with Fig. 10 because the point at
z ¼ 1.5 is the one that leads to the lowest upper bound on
Ωmax

m , which is ∼2σ below the best-fit Planck=ΛCDM
value, and hence in small tension with the standard model,
as first noted in [91]. However, as already mentioned
above, these hints of new physics are still mild.

IV. CONCLUSIONS

The discovery of the cosmic acceleration in the late
1990s meant a major breakthrough [142,143]. It brought to
the stage the need for adding a new component to the
energy budget of the Universe, which must violate the
strong energy condition. Its fundamental nature is largely
unknown, but cosmological observations have let us infer
some of its basic phenomenological properties, which are

mimicked in the simplest scenario by a cosmological
constant; see e.g. Refs. [144,145]. Despite the theoretical
problems associated to it [146,147], it is a very important
building block of the standard model of cosmology due to
its good ability to fit the data. However, in the last decade,
with the advent of precision cosmology, some mis-
matches between ΛCDM and observations have erupted
onto the scene [10]. The Hubble tension stands by far as
the most significant one, since it already reaches the ∼5σ
C.L. [1,2]. Its solution could have serious theoretical
implications, and this explains why understanding its
origin has become one of the most pursued goals by the
cosmological community [42–44].
In this paper, we have devoted our efforts to study in

detail the low-redshift phenomenology required to get rid
of the H0 tension, keeping standard physics before recom-
bination. We have given special emphasis to the role played
by the data on baryon acoustic oscillations, which is crucial
in the construction of the cosmic inverse distance ladder.
We have shown that anisotropic and angular BAO data
(combined with CMB and SH0ES priors) lead to very
different solutions, as expected [53]. The former require a
phantomlike increase of the Hubble function and the
absolute magnitude of supernovae of type Ia at 0.01≲
z≲ 0.2, whereas the latter (which in principle are less
affected by model-dependent issues) need this increase to
happen much earlier in the cosmic expansion, at zt ∼
0.5–0.8, and more smoothly. MðzÞ is in this case still
compatible with a constant, but an evolution is not
excluded.21 In this scenario, if we consider that the new
physics can be explained by an effective self-conserved
dark energy component, the dark energy density has to be
negative during, at least, some period of the cosmic history
at z≳ 2.22 Hence, any low-z solution to the Hubble tension
with conserved effective dark energy demands a violation
of the weak energy condition, and the possibility of a
crossing of the phantom divide is not excluded. Coupled
dark energy scenarios do not have to follow the conclusions
that we have found assuming the conservation of DE but
have to give rise to forms of HðzÞ and MðzÞ compatible
with our reconstructions. Another option to solve the
Hubble tension is a local (ultra-late-time) change in M,
in the second rung of the direct distance ladder, i.e. at
z≲ 0.01, leaving intact the ΛCDM expansion history. Our
results are in agreement with previous works that made use

FIG. 12. Constraints on the ratio ρdeðzÞ=ρ0de obtained by using
Eq. (24) and sampling the CCH data together with the priors ωP18

m

and HR22
0 . We report the most probable values and 68% con-

fidence intervals. The dashed red lines at 0 and 1 denote the lower
bounds for which the two conditions of Eq. (16) are satisfied, i.e.
the positivity of the effective DE density and the nonphantom
nature of the DE, respectively.

20See also Refs. [15,90], where it is shown that cosmic
chronometers do not offer yet a very competitive calibration
of the cosmic distance ladders. For instance, the reconstruction of
MðzÞ using CCH and SNIa is compatible with a constant but does
not exclude an evolution in redshift [90].

21The evolution of MðzÞ and the departure of HðzÞ from
its shape in the standard model could manifest themselves
as an effective running of the ΛCDM parameters in low-z
analyses [148–150].

22It is useful to translate some of the most characteristic
redshifts in this study into lookback time tlb: z¼ð0.2;0.7;1;2Þ→
ð2.4;6.3;7.7;10.2ÞGyr. The relation tlbðzÞ is a model-dependent
quantity, of course. Here, for illustrative purposes, we have
employed the flat ΛCDM with H0 ¼ 70 km=s=Mpc, Ωm ¼ 0.3,
and three massless neutrinos.
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of anisotropic BAO data [67] and also support the con-
clusions of [69,70]. Here, though, we make more definite
statements than the latter, e.g. about the redshift ranges in
which the phantomlike evolution should be active. They are
extracted directly from the data. We also perform for the
first time in the literature an analysis on similar lines using
2D BAO.
In passing, we have also shown in several ways that

current data on cosmic chronometers are not capable of
determining whether the weak energy condition must be
violated or not to solve the H0 tension. They hint only very
mildly at such a violation. Therefore, it is safe to assert that
current CCH data do not help that much to constrain the
form of the low-redshift solutions. This resonates well with
Refs. [15,90].
The degree of naturalness of these solutions varies with

the solutions themselves, but in this paper, we wanted to
focus on the phenomenology required to solve the Hubble
tension and leave for future research the exploration of
some of these routes in the context of concrete theoretical
setups, considering also the evolution of perturbations and
studying the symbiosis between the H0 and growth
tensions. The door for a late- and an ultra-late-time solution
to the Hubble tension is still open, and, interestingly, the
concrete form of the solutions depends crucially on the
BAO data set that we consider.
Future background and BAO data such as those from

Euclid [151] are meant to be pivotal on the discussion and
eventual solutions to the cosmic tensions. Particularly
important will be the methods that the various collabora-
tions employ to extract the information from the galaxy
catalogs. We foresee the use of model-independent tech-
niques to be relevant to obtain data sets as robust as
possible, even if this comes at the expense of a decrease in
precision [152,153].
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APPENDIX A: CONSTRAINTS IN THE M − rd
PLANE FROM UNCALIBRATED BAO AND SNIa

We dedicate this Appendix to explain how we obtained
the degeneracy band in Fig. 1, which shows the big
anticorrelation between the two calibrators of the direct
and inverse distance ladders, M and rd, respectively. For
this purpose, we make use of the so-called Index of
Inconsistency (IOI) by Lin and Ishak [16]. It is usually
employed to quantify the level of inconsistency (or tension)
between two data sets in the context of a concrete model
when the posterior distributions of the parameters of the
model are Gaussian in good approximation. However, it
can also be employed to calibrate Gaussian data sets in a
model-independent way [15]. The IOI between two data
sets takes the following form,

IOI½i; j� ¼ 1

2
μTðCðiÞ þ CðjÞÞ−1μ; ðA1Þ

where i and j label the two data sets under consideration,
whereas μ and C denote, respectively, the difference
between the corresponding data vectors and the covariance
matrices.
One can constrain the calibrators of two data sets by

minimizing the IOI between them. Here, in particular, we
want to study the correlation between M and rd by
minimizing the IOI between the SNIa and anisotropic
BAO data sets. For each pair ðM; rdÞ, one can calibrate
these data sets and extract measurements of angular diameter
distances at several redshifts. In the case of SNIa, we do so
by using Eq. (13) and the Etherington relation [154],

DAðzÞ ¼
DLðzÞ
ð1þ zÞ2 : ðA2Þ

In the case of BAO, we extract angular diameter distances
from the ratios DAðzÞ=rd and the dilation scales DVðzÞ=rd
collected in Table I.23 For the latter, we use the expansion

DV ≃
3

4
DL

�
4

3
z

��
1þ 4

3
z

�
−1
ð1 − 0.0245z3 þ 0.0105z4Þ;

ðA3Þ

which is quite accurate in the range z < 1 for plausible
accelerating cosmological models [155]. It allows us to

23We do not employ here radial BAO data.
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compute the luminosity distance DLð4z=3Þ [and DAð4z=3Þ,
through Eq. (A2)] from a measurement of DVðzÞ. See also
Ref. [156] for a recent application of this formula.
We explore the space of the calibrators by employing the

weights

w ¼ expð−IOI½BAO;SNIa�Þ ðA4Þ

and a simple two-dimensional grid in the M − rd plane.
Notice, though, that the data vectors entering Eq. (A1) need
to correspond to the same redshifts. As this is not the case in
the BAO and SNIa data sets, we choose to take the SNIa
data points that fall right below and above the angular BAO
data points in redshift and marginalize over the SNIa data
that do not belong to this ensemble. Then, we sample the
resulting distribution of SNIa apparent magnitudes mðzÞ
and compute the values at the BAO redshifts using a simple
linear interpolation formula. This is licit because the
difference in redshift of two consecutive SNIa points in
the BAO redshift range is very small, so we can neglect
the contribution of higher-order corrections. In this way,
we end up with the central values of mðzBAOÞ and the
corresponding covariance matrix. This allows us to evaluate
the weights using Eqs. (A1) and (A4) and draw the
distribution of M and rd, from which we get the contours
at 68% and 95% C.L.; see the gray band in Fig. 1.

APPENDIX B: PARAMETRIZATION OF δHi
IN TERMS ON (1− a). FITTING FORMULAS

AND RESULTS

In this Appendix, we test the robustness of the results
of Secs. III A and III B by comparing them with those
obtained with an alternative fitting function. Instead of
using Eq. (4), here we employ

δH1ðaÞ ¼ Aþ Bð1 − aÞ þ Cð1 − aÞ2
δH2ðaÞ ¼ Dþ Eð1 − aÞ þ Fð1 − aÞ2; ðB1Þ

with fA;B;C;D; E; Fg the new fitting parameters. The
main reason for doing this is that expansion in terms of
(1 − a) has better convergence compared to expansion in
terms of z and hence neglecting terms of the order ð1 − aÞ3
and higher is better justified compared to neglecting terms
of the order z3 and higher. So, the question is whether
parametrization in terms of scale factor gives similar
results as already obtained. The corresponding expressions
in terms of the redshift are obviously computed by
doing 1 − a ¼ z=ð1þ zÞ.
Conditions (5)–(8) take now the following matrix form,

0
B@

δH0

δHp

0

1
CA ¼

0
BB@

1 0 0

1
zp

1þzp

z2p
ð1þzpÞ2

0 1
2zp
1þzp

1
CCA
0
B@

A

B

C

1
CA ðB2Þ

and

0
B@

δHmax

δHp

0

1
CA ¼

0
BBB@

1 zmax
1þzmax

z2max
ð1þzmaxÞ2

1
zp

1þzp

z2p
ð1þzpÞ2

0 1
2zp
1þzp

1
CCCA
0
B@

D

E

F

1
CA: ðB3Þ

The results obtained from the fitting analysis with the
Baseline_3D data set are essentially the same as those
obtained with the fitting function of Eq. (1); see Sec. III A.
The shapes of HðzÞ and MðzÞ have the same characteristic
features shown in Fig. 3. Thus, the conclusions of our main
analysis with anisotropic BAO data hold true also for this
new parametrization of the Hubble function.
The situation with the Baseline_2D data is a bit different

and deserves some detailed explanations. We present in
Fig. 13 the reconstructions of HðzÞ and MðzÞ obtained
making use of Eq. (B1). We choose to fix zmax ¼ 4 in this
figure, but we have explicitly checked that the results
remain stable for larger values of this parameter, as we
found also in the analysis of Sec. III B. This is reflected in
the fact that the reduced χ2 reaches a plateau for zmax ≳ 4;
see Fig. 14. However, now, in contrast to what we found
with the parametrization (4), the transition happens at
smaller redshifts, at zt ∼ 0.4 (instead of zt ∼ 0.5–0.8).

FIG. 13. Reconstructed shapes of HðzÞ (upper plot) and MðzÞ
(lower plot) obtained with the Baseline_2D data set and the
parametrization of δHiðzÞ provided in Eq. (B1). We have set
zmax ¼ 4. See the comments in Appendix B.
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This is true for both the Hubble parameter and the absolute
magnitude of SNIa. Nevertheless, it is very important
to notice that the goodness of fit found with the new
parametrization is much worse than the one offered by
the original parametrization. Notice that χ2red ∼ 1.7 in the
plateau of Fig. 14. This corresponds to a quite small
p-value ¼ 0.03. Conversely, we obtained χ2red ∼ 1.1
(p-value ¼ 0.38) with parametrization (4) although the
results are similar in both parametrizations. This justifies
the use of the latter (in terms of z) in the main body of
the paper.

APPENDIX C: OTHER TESTS ON THE
ROBUSTNESS OF OUR PARAMETRIZATION

OF HðzÞ
We have performed some additional tests to assess the

robustness of the results obtained with the fitting function
(1). We perform all of them using the Baseline_3D data set.
To begin with, we consider the following variant,

HðzÞ ¼

8>><
>>:

HΛðzÞ þ δH1ðzÞ if 0 < z ≤ zp
HΛðzÞ þ δH2ðzÞ if zp < z ≤ zmax

HΛðzÞ if z ≥ zmax

; ðC1Þ

in which we substitute H̄ðzÞ by HΛðzÞ at z < zmax. The
results remain completely stable, with no apparent differ-
ence with respect to those obtained in the main analysis.
The values of χ2min and the reconstructed shapes ofHðzÞ and
MðzÞ are basically indistinguishable from those reported
in Sec. III A.

We then study what happens if, instead of forcing the
functions δH1 and δH2 to have a minimum at zp, we still
force the continuity of dHp=dz at zp but allow its value to
vary freely in the Monte Carlo. The value of χ2min decreases
∼1 unit. However, in this case, we have one more degree of
freedom, so from a Bayesian perspective, this more general
version of the fitting function is not particularly favored,
despite the slight improvement in the description of the
data. Indeed, we have checked that the posterior distribu-
tion of dH=dzjz¼zp encompasses the 0 value at < 1σ C.L.
Something similar happens if we force the continuity of the
second derivative of the Hubble function, instead of the
continuity of the first derivative.
Finally, in our last test, we have considered

HðzÞ ¼
(
H̄ðzÞ þ δHðzÞ if 0 < z ≤ zmax

HΛðzÞ if z ≥ zmax

ðC2Þ

with

δHðzÞ ¼ c0 þ c1zþ c2z2 þ c3z3 ðC3Þ

satisfying the boundary condition δHðzmaxÞ ¼ HΛðzmaxÞ−
H̄ðzmaxÞ. Its performance is much worse than the one
employed in the main analysis. We find an increase
Δχ2min ≈þ6. This fitting function cannot fully accommo-
date simultaneously the SH0ES and Planck distance priors,
and, hence, is not suited for the aim of this work, namely,
the study of the low-redshift solutions to the Hubble
tension.

APPENDIX D: TRIANGLE PLOTS

We devote this Appendix to showing the one-
dimensional posterior distributions and two-dimensional
contour plots of the fitting parameters fΩ̃m; H̃0; H0; zp;
δHpg and the transition redshift zt obtained from the
analyses of the Baseline_3D and Baseline_2D data sets
in Figs. 15 and 16, respectively. For completeness, in
Table IV, we provide all the mean values and 68% C.L.
uncertainties. We have obtained these results using
GetDist [157]. As discussed in the main text, the con-
straints on Ω̃m and H̃0 are driven by the Planck=ΛCDM
prior, while the constraint on H0 is essentially fixed by
the SH0ES prior. Conversely, the results for δHp and zp
(and zt) depend on the data set under study, and we find
in both cases, as expected, a strong positive correlation
between zt and zp and an anticorrelation between zp
and δHp.

FIG. 14. Reduced χ2 as a function of zmax for the analyses with
Baseline_2D, using the parametrized form of δHiðzÞ given in
Eq. (B1). As in Fig. 8, χ2red reaches a plateau. However, now
χ2red ∼ 1.7 instead of χ2red ∼ 1, which means that the performance
of Eq. (B1) is much worse than Eq. (4). See the comments in
Appendix B.
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FIG. 15. Triangle plot with the constraints obtained for the various fitting parameters entering the Baseline_3D analysis and the
derived parameter zt, setting zmax ¼ 1. The triad fH̃0; H0; δHpg is given in units of km=s=Mpc. Contours contain 68% and 95% of the
probability.
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FIG. 16. Same as in Fig. 15, but for the Baseline_2D analysis, with zmax ¼ 4.

TABLE IV. Mean values and 68% C.L. errors for the main and derived parameters obtained from the analyses with
Baseline_3D and Baseline_2D. The upper bounds, instead, are given at 95% C.L. In the last two rows, we report the
best-fit χ2 and the corresponding p-values. The numbers of degrees of freedom are 12 and 14 in the Baseline_3D and
Baseline_2D analyses, respectively.

Parameter Baseline_3D Baseline_2D

Ω̃m 0.305þ0.004
−0.005 0.313þ0.008

−0.007

H̃0 (km=s=Mpc) 68.11þ0.34
−0.29 67.51þ0.55

−0.49

H0 (km=s=Mpc) 72.90� 1.10 73.97þ0.76
−0.69

δHp (km=s=Mpc) 0.08þ0.58
−0.40 −8.90þ2.20

−2.60
zp < 0.41 3.07þ0.87

−0.44
zt < 0.17 0.66þ0.07

−0.04

χ2min 16.14 16.69

p-value 0.21 0.38
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[24] J. Solà Peracaula, A. Gómez-Valent, J. de Cruz Pérez, and
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