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As a potential candidate for the late-time accelerating expansion of the Universe, the Chaplygin gas and
its generalized models have significant implications to modern cosmology. In this work we investigate the
effects of dark energy on the internal structure of a neutron star composed of two phases, which leads us to
wonder: Do stable neutron stars have a dark-energy core? To address this question, we focus on the radial
stability of stellar configurations composed by a dark-energy core—described by a Chaplygin-type
equation of state (EOS)—and an ordinary-matter external layer which is described by a polytropic EOS.
We examine the impact of the rate of energy densities at the phase-splitting surface, defined as
α ¼ ρ−dis=ρ

þ
dis, on the radius, total gravitational mass, and oscillation spectrum. The resulting mass-radius

diagrams are notably different from dark-energy stars without a common-matter crust. Specifically, it is
found that both the mass and the radius of the maximum-mass configuration decrease as α becomes smaller.
Furthermore, our theoretical predictions for mass-radius relations consistently describe the observational
measurements of different massive millisecond pulsars as well as the central compact object within the
supernova remnant HESS J1731 − 347. The analysis of the normal oscillation modes reveals that there are
two regions of instability on the MðρcÞ curve when α is small enough, indicating that the usual stability
criterion dM=dρc > 0 still holds for rapid phase transitions. However, this is no longer true for the case of
slow transitions.

DOI: 10.1103/PhysRevD.109.023524

I. INTRODUCTION

The mysterious component that leads to an accelerated
expansion phase of the Universe has been attributed to
several candidates, such as a dynamical scalar field in
quintessence models [1,2], a single scalar field interacting
with gravity by means of noncanonical kinetic terms in
the so-called k-essence models [3,4], modified gravity
theories [2,5], vacuum energy predicted by the quantum
field theory [6], extra dimensions [7,8], and an exotic form
of fluid with large negative pressure that describes the
transition from a universe filled with dustlike matter to an
exponentially expanding universe in the late times [9],
among other models proposed in the literature. The well-
known ΛCDM model, where Λ is the cosmological
constant, is the standard model of contemporary cosmology
and the simplest model to describe dark energy. Such a

model is in excellent agreement with recent observational
data [10], however, it suffers from two problems [6,11]:
(i) Fine-tuning problem, where the current energy density
of the cosmological constant ρΛ ∼ 10−47 GeV [11,12]
is in conflict with the value of vacuum energy density
ρvac ∼ 1074 GeV [6], and hence ρΛ requires fine-tuning.
(ii) The matter-energy density ρm, which changes with time,
and the dark-energy density (staying constant) are of the
same order today. This is known as the cosmic coincidence
problem and would require a correction of the parameters
in the early epoch of the Universe.
One of the candidates for dark energy aforementioned in

the first paragraph is the Chaplygin gas [9], which offers a
simple phenomenological description and provides a plau-
sible solution for the unification of two uncharted compo-
nents: dark matter and dark energy [13–15]. An interesting
feature of this model is that it behaves like a cosmological
constant at late stage (or lower redshifts) and as dustlike
matter (pressureless fluid) at early stage. Furthermore, in
the light-cone parametrization, the original Chaplygin gas
model can be obtained from the string Nambu-Goto action
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for d-branes moving in a (dþ 2)-dimensional spacetime
[16–18]. Kamenshchik et al. [9] also introduced a gener-
alized Chaplygin gas, given by p ¼ −B=ρα, where B and α
are real constant parameters and ρ is the energy density.
The cosmological aspects of this model for the Universe
evolving from a phase dominated by nonrelativistic
matter to a phase dominated by a cosmological constant
were examined in Ref. [19]. In fact, such a model has
been confronted with different sets of observational data
[15,20–22]. An even more generalized version was pro-
posed by Zhang et al. [23], where the constant B becomes a
function depending on the scale factor. See Ref. [24] for a
more recent study by assuming this type of generalization.
Over the years, the original Chaplygin gas model has

gone through some modifications and in its most gener-
alized form it is characterized by an equation of state (EOS)
of the form p ¼ Aρ − B=ρα, where the 3 degrees of
freedom fA;B; αg have been measured by means of the
Planck 2015 cosmic microwave background anisotropy,
type-Ia supernovae, and observed Hubble parameter data-
sets [25]. Yang et al. [26] have explored whether the global
21-cm absorption signal detected by EDGES can improve
our understanding of the Chaplygin gas models. Indeed, it
was found that the uncertainties on the parameters of the
Chaplygin gas models can be reduced by a factor between
1.5 and 10. In addition, based on latest observations of
high-redshift quasars, a series of Chaplygin gas models
as candidates for dark-matter–energy unification were
recently investigated by Zheng et al. [27].
If we assume that dark energy is an exotic fluid

responsible for the accelerated expansion of the Universe,
then it must be present in any region of spacetime,
including spherically symmetric objects such as compact
stars [28,29]. In that regard, the effects of dark energy
(described by a Chaplygin-type EOS) on the relativistic
structure of single-phase compact stars have been inves-
tigated over the last few years [30–39]. In fact, for such an
EOS, it has been shown that the Tolman-Oppenheimer-
Volkoff (TOV) equations provide maximum masses above
2M⊙ [32,34,37], which favors the observational measure-
ments. These dark-energy stellar configurations form a
mass-radius diagram similar to that of quark matter, obey
the causality condition, and are dynamically stable under
radial perturbations when dM=dρc > 0 on the MðρcÞ
curve [32,37].
The findings reported in Ref. [29] were extended a

year later assuming a generalized Chaplygin gas [40],
where the authors addressed the superluminality issue.
Specifically, they investigated how a modification of the
EOS p ¼ −Λαþ1=ρα, required by causality arguments at
densities very close to Λ, affects the previous results
obtained in [29]. We should point out that the literature
also offers the study of wormholes constructed by means
of the Chaplygin gas. As a matter of fact, Eiroa and
Aguirre [41] constructed spherically symmetric thin-shell

wormholes supported by a generalized Chaplygin gas in
Born-Infeld electrodynamics coupled to Einstein gravity.
Furthermore, Kuhfittig [42] discussed a natural way to
obtain a complete wormhole solution by considering that
the wormhole is supported by generalized Chaplygin gas
and admits conformal Killing vectors. All these investiga-
tions have been carried out under the assumption that the
starlike objects are described only by an EOS correspond-
ing to the Chaplygin gas. In the present work, we are
interested in a hybrid context, where the dark energy is
confined to the core of the compact star but there is also a
crust described by another EOS.
Under a Newtonian formalism, polytropic models have

been recently investigated by considering a generalized
Chaplygin EOS [43], where the authors provide the Lane-
Emden equation for particular cases of the anisotropy
factor. It is also worth commenting that, within the
framework of massive gravity, the effect of the massive
graviton on dark-energy star structure was analyzed by
Tudeshki et al. [44]. For further compact-star models with
dark energy in modified gravity, we also refer the reader to
Refs. [45–48]. Motivated by these studies, we will extend
the investigation of single-phase compact stars to a hybrid
scenario, but considering dark energy as described by the
modified Chaplygin gas. Therefore, a crucial open ques-
tion, to which this work aims to contribute, concerns the
confinement of dark energy in the core of a stable compact
star and adding an outer layer (or crust) on the core.
Of course, a rigorous analysis of the stability of these stars
involves examining the normal oscillation modes when
they are adiabatically perturbed. In addition, we will
investigate whether the observational mass-radius measure-
ments can be explained with an ordinary-matter EOS for
the crust and a Chaplygin-like EOS for the core of the
hybrid star.
The organization of the present work is as follows: In

Sec. II we briefly summarize the hydrostatic equilibrium of
compact stars in Einstein gravity. In the same section, we
also present the equations of state describing both phases
and discuss the parameter space for polytropic stars with a
dark-energy core from the Chaplygin gas. Section III deals
with radial perturbations and the stability of two-phase
relativistic compact stars, as well as presents the junction
conditions at the phase-splitting interface for slow and
rapid transitions. In Sec. IV we discuss our numerical
results based on the mass-radius diagrams and oscillation
spectrum, and finally, our conclusions are presented
in Sec. V.

II. STATIC EQUILIBRIUM CONFIGURATIONS

Since our compact-star model is a hybrid star, here we
present the basic stellar structure equations and briefly
describe the two-phase fluid by specifying the EOS for both
the dark-energy core and the ordinary-matter crust.
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A. TOV equations

To investigate the normal vibration modes of compact
stars in the presence of dark energy, we first need to obtain
the background solutions given a spacetime metric and a
matter-energy distribution. In general relativity, the space-
time curvature and the energy-momentum content are
related by the Einstein field equations, namely,

Rμν −
1

2
Rgμν ¼ 8πTμν; ð1Þ

where Rμν is the Ricci curvature tensor, R is the Ricci
scalar, Tμν is the energy-momentum tensor, and gμν is the
metric tensor which determines the invariant square of an
infinitesimal line element. The equilibrium star is assumed
to be composed of two different layers of isotropic perfect
fluids. We now proceed to consider spherically symmetric
stellar configurations so that the line element takes the
usual form in spherical coordinates

ds2 ¼ −e2ψdt2 þ e2λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2Þ

Additionally, the matter-energy distribution of this
(hybrid) stellar system is characterized by the energy-
momentum tensor Tμν ¼ ðρþ pÞuμuν þ pgμν, where ρ
denotes the energy density, p is the pressure, and uμ

is the four-velocity of the perfect fluid. In the hydro-
static equilibrium state we can write uμ ¼ e−ψδμ0 and
Tν
μ ¼ diagð−ρ; p; p; pÞ since uμ satisfies the normalization

condition uμuμ ¼ −1. Consequently, the relativistic struc-
ture of a unperturbed compact star is described by the TOV
equations,

dm
dr

¼ 4πr2ρ; ð3Þ

dp
dr

¼ −ðρþ pÞ
�
m
r2

þ 4πrp

��
1 −

2m
r

�
−1
; ð4Þ

dψ
dr

¼ −
1

ρþ p
dp
dr

; ð5Þ

that is, a set of three first-order differential equations for the
four variables m, ρ, p, and ψ . It is important to remark that
the metric function λðrÞ is determined from the relation
e−2λ ¼ 1–2m=r, where mðrÞ is a mass function along the
radial coordinate.
However, given an EOS of the form p ¼ pðρÞ, the

number of variables is reduced to three and therefore three
boundary conditions are required,

ρð0Þ¼ρc; mð0Þ¼0; ψðRÞ¼1

2
ln

�
1−

2M
R

�
; ð6Þ

where ρc is the central energy density, andM ¼ mðRÞ is the
total gravitational mass of the star calculated at its surface

where the pressure vanishes, i.e., when pðr ¼ RÞ ¼ 0 with
R being the surface radius. Note that the second condition
in Eq. (6) demands regularity at the center of the star, while
the third condition comes from the continuity of the metric
at the surface since the exterior spacetime is described by
the Schwarzschild vacuum solution. Because we are deal-
ing with compact stars composed of two phases, separated
by a discontinuous surface, we need different equations of
state to describe the hybrid system. In the next subsection
we will define these equations of state in detail.

B. Equations of state

The stellar structure equations have to be supplemented
with an EOS of the form p ¼ pðρÞ, namely, a functional
relation between the energy density ρ and pressure p inside
the stellar fluid. Here, we consider a compact star com-
posed of two phases: a dark-energy core described by a
Chaplygin-type EOS and an outer layer of ordinary
matter described by a polytropic EOS. Therefore, the
EOS is given by

pðρÞ ¼
(
Aρ − B

ρ ; 0 ≤ r ≤ Rdis;

κρ1þ1=η; Rdis ≤ r ≤ R;
ð7Þ

with Rdis being the radius of the discontinuous surface
(where the pressure corresponds to the energy-density
discontinuity) and R denotes the stellar radius (where
the pressure vanishes). The extra term “−B=ρ,” with B
being a positive constant (given in m−4 units), represents a
negative pressure that leads to the accelerated expansion of
the current Universe [9]. The quintessence model fails to
avoid fine-tuning in explaining the cosmic coincidence
problem, however, it was shown that the Chaplygin gas
provides a good alternative to explain the transition from
a universe filled with dustlike matter to an accelerated
expansion phase [27], although today there are more
generalized versions, as we discussed in the Introduction.
Moreover, this negative pressure term has a well-
defined connection with string and brane theories [9,17].
Meanwhile, the contribution “Aρ” describes a barotropic
fluid, where A is a positive dimensionless constant. We are
taking this linear term into consideration in order to
maintain an EOS that leads to compact stars with dark
energy, as adopted by other researchers in the case of
single-phase compact stars [30–35,37,38]. It has further
been argued that small values of A lead to small maximum
masses which are not consistent with the current observa-
tional measurements [37]. It is important to emphasize that
A has to assume values such that they satisfy the causality
condition along the entire radial coordinate inside the star.
Following the notation convention adopted in Ref. [49],

hereafter, we use “þ” and “−” to label the energy densities
in the regions r < Rdis and r > Rdis, respectively. See Fig. 1
for a graphical representation of the compact star with a
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dark-energy core and the crust surrounding it. The tran-
sition pressure occurs at the discontinuity surface, which
implies that we have an inner energy density ρþdis and an
outer energy density ρ−dis. Since the pressure must be
continuous at r ¼ Rdis, one can obtain an explicit expres-
sion for B in terms of the other parameters, that is,

B ¼ AðρþdisÞ2 − κðρþdisÞðρ−disÞ1þ1=η; ð8Þ

where, of course, ρ−dis ≤ ρþdis. It is pertinent to introduce
a new parameter defined as the ratio of the outer density
to the inner density at the discontinuous surface, i.e.,
α ¼ ρ−dis=ρ

þ
dis ≤ 1. Of course, the particular case α ¼ 1

means that the density is continuous. As a consequence,
our stellar model is characterized by a set of six free
parameters,

fρc; ρþdis; α; η; κ; Ag: ð9Þ

In Fig. 2 we illustrate the EOS (7) with discontinuous
density for some specific values of the above parameters. In
the remaining part of this work, for the polytropic EOS, we
will establish η ¼ 1.0 and κ ¼ 100 km2, which are typical
values to describe neutron stars [50–52].

III. RADIAL PULSATION EQUATIONS

Since we are dealing with extremely high-energy den-
sities, the general relativistic effects become important even
when a compact star is subjected to radial perturbations.
Chandrasekhar pioneered the radial stability of single-
phase relativistic compact stars (either quark or hadronic
matter) [53,54], and since then the radial oscillation
equations have been written in different forms for numeri-
cal convenience, see for example Refs. [51,55–62]. In this
study we will deal with the dynamical stability of compact
stars containing two phases, however, each phase is
described by the equations already known for the homo-
geneous case. The equilibrium solutions provided by the
TOV equations (3)–(5) describe a family of stellar con-
figurations, and to test their stability toward gravitational
collapse or explosion we must calculate the frequencies of
normal vibration modes. These frequencies can be found by
considering small deviations from the hydrostatic equilib-
rium state, so that a linear theory can be applied to the
Einstein field equations. Furthermore, the radial pulsations
are assumed to be harmonic and adiabatic, so that the fluid
elements of the star neither gain nor lose heat during the
vibration.
The linearized perturbation equations can be obtained by

introducing the Lagrangian displacement ξ around the
equilibrium position, namely, the fluid element located at
r in the unperturbed system is displaced to the position
rþ ξðt; rÞ in the perturbed system. Thus, we can write

FIG. 1. Illustrative representation of a hybrid star composed by
an ordinary-matter crust and a dark-energy core, where Rdis
indicates the radius of the discontinuous surface and R is the
surface radius where the pressure is zero. Actually, this can be
interpreted as confining the dark energy to the core of the
compact star, with the crust surrounding it.

FIG. 2. Some equations of state with energy-density disconti-
nuity for hybrid stars with dark-energy and ordinary-matter
phases. Both energy density and pressure are normalized by
the standard nuclear density, i.e., ρnuc ¼ 2.68 × 1014 g=cm3.
Three different values of A were considered and we have also
used ρþdis ¼ 1.0 × 1015 g=cm3, α ¼ 0.8, η ¼ 1.0, κ ¼ 100 km2,
and central density ρc ¼ 2.0 × 1015 g=cm3. The values adopted
for the different parameters (9) in this plot have been considered
for illustration purposes only.
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ξðt; rÞ ¼ χðrÞeiωt, where χðrÞ and ω are the amplitude and
the vibration frequency of the standing wave, respectively.
Defining ζ ¼ χ=r, the adiabatic radial oscillations of
relativistic stars are governed by the following first-order
time-independent equations:

dζ
dr

¼ −
1

r

�
3ζ þ Δp

γp

�
þ dψ

dr
ζ; ð10Þ

dðΔpÞ
dr

¼ ζ

�
ω2e2ðλ−ψÞðρþ pÞr − 4

dp
dr

−8πe2λðρþ pÞrpþ rðρþ pÞ
�
dψ
dr

�
2
�

− Δp
�
dψ
dr

þ 4πðρþ pÞre2λ
�
; ð11Þ

where γ ¼ ð1þ ρ=pÞdp=dρ denotes the adiabatic index at
constant specific entropy, and Δp ¼ δpþ χdp=dr is the
Lagrangian perturbation of the pressure, with δp being the
Eulerian perturbation. Note that all metric and fluid
quantities in the radial oscillation equations are determined
from the static background.
It is evident that Eq. (10) has a singularity at the stellar

center (r ¼ 0). Thus, to guarantee regularity we must
demand that

Δp ¼ −3ζγp as r → 0; ð12Þ

and since the surface of the hybrid star is determined by the
condition pðr ¼ RÞ ¼ 0, we should also impose the fol-
lowing boundary condition for the Lagrangian perturbation
of the pressure:

Δp ¼ 0 as r → R: ð13Þ

It is important to note that the boundary conditions (12)
and (13) established at the center and surface of the star,
respectively, remain the same as for single-phase stars.
Nevertheless, since in this work we are dealing with a two-
phase compact star, it becomes necessary to establish
junction conditions at the phase-splitting interface for the
numerical integration of the oscillation equations (10)
and (11). These conditions depend on the velocity of the
phase transition near the discontinuous surface. Here
we will use the boundary conditions deduced by Pereira
et al. [63]:
(a) For slow phase transitions, the volume elements near

the discontinuous surface do not change their nature
due to the radial perturbations, but they comove with
the interface. In such scenario, there is no mass
transfer from one phase to another, and the junction
conditions at the splitting surface are given by

½ζ�þ− ¼ 0; ½Δp�þ− ¼ 0; ð14Þ

where ½z�þ− ¼ zþ − z−, with z representing any vari-
able across the interface.

(b) For rapid phase transitions, there is an instantaneous
change in the nature of the volume elements near the
interface due to pulsations, and this implies a mass
transfer between the two phases. The matching con-
ditions at the interface are as follows:

�
ζ −

Δp
rp0

�þ
−
¼ 0; ½Δp�þ− ¼ 0; ð15Þ

where p0 ¼ dp=dr is defined in the hydrostatic
equilibrium state.

IV. NUMERICAL RESULTS

A. Equilibrium configurations

Through the first two boundary conditions given in
Eq. (6), we solve the stellar structure equations (3) and (4)
from the center to the surface of the star. However, since the
configuration contains two phases, we follow the steps
below:

(i) We integrate from the stellar origin at r ¼ 0 up to the
discontinuity radius at r ¼ Rdis (i.e., the radial
coordinate corresponding to ρ ¼ ρþdis) with Chaply-
gin-like EOS.

(ii) We then integrate from the interface at r ¼ Rdis up to
the surface of the star at r ¼ R (this is, the radial
coordinate where the pressure vanishes) with poly-
tropic EOS.

In particular, given the EOS (7), in Fig. 3 we display the
numerical solution for an equilibrium configuration with
fixed central density ρc ¼ 1.5 × 1015 g=cm3, α ¼ 0.9, inner
energy density ρþdis ¼ 0.8 × 1015 g=cm3, and three values of
the free parameterA. Here and as in the rest of the figures, we
have used η ¼ 1.0 and κ ¼ 100 km2. The solid and dot-
dashed curves describe the solutions in the inner core and
outer layer of the compact star, respectively. The radius of
the phase-splitting surface is represented by the gray vertical
lines, which increases as A increases. As expected, it is
observed that both the energy density and the pressure
decreasewith increasing radial coordinate, while the mass is
an increasing functionwith r. Note also that both themass of
the dark-energy core as well as the total mass of the star
suffer a substantial increase due to the increase in the
parameter A. We have verified that these configurations
satisfy the causality condition throughout the hybrid star.
By varying the central density ρc it is possible to obtain a

family of stellar configurations represented in the well-
known mass-radius diagram. This mass versus radius
relation is illustrated in the left panel of Fig. 4 for four
different values of α and three values of A. For a fixed value
of A, we can see that the maximum-mass values decrease as
α gets smaller. Likewise, keeping α fixed, the maximum
mass in each curve increases with the increase of A.
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Furthermore, the mass-central-density relation is shown in
the right plot of the same figure. The mass exhibits a
peculiar behavior when α ¼ 0.4 (blue lines) and 0.6 (green
curves), namely, the mass first decreases and after reaching
a minimum it begins to grow with increasing ρc.

This would indicate that there are two regions of instability
according to the necessary but not sufficient condition for
stellar stability. In other words, the stable stars would be
found only in the region where dM=dρc > 0. Nevertheless,
a more rigorous analysis of radial stability involves

FIG. 3. Radial profile of energy density (left), pressure (middle), and mass function (right) within a stellar configuration with central
density ρc ¼ 1.5 × 1015 g=cm3, ratio of densities at the discontinuous surface α ¼ 0.9, inner energy density ρþdis ¼ 0.8 × 1015 g=cm3,
and three values of the free parameter A. In all plots, the solid and dot-dashed curves correspond to the dark-energy core and ordinary-
matter outer layer, respectively. The gray vertical lines indicate the discontinuous surface for each value of A, see left plot for the specific
values of Rdis. Remarkably, both the mass of the core and the total mass of the star increase significantly due to the increase in A. For this
construction and in the next figures, we have adopted η ¼ 1.0 and κ ¼ 100 km2.

FIG. 4. Mass-radius diagram (left) and mass-central-density relation (right) for hybrid stellar models with EOS (7) for three values of
the free parameter A: 0.2 (solid curves), 0.3 (dashed curves), and 0.4 (dotted curves). Moreover, the numbers associated with each color
indicate the different values of α ¼ ρ−dis=ρ

þ
dis, where we have considered ρþdis ¼ 0.8 × 1015 g=cm3. One can observe that, given a fixed

value of A and a given central density, the mass decreases as α gets smaller. On the other hand, if we keep α fixed and vary A, we see that
the mass undergoes a substantial increase as A increases, for a given central density. In fact, it is possible to go beyond 2M⊙ when
A ¼ 0.4 and α ≳ 0.8. Also note that, according to the right plot for α ¼ 0.4 and α ¼ 0.6, there would be unstable stellar configurations in
the low-central-density region since dM=dρc < 0.
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determining the frequencies of the vibration modes when a
compact star is radially perturbed. We will return to discuss
this in greater detail later.
The central density corresponding to the maximum-mass

value is often called the critical central density ρcritc , see the
maxima on each curve in the right plot of Fig. 4. Given the
range of values for α∈ ½0.4; 1.0�, from Fig. 5 we can easily
identify that higher values ofMmax are obtained for α larger.
However, the critical central density is less and less as
we increase α. Remarkably, this qualitative behavior is
repeated for any value of A. Therefore, according to the
standard stability criterion dM=dρc > 0, hybrid stars with a
dark-energy core stop being stable at a smaller and smaller
central-density value with increasing α.
In Fig. 6, we also show the discontinuity radius (upper

plot) and the star radius (lower plot) as functions of the
central density. For a given ρc, we observe that the main
effect of the parameter α (as it decreases) is a significant
increase in the radius of the dark-energy core Rdis.
Meanwhile, the behavior of the radius of the star R is less
trivial with the variation of α. For instance, for α ¼ 1.0 and
A ¼ 0.2 (see black solid line), the radius always decreases
with increasing ρc. Nonetheless, when α ¼ 0.4 (blue
curves), R decreases to a minimum in the low-central-
density branch, then increases, and after reaching a maxi-
mum starts to decrease again, regardless of the value of A.
In addition, it is to be expected that our theoretical

calculations will be able to describe some compact stars
observed in the Universe, such as millisecond pulsars
[64–69] and other compact objects that are still of unknown
nature [70,71]. In that regard, Fig. 7 displays themass-radius

relations compatible with observational measurements for
A ¼ 0.48, two values of ρþdis, and several values of α. When
ρþdis ¼ 0.5 × 1015 g=cm3 (see black lines), our theoretical
predictions consistently describe the pulsar PSR J0952-
0607, the fastest known spinning neutron star (NS) in the
disk of the Milky Way [69]. Note also that it is possible to
obtain masses above 2.5M⊙ that are compatible with the
secondary component in the GW190814 event, the signal
of a compact binary coalescence with the most unequal
mass ratio yet measured with gravitational waves [70].
Moreover, it can be observed that the Bayesian estimations
for themassive pulsar PSR J0740þ 6620 [66] and the NS in
4U 1702 − 429 [67] are in agreement with our numerical
results.
Since unusually heavy or light neutron stars are the

subject of scientific intrigue, Doroshenko et al. have
analyzed the central compact object within the supernova
remnant HESS J1731 − 347 [71]. Based on modeling of the
x-ray spectrum and a robust distance estimate from Gaia
observations, they estimated the mass and radius of such an

FIG. 5. Maximum mass as a function of the ratio of densities at
the interface α and of the critical central density ρcritc for four
values of A. An increase in α leads to an increasing value ofMmax,
but a decreasing value of ρcritc .

FIG. 6. Radius of the discontinuous surface (top) and radius of
the star surface (bottom) as functions of the central energy density
for the equilibrium configurations shown in Fig. 4. A decrease in
the values of α results in an increase in Rdis, for a given A.
Furthermore, for some combinations of α and A, the radius of the
star R decreases to a minimum in the low-central-density region,
then increases, and after reaching a maximum begins to decrease
with increasing central density.
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object to be M ¼ 0.77þ0.20
−0.17M⊙ and R ¼ 10.4þ0.86−0.78 km,

respectively. This estimate has been represented by the
green bars in Fig. 7. Furthermore, the authors conjectured
that this object is either the lightest NS known, or a “strange
star” with a more exotic EOS. Nonetheless, it has been
argued that the minimum possible mass of a remnant NS is
1.17M⊙ [72]. In that regard, we consider the possibility of
describing the central object in HESS J1731 − 347 as a NS
with a dark-energy core when ρþdis ¼ 0.8 × 1015 g=cm3, see
blue curves for the different values of α.

B. Radial pulsations

To investigate the radial stability of the hybrid configu-
rations shown in Figs. 4 and 7, it is necessary to determine
the frequencies of the radial vibration modes. With this in
mind, we seek to answer the question: Is the classical
stability criterion dM=dρc > 0 still compatible with radial
pulsation analysis for neutron stars with a dark-energy
core? As we will see later, this will depend on the type of
phase transition.

Given a specific value of central density ρc, we integrate
the radial oscillation equations (10) and (11) with the
corresponding boundary conditions (12) and (13) from the
center up to the surface of the star. Nonetheless, note that at
the interface we must use the junction conditions (14)
and (15) for the slow and rapid phase transition, respec-
tively. Similar to the case of single-phase compact stars,
the integration is carried out for a set of trial values ω2

and the appropriate eigenfrequencies are those that fully
satisfy the boundary conditions. For example, for a
hybrid configuration with ρc¼1.5×1015 g=cm3, α ¼ 0.8,
ρþdis ¼ 0.8 × 1015 g=cm3, and A ¼ 0.2, Fig. 8 shows the
first four vibration eigenmodes ζn and Δpn, where the
nth normal mode contains n nodes between the origin and
the surface. Nodes are places inside the star where the
displacement is always zero, so that the pulsation mode
corresponding to n ¼ 0 (known as the fundamental
mode) has no nodes, the first overtone (n ¼ 1) has one
node, and so on. Moreover, we have considered normalized
eigenfunctions ζð0Þ ¼ 1 at the center, and the letters “s”
and “r” in parentheses stand for the slow and rapid phase
transition, respectively. As expected, the perturbations ζn
undergo jumps at the discontinuity radius due to the
junction condition in the case of rapid phase transitions
(15). The smaller the mode, the greater the jump.
Meanwhile, the perturbations Δpn are continuous for both
phase transitions.
Notice that the numerical solution of the radial pulsation

equations gives an infinite discrete set of eigenvalues
ω2
0 < ω2

1 < � � �, where the stable configurations correspond
to ω2

n > 0. Therefore, it is enough to determine ω2
0 to know

if a hybrid star is stable or not with respect to radial
perturbations. Figures 9 and 10 illustrate the behavior of the
squared frequency of the fundamental vibration mode as a
function of central density and total gravitational mass for
α ¼ 0.8 and α ¼ 0.4, respectively. Given a specific value
of α, all values of A yield similar behaviors, that is, the
squared frequency of the fundamental mode increases
until reaching a maximum value and then decreases with
increasing ρc for both slow and rapid phase transitions. For
a fixed value of A, the fundamental mode frequencies for
slow phase transitions are higher than those for rapid
transitions. This behavior is similar to the scenario of
neutron stars composed by a quark-matter core and
hadronic-matter crust [63], including the case of inverted
hybrid stars [73]. One can observe that for a larger
parameter A the hybrid star has a smaller central density
by which its squared eigenfrequency ω2

0 reaches a maxi-
mum value. Additionally, we remark that the radial stability
ceases (when ω2

0 ¼ 0) at a smaller and smaller value of ρc
as A increases. In other words, an increase in A gives rise to
a reduction in the stability of neutron stars with a dark-
energy core.
Maximum-mass values coincide with ω2

0 ¼ 0 regardless
of the value of A. This means that after the maximum-mass

FIG. 7. Mass-radius relations of neutron stars with a dark-
energy core for A ¼ 0.48 and several values of α. In addition, we
have considered ρþdis ¼ 0.5 × 1015 g=cm3 (black lines) and ρþdis ¼
0.8 × 1015 g=cm3 (blue lines). The gray horizontal streak at 2M⊙
represents the two massive NS pulsars J1614 − 2230 [64] and
J0348þ 0432 [65]. The filled orange and cyan bands stand for
the masses of the fastest known spinning NS in the disk of the
Milky Way (namely, the pulsar PSR J0952 − 0607 [69]) and of
the secondary companion detected by the gravitational-wave
signal GW190814 [70], respectively. The magenta, brown, red,
and green dots with their respective error bars represent
the masses of the millisecond pulsars PSR J0740þ 6620 [66],
4U 1702 − 429 [67], PSR J0030þ 0451 [68], and supernova
remnant HESS J1731 − 347 [71], respectively. The frequencies
for the fundamental oscillation mode of these compact stars under
rapid phase transitions are shown in Fig. 11.
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configuration we have ω2
0 < 0 (i.e., the frequency is purely

imaginary) and hence the stars will undergo gravitational
collapse when ρc > ρcritc . Notwithstanding, we must point
out that, mainly in the low-central-density region, the
fundamental mode frequencies obtained by rapid phase
transitions differ significantly from slow transitions. Even
more interesting is the case when α ¼ 0.4, where unstable
stars should exist in the low-mass region according to the
blue curves in Fig. 4. Slow phase transitions (solid curves in

Fig. 10) are unable to predict such unstable configurations,
while the rapid phase transitions (represented by dashed
lines) indicate a small unstable branch for low-mass stars.
As a consequence, we can conclude that only rapid
phase transitions are compatible with the standard stability
criterion dM=dρc > 0 in the sense that ω2

0 is exactly zero at
a central-density value corresponding to dM=dρc ¼ 0 and,
therefore, there are two regions of instability for sufficiently
small α.

FIG. 8. First four vibration eigenmodes ζn (left) and Δpn (right) within a oscillating hybrid configuration with
ρc ¼ 1.5 × 1015 g=cm3, α ¼ 0.8, ρþdis ¼ 0.8 × 1015 g=cm3, and A ¼ 0.2, leading to R ¼ 10.144 km andM ¼ 1.235M⊙. The numerical
solution corresponding to the nth normal pulsation mode contains n nodes between the center and the surface of the star, and the letters s
and r in parentheses represent the slow and rapid phase transition, respectively. Moreover, the vertical line indicates the radius of
discontinuity, where the eigenfunctions ζn jump due to the boundary condition in the case of rapid phase transitions (15).

FIG. 9. Left: squared frequency of the fundamental oscillation mode versus central density for hybrid stellar models with EOS (7) by
using ρþdis ¼ 0.8 × 1015 g=cm3, three values of A, and α ¼ 0.8 for both slow (solid lines) and rapid (dashed lines) phase transitions. In
the low-central-density branch, the fundamental mode frequencies for slow phase transitions are higher than those for rapid transitions.
Right: squared frequency of the fundamental mode as a function of the total gravitational mass, where it can be observed that the
analyzed configurations stop being stable at the maximum-mass point.
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Under the effect of rapid phase transitions, in Fig. 11
we have calculated the squared frequency of the funda-
mental pulsation mode for the equilibrium configurations
shown in Fig. 7. The comparison between the black
and blue curves indicates that an increase in ρþdis leads
to an increasing critical central density where the stars
are no longer stable. This means that a large ρþdis favors
the stability of neutron stars with a dark-energy core.
In addition, regardless of the value of α and ρþdis in the

right plot of Fig. 11, one sees that the maximum mass
can be used as a turning point (where the stars stop
being stable) since from there we obtain ω2

0 < 0.
Therefore, our results show that the existence of neutron
stars with a dark-energy core is possible in the Universe
for two simple reasons: They are dynamically stable (at
least until before reaching the maximum-mass point)
and are consistently compatible with the observational
measurements.

FIG. 10. Squared frequency of the fundamental vibration mode as a function of the central density (left) and of the gravitational mass
(right) as in Fig. 9, with the only difference that we have now used α ¼ 0.4 in our numerical calculations. Notably, only rapid phase
transitions are capable of predicting the unstable branch at low central densities. See also the right plot of Fig. 4 to identify the
configurations that lie in the first region where dM=dρc < 0 for α ¼ 0.4.

FIG. 11. Oscillation spectrum under the effect of rapid phase transition for the stellar configurations presented in Fig. 7, where we have
used a fixed value of A ¼ 0.48 and five values of α. Note also that the black lines correspond to the inner energy density at the interface
ρþdis ¼ 0.5 × 1015 g=cm3, while the blue curves represent the case where ρþdis ¼ 0.8 × 1015 g=cm3. Regardless of the value of α and ρþdis,
it can be observed that the maximum-mass point can be used as a turning point (where the stars stop being stable) since from there we
obtain ω2

0 < 0.
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V. CONCLUDING REMARKS

Within the context of Einstein gravity, we have inves-
tigated the equilibrium structure of hybrid stars, where the
internal core contains a dark-energy fluid while the external
layer is ordinary matter. In other words, we extended the
investigation of compact stars by confining dark energy in
the star’s core and by adding a common-matter crust on the
core. The dark-energy core was considered to be made of a
negative pressure fluid −B=ρ plus a barotropic component
Aρ, namely, the Chaplygin-like EOS, which drives the
accelerated expansion of the Universe. Meanwhile, the
outer layer of the compact star was described by a well-
known polytropic EOS. The effect of the rate of energy
densities at the phase-splitting surface α ¼ ρ−dis=ρ

þ
dis on the

macroscopic properties has been investigated in detail.
We found that the resulting mass-radius diagrams

are substantially different from dark-energy stars without
an ordinary-matter crust. In particular, previous studies
[32,37] showed that the radius of dark-energy stars with
a single phase decreases as the mass becomes smaller in
the low-central-density region. Nonetheless, our results
revealed that, for small values of α (such as α ¼ 0.4), it
is possible to obtain large radii, similar to the scenario of
compact stars made of pure hadronic matter. Remarkably,
some of these high-radius and low-mass stellar configura-
tions correspond to a branch where dM=dρc < 0. We have
also noticed that both the mass of the dark-energy core as
well as the total mass of the neutron star suffer a substantial
increase due to the increase in the parameter A. On the other
hand, for a fixed value of A, the maximum-mass values on
the MðρcÞ curve decrease as α gets smaller. Additionally,
for a given ρc, we observed that the main consequence of
the parameter α (as it decreases) is a significant increase in
the radius of the dark-energy core Rdis.
We examined in detail the effect of dark energy on the

normal vibration modes of a hybrid star. To that end, we
have adopted two different approaches for the junction
conditions due to phase transitions at the discontinuity
radius. We have found out that, for a larger parameter A, the
hybrid star has a smaller value of central density by which

its squared eigenfrequency ω2
0 reaches a maximum value.

Indeed, an increase in A gives rise to a reduction in the
stability of neutron stars with a dark-energy core. Note that
the value of A has an important consequence on the EOS
parameter B through Eq. (8), so that the term responsible
for the accelerated expansion of the Universe (that is,
−B=ρ) strongly depends on the choice of A. Furthermore,
the fundamental mode frequencies obtained by rapid phase
transitions differ significantly from slow transitions mainly
in the low-central-density region. Our results revealed that
only rapid phase transitions are compatible with the
standard stability criterion dM=dρc > 0 in the sense that
ω2
0 is exactly zero at a central-density value corresponding

to dM=dρc ¼ 0 and, therefore, there are two regions of
instability for sufficiently small α. However, this statement
no longer holds for slow phase transitions.
The most interesting phenomenological cases, compat-

ible with the observational mass-radius constraints and
respecting the causality condition, have been obtained
for ρþdis ¼ 0.5 × 1015 and ρþdis ¼ 0.8 × 1015 g=cm3 with
A ¼ 0.48 and a wide range of values for α. Consequently,
our work has shown that the existence of neutron stars with
a dark-energy core is possible in the sense that they are
dynamically stable under small radial perturbations and are
compatible with the recent astronomical measurements.
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