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We present a signal-foreground separation algorithm for filtering observational data to extract spectral
distortions of the cosmic microwave background (CMB). Our linear method, called the least response
method (LRM), is based on the idea of simultaneously minimizing the response to all possible foregrounds
with poorly defined spectral shapes and random noise while maintaining a constant response to the signal
of interest. This idea was introduced in detail in our previous paper. Here, we have expanded our analysis
by taking into consideration all the main foregrounds. We draw a detailed comparison between our
approach and the moment internal linear combination method, which is a modification of the internal linear
combination technique previously used for CMB anisotropy maps. We demonstrate advantages of LRM
and evaluate the prospects for measuring various types of spectral distortions. Besides, we show that LRM
suggests the possibility of its improvements if we use an iterative approach with sequential separation and
partial subtraction of foreground components from the observed signal. In addition, we estimate the optimal
temperature that the telescope’s optical system should have in order to detect the chemical type μ
distortions. We present a design of an instrument where, according to our estimates, the optimal contrast
between its thermal emission and the CMB allows us to measure such distortions.
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I. INTRODUCTION

The recent space missions related to the study of relic
radiation WMAP [1] and Planck [2,3] has substantially
broadened our knowledge of cosmic microwave back-
ground anisotropy; the power spectrum of ΔT=T fluctua-
tions and almost Gaussian nature of their distribution on the
celestial sphere. Ultimately, these observational data helped
to estimate the main cosmological parameters.
However, even more information can be gained by

delving into cosmic microwave background (CMB) spec-
tral distortions (SDs). Being one of the key goals of obser-
vational cosmology [4–10], measuring deviations of the
CMB spectrum from a black body shape shall reveal a vast
amount of information about the early Universe, unobtain-
able by other observational methods [4,11–14].
The chemical potential μ-type distortions [15] are

created if either energy is injected into the cosmic plasma
or photon number density is modified [6,16–21] when the
redshift is less than ∼2 × 106. Thus, they can be used as a

tool to trace the energy history of the Universe. A later type
of distortions (y distortions) [11] contain information about
the structure of intracluster medium [22–25]. In addition,
very specific deviations in the frequency spectrum of
radiation coming from galaxy clusters can be used for
independent measurements of the amplitudes and orienta-
tions of low CMB anisotropy multipoles [26,27]. The
COBE/FIRAS mission [28,29] measured the CMB fre-
quency spectrum and established its Planckian shape
with good accuracy. Future detection of the spectral
features is expected from FIRAS-type missions [30–33],
experiments with a large primary mirror with good angular
resolution [34] (which is essential for y-type deviations) or
even using a Moon-based telescope [35], which is revised
in this paper.
An exhaustive review of the theory behind SDs, their

observational challenges, computational techniques and
possible new directions in this field are given in [16].
The main difficulty in the task of measuring small spectral
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distortions is the presence of foregrounds of cosmic and
instrumental origin, which are several orders of magnitude
larger in amplitude than the signals of interest. Thus, in
order to ensure detection of such signals, it is necessary not
only to achieve high sensitivity of the experiment, but also
to learn the most optimal way to separate SDs from the rest
of the observed signal. The spectra of some astronomical
foregrounds as well as the spectrum emitted by the optical
system of the instrument are poorly defined and cannot be
modeled and predicted with the accuracy required for
reliable SDs measurements. This means that sufficiently
advanced and efficient data processing methods must be
used to solve such a problem. In particular, any methods
used must take into account possible variations in fore-
ground frequency spectra.
The well-known blind internal linear combination (ILC)

method [36] has been successfully applied to process
multifrequency analysis of CMB anisotropy maps [37–39].
However, the application of this method is limited by the
presence of large foreground components that have a
nonzero projection onto the signal of interest, which leads
to a bias. To avoid this, the constrained ILC (cILC) [40,41]
method was proposed as a modification of the ILC. This
approach completely eliminates the contribution of fore-
grounds with well-known spectral shapes, treating the
remaining components as unmodeled noise. However, to
solve the problem of getting rid of all foreground compo-
nents, it is necessary to take into account the spectral
variations of dust, cosmic infrared background (CIB),
synchrotron radiation and other sky foregrounds along
the line of site and from one direction to another one, as
well as time variations of the foreground contribution from
the instrument emission. The spectra of these components
depend on the parameters and, therefore, spectral variations
are equivalent to variations in the parameters.
To take this into account, a quite effective method, called

MILC (Moments ILC) [42–44], was introduced, where the
foreground spectra are expanded into Taylor series in terms
of parameters in the vicinity of some average reference
parameter values. Data filtering, which involves zeroing
out the expansion moments, ensures that the contribution
from such foregrounds is eliminated. However, this method
also has a rather serious disadvantage. A large number of
constraints ensuring the zeroing of the foreground contri-
bution during the filtering process inevitably leads to an
unacceptably large response to unmodeled noise (including
random photon noise). This is not surprising, since a large
number of imposed strict conditions limits the number of
degrees of freedom and increases the contribution of noise
to the estimation of the signal of interest.
In work [45], another modification of the cILC method,

called partially constrained ILC (pcILC), was proposed.
Instead of completely eliminating the contribution from a
foreground with a well-defined spectrum (as cILC does),
pcILC reduces this contribution to some empirically

determinable level. As a result the strict cILC constraints
are somewhat softened. This made it possible to reduce the
response to noise when processing ΔT=T anisotropy data
in the presence of the Sunyaev-Zel’dovich effect or CMB
lensing. However, application of this approach in the
presence of many different foregrounds is very complicated
and its effectiveness in this case has not been proven.
Besides, unlike MILC, this method does not allow for
possible spectral shape variations of foregrounds.
We recently proposed a data filtering method called least

response method (LRM) [46], which is quite simple and
easy to implement. This approach involves the optimization
of a single functional for all components of the observed
signal. During the process of data filtering we minimize the
response to all foregrounds and random noise simultane-
ously, while keeping the response to the signal of interest
equal to unity. We assume that we know the following
information about foreground signals:
(1) The foreground spectral parameters can change

within a limited range of their possible variations.
(2) The amplitudes of the foregrounds are limited from

above by known values.
Note that such information is available to us from

previous observational data and characteristics of the
instrument optical system for a particular experiment. In
this article, we compare LRM and MILC approaches and
show the advantages and prospects of LRM for measuring
various spectral distortions of the relic radiation in the
presence of all main foregrounds, including the signal from
the instrument optics.
In addition, we show that when measuring μ distortions,

the temperature of the instrument optical system should not
approach the CMB temperature. Measuring such distor-
tions requires calibration of the instrument and in this case
the signal component generated by the optics becomes a
part of the observed signal. This component is close in
shape to a black body signal, and if its temperature is close
to 2.7 K, then it becomes “poisoned” to some extent, since
the device itself begins to create spectral features simulat-
ing CMB distortions. We show that, according to our
estimates, the optimal temperature of the instrument for μ
spectral distortion measurements should be close to 9 K.
The outline of this paper is as follows. In Sec. II, we

review linear methods for observational data filtering. We
describe MILC and LRM approaches for CMB spectral
distortions detection in the case when the observed signal
contains foregrounds with poorly defined spectral shapes.
In Sec. III, we describe models of signals of interest,
foregrounds and photon noise and present a detailed
comparative numerical analysis of MILC and LRM meth-
ods. In this section we also estimate the instrument optics
temperature that is optimal for detecting μ-type CMB
spectral distortions. In the same section we give an example
of an instrument for measuring the relic radiation spectral
features. Brief conclusions and our suggestions about
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possible improvements of the LRM approach are given
in Sec. IV.

II. LINEAR DATA FILTERING METHODS

The frequency spectrum SðνÞ we observe consists of the
signal of interest and a set of other components that we
would like to get rid of during data processing. Therefore,
the total observed spectrum can be written as follows:

SðνÞ ¼ adIdðνÞ þ
XM
m¼1

ImðνÞ; ð1Þ

where Id is the certain kind of CMB spectral distortions,
which we would like to separate from other components.
Index “d” can denote the μ distortions: Iμ, the Sunyaev-
Zel’dovich effect (y distortions); Iy0 , the first or second
relativistic corrections to this effect: Iy1 or Iy2. Therefore,
ad is the frequency-independent amplitude of the signal of
interest we want to estimate. The rest of the signal SðνÞ
consists of M foregrounds of various physical origins
ImðνÞ, which may include spectral distortions themselves.
For example, if we are interested in signal Iμ, then signals
Iy0 ; Iy1Iy2 will be part of the total foreground.
Using a Fourier-transform spectrometer (FTS) mounted

on a space telescope, one can obtain discrete values of the
total signal (or row vector) S ¼ ðS1;…; SJÞ in J equally
wide frequency channels in a broad frequency range from
νmin to νmax:

Sj ¼ adI
j
d þ

X
m

Ijm þ Nj; j ¼ 1;…; J;

Ijx ¼
ZνjþΔν

2

νj−Δν
2

IxðνÞ
dν
Δν

; ð2Þ

where indices j indicate the frequency channel number, Δν
is the channel width and Nj is the random photon noise
with zero mean and covariance matrix ½Cij� ¼ C ¼ hNTNi.
The spectral shapes of CMB distortions Iμ, Iy, Iy1 and Iy2
are well-known, while the foreground spectra Im can
depend on various parameters and in fact are superpositions
of spectra integrated along the line of sight or/and obtained
as a result of averaging over spatial pixels of a sky map.
Therefore, the foreground components can be written as

Ijm ¼
Z
Ω

amðPÞfmðνj;PÞdP;

dP ¼ dp1dp2 � � � dpL; ð3Þ

where P ¼ p1;…; pL is the set of L parameters, fmðνj;PÞ
are the functions representing the foreground spectra, Ω is
the region of possible parameter variations, and am are the

amplitudes of the foreground radiation as functions of
parameters P. Thus, if, for example, amðPÞ has the form
of a delta function amðPÞ ¼ Am · δðP − PmÞ, then the
foreground spectrum with index m will have a template
with well-defined parameters Pm and the amplitude
Am: I

j
m ¼ Am · fmðν;PmÞ.

The total observed signal S ¼ ðS1;…; SJÞ can be divided
into three parts (three vectors):

S ¼ adId þ FþN;

F ¼ ðF1;…; FJÞ; Fj ¼
X
m

Ijm;

N ¼ ðN1;…; NJÞ; ð4Þ

where Id is some particular kind of spectral distortion we
want to separate from the rest of the signal, F is the total
foreground and N represents the random noise.
The task of any linear algorithm is to find the optimal

vector of weights ω ¼ ðω1;…;ωJÞ for frequency channels
that should have the following property:

ωST ¼
XJ
j¼1

ωjSj → ad for Cij → 0; i; j¼ 1;…; J: ð5Þ

Thus, in the ideal case, when the noise tends to zero
(Cij → 0), it is desirable that the algorithm accurately
reproduces the amplitude of the signal of interest ad
without any bias. With nonzero noise, the algorithm should
minimize the deviation of the estimate of this amplitude
from its true value.
Let us denote the scalar product ωST ¼ RðSÞ as the

response to the signal:

RðSÞ ¼ adRðIdÞ þ RðFÞ þ RðNÞ: ð6Þ

The first condition imposed on the weights is common to all
linear algorithms and is quite obvious,

RðIdÞ ¼ ωITd ¼
X
j

ωjI
j
d ¼ 1: ð7Þ

Thus, it is necessary to minimize the response to the rest of
the signal RðFÞ þ RðNÞ while maintaining the condition in
Eq. (7). To denote the expected total average value of the
response to foreground and noise, we use the following
definition:

RðFþNÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðFÞ þ hR2ðNÞi

q
: ð8Þ

Therefore, RðFþ NÞ is the value that must be minimized
under condition in Eq. (7).
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A. Internal linear combination method

The ILC method assumes that we know the spectral
energy distribution (SED) of the signal of interest, but does
not assume knowledge of any information about fore-
grounds and noise. With this approach all components
of the observed signal, apart from the signal of interest,
are considered as unmodeled noise. That is, in this case
in Eqs. (4) and (8) no distinction is made between the
components F and N. Thus, the problem is reduced to
minimizing the response to such noise while maintaining a
constant response to Id. As a result, the weights ωj are the
solution of the following system of equations:

1: ωITd ¼ 1;

2: ∂ðωDωTÞ=∂ω ¼ 0; ð9Þ

where D ¼ hSTSi − hSTihSi is the data covariance matrix
and hi means averaging over the spatial pixels of the sky
map. The solution of such a system is

ω ¼ IdD−1 · ðIdD−1ITdÞ−1: ð10Þ

This completely blind approach can be biased due to
nonzero projections of foregrounds on the considered
signal, FITd ≠ 0. Taking into account that in our case the
foreground amplitudes can exceed the amplitude of the
signal of interest by several orders of magnitude, this
method is not suitable.

B. Moments approach (MILC)

In order to avoid biasing in the process of signal Id
extraction, the constrained ILC (or cILC) method was
proposed [40,41], which nullifies the response to some
modeled foregrounds with known spectra. Thus, a number
of constraints are added to Eq. (9) that ensure a zero
response to certain foregrounds. This modification of
the blind ILC approach was extended with the MILC
method [42–44], where foregrounds with badly defined
spectra in Eq. (3) were considered. The idea behind
the MILC method is quite simple and effective. Since
the spectral shapes of some signal components depend
on the parameters P, they can be expanded in a Taylor
series up to some order n in the vicinity of a certain
reference point corresponding to the average preestimated
value P0:

fmðνj;PÞ ≈ fmðνj;P0Þ þ
X

n1; ...; nL

×

�
∂
n1þ ��� þnL

∂Pn1
1 � � � PnL

L
fmðνj;PÞ

�
P¼P0

× ΔPn1
1 � � � ΔPnL

L ; ð11Þ

where the summation is performed over all positive
n1;…; nL satisfying the condition 0 ≤ n1 þ � � � þ nL ≤ n.
In order to remove the influence of such foregrounds on
data processing, it is sufficient to require a zero response to
all derivatives of the spectra with respect to parameters up
to the nth order. As a result, we get the following system of
equations:

1: ωITd ¼ 1;

2:
X
j

ωj
∂
n1þ...þnL

∂Pn1
1 ...PnL

L
fmðνj;PÞjP¼P0

¼ 0;

m ¼ 1;… ;M; 0 ≤ n1 þ ...þ nL ≤ n;

3: ∂ðωCωTÞ=∂ω ¼ 0: ð12Þ

Therefore, this method ensures that the response to all
foregrounds is zeroed to within

RðFÞ ¼ O

"X
j

ωj
∂
nþ1fmðνj;PÞ

∂Pnþ1

#
P¼P0

¼ Rnþ1ðFÞ: ð13Þ

However, the disadvantage of MILC is that with a large
number of constraints in formula 2 of Eq. (12), the response
to noise RðNÞ can become unacceptably large. Indeed, this
formula is equivalent to the system of equations ωφT

k ¼ 0,
k ¼ 1; ...K, where the vectors φk correspond to the
derivatives of the foregrounds with respect to the param-
eters P and the capital K denotes the total number of
constraints (or derivatives). The system of vectors φk can
be orthogonalized in such a way that the new vectors φ̃k are
a linear combinations of the original vectors φk and
represent an orthonormal system:

φ̃k ¼ φ̃kðφ1;…;φKÞ;
φ̃kφ̃T

k0 ¼ δk
0
k ; k; k0 ¼ 1;…; K: ð14Þ

Thus, the normalized signal Ĩd ¼ Id · ðIdITdÞ−
1
2 can be

written in the following form:

Ĩd ¼
XK
k¼1

γkφ̃k þ Δd;

γk ¼ φ̃k · Ĩ
T
d ; ð15Þ

where Δd is part of signal Ĩd orthogonal to all modeled
foregrounds: φ̃kΔT

d ¼ 0, k ¼ 1;…; K. That is, the smaller
the length of the vector Δd, the more difficult it is to
separate the vector Id from the rest of the total signal. We
can define the value of Γ ¼ ðΔdΔT

dÞ1=2 as a measure of the
orthogonality of the normalized signal Ĩd to all fore-
grounds. It is easy to show, that Γ2 ¼ 1 −

P
K
k¼1 γ

2
k.

Finally, the solution of the system of Eq. (12) for
weights ω is
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ω ¼ ΔdC−1 · ðΔdC−1ITdÞ−1; ð16Þ

and the noise response can be estimated as follows:

hR2ðNÞi ¼ ωCωT ∼ σ2=Γ2;

σ2 ¼ hNNTi
J

: ð17Þ

Here, σ is equivalent to the mean sensitivity per frequency
channel. Thus, a small value of Γ means a large response to
random noise. In case when Γ → 0, the signal Id becomes
a linear combination of foregrounds, and the separation
of such a signal from them with this method becomes
impossible.

C. Least response method

Recently, a new approach to the component separation
problem has been proposed [46], which can be called the
LRM. Unlike MILC, this method implies the availability of
information not only about the possible foreground spectral
shapes variations, but also about their maximum possible
amplitudes. It is important to note that such information
about main known foregrounds is available to us. In addi-
tion, overestimation of the upper limit of the foreground
amplitudes is not critical for our approach (unlike under-
estimation). This helps to avoid imposing strict conditions
on the weight vector ω and thereby significantly reduce the
noise response. The only fairly mild assumption about the
foregrounds described in Eq. (3) is that the amplitudes am
inside the parameter domain Ω should be less than certain
(preestimated) values Am:

jamðPÞj ≤ Am for P∈Ω; ð18Þ

and amðPÞ ¼ 0 otherwise.
It is easy to show, that the mean square of the response to

foreground has an upper limit:

hR2ðFÞi ≤
*XM

m¼1

M · a2mðPÞ
"XJ

j¼1

fmðνj;PÞ · ωj

#
2
+
; ð19Þ

and according to Eq. (18) the following inequality is always
true:

hR2ðFÞi ≤ ωΦωT; Φ ¼ M

"XM
m¼1

A2
mqmij

#
;

qmij ¼
1

VΩ

Z
Ω

fmðνi;PÞfmðνj;PÞdP; ð20Þ

where integrals qmij can be precalculated for all types of
foreground (m ¼ 1;…;M) numerically or in some particu-
lar cases analytically depending on the configuration of Ω.

It is worth noting that the prefactor M for the matrix Φ in
Eqs. (19) and (20) is used to ensure that these inequalities
are certainly correct. In general, the prefactor for this matrix
can vary from 1 (when there are no correlations between
foregrounds) to M (for 100% correlation between all fore-
grounds). Thus, using the value M as a prefactor provides
a complete guarantee of taking into account all possible
correlations. In reality, foregrounds of different physical
origins are weakly correlated with each other. In this case,
the coefficient M can be replaced by one. In our estimates
we use uncorrelated foregrounds model and, therefore,
Φ ¼ ½PM

m¼1 A
2
mqmij�. For a more detailed analysis, possible

correlations between individual foregrounds can be taken
into account in the calculation of the Φ matrix.
Since hR2ðNÞi ¼ ωCωT ¼ P

i;j Cijωiωj and the fore-
grounds are not correlated with noise we have

hðRðFÞ þ RðNÞÞ2i ≤ ω½ΦþC�ωT: ð21Þ

Therefore, the minimization of the response to the fore-
ground and to the noise is achieved with weights ωj

corresponding to the minimum of the quadratic form
ω½ΦþC�ωT under condition in Eq. (7):

1: ωITd ¼ 1;

2: ∂ðω½Φþ C�ωTÞ=∂ω ¼ 0: ð22Þ

The solution of the system Eq. (22) is

ω ¼ Id½Φþ C�−1 · ðId½ΦþC�−1IdTÞ−1: ð23Þ

Thus, LRM, unlike MILC, does not require complete
orthogonality of the signal of interest to all foregrounds
[compare Eqs. (12) and (22)]. In the next section we will
demonstrate the advantages of this approach and show that
it allows to detect a signal in the observational data at a
much lower sensitivity.

III. METHODS COMPARISON AND PROSPECTS
FOR MEASURING SPECTRAL DISTORTIONS

A. Modeling spectral distortions and foregrounds

Our numerical calculations were performed for a simu-
lated observed frequency spectrum that included the signal
of interest, all possible foregrounds with varying param-
eters and photon noise. We did not use any information
about the spatial distribution of foreground sources in the
sky. In order to carry out a numerical experiment on the
application of the two methods (MILC and LRM)
described in the previous section, we used the following
models of signal components.
Signals of CMB origin are μ distortion Iμ, y distortion

(SZ effect) Iy0 , first and second relativistic corrections
to thermal SZ effect Iy1 , Iy2 and CMB anisotropy ICMBA.
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(It is assumed that the CMB monopole can be easily
removed from the observational data). All these spectra
have well-defined shapes that do not depend on any
parameters and look as follows:

IμðνÞ ¼ I0
x4ex

ðex − 1Þ2
�
1

b
−
1

x

�
μ;

Iy0ðνÞ ¼ I0
x4ex

ðex − 1Þ2
�
x coth

�
x
2

�
− 4

�
y;

Iy1ðνÞ ¼ I0
x4ex

ðex − 1Þ2 Y1ðxÞθey;

Iy2ðνÞ ¼ I0
x4ex

ðex − 1Þ2 Y2ðxÞθ2ey;

ICMBAðνÞ ¼
2ðkT0Þ3
ðhcÞ2

x4

ðex − 1Þ2
ΔT
T0

; ð24Þ

where x ¼ hν=kTCMB and the CMB temperature is
TCMB ¼ 2.72548 K, [28,29] and ΔT=TCMB < 10−4. The
same estimated values for constants b, I0, μ and y as in [32]
are used: I0 ¼ 270 MJy=sr , b ¼ 2.1923, μ ¼ 2 × 10−8,
y ¼ 1.77 × 10−6 and θe ¼ kTSZ=mec2 ∼ 2.44 × 10−3. The
functions Y1ðxÞ and Y2ðxÞ for the first and second
corrections have a rather cumbersome form and analytical
formulas for them can be found in [47].
Dust and CIB foregrounds are considered together and

modeled as a modified blackbody radiation with two
floating parameters: temperature T and spectral index β,

IDust;CIBðν; T; βÞ ¼ τDCðν=νDCÞβBðν; TÞ;

Bðν; TÞ ¼ 2ðkTÞ3
ðhcÞ2

x3

ex − 1
; ð25Þ

where νDC ¼ 353 GHz. The boundaries of the para-
meters ðT; βÞ domain were determined in [46] using
Planck data [48,49]. The probability distribution function
for these parameters was calculated for 10 degrees circular
sky part centered at l ¼ 13.731o, b ¼ −73.946o, see
Fig. 1(a). Two isocontour solid lines limit the region
ΩðT; βÞ of possible parameters variations for both; dust
and CIB. The probability to find parameters outside these
two spots is less than 0.0002. The maximum allowable
value of emissivity τDC for the data we used does not
exceed 10−6.
Synchrotron radiation is modeled according to [50] and

its spectrum has a power-law form with the single free
parameter βs:

Isyncðν; βsÞ ¼ Asðν=νsÞ−βs ; ð26Þ

where νs ¼ 30 GHz and As < 1000 Jy=sr. In accordance
with the results of [51], βs can vary from 0.9 to 1.4.

Free-free emission is given by the following formula
in [52]:

IffðνÞ ¼ Aff

�
1þ ln

�
1þ

�
νff
ν

� ffiffi
3

p
=π
��

; ð27Þ

where, Aff < 500 Jy=sr, νff ¼ 255.33ð Te
1000KÞ3=2 GHz.

According to [52], the parameter Te ¼ 7000K � 3K does
not vary across the sky strongly enough to noticeably make
any difference in the shape of the spectrum. Therefore, in
our calculations we consider free-free spectrum as well-
defined one without any parameter variations.
The instrument optics emission is considered in this paper

as a graybody radiation with varying temperature Topt:

Iopt ¼ τoptBðν; ToptÞ: ð28Þ

Temperature variations can depend on the stability of the
cooling system, design features and quality of the optical
system. In our numerical calculations we use a possible
range of temperature Topt variations as Tmin ≤ Topt ≤ Tmax

and Tmax − Tmin ≤ 2K. The emissivity τopt depends on the
quality of the polishing of the reflecting surfaces of the
optical system. We use three different upper limits for
emissivity: τopt ≤ 0.001, τopt ≤ 0.01 and τopt ≤ 0.05.
The photon noise comes from the CMB radiation, a

number of main foregrounds and emission from the instru-
ment. All these sources of fluctuations can be characterized
by the noise equivalent power (NEP) which is measured in
units of W=Hz1=2. For the FTS, intensity of the noise (i.e.
the 1σ sensitivity) is given by the following equation [53]:

σ ¼ 0.61
NEP

Δν
ffiffi
t

p
G
; ð29Þ

where t is the integration time and G is the throughput of
the system. The value G is the solid angle of the entrance
pupil seen from the detector multiplied by the area of the
instrument feedhorn. For the diffraction-limited instrument
it can be estimated as

Gdif ¼ ð0.61πc=νminÞ2: ð30Þ

However, the instruments we analyze are not necessarily
diffraction-limited, so generally it is possible to have
G ≫ Gdif .
The NEP is computed as

NEP2 ¼ NEP2
det þ NEP2

F; ð31Þ

where NEPdet is the intrinsic NEP of the detector while
NEPF is created by M various foregrounds [see Eq. (1)].
We assume that NEPdet ≤ 10−19 W · Hz−1=2 ≪ NEPF in
our estimates. Therefore,
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NEP2 ≈ NEP2
F ¼

XM
m¼1

NEP2
m;

NEP2
m ¼

Zνmax

νmin

4Gh2

c2
ν4nmðνÞ½1þ nmðνÞ�dν; ð32Þ

where nmðνÞ ¼ c2

2hν3 ImðνÞ is the photon concentration in
phase space for mth foreground component. Here we
assume ideal optical and main beam efficiency.
If the noise is determined by a weak constant fore-

ground IðνÞ ¼ const with nm ≪ 1, from (29) and (32) one
can obtain,

σ ∝
ffiffi
I
t

r
νmax − νmin

Δν
;

which coincides with the often used estimate of FTS
sensitivity, see, e.g. [54].
As one can see from Eqs. (29)–(32), the noise amplitude

depends on the intensity of radiation coming from the sky
and from the all optical system, on the FTS frequency range
and on the spectral resolution. The main sources of the
noise are CMB monopole, dust radiation, CIB and the
radiation emitted by the instrument optics. In this section
we use a white noise model. Therefore, the noise covari-
ance matrix has a diagonal form C ¼ σ2E, where σ is the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. MILC and LRM methods for separating μ distortions when only dust and CIB are taken as foregrounds. Panel (a) shows the
probability distribution function for T and β parameters. Isocontour lines limit the Ω region of parameter variations. Panel (b) shows
MILC response to foreground jRðFÞj if n ¼ 2. Dark red indicates the region where the response to the foreground exceeds the response
to the μ signal: jRðFÞj ≥ 1. Panel (c) shows the total MILC noiseþ signal response RðFþ NÞ if n ¼ 2. Panel (d) jRðFÞj for MILC,
n ¼ 3. Panel (e) RðFþNÞ for MILC, n ¼ 3. Panel (f) jRðFÞj for MILC, n ¼ 4. Panel (g) RðFþ NÞ for MILC, n ¼ 4. Panel (h) jRðFÞj
for LRM. Panel (i) RðFþ NÞ for LRM.
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sensitivity. This kind of noise distribution corresponds to a
single frequency band of the FTS instrument.
We consider the single band receiver for 384 channels

(7.5 GHz each) from 15 GHz to 2895 GHz. The throughput
is computed as for a diffraction-limited system, i.e.
from Eq. (30).

B. Numerical results

1. Dust and CIB foregrounds

We start our analysis by comparing the efficiency of the
MILC and LRM methods for IμðνÞ distortion detection
with a simple example when only dust and infrared
radiation are taken into account as foregrounds. Noise
level (or sensitivity) in this example is σ ¼ 1 Jy=sr per
single channel. The MILC method was applied for three
different versions of the Taylor series expansion of the
modified black body in terms of parameters T and β
[see Eq. (25)] to the second, third and fourth order
respectively in the vicinity of the reference value P0 of
the vector PðT; βÞ: P0 ¼ ðT0; β0Þ, T0 ¼ 21.2 K β0 ¼ 1.11
in Eq. (12). So the number of constraints zeroing deriv-
atives over two variables up to the nth order are as follows:
6 constraints for n ¼ 2, 10 constraints for n ¼ 3 and 15
constraints for n ¼ 4. The results are shown in Fig. 1.
For n ¼ 2, the response to foreground jRðFÞj and the

total response to foreground and noise RðFþ NÞ are shown
in Figs. 1(b) and 1(c) respectively in comparison with the
response to the μ signal RðIμÞ ¼ 1. Obviously, the con-
straints imposed in Eq. (12) for n ¼ 2 are not enough to
clean the area Ω from the influence of the foreground, that

is, to ensure the condition jRðFÞj ≪ RðIμÞ inside two spots
limited by isocontour lines.
For n ¼ 3, the foreground response is quite low com-

pared to the signal response, although the noise response
becomes relatively large and as a result RðFþ NÞ≈
0.8RðIμÞ, see Figs. 1(d) and 1(e).
In the case when n ¼ 4 [Figs. 1(f) and 1(g)], the regionΩ

is excessively clean from the influence of the foreground,
but at the same time 15 constraints in Eq. (12) lead to an
extremely high response to random noise for the given
sensitivity, jRðNÞj ≫ RðIμÞ.
Thus, the choice of n ¼ 3 is the optimal number of

moments in the decomposition of dust and CIB spectra
when using the MILC method. Figure 2 shows the
dependence of responses to foreground and noise on the
number of constraints imposed. As this number increases,
the response to the foreground gets smaller and, at the same
time, the response to random noise rises due to a decrease
in the index Γ which is a measure of orthogonality between
foreground and μ signal [see Eq. (17)]. So the total response
to the foregroundþ noise reaches its minimum at a certain
number of constraints.
LRM, in contrast to MILC, assumes one single condi-

tion on foregrounds and noise and provides us with the
optimal weight vector ω to minimize the ratio
(foregroundþ noise)/signal. The result can be seen in
Figs. 1(h) and 1(i) for foreground and foregroundþ
noise responses, respectively and in Fig. 2.
An interesting approach is to study the responses to the

foreground and random noise on the sensitivity of the
experiment: RðF; σÞ and RðN; σÞ. This makes it possible to

FIG. 2. Left panel: red solid line: total response to foregroundþ noise for MILC as a function of the number of constraints. Red
dashed line: Noise response for MILC. Red dash-dotted line: MILC response to foreground. The blue solid, dashed, and dash-dotted
lines show LRM responses to foregroundþ noise, noise, and foreground, respectively. Right panel: responses to noise and foreground
as functions of sensitivity for MILC (n ¼ 3) and LRM approaches. Solid, dashed, and dash-dotted lines represent the same as in the
left panel.
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estimate the necessary sensitivity for reliable detection of
certain spectral distortions in the presence of foregrounds.
In addition, this dependence allows one to compare the
effectiveness of different methods of data cleaning.
Figure 2 (right panel) shows the response to foreground

and noise as a function of σ for the MILC and LRM
methods. It is important to note that for the MILC method,
the weight vector ω does not depend on the sensitivity.
Thus, the dependence of the response to noise on σ is linear
hR2ðNÞi12 ¼ σðω · ωTÞ12. Since the response to the fore-
ground is constant and given by Eq. (13), the overall
response to noise and signal as a function of σ has a simple
analytical form:

RMILCðFþ N; σÞ ¼ �ðω · ωTÞσ2 þ R2
nþ1ðFÞ

�1
2: ð33Þ

Unlike the MILC method, when applying the LRM filter-
ing, the weights ωj depend on the magnitude of the photon
noise: ω ¼ ωðσÞ. As can be seen from Fig. 2, the total
response to noise and foreground for the LRM approach is
always significantly less than for the MILS and provides a
better signal/(foregroundþ noise) ratio:

RLRMðFþ N; σÞ < RMILCðFþ N; σÞ: ð34Þ

This inequality is true for any sensitivity σ. The reason for
this is that LRM, unlike MILC, does not require complete
orthogonality of the investigated signal to the foreground.

2. All foregrounds

Below we perform an analysis of two approaches to the
problem of signal separation, taking into account all the
main foregrounds, adding them to the already considered
components of dust and infrared radiation. As mentioned
above, the signals of relic origin and free-free emission are
considered as well-defined components of the spectrum
without parameter variations. They are only subject to
restrictions from above in terms of amplitudes.
The model of synchrotron radiation depends on one

parameter βs which varies from 0.9 to 1.4. Empirically,
it was found that three derivatives of the expansion in a
Taylor series in the vicinity of the reference point βs ¼ 1.15
are sufficient to get rid of the response to this component
for MILC method. Thus, the synchrotron requires four
constraints for the weights ω (the function itself and three
derivatives).
The spectrum emitted by the optical system of the

instrument in our example depends only on its temperature
in the vicinity of Topt ¼ 10 K and can vary between 9 K
and 11 K. To reliably get rid of the influence of this
radiation on data analysis, it is necessary to zero the
response to the function Bðν; ToptÞ and seven derivatives
over temperature: ∂nBðν; ToptÞ=∂Tn

optjTopt¼10 K, n ≤ 7 (eight
constraints in total).
The results for μ signal extraction for both methods are

shown in Fig. 3 (left panel). The more components are
taken into account, the larger the foregroundþ noise
response becomes for both methods. Nevertheless LRM
always shows an acceptable result, while MILC gives
almost infinitely large response to noise when trying to

FIG. 3. Left panel: the histogram represents the response to foregroundþ noise with the sequential addition (one by one from left to
right) of various components to the studied signal. Thus, the leftmost column shows the response to foregroundþ noise in the presence
of only dust and CIB radiation as foreground, and the rightmost column shows this response if all the components listed along the
horizontal axis are taken into account. Calculations were made for MILC and LRM to separate μ distortions and correspond to the
sensitivity σ ¼ 1 Jy=sr. Right panel: the green histogram shows the measure of orthogonality Γc of the μ signal to each individual
component. The red step line is the measure of orthogonality ΓΣ of μ distortion to all components to the left of the step in question
(similar to the left panel).
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get rid of all foregrounds. In the same figure (right panel)
we show the orthogonality measures of individual compo-
nents to the μ signal: Γm ¼ ΓdustþCIB;ΓCMBA;…;Γoptics

along with a orthogonality measure of the aggregate of
components ΓΣ. It is important to note that there is no direct
analytical relation between ΓΣ and Γm since the foreground
signals are not orthogonal to each other. It is easy to see,
that RMILCðFþNÞ ∼ Γ−1

Σ as it should be.
Finally, Fig. 4 shows the dependence of the response

RðFþ N; σÞ on the sensitivity of the experiment in the
presence of all foregrounds for both methods for μ signal
detection (left panel). The right panel shows the same
functions for the LRM approach in cases when the signals
of interest are Iy0 ; Iy1 ; Iy2 . In this case, the foreground
created by the instrument is not taken into account, since
when observing y distortions, it is possible to use the sky
difference, which automatically excludes this component
from the observed signal.

3. Optimal temperature for an instrument’s
optical system

For most space experiments, it is preferable to cool the
telescope’s primary mirror and other mirrors as much as
possible to avoid creating additional photon noise and
degrading the sensitivity. Below we will demonstrate that
cooling the system of mirrors to too much low temperature,
that is, close to the CMB temperature ∼3 K, can signifi-
cantly worsen the result if the signal of interest is μ-type
distortion. Indeed, on the one hand, a decrease in the
instrument optics temperature leads to a decrease in photon
noise, on the other hand, the approach of this temperature to
the temperature of CMB reduces the degree of orthogon-
ality of the μ signal to the foreground created by the optics.

Despite the fact that LRM does not assume complete
orthogonality to the foregrounds (including orthogonality
to the signal created by the optics), the combination
of CMB related signals together with a poorly defined
signal from the optics can, to a certain extent, mimic the
desired μ signal. This inevitably increases the response to
foregroundþ noise and, thereby, reduces the sensitivity of
the experiment to μ distortion measurements. Figure 5
demonstrates this effect. Shown here are the responses
RðFþN; ToptÞ as a functions of the temperature of the

FIG. 4. Left panel: the result of applying the MILC and LRM methods to separate the μ signal. The dependencies of the total
noiseþ foreground response on the sensitivity of the experiment in the presence of all the main foregrounds are shown. The dashed lines
show results for an “ideal” experiment with no influence from the instrument optical system. Right panel shows the results of extracting
y0, y1 and y2 signals for the LRM and for MILC approaches. We show the responses to noiseþ foreground when taking into account all
the main foregrounds except the instrument optics (sky difference should be used).

FIG. 5. Solid lines show the response to foregroundþ noise as
a function of the temperature of the instrument optics for different
emissivity values. The dashed line corresponds to the value
which is inverse to the measure of orthogonality between Iμ and a
set of signals associated with CMB and optics: ICMBA; Iy0 ; Iy1 ;
Iy2 ; Ioptics.
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optics for three different values of optics emissivity τopt.
The responses are normalized in such a way that for all
three considered τopt, a sensitivity of 1Jy=sr is achieved at
Topt ¼ 10 K. In the same figure we show the orthogonality
measure of the Iμ to the combination of CMB related
signals and optics: ICMBA; Iy0 ; Iy1 ; Iy2 ; Iopt. We denote this
measure as ΓCMBþoptics. It is assumed that the temperature
can vary within Topt � 1 K. At low temperatures, this
response behaves in a similar way as Γ−1

CMBþoptics and,
therefore, increases strongly if Topt → TCMB. At high
temperatures the response increases due to an increase in
photon noise. This effect obviously depends on the emis-
sivity of the optics τopt. Nevertheless, even for small
emissivity, cooling the mirror to temperatures close to
TCMB is undesirable. Finally the minimum response is
reached when Topt ∼ 9 K.
It should be noted that the dependence we calculated

will change for a different FTS configuration, but the
effect of increasing the response to foregroundþ noise at
Topt ∼ TCMB will remain relatively strong in any case.

C. The instrument

Below we present the example of a possible space
mission for measuring CMB spectral distortions of μ type.
Figure 6 shows the top view of the instrument called
SIMBAD (Spectroscopic Interferometer for Microwave
BAckground Distortions). The concept, originally devel-
oped to be placed at L2, has been then proposed to be
deposited in a permanently shadowed region (PSR) present
in some polar lunar craters [35] since they could offer a
very low temperature, passive cooling for the instrument.
The property of a few spots within the PSRs which reached
18 K has been put forward, as providing a much lower
temperature than is obtained at L2 for JWST [55] to the

price of a huge sunscreen. In this version of SIMBAD
(Fig. 6) the diameter of the telescope primary mirror is
1.5 m, feeding a dual-input imaging FTS [54].
All the instrument is placed in a cryostat designed to fit

into the internal fairing of the largest cargo launcher in
development to go to the Moon [56]. To bend the beam, the
telescope primary mirror and the following flat mirror must
be actively cooled at 9 K according to our results (Fig. 5).
But the IFTS behind (right part of the cryostat) is actively
cooled at a lower temperature, close to the CMB temper-
ature, since its contribution to the foregrounds is cancelled
by the differential concept of the instrument, reducing the
photon noise budget. If the SIMBAD cryostat is installed
on one of the cold lunar spots at 18 K, as described in [35],
then such a low temperature passive cooling could reduce
the power needed for the active cooling of the whole
instrument.
At the two IFTS outputs there are 2 × 2 bolometers with

their feeding horn as shown on Fig. 6, each of 1.5° aperture
on the sky, providing a total field coverage of 3° × 3° for
each data acquisition. The spectral coverage of the IFTS is
going from 15 to 2895 GHz, to cover the full CMB domain.
The maximum motion of the moving mirror of the IFTS
(6 mm) is adjusted to reach a 7.5 GHz resolution on all
the frequency domain, providing 384 equal frequency
channels. To be as simple as possible, the telescope has
no tracking motion. The direction of pointing is determined
by three adjustable legs which support the SIMBAD
cryostat on the lunar ground. The scanning of a full ring
of 3° width is simply obtained by the rotation of the Moon.
Thanks to the IFTS [54], the four bolometers are integrating
simultaneously, making a gain of a factor 2 in sensitivity for
μ compared to an FTS with a single detector. In paper [35]
the sensitivity of 1 Jy=sr is reached by a SIMBAD instru-
ment with a frequency resolution of 15 GHz and a 72 cm
telescope diameter, but already a total field-of-view of
3° × 3° obtained by four detectors observing simultane-
ously for a total integration time of 4 years. With the new
SIMBAD with a frequency resolution divided by 2 and a
collecting area multiplied by 4, from Eq. (29), the same
total integration time is needed. As proposed in [35] the
sensitivity and the field of view can be improved by placing
in the same lunar crater several identical SIMBAD units
pointing on adjacent directions scanning a wider ring.
It is important to note that the instrument requirements

for measuring μ, y signals and recombination lines vary.
For a μ signal, it is not important for us to have good
angular resolution, but we need reliable calibration of the
instrument and the temperature of its optical system should
be about 9 K. At the same time, y distortions and especially
relativistic corrections y1, y2 have a small angular size.
For their observations, it is desirable to have good
angular resolution, but there is no need to have a contrast
between the CMB temperature and the temperature of theFIG. 6. SIMBAD instrument.
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instrument. Besides the calibration of the instrument for
this task is not required. To detect extremely weak signals
from hydrogen and helium recombination lines, it is
desirable to cool the instrument optics as much as possible
to reduce photon noise.
Thus, it is necessary to look for a very complex

compromise to combine all these requirements in one
device if the goal of the mission is to simultaneously solve
all three problems. SIMBAD is mostly targeted for μ signal
measurements.

IV. CONCLUSIONS AND DISCUSSION

Detecting CMB spectral distortions is one of the key
goals of modern observational cosmology. Hidden in
foregrounds of cosmic and instrumental origin, these
deviations of the CMB spectrum from a perfect black
body shape contain a wealth of information unobtainable
by other observational methods. To extract CMB frequency
spectral distortions, a signal-foreground separation algo-
rithm was introduced. The key feature of this algorithm is
its weak sensitivity to the foregrounds spectral shapes.
Given the areas of foreground parameters variation,

which are relatively easy to determine, and the upper
bounds of the foreground amplitudes, whose overestima-
tion would not skew our results, we are able to minimize the
response both to the foregrounds and to noise. With this in
mind, we have compared the performance of our LRM
algorithm with the MILC method.
Starting off with a limited number of foregrounds (dust

and CIB) we define the minimal number of moments/
constraints optimal for the MILC analysis. Since LRM
allows for the investigated signal to be nonorthogonal to the
foreground, the total response to noise and foreground for
our method is significantly less than for the MILC for any
sensitivity value. Subsequently, we broaden the scope of
our analysis by including CMB anisotropy, y-distortions,
synchrotron and free-free emission and radiation created by
the instrument optics. Even though adding more compo-
nents increases the total response for both methods, the
response to noise obtained with MILC exceeds LRM
results by a wide margin. In this paper we did not take

into account Zodiacal light and CO lines as foregrounds in
our modeling.
It is important to note that our LRMmethod allows for an

improvement by subtracting foreground components one
by one from the observed signal. Applying our method
sequentially to all foreground components, one can esti-
mate the real foreground amplitudes am. By subtracting
foregrounds with estimated amplitudes from the total
signal, new restrictions can be made on the maximum
possible amplitudes of foreground residuals Am. Reducing
the upper limits of foreground amplitudes leads to a
decrease in the response to foregroundþ noise and, there-
fore, more accurate estimation of the spectral distortion
amplitudes. Implementation of such improvement is out of
the scope of this paper.
Finally, we have established that cooling the instrument

down to the temperature close to the temperature of relic
radiation spoils the results drastically when measuring μ
type distortions. This occurs mainly due to a decrease in the
measure of orthogonality of the μ signal to the instrument
optics component. If the system of mirrors is cooled to the
temperature of the relic, it itself begins to create distortions
close in shape to the CMB spectral distortions. The optimal
result is reached when the temperature of the mirrors is
around 9 K.
These reasonings do not apply to the measurement of y

perturbations, since in this case the signal difference can
be used, which leads to the automatic exclusion of the
component created by the instrument optics from the
observational data. Also, these arguments are not relevant
to the measurement of recombination lines because their
shape is not related to possible distortions of the blackbody
spectrum. Note that data processing for any physical
experiment with poorly defined foregrounds can use the
LRM approach.
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