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We compare the dark matter (DM) production processes and its parameters space in the background of
reheating obtained from two chief systems in the early Universe: the inflaton ϕ and the primordial black
holes (PBHs). We concentrated on the mechanism where DMs are universally produced only from the PBH
decay and the generation of the standard model plasma from both inflaton and PBHs. Whereas the
distribution of primordial black holes behaves like dust, the inflaton phenomenology depends strongly on
its equation of state after the inflationary phase, which in turn is conditioned by the nature of the potential
VðϕÞ. Depending upon the initial mass and population of PBHs, a large range of DM mass is shown to be
viable if reheating is controlled by PBHs itself. Inflaton-dominated reheating is observed to further widen
such possibilities depending on the initial population of black holes and its mass as well as the coupling of
the inflaton to the standard model sector.
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I. INTRODUCTION

In 1974, Hawking’s proposition that black holes emit
radiation was one of the most important results of the last
century [1,2]. It unified thermodynamics, quantum field
theory, and general relativity. Only primordial black holes
(PBHs), formed in the first instant of the Universe, can emit
radiation sufficiently important to have some observable
effects. On the other hand, the early Universe is also
supposed to be populated by a homogeneous field ϕ called
inflaton [3–7]. Its decay can also fuel the radiation bath
through a mechanism called reheating [8]. The reheating
can be nonperturbative in a process called preheating
[9–12] or perturbative [13–15]. In any case, at the very
end of inflation, the energy density stored in the inflaton is

of the order ρ
1
4

end ≃ 1015 GeV. Such energy corresponds to
the horizon mass of the order of 1 gram, where PBHs could
have been formed.

Such light black holes have a very short lifetime and can
subsequently reheat the Universe, entering in competition
with the inflaton. Indeed, recently, it has been shown that
the PBHs are capable of reheating the Universe without the
need to dominate its energy budget [16]. The main reason
for this phenomenon lies in the inflaton equation of state
after inflation, which is related to the behavior of the
inflationary potential at the minima. Whereas PBHs behave
like dust with a density ρBH ∝ a−3 (a being the scale
factor), the inflaton ϕ redshifts faster for the inflation
equation of state wϕ > 0, as ρϕ ∝ a−3ð1þwϕÞ where wϕ is
defined by the equation of state Pϕ ¼ wϕρϕ. Moreover, the
PBH decay width1 ΓBH ∼M4

P=M
3
BH increases with time as

their mass MBH decreases due to evaporation whereas Γϕ

decreases with time as the condensate transfers its energy
to the plasma. For instance, in the case of a Yukawa type
coupling yϕϕf̄f between the inflaton and the Standard

Model (SM), Γϕ ∝ ρ

2wϕ
1þwϕ

ϕ [13,14]. In other words, the
inflaton decay is more efficient at the beginning of the
reheating process, whereas the PBHs are more efficient at
the end of their lifetime [16]. These two characteristics, a
more diluted and less efficient inflaton with time, help to
understand the possibility for the PBH to control the
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1Throughout our work, we will consider MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
≃

2.435 × 1018 GeV as the reduced Planck mass.
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evolution of the temperature in the early Universe. One
important point is to note that if wϕ > 0.60, that means for a
reheating scenario with a very steep inflaton potential, the
big bang nucleosynthesis (BBN) bounds of the primordial
gravitational wave provide a restriction on the lower limit
of the reheating temperature [17,18].
In the meantime, since the earlier work of Fritz

Zwicky, [19], the presence of dark matter (DM) has been
confirmed at several scales but still not discovered. One of
the possibilities is that the heavy mass PBHs can be a
candidate of DM [20]. The recent limits coming from direct
detection experiments and the lack of galactic or interga-
lactic signals put severe pressure on the conventional
weakly interacting massive particles (WIMP) paradigm
[21]. The scenario where WIMP is produced during the
reheating has recently been shown to relax such pressure
and allow large parameter regions that can be explored in
the near future [22]. Constrained by the direct detection in
the conventional scenario, it is imperative to look for some
alternative mechanism, particularly for the DM being
coupled extremely weakly with the Standard Model. One
possibility is feeble interactions with the SM. Feebly
interacting massive particle (FIMP) candidates [23] can
be obtained by the exchange of heavy mediators [24,25] or
gravitons [26–29]. However, there exists the possibility that
DM is produced even before the existence of the thermal
plasma. Indeed, two energy sources are present at the very
end of inflation: inflaton and PBHs, because unstable, are
perfect candidates to populate the dark sector. If they both
can reheat the Universe, it seems natural to wonder if they
can also populate the dark sector. Indeed, they have in
common that the inflaton is not charged under the Standard
Model, and the PBHs have only gravitational interaction;
they should not distinguish the production of a thermal bath
and the decay into DM. Note that the same argument can be
used to solve the problem of leptogenesis from PBHs and
has been recently nicely addressed in [30]. Moreover, there
are effects of Hawking’s evaporation of PBHs on the DM
models [31,32].
One should then address the issue that the presence of

PBHs in an inflaton background would not overproduce the
DM. To avoid an overclosure of the Universe, we expect
to have constraints on the PBH parameters, namely, the
fraction β ¼ ρBH

ρϕ
jformation (ratio between the PBH energy

density over inflaton energy density at the point of
formation) and the formation massMin of the PBHs formed
during the reheating period. Indeed, whereas β determined
the density of PBHs in the Universe, Min gives the lifetime
of these PBHs to be compared with the inflaton decay rate.
For a given DM mass mj, a larger BH mass Min ensures a
smaller width ΓBH, which in turn can avoid overproduction.
On the other hand, for a given Min, a DM mass larger than
the initial black hole temperature T in

BH can sufficiently
suppress the production rate until the time TBH ≳mj and
also to avoid the overproduction.

Combining these properties of the PBHs with the rich-
ness of the inflaton phenomenology opens a large window
of parameter space, which was closed without considering
the presence of PBHs. We expect the two systems of the
world, inflaton and PBH, to be highly intertwined when
calculating the relic density associated with the reheating
process. This is exactly the issue we want to address in this
paper, organized as follows. After a brief reminder of the
reheating mechanism in the presence of PBH, we compute
the relic abundance of DM in different scenarios in Sec. II,
where we solve and analyze the set of Friedmann equations.
In Sec. III, we look into the case of extended mass function
and the limit on the DM mass if one considers the
constraints from the warm dark matter. We then discuss
the influence of exact greybody factors before concluding
in Sec. IV.

II. PARTICLE PRODUCTIONS THROUGH PBH

A. Generalities

Being interested in the production of dark matter
particles from the evaporation of PBH, we propose first
to summarize the main results, which will be useful for our
analysis. Even if one can find them in the literature, it is
somewhat convenient here to gather the more important
equations as they are quite dispersed; see [33–36] for
instance. We particularly want to drive the attention of the
reader to the specific references [37–39] that contain
elaborate discussions on the PBH evolution in the early
Universe. We also want to add the reference of B. Carr
himself [40] which comes back to the historical aspects of
the discovery of PBH’s evolution. Note that none of these
references work in a classical background dominated
by the inflaton field, so we had to adapt the results to
our specific environment. To compute the relic abundance
while at the same time ensuring a reheating through the
combined inflaton-PBH sources, one has to solve the set of
Friedmann and Boltzmann equations

dρϕ
da

þ 3ð1þ wϕÞ
ρϕ
a

¼ −
Γϕ

H
ð1þ wϕÞ

ρϕ
a

dρR
da

þ 4
ρR
a

¼ −
ρBH
MBH

dMBH

da
þ Γϕρϕð1þ wϕÞ

aH
dρBH
da

þ 3
ρBH
a

¼ ρBH
MBH

dMBH

da

dnBHS
da

þ 3
nBHS
a

¼ ΓBH→j
ρBH
MBH

1

aH

dMBH

da
¼ −ϵ

M4
P

M2
BH

1

aH
;

3H2M2
P ¼ ρϕ þ ρR þ ρBH; ð1Þ

where ΓBH→j is the BH decay width associated with dark

matter particles and ϵ ¼ 27
4

g�ðTBHÞπ
480

to the geometric-optics
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limit [33]. g�ðTBHÞ is the number of degrees of freedom at
TBH (106.75 for the Standard Model). ρR is the radiation
energy density, whereas nS is the number density of the
dark species S that we will suppose is scalar throughout
our study.
Solving Eq. (2) gives

MBH ¼ Minð1 − ΓBHðt − tinÞÞ13 ð2Þ

where tin is the time of formation of the PBH of initial mass
Min, and

ΓBH ¼ 3 ×
27

4
×
g�ðTBHÞπ

480

M4
P

M3
in

¼ 3ϵ
M4

P

M3
in

ð3Þ

is its width. Min is defined by

Min ¼
4

3
πγH−3

in ρϕðainÞ ¼ 4πγM2
PH

−1
in ; ð4Þ

where γ ¼ w3=2
ϕ parametrizes the efficiency of the collapse

to form PBHs [41].

B. Particle production

The production rate of any particular species from a BH
depends on its intrinsic properties, namely, mass and spin.
For simplicity, wewill consider the spin-zero Schwarzschild
BH throughout. The emission rate of a particle of species j
with internal degrees of freedom gj and mass mj escaping
the Schwarzschild horizon of radius RS per unit of time and
energy interval is expressed as

d2Nj

dtdE
¼ 27

4
πR2

S ×
gj
2π2

E2

e
E

TBH � 1

with RS ¼ MBH
4πM2

P
and

TBH ¼ M2
P

MBH
≃ 1013

�
1g
Min

�
GeV; ð5Þ

which implies

dNj

dt
¼ 27

4

gjζð3Þ
16π3

M2
P

MBHðtÞ
: ð6Þ

Depending upon the PBHmasses, we then have two distinct
cases. If mj ≲ T in

BH, which is the BH temperature at its
formation time, we can consider that the production is
effective throughout the entire lifetime of the PBH under
consideration. Integrating Eq. (6) between tin and the
evaporation time tev ¼ Γ−1

BH, and using the relation (2), we
obtain

N
mj<T in

BH
j ¼

Z
tev

tin

dNj

dt
¼ 15gjζð3Þ

g�π4
M2

in

M2
P
≃ 108

�
Min

1 g

�
2

: ð7Þ

From the expression, a simple estimation suggests that a BH
of mass 10 g can produce ∼10 billion particles during its
lifetime.Note that this result is valid for a scalar species j and
should be multiplied by 3

4
for a fermionic dark matter. The

second distinct case arises if mj ≳ T in
BH, and for such a case

one needs to integrate Eq. (6) between the time tj to tev,
where tj corresponds to the time when the mass of the
emitted particle satisfies mj ¼ TBH. A straightforward
calculation gives

tj ¼ Γ−1
BH

�
1 −

M6
P

m3
jM

3
in

�
; ð8Þ

and therefore, the total number of emitted particles turns out
to be

N
mj>T in

BH
j ¼

Z
tev

tj

dNj

dt
¼15giζð3Þ

g�π4
M2

P

m2
j
≃1014

�
1010GeV

mj

�
2

:

ð9Þ

We should also mention that the above result should be
multiplied by 3

4
for a fermionic dark matter.

To this end, a noticeable difference between the two
distinct cases is worth summarizing. When the mass of the
emitted particle is smaller than the black hole formation
temperature, the total number of emitted particlesNj ∝ M2

in
solely depends on the PBH initial mass. Otherwise, the
mass of the emitted particle controls Nj ∝ m−2

j , not the
mass of the PBH.

C. Relic abundance

To obtain the DM relic abundance of the species j today
at T0, we use [8]

Ωjh2 ¼ 1.6× 108
g0
gRH

Nj × nBHðaevÞ
T3
RH

�
aev
aRH

�
3 mj

GeV
; ð10Þ

where nBH ¼ ρBH=MBH is the density of PBH. gRH ¼
106.75 and g0 ¼ 3.91 are the effective number of light
species for entropy at the end of reheating and present day,
respectively. We took both effective numbers of degrees of
freedom for entropy and radiation as the same. Note that for
aev ≥ aRH, the reheating being completed by PBHs, one
sets aRH ¼ aev in Eq. (10). One then needs to determine the
PBH density nBHðaevÞ as a function of the equation of state
of the inflaton.
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The PBH behaving like dust evolves as

ρBHðaevÞ¼βρϕðainÞ
�
ain
aev

�
3

¼48π2γ2β
M6

P

M2
in

�
ain
aev

�
3

; ð11Þ

where we used Eq. (4) to write

ρϕðainÞ ¼ 48π2γ2
M6

P

M2
in

: ð12Þ

Considering that PBHs formed and evaporate during
inflaton domination, we obtain

�
ain
aev

�
3

¼
�
Hev

Hin

� 2
1þwϕ ¼

�
2

3ð1þ wϕÞ
ΓBH

Hin

� 2
1þwϕ

¼
�

ϵ

2ð1þ wϕÞπγ
M2

P

M2
in

� 2
1þwϕ

; ð13Þ

where we used Eqs. (3) and (4) for the last equality.
Combining Eqs. (11) and (13) one obtains for nBHðaevÞ ¼
ρBHðaevÞ=MBH

nBHðaevÞ¼48π2β

�
γwϕϵ

2πð1þwϕÞ
� 2

1þwϕM3
P

�
MP

Min

�7þ3wϕ
1þwϕ : ð14Þ

To compute the relic abundance (10), one needs to know
the running between aev and aRH, which depends strongly
on which system, PBHs or ϕ, leads the reheating process. It
is necessary to distinguish the two cases explicitly.
Moreover, the PBH reheating can be achieved in two
different regimes for β: if β is larger than a critical value βc,
given by [16]

βc ¼
�

ϵ

ð1þ wϕÞ2πγ
� 2wϕ

1þwϕ

�
MP

Min

� 4wϕ
1þwϕ ; ð15Þ

PBHs dominate not only the reheating, but also the back-
ground dynamics over the inflaton, and evaporation takes
place during PBH domination. On the other hand, if
β < βc, the PBH evaporates during inflaton domination
and can complete the reheating if wϕ > 1=3, and the
inflaton coupling with radiation field is smaller than some
critical value2 [16]. We will distinguish these four scenarios
in detail in our following discussion.

D. PBH reheating

1. β > βc
For β > βc, the PBHs dominate the Universe before their

decay and complete the reheating independently of the
inflaton system. As a consequence, the evaporation time
is the reheating time, and aev ¼ aRH in Eq. (10). The
reheating temperature TRH is given by the condition

H2
RH ¼ ρRH

3M2
P
¼ gRHπ2T4

RH

90M2
P

¼ 4Γ2
BH

9

⇒ T3
RH ¼ M

15
2

P

M
9
2

in

�
12ϵ2

αT

�3
4

; ð16Þ

where we used Eq. (3) and the fact that PBH decay
happens in a dust-dominated universe, HðtevÞ ¼ 2

3 tev
and

αT ¼ π2

30
gRH. However, in this scenario, PBHs are formed

during inflaton domination, and the decay processes occur in
PBH domination. Therefore, the relevant PBH mass evo-
lution equation is

M3
BHðaÞ ≃M3

in −
2

ffiffiffi
3

p
ϵM5

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕðaBHÞ

p �
a

aBH

�3
2

; ð17Þ

where aBH is the time when the PBH begins to dominate
the energy budget, ρϕðaBHÞ ¼ ρBHðaBHÞ. We assumed
MBHðaBHÞ ≃Min and a ≫ aBH. To obtain the scale factor
associated with the evaporation point, one needs to
solve

MðaevÞ ¼ 0 ⇒
aev
aBH

¼ M2
inρ

1
3

ϕðaBHÞ
ð2 ffiffiffi

3
p

ϵM5
PÞ

2
3

¼ M2
inρ

1
3

ϕðainÞ
ð2 ffiffiffi

3
p

ϵM5
PÞ

2
3

�
ain
aBH

�ð1þwϕÞ
: ð18Þ

Using

ρϕðaBHÞ ¼ ρBHðaBHÞ ¼ ρϕðainÞ
�
ain
aBH

�
3ð1þwϕÞ

¼ 1

β
ρBHðainÞ

�
ain
aBH

�
3ð1þwϕÞ

; ð19Þ

we deduce

ain
aBH

¼ β
1

3wϕ ; ð20Þ

and then, combining Eqs. (12), (18), and (20) we obtain

2Note that in our analysis, we considered the inflaton reheating
through its fermionic decay. Other processes have been studied in
[13,14] and are left for future work.
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ain
aev

¼ ain
aBH

aBH
aev

¼ 1

β
1
3

�
ϵ

2πγ

�2
3

�
Mp

Min

�4
3

: ð21Þ

Plugging Eq. (21) into (11), we obtain for the PBH
number density at the evaporation point

nBHðaevÞ ¼ 12ϵ2
M10

P

M7
in
: ð22Þ

Combining Eq. (10) with Eqs. (7) and (22), we obtained
for mj < T in

BH

Ωjh2

0.12
¼ 4.2 × 107

g0gjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTBHÞ

p
g
1
4

RH

ffiffiffiffiffiffiffiffi
MP

Min

s
mj

GeV

≃ 4.9 × 106

ffiffiffiffiffiffiffiffi
MP

Min

s
mj

GeV
≃

ffiffiffiffiffiffiffiffiffiffi
108g
Min

s
mj

1 GeV
; ð23Þ

where we took gRH ¼ g�ðTBHÞ ¼ 106.75 and DM is scalar.
We recognize from Eq. (23) the main feature we guessed in
the Introduction: for a given DM mass mj, the relic
abundance decreases for increasing values of Min due to
the lack of efficiency in the decay rate ΓBH, Eq. (3). We also
obtained the interesting result that for a 1 GeV dark matter,
and the right relic abundance is obtained for reasonable
PBH masses of Min ∼ 108 g. We illustrate our results in
Fig. 1, where we recognize the slope mj ∝

ffiffiffiffiffiffiffiffi
Min

p
in the

bottom blue solid line in the plot, corresponding to the
dependence obtained in Eq. (23) to achieve the right relic
abundance. On the left of this line, too efficient PBH decay
excludes a large region of the parameter space due to the
overclosure of the Universe shown in the greed-shaded
region. The pink-shaded regions indicate the forbidden

window of the PBH mass, which can disturb the BBN
phase by introducing extra relativistic degrees of freedom.
The minimum PBH mass obtained from the brown-shaded
region is set by the maximum energy scale of inflation,
which is constrained by the cosmic microwave background
(CMB) observation.
For mj > T in

BH, the same exercise, using Eq. (9) instead
of (7), gives

Ωjh2

0.12
¼ 4.2 × 107

g0gjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTBHÞ

p
g
1
4

RH

M
9
2

P

M
5
2

inm
2
j

mj

GeV
;

≃ 4.9 × 106
M

9
2

P

M
5
2

inm
2
j

mj

GeV
; ð24Þ

≃
�
108 g
Min

�5
2

�
1.1 × 1010 GeV

mj

�
: ð25Þ

We also recover the features we guessed in the Introduction.
For a given PBH population of mass Min, the relic
abundance decreases with mj as the decay efficiency is
largely reduced for heavy dark matter candidates, as it is
clear from Eq. (9). We also observe this behavior on the top
right of Fig. 1, where a viable region arises for large dark
matter masses, following mj ∝ M−5=2

in as expected for a
fixed relic abundance. One of the main results of our work
is then that, in the case of PBH domination, the constraints
on relic abundance allow only two very distinct regions:
10−5 GeV≲mj ≲ 1 GeV (corresponding to mj ≪ TBH),
for which the upper and lower limits are set by BBN and
CMB, respectively. On the other hand, for mj ≫ TBH, we
obtainedMP ≳mj ≳ 108 GeV, for which the lower limit is
set by the BBN, and the upper limit is essentially the
maximum possible mass that a fundamental particle can
possibly possess, namely, the Planck mass.

2. β < βc
If β < βc, the PBHs decay during inflaton ϕ domination,

and PBHs never dominate the energy budget of the Universe.
However, for wϕ > 1=3 and3 inflaton coupling below some
critical value ycϕ, PBH evaporation still determines the
reheating temperature TRH [16]. Writing the coupling
between the inflaton and the radiation under the form
yϕϕf̄f, one can estimate the expression for the critical
coupling ycϕ (given in Appendix A). Similarly, once we fixed
a particular coupling yϕ, there always exists a β value βBH
abovewhich the PBHs determine the reheating temperature.4

BBNΩ j h2 > 0.12CMB

β > βc

0.1 10 1000 105 107 109
10–5

0.1

1000.0

107

1011

1015

1019
7.7×109 1.1×106 36.5 4×10- 3

Min [g]

m
j
[G
eV
]

TRH [GeV]

FIG. 1. Allowed region in the (Min; mj) and (TRH; mj) plane for
β > βc. The blue lines indicate the correct relic of DM and the
green-shaded region is excluded due to overproduction, whereas
the white regions are allowed but need any second mechanism to
satisfy the relic. BBN and CMB bounds exclude the magenta and
red-shaded regions, respectively; see text for details.

3The condition wϕ > 1=3 ensures that the inflaton redshifts
faster than the radiation.

4For very strong coupling yϕ such that inflaton completely
decays before the completion of the evaporation process, we
always required PBH domination (βBH ∼ βc) to ensure PBH
reheating.
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However, there is a little subtlety here. The temperature
generated by the PBH evaporation, Tev, at aev is not, strictly
speaking, the reheating temperature TRH. However, as
stated earlier, the Yukawa is too small (y ≪ ycϕ) to affect
the temperature of the thermal bath and T being reshifted
from tev to trh (time scale when ρϕ ¼ ρR). Since dark matter
and radiation production are concluded at the time of PBH
evaporation, instead of Eq. (10), it is useful to use the
following expression for the abundance:

Ωjh2 ¼ 1.6 × 108
g0
gRH

Nj × nBHðaevÞ
T3
ev

mj

GeV
; ð26Þ

because the dominant temperature provided by the PBH
decay follows a (quasi) isentropic law T ∝ a−1 between aev
and aRH.
With the energy density of PBHs being transferred

to the radiation at the evaporation time, one has
ρRðaevÞ ¼ ρBHðaevÞ, or

nBHðaevÞ
T3
ev

¼
�
α3TρBHðaevÞ

M4
in

�1
4

: ð27Þ

Implementing Eq. (27) in Eq. (26) using (11) and (13) one
obtains for mj < T in

BH

Ωjh2

0.12
¼2.8×108μjβ

1
4

g0gj

g
1
4

RHg�ðTBHÞ

�
MP

Min

� 1−wϕ
2þ2wϕ mj

GeV
; ð28Þ

with

μj ¼
�
ϵπwϕγwϕ

2þ 2wϕ

� 1
2þ2wϕ ð29Þ

whereas

Ωjh2

0.12
¼1.7×1045μjβ

1
4

g0gj

g
1
4

RHg�ðTBHÞ

�
MP

Min

�5þ3wϕ
2þ2wϕGeV

mj
; ð30Þ

for mj > T in
BH. Note that we find similar expressions

as Eqs. (23) and (24) if one sets wϕ ¼ 0. This is expected
as for wϕ ¼ 0, the inflaton field behaves like dust, as
PBH does.
We illustrate our result in Fig. 2, where we show the

same parameter space as in the case of PBH domination,
Fig. 1. To make the comparison easier, we have chosen
two extreme parameters, β ¼ βc, corresponding to the
preceding case, and β ¼ βðTBBNÞ, corresponding to
the case where the reheating temperature generated by
the PBHs decay corresponds to the BBN temperature,
TBBN ∼ 4 MeV.
It is clear from Eqs. (28) and (30) that in this case, a new

region of allowed parameter space opens up. Indeed,
contrary to PBH domination, where only the lifetime of
PBH (and not β) determined the relic abundance, here,
along with the lifetime, the initial fraction also controls the
abundance Ωjh2 ∝ β

1
4. In other words, for a given mj,

lowering β lowers the relic abundance, opening new
allowed regions compared to the case β ≳ βc. We represent
these new regions in light green, for wϕ ¼ 1

2
on the left

panel of Fig. 2. Whereas the deep green region still
overcloses the Universe, the regions between the lines
β ¼ βðTBBNÞ and β ¼ βc possess the right relic abundance.
The slopes are given by Eqs. (28) and (30), i.e.,

mj ∝ β−
1
4M

1−wϕ
2ð1þwϕÞ
in for mj ≪ T in

BH, and mj ∝ β
1
4M

−
5þ3wϕ
2ð1þwϕÞ

in for
mj ≫ T in

BH. However, the reheating being completed by the

FIG. 2. Same as Fig. 1 for β ≤ βc. Here, the light green region indicates the allowed parameter space in the context of PBH reheating,
with an inflaton coupling below the critical value yϕ ≪ ycϕ. We show two limiting values of β: the critical value βc in blue below which
the inflaton dominates the energy budget before the PBH decay and βðTBBNÞ < βc in red which is the value of β for which the reheating
temperature due to PBHs decay is the BBN bound TBBN¼ 4 MeV. The deep green region indicates DM overproduction, whereas the
white region indicates underproduction, where another mechanism to satisfy the correct DM abundance is required.
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PBHs population, the reheating temperature can also be
expressed in terms of the fraction β as

TRH ∼MPβ
3
4

1þwϕ
3wϕ−1

�
Min

MP

�3
2

1−wϕ
3wϕ−1; ð31Þ

as shown in [16], and also detailed in Eq. (A12) of our
dedicated Appendix A. Therefore, for a fixed value of
reheating temperature, β behaves as proportional to

M
−
2ð1−wϕÞ
1þwϕ

in . Thus, mj ∝ M
1−wϕ
1þwϕ

in for mj ≪ T in
BH, and mj ∝

M
−
3þwϕ
1þwϕ

in

for mj ≫ T in
BH. For wϕ ¼ 1

2
, this corresponds to slopes

mj ∝ M
1
3

in for mj ≪ T in
BH, and mj ∝ M

−7
3

in for mj ≫ T in
BH,

which is effectively what is observed on the red lines in the
left panel of Fig. 2 where we fixed the reheating tempera-
ture to be TRH ¼ TBBN.
We show in the right panel of Fig. 2 the same analysis but

in the (TRH,mj) plane. This is just another representation of

our results. Indeed, combining Eqs. (31) and (28) or (30),
for each couple (TRH, mj) there exists a unique couple

(β;Min) which fixes TRH and Ωjh2. We obtainmj ∝ T
3wϕ−1
3ð1þwϕÞ
RH

for a fixed value of β < βc when mj ≪ T in
BH and mj ∝

T
−
ð3wϕ−1Þð5þ3wϕÞ
ð1þwϕÞð1−wϕÞ

RH for mj ≫ T in
BH. For example, for wϕ ¼ 1

2

and any fixed value of β, mj ∝ T
1
9

RH for mj ≪ T in
BH and

mj ∝ T
−13

3

RH for mj ≫ T in
BH. Similarly, for a fixed Min, we

have mj ∝ T
1−3wϕ
3ð1þwϕÞ
RH for mj ≪ T in

BH and mj ∝ T
3wϕ−1
3ð1þwϕÞ
RH

for mj ≫ T in
BH, which gives for wϕ ¼ 1

2
, mj ∝ T

−1
9

RH for

mj ≪ T in
BH and mj ∝ T

1
9

RH for mj ≫ T in
BH (see, for instance,

the lower panel of Fig. 3).
Note that PBHs can emit inflaton particles. Accounting

for the production of the inflaton particle from evaporation
modifies the total number of degrees of freedom g�ðTBHÞ
at TBH associated with the evaporation function, i.e,

FIG. 3. Allowed parameter space for wϕ ¼ 1=2 in the (mj; β) and (mj; TRH) planes for two different values ofMin ¼ ð102; 105Þ g and
three distinct values of yϕ ¼ ð0.05; 10−4; 10−6Þ. The shaded region in the upper panels indicates the forbidden regime due to
overproduction. The vertical red dashed line indicates the divider line between the inflaton and PBH reheating. The regime on the right-
hand side of the red dashed line is dominated by PBH reheating, whereas on the left-hand side, the Yukawa coupling yϕ defines the
reheating temperature.

PRIMORDIAL BLACK HOLE VERSUS INFLATON PHYS. REV. D 109, 023521 (2024)

023521-7



ϵ ¼ 27
4

g�ðTBHÞπ
480

. Now the total degrees of freedom accounts
for the standard model particles, dark matter, and inflaton.
Taking gSM ¼ 106.75 and gϕ ¼ 1, it can be inferred that the
production of inflaton particles from evaporation would
amount to approximately 1% of that of radiation, which we
can safely ignore compared to the thermal bath. Moreover,
we are mainly interested in the scenario where the inflaton
equation of state wϕ ≥ 1=3, so it redshifts equal to or faster
than radiation and faster than dark matter. Therefore, even
at the evaporation end, the inflaton number density is
comparable to the dark matter but with its subsequent
evolution becomes negligible compared to the dark matter
abundance.

E. Inflaton reheating

If β < βc and the inflaton coupling is strong enough,
yϕ ≳ ycϕ, the inflaton dominates the reheating process and
also determines TRH. However, depending on the coupling
strength, the reheating, which is governed by the inflaton
decay width Γϕ, may happen before or after the evaporation
point aev. We give in Appendix B the threshold value ythϕ
above which the inflaton decays before the PBH evaporates
as a function of the parameters of the inflationary poten-
tial VðϕÞ.
Note that in our analysis, we always supposed that the

PBHs are formed during the reheating, which means
ain < aRH. This also means that there exists, for each
PBH mass range, an upper size of the horizon to ensure
their formation during the reheating period. This upper size
of the horizon can be converted into a maximum reheating
temperature. This temperature can be estimated from Hin,

Tmax
RH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
HinMP

α1=2T

r
¼

�
γ
0.2

�
1=2

�
1.9×103 g

Min

�
1=2

1014 GeV [see,

for instance Eq. (4)]. As an example for the PBH mass of
105 g, Tmax

RH ∼1.4×1013GeV, and Tmax
RH ∼ 1.4 × 1011 GeV

for Min ¼ 109 g.
Following the same procedure as in the previous section,

we will discuss in detail the two possibilities.

1. aev < aRH

If ycϕ < yϕ < ythϕ , the PBHs evaporate before the end of
reheating; thus, aev < aRH. The dilution of the dark
component between aev and aRH is then modified com-
pared to our previous analysis due the injection of a
considerable amount of entropy during the decay of the
inflaton, which was negligible in the previous section. This
injection can considerably dilute the relic abundance, and
we expect an increase in the allowed mass range, allowing
heavier dark matter. Whereas Nj is not modified by the
presence of the inflaton, nBHðaevÞðaev=aRHÞ3, appearing in
Eq. (10), is affected. Connecting the evolution of the scale
factor from the evaporation point to the reheating time in
the inflaton-dominated era, we obtain

aev
aRH

¼
�
tev
tRH

� 2
3ð1þwϕÞ ¼

�
3ð1þ wϕÞ

2

HRH

ΓBH

� 2
3ð1þwϕÞ

¼
�ð1þ wϕÞ

2
ffiffiffi
3

p
ffiffiffiffiffi
αT

p
T2
RH

MP

M3
in

ϵM4
P

� 2
3ð1þwϕÞ

: ð32Þ

The number density of the species j at aRH is then given by
Eq. (14) modulo the dilution factor between aev and aRH

njðaRHÞ ¼ Nj × nBHðaevÞ ×
� ffiffiffiffiffi

αT
p ð1þ wϕÞ

2
ffiffiffi
3

p
ϵ

T2
RHM

3
in

M5
P

� 2
1þwϕ

:

ð33Þ

Utilizing Eq. (33), one obtains the ratio

njðaRHÞ
T3
RH

¼ μ̃

�
M

4wϕ−2
P M

1−wϕ

in

T
3wϕ−1
RH

� 1
1þwϕ

; ð34Þ

for mj < T in
BH with

μ̃ ¼ 720gjζð3Þβ
g�ðTBHÞπ2

� ffiffiffiffiffi
αT

p
γwϕ

4
ffiffiffi
3

p
π

� 2
1þwϕ : ð35Þ

This gives for gRH ¼ g�ðTBHÞ ¼ 106.75,

Ωjh2

0.12
¼ 4.9 × 107μ̃

�
M

4wϕ−2
P M

1−wϕ

in

T
3wϕ−1
RH

� 1
1þwϕ mj

1 GeV

≃ 3.4 × 106β

�
M

4wϕ−2
P M

1−wϕ

in

T
3wϕ−1
RH

� 1
1þwϕ mj

1 GeV

≃ 3.4 × 106β

�
Min

MP

�1−wϕ
1þwϕ

�
MP

TRH

�3wϕ−1
1þwϕ mj

1 GeV
: ð36Þ

For mj > T in
BH, we obtain

njðaRHÞ
T3
RH

¼ μ̃

m2
j

�
M

2þ8wϕ

P

M
1þ3wϕ

in T
3wϕ−1
RH

� 1
1þwϕ

; ð37Þ

and

Ωjh2

0.12
¼4.9×107

μ̃

m2
j

�
M

2þ8wϕ

P

M
1þ3wϕ

in T
3wϕ−1
RH

� 1
1þwϕ mj

1GeV

≃3.4×106
β

m2
j

�
M

2þ8wϕ

P

M
1þ3wϕ

in T
3wϕ−1
RH

� 1
1þwϕ mj

1GeV

≃2×1030β

�
Mp

Min

�1þ3wϕ
1þwϕ

�
MP

TRH

�3wϕ−1
1þwϕ 1013GeV

mj
: ð38Þ
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2. aev > aRH

For even stronger inflaton coupling yϕ > ythϕ > ycϕ, there
exists the possibility that the inflaton decays even before
the completion of the PBH evaporation process. In other
words, aev > aRH. In this case, we have

njðaevÞ
T3ðaevÞ

¼ Nj × nBHðaevÞ
T3ðaevÞ

¼ Nj

nBHðainÞðainaev
Þ3

T3
RHðaRHaev

Þ3

¼ Nj ×
48π2γ2β

M6
P

M3
in
ð ainaRH

Þ3
T3
RH

; ð39Þ

where we supposed that no particles had decoupled from
the thermal plasma between aRH and aev, and used Eq. (12).
The scale factor between the formation and reheating point
can be connected through the evolution of the Hubble
parameter as

ain
aRH

¼
�
HRH

Hin

� 2
3ð1þwϕÞ ¼

� ffiffiffiffiffi
αT
3

r
MinT2

RH

4πγM3
P

� 2
3ð1þwϕÞ

; ð40Þ

whereHRH is the Hubble parameter at the end of reheating.
Implementing Eq. (40) into Eq. (39), one can find the

ratio

njðaevÞ
T3ðaevÞ

¼ μ̃

�
M

4wϕ−2
P M

1−wϕ

in

T
3wϕ−1
RH

� 1
1þwϕ

; ð41Þ

for mj < T in
BH and for mj > T in

BH

njðaevÞ
T3ðaevÞ

¼ μ̃

m2
j

�
M

2þ8wϕ

P

M
1þ3wϕ

in T
3wϕ−1
RH

� 1
1þwϕ

; ð42Þ

Interestingly, the above equations, (41) and (42), turn out to
be exactly the same with the previous case aRH > aev [see,
for instance, Eqs. (34) and (37)]. Therefore, the DM
abundance naturally follows Eqs. (36) and (38). An easier
way to understand this is to notice that the present relic
abundance is given by

njða0Þ ¼ njðaevÞ
�
aev
a0

�
3

¼ nBHðaevÞNj

�
aev
a0

�
3

;

which gives

njða0Þ ¼ nBHðainÞNj

�
ain
a0

�
3

¼ nBHðainÞNj

�
ain
aRH

�
3
�
aRH
a0

�
3

:

If the dilution is dominated by the same field (in this case
the inflaton) between ain and aRH, the relic abundance does
not depend on the evaporation time.

We show in the upper panel of Fig. 3 the allowed regions
in the (β; mj) parameter space for different values of yϕ and
Min ¼ 100 g (left) or 105 g (right) with wϕ ¼ 1

2
. For each

yϕ, we also plotted in the same figure the lines for βBH,
corresponding to the value of β above which the PBHs
dominate the reheating process over the inflaton. On the left
side of the βBH line, the inflaton reheats the Universe, and
we recover the behavior we found in Eqs. (36) and (38) i.e.,
points allowed by the relic density constraint respectmj ∝ 1

β

for mj ≪ T in
BH and mj ∝ β for mj ≫ T in

BH. Once β > βBH,

mj follows the law mj ∝ β−
1
4 for mj ≪ T in

BH (β
1
4 for

mj ≫ T in
BH) as expected from Eqs. (28) and (30). Then,

once β ≳ βc, the relic density depends only on the PBH
lifetime and is then independent on β, as we also noticed on
Eq. (23). We also show our result in the plane (TRH, mj) in
the lower panel. To this end, it may indeed be worth
indicating the special case at wϕ ¼ 1=3, for which DM
abundance turns independent of TRH or inflaton coupling
yϕ. For such a case, also we showed the behavior in the
ðβ; mjÞ plane in Fig. 4. Because of the indistinguishable
nature between the inflaton and radiation, the intermediate
mj ∝ β�1=4 behavior corresponding to PBH reheating does
not arise, and hence, the βBH ¼ βc condition satisfies as
expected.
Finally, for a clear comparison with the two preceding

cases (PBH reheating and domination, PBH reheating and
inflaton domination), we plotted in Fig. 5 the allowed region
in the (Min; mj) plane for wϕ ¼ 1

2
and different values of yϕ.

We clearly see that by increasing yϕ the excluded region
shrinks naturally. Indeed, for inflaton domination, the
reheating temperature increases with yϕ. As a consequence,
the same amount of relic abundance is obtained for higher
dark matter mass in the case mj < T in

BH as one can see from
Eq. (36). Formj > T in

BH, it is the opposite, see Eq. (38), and a
lower DM mass is necessary to obtain the right amount of

FIG. 4. Allowed parameter space for wϕ ¼ 1=3 in the (mj; β)
plane for two different values of Min ¼ ð102; 105Þ g. Interest-
ingly, once we fixed Min, ðmj; βÞ parameter space turns out to be
independent of coupling value yϕ.
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relic abundance. This is easy to understand, as with higher
reheating temperatures there is a tendency to dilute the dark
matter abundance more. What is also interesting in this plot
is the different regimes that can be observed forMin. For very
large values ofMin, not far from theBBN limit, the reheating
is determined by the PBHwhile they dominate the Universe,
andwe recover the results showed in Fig. 1. For intermediate
values of Min, the PBHs do not dominate the Universe but
dominate the reheating process, whereas for lowMin, on the
left side of the dashed lines, the PBHs dominate neither the
Universe’s energy budget nor the reheating process. In this
case, the dependence between Min and mj changes slope
between these two regimes, as we can see comparing
Eqs. (28) and (36). It is easy to understand, as in the case
of inflaton reheating, that lower values of Min produce less
dark matter particles, see Eq. (7), and then necessitates
higher dark matter masses. The situation is the opposite for
the intermediate value of Min when PBH dominates the
reheating because of the dilution effect described
by Eq. (27).

III. REFINEMENTS

A. The case for extended mass distribution

Depending on the underlying mechanism that governs
their formation, PBHs may exhibit extended mass

distribution that is contingent on the power spectrum of
primordial density perturbations and the equation of state of
the Universe at the time of their formation (see Ref. [42]),
for example power-law [43], log-normal [44–46], critical
collapse [47–50], or metric preheating [51–53], among
others. In the current section, we consider the class PBHs
with power-law shape mass function of the form

fPBHðMi; tiÞ ¼
�
CM−α

i ; for Mmin ≤ Mi ≤ Mmax

0; otherwise;
ð43Þ

where ti and coefficient C are, respectively, the initial time
and the overall normalization factor. Mmin and Mmax
represent the minimum and the maximum PBH masses,
respectively. We parametrize the width of the PBHs masses
range by two parameters, Min and σ, such that Mmin ¼
Min10

−σ and Mmax ¼ Min. The parameter α ¼ 2þ4ωϕ

1þωϕ
(see

Refs. [16,35]).
Then the evolution equations for ρBH and ρR become

dρR
da

þ 4
ρR
a

¼ Γϕρϕð1þ wϕÞ
aH

−
a3

a3in

Z
∞

M̃

dM
da

fPBHðMi; tiÞdMi

dρBH
da

þ 3
ρBH
a

¼ a3

a3in

Z
∞

M̃

dM
da

fPBHðMi; tiÞdMi ð44Þ

where the lower bound M̃ allows us to ensure that at time t
only the nonevaporated PBHs with mass Mi larger than M̃
contribute to the energy density, and is given by

M̃ðaÞ ¼
�

2
ffiffiffi
3

p
ϵ

1þ ωϕ

�1=3� M5
Pffiffiffiffiffiffiffiffi

ρend
p

�
1=3� a

ain

�1
2
ð1þωϕÞ

: ð45Þ

In this scenario, we employed a modified version of
the package called FRISBHEE [35–37,54]. This modified
version incorporated the inflaton into the evolving system,
enabling us to solve a set of evolution equations and
calculate the relic abundance. This approach is necessary
due to the intricacies introduced by the presence of integrals
on the right-hand side of Eq. (44), which makes the
situation somewhat more complex than the monochromatic
scenario.
Before presenting the results, let us recall that the

reheating through PBHs, after a regime of PBH domina-
tion, happens when they completely evaporate. Hence, as
shown in [16], the choice of the mass function that extends
to lower values, with the maximal initial mass Mmax
corresponding to the monochromatic mass Min, guarantees
that the complete evaporation of PBHs in both cases is
achieved at the same epoch. Therefore, the reheating
temperature would be somewhat the same in both cases
for a given Min.

FIG. 5. Allowed region in the (Min; mj) plane for four different
values of the coupling yϕ ¼ ð0.05; 10−4; 10−6; 0Þ with wϕ ¼ 1

2

and β ¼ 10−15. BBN and CMB bounds exclude the magenta and
red-shaded regions, respectively. For each value of yϕ, the vertical
red dashed lines (left one is for yϕ ¼ 10−6 and the right one is for
yϕ ¼ 10−4) separate the regions between the inflaton and PBH
reheating. The regions on the right side of the red dashed lines are
dominated by PBH reheating, whereas on the left side, the
Yukawa reheating temperature is determined by yϕ. The red circle
represents the PBH formation mass associated with the case
where reheating temperature from the PBH decay corresponds to
the BBN temperature and here we set coupling yϕ ¼ 0. The
shaded region indicates DM overproduction. Whereas the white
region indicates under production, here we need any second
mechanism to satisfy the correct DM relic.

HAQUE, KPATCHA, MAITY, and MAMBRINI PHYS. REV. D 109, 023521 (2024)

023521-10



Our findings yield similar results for both the extended
and monochromatic PBH mass spectra, as depicted in
Fig. 6, under the conditions of β > βc and σ ¼ 2, which
correspond to the range Min ∈ ½106; 108� g. Nevertheless,
certain distinctions are noteworthy.
We observe that in the light DMmass region,mj < T in

BH,
there is no substantial difference between the monochro-
matic and extended cases, as can be seen in the lower line of
Fig. 6. This happens because the number of DM particles
produced is ∝ ðMinÞ2, and so the dominant contribution
comes from heaviest PBH, which in our case corresponds
to the monochromatic mass.
However, in the high DM mass region, mj > T in

BH, there
is a substantial difference. First, the number density of DM
is larger compared with the monochromatic case because
not only does the largest mass Min produce DM particles,
but as soon as the lighter population of PBHs start to
evaporate, they will produce DM particles ∝ ðmjÞ−2 as
well. Consequently, a much wider parameter space of mj is
excluded. The exclusion region for a given Min would be
similar to that of the monochromatic scenario when the
PBH initial mass ≳Min10

−σ. This can be observed in Fig. 6
where, for example, for Min ∼ 108 g and σ ¼ 2, avoiding
overproduction of DM requires mj ≳ 1014 GeV, corre-
sponding roughly to the excluded region for the mono-
chromatic case (σ ¼ 0) when Min ∼ 4 × 106 g, as can be
deduced from the upper dashed blue line.
In light of these results, some comments are in order: The

exclusion region formj is strongly dependent on the size of
the width of the distribution; in such a way the larger the σ,
the stronger the constrain on mj, that is, the larger the mass
of DM particles is necessary not to overproduce it. We also
note that if the distribution extends to larger masses such
that Min ¼ Mmin, the reheating temperature and the DM
number density can be very affected depending on the

width of the mass function, since larger masses than Min
would have larger lifetime compared to the monochromatic
scenario. This will affect both the low and high DM mass
regimes.

B. Limit on the DM mass from warm dark matter
(WDM) constraints

1. Generalities

The DM from PBH evaporation has a large initial
momentum. Higher initial momentum indicates a large
free streaming length, which might erase small-scale
structures. Indeed, if boosted at production time, the
classical limit on warm dark matter (mj ≳ 3 keV) coming
from structure formation or Lyman-α constraints needs to
be revisited. The idea is simple. A straightforward calcu-
lation shows that the free streaming length λFS can be
approximated by [8]

λFS ≃ 70 Mpc
1eV
Tnr

; ð46Þ

where Tnr is the temperature at the time when the DM
becomes nonrelativistic, or p≲mj, where p is the momen-
tum of the DM. If p ∼ T at production time, because T and
p redshifts as a−1, the condition can indeed be read
Tnr ∼mj, and the classical limits apply. This is the typical
case for WIMP or FIMP candidates. However, if the dark
matter momentum p is boosted by a process at production
time, p ¼ γT, with γ ≫ 1, the condition p ∼mj becomes
Tnr ∼

mj

γ , and Eq. (46) becomes

λFS ≃ 70 Mpc
1 eV
mj

γ; ð47Þ

transforming the condition frommj≳3 keV tomj≳3 γkeV.
This is exactly what is happening in the case of production
from PBH evaporation because the dark matter momentum
at evaporation pev ∼ T in

BH ≫ TRH. We propose to study
in more detail each case analyzed previously in this
context.

2. β > βc
Since DM particles have no interaction with other

particles from the evaporation point to the present day
we have momentum value at the present day

p0 ¼
aev
a0

pev ¼
aev
aeq

ΩR

Ωm
pev ð48Þ

where at present-day radiation relic abundance ΩR ¼ 5.4 ×
10−5 and matter relic abundance Ωm ≃ 0.315. aeq and aev
are the scale factor at the radiation-matter equality and
evaporation point, respectively. In the limit, β > βc, PBH

FIG. 6. Allowed region in the (Min; mj) plane for β > βc in the
case of the power-law extended mass distribution, with σ ¼ 2
(see text for details). The dashed blue line corresponds to the
monochromatic (σ ¼ 0) scenario. BBN and CMB bounds ex-
clude the magenta and red-shaded regions, respectively.
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evaporation completes during PBH domination, and
comoving entropy density is conserved from the end of
the evaporation point to the present day. In this context,
Tev ¼ TRH and using entropy conservation, p0 can be
rewritten as

p0 ¼
�
gseq
gsRH

	
1=3 Teq

TRH

ΩR

Ωm
pev; ð49Þ

where gsRH and gseq represent the effective degrees of freedom
for entropy at the end of reheating and radiation-matter
equality, respectively. Teq ¼ 0.8 eV is the radiation temper-
ature at radiation-matter equality. In the case of light DM,
mj ≪ T in

BH, the average momentum of the light DM matter
particle radiated by a PBH, pev ∼ T in

BH. Moreover, the usual
velocity of the warm DM at present, which decoupled while
they are relativistic, is assumed to be [55]

vWDM ≃ 3.9 × 10−8
�

keV
mWDM

�4
3

: ð50Þ

Several experiments put constraints on the WDM, such as
HIRES/MIKE Lyman-α forest datasets and XQ-100, the
Markov Chain Monte Carlo (MCMC) analysis restricts
WDM mass mWDM > 5.3 keV at 2σ range [56]. In
references [57,58], using high-resolution spectrograph
(HIRES)/MIKE, the authors obtained the bound on
WDM mWDM > 3.3 keV and > 3.95 keV using SDSSIII/
BOSS. Throughout our analysis, we choose the restriction
on the mass of theWDM,mWDM > 3.3 keV. Now, utilizing
the above equations, (49) and (50), together with (16), one
can find

mj

GeV
≥ 7 × 10−7

�
mWDM

keV

�4
3

�
Min

MP

�1
2

; ð51Þ

where mWDM ∼ 3.3 keV. For example, if one takes 10 g
of the initial PBH mass, the DM mass bound turns out
to be mj > 5.2 × 10−3 GeV. Note that this bound does not
depend on the inflaton equation of state and PBH fraction as
expected. We also recover the naive constraint
we obtained previously, remarking that the boost factor

γ ¼ pev
TRH

∼ T in
BH

TRH
∼

ffiffiffiffiffiffi
Min
MP

q
.

3. β < βc (PBH reheating)

In the limit β < βc, if the coupling value yϕ < ycϕ,
PBH decay determines reheating temperature. Thus, after
the evaporation point to the present day, the comoving
entropy energy density is conserved, and the expression
for p0

p0 ¼
�
gseq
gsev

	
1=3 Teq

TðaevÞ
ΩR

Ωm

M2
P

Min
; ð52Þ

where gsev represents the effective degrees of freedom for
entropy at the end of evaporation. In this scenario, PBH
evaporates during inflaton domination, and evaporation
temperature can be calculated from ρBHðaevÞ [see, for
instance, Eq. (14)]

TðaevÞ ≃
�
ρBH
αT

�1
4 ¼

�
48π2β

αT

�1
4 eμ1MP

�
MP

Min

� 3þwϕ
2ð1þwϕÞ; ð53Þ

where eμ1 ¼ �
γwϕ ϵ

2πð1þwϕÞ
� 1

2ð1þwϕÞ. Utilizing Eqs. (52) and (53),

the restriction on the DM mass

mj

GeV
≥
6.1 × 10−7eμ1β1

4

�
mWDM

keV

�4
3

�
Min

MP

� 1−wϕ
2ð1þwϕÞ: ð54Þ

For example, if one takes 10 g of initial PBH, the DM mass
bound turns out to be mj >

5.1×10−5

β
1
4

GeV, for wϕ ¼ 1=2.

Now let us move our discussion to the case of inflation
reheating.

4. β < βc (Inflaton reheating)

If the coupling strength yϕ > ycϕ and β < βc, inflaton
coupling determines reheating temperature. In addition to
that, depending on how strong the coupling is yϕ > ythϕ >
ycϕ or ycϕ < yϕ < ythϕ , reheating happens before and after the
evaporation point, respectively. The restriction would be
different in these two cases.

(i) aev < aRH: Once ycϕ < yϕ < ythϕ , reheating occurs
after completion of the evaporation process. One can
find the ratio aev=aeq as

aev
aeq

¼ aev
aRH

aRH
aeq

¼
�
gseq
gsRH

�
1=3 Teq

TRH
eμ2�T2

RH

M2
P

M3
in

M3
P

� 2
3ð1þwϕÞ

;

ð55Þ

where eμ2 ¼ �
1þwϕ

2ϵ

ffiffiffiffiαT
3

p � 2
3ð1þwϕÞ. To derive above

equation we use Eq. (32). Now, upon substitution
of the above Eq. (55) into (49) and employing
Eq. (50), we get

mj

GeV
≥ 1.2 × 10−6 eμ2�mWDM

keV

�4
3

×

�
TRH

MP

� 1−3wϕ
3ð1þwϕÞ

�
Min

MP

�1−wϕ
1þwϕ : ð56Þ

For example, if one takes 10 g of initial PBH
mass, the DM mass bound turns out to be

mj >
�
TRH
GeV

�
−1=9

6.6 × 10−2 GeV, for wϕ ¼ 1=2.
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(ii) aev > aRH: For strong coupling yϕ > ythϕ > ycϕ,
the reheating process completes even before the
evaporation point, and the leading decay process
takes place in a radiation-dominated background.
In this case, TðaevÞ can be calculated from the
Hubble parameter at the evaporation point, which is

related to ΓBH, HðaevÞ ¼ ΓBH
2

¼ 3ϵ
2

M4
P

M3
in
. The evapora-

tion temperature

TðaevÞ ¼
�
3M2

PHðaevÞ2
αT

�1
4 ¼

�
27ϵ2

4αT

�1
4 M

5
2

P

M
3
2

in

: ð57Þ

Since in this scenario, after evaporation there is no
entropy injection in the Universe, combining
Eqs. (52) and (57), one can find

mj

GeV
≥ 8.1 × 10−7

�
mWDM

keV

�4
3

�
Min

MP

�1
2

: ð58Þ

This particular constraint is similar to the one previously
discussed for the PBH-dominated case [see Eq. (51)]. This
behavior was expected because it corresponds to our naive
estimate of the boost factor γ discussed previously.
We depicted in Fig. 7 how DM parameter space

presented in Fig. 5 is modified if one considers WDM
constraints, which we show in orange shaded region. One
important outcome of Fig. 7 is that for mj < T in

BH, the
allowed DMmasses in the context of purely PBH reheating
is severely restricted due to the violation of the WDM limit.

C. PBH evaporation: Comparison
with the exact greybody factor

PBH mass reduction rate is crucially dependent on
evaporation process, produced particles’ spin, and the
angular momentum of the BHs [37]. Throughout our
analysis we dealt with the Schwarzschild BHs. To be

precise, the rate of change of BH mass is calculated upon
integrating over the phase space and summing over differ-
ent species as

dMBH

dt
¼ −

X
j

Z
∞

0

Ej
∂
2Nj

∂p∂t
dp ¼ −ϵðMBHÞ

M4
P

M2
BH

; ð59Þ

where ∂
2Nj

∂p∂t represents the emission rate of any species j of
mass mj and spin sj with degrees of freedom gj in time
interval dt and momentum lies within5 ðp; pþ dpÞ and

Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þ p2
q

. The BH mass-dependent evaporation

function ϵðMBHÞ can be expressed as

ϵðMBHÞ ¼
X

gjϵjðzjÞ; ð60Þ

where

ϵjðzjÞ ¼
27

128π3

Z
∞

0

Ψsjðx2j − z2jÞ
expðxjÞ − ð−1Þ2sj xjdxj; ð61Þ

where xj and zj are the dimensionless parameter defined as
xj ¼ Ej=TBH, zj ¼ mj=TBH. And Ψsj is the reduced grey-
body factor defined as the ratio between the exact greybody
factor to its value in the geometrical-optics limit

ΨsjðxÞ ¼
σsj

σsjjgo
: ð62Þ

In the geometrical-optics limit, the greybody factor

assumes, σsjjgo ¼ 27
64π

M2
BH

M4
P

[59–62] and the evaporation

function for massless particle turns out as

ϵjð0Þ ¼
27

4

ξπgj
480

; ð63Þ

where ξ ¼ ð1; 7=8Þ for bosons and fermions respectively,
which is the limit we took. Consequently, PBH mass
evolution follows Eq. (2).
One important point to note is that the evaporation

function in the geometrical-optics limit nearly matches with
the actual evaporation function for scalar and fermionic
particles; however, for fermion mass mj > 4TBH our
calculation is slightly underestimated compared to the
actual one, as we can see from Fig. 2 of Ref. [37] where
they plotted the evaporation function ϵjðzjÞ as function of
zj. Finally, we can add that for scalar (spin zero) and
fermionic (spin half) particles, the geometrical-optical limit
works fine, whereas for higher spin particles such as spin-1
and spin-2 particles, we would need to take the exact
spectrum for the accurate analysis.

FIG. 7. Same as Fig. 5 taking into account the restriction from
the warm dark matter constraint (orange shaded region). 5For details calculation, see Ref. [37].
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IV. CONCLUSION

In this study, we have compared in detail the DM
parameter space in the background of the reheating phase
dynamically obtained from two chief systems in the early
Universe: the inflaton ϕ and the primordial black holes. The
DM is assumed to be produced purely gravitationally from
the PBH decay, not interacting with the thermal bath and
the inflaton. Within this context, The population of the
primordial black holes behaves like dust, whereas the
behavior of inflaton depends strongly on its equation of
state after the inflationary phase, which in turn depends on
the exponent of the potential VðϕÞ ∝ ϕn, wϕ ¼ n−2

nþ2
.

Depending upon the dynamics of reheating, we showed
that a large range of initial PBH masses Min and fraction β
can lead to the right amount of relic abundance.
If PBHs dominate the background dynamics (β > βc),

the reheating process becomes insensitive to the inflaton
and the PBH fraction β. Therefore, it is the PBH mass Min
that solely controls the DM abundance as well as the
reheating temperature TRH. In this scenario, if mj < T in

BH,
with increasing DM mass, we need to increase the value of
Min to increase the dilution such that the DM number
density decreases to avoid the DM overproduction, i.e.,
mj ∝

ffiffiffiffiffiffiffiffi
Min

p
. Another possibility is to have DM mass

mj > T in
BH, where the Boltzmann suppression naturally

reduces the DM production and hence opens up the lower
Min values for which abundance could be satisfied. This
scenario is nicely illustrated by Fig. 1.
If one considers yϕ < ycϕ and β < βc, that allows PBH

radiation to govern the reheating while the inflaton domi-
nates the energy budget during the whole process. For such
a case, the allowed DM region can be extended, and that is
solely dependent on the inflaton equation of state wϕ. As an
example we have shown the results for wϕ ¼ 1=2 in Fig. 2.
The main conclusion of our analysis is that two very
secluded regions of PBH parameters can, at the same time,
ensure a successful reheating while still producing the right
amount of dark matter with mass mj: 10−4 GeV≲mj ≲
1 GeV (corresponding to mj ≪ T in

BH), and 1019 GeV≳
mj ≳ 108 GeV (corresponding to mj ≫ T in

BH).
In the case of extended mass function with power-law

distribution extending to lower PBH mass values, the limits
in the lower DM regime (mj < T in

BH) remain unchanged
compared to the monochromatic scenario. However, in the
high DM mass regime (mj > T in

BH) gets modified depend-
ing on the width of the distribution. For instance, with
σ ¼ 2, the constraint on the range of allowed values for mj

becomes 1019 GeV≳mj ≳ 1012 GeV.
If the energy budget and the reheating is dominated by

the inflaton, the range of allowed DM mass is widened and
depends strongly on the Yukawa coupling of the inflaton to
the Standard Model, yϕ as one can see in Fig. 5 which can
be considered as the master plot of our work. In comparison

with the PBH reheating, a noticeable difference in DM
parameter space can be observed in both mj < T in

BH and
mj > T in

BH cases. Particularly when mj > T in
BH, for which

DM yield is large for lower PBH and DM mass, Ωjh2 ∝
M−5=3

in m−1
j compare to PBH reheating Ωjh2 ∝ M−13=6

in m−1
j

for wϕ ¼ 1=2. In this case, an additional entropy injection
from inflaton dilutes the yields. Consequently, it allows
lower PBH masses to not overclose the Universe. Hence,
the increment of the inflaton coupling yϕ widens the mass
range by rendering both lower values of mj and Min viable
for yϕ ∼ 0.05 as we see in Fig. 5. Interestingly for the
mj < T in

BH case, on the other hand, the dilution due to the
entropy injection effects oppositely on the DM yields,
Ωjh2 ∝ M1=3

in mj for wϕ ¼ 1=2, rendering it under abun-
dant. Thus, one must increase the mj value in inflation
reheating to obtain the correct DM yield with increasing yϕ.
Indeed, the decoupling between the reheating process
(completed by the inflaton) and the dark matter production
(generated by the PBHs) allows for a larger range of
dilution factors through the injection of the entropy from
inflaton decay. As a consequence, larger DM masses are
necessary for the same amount of relic abundance.
Moreover, in PBH reheating, for mj < T in

BH, mj ∝ M1=6
in ,

whereas inflation reheating suggests mj ∝ M−1=3
in , which is

a completely opposite behavior which we can see in Fig. 5.
We have also included the warm dark matter constraints

from structure formation and the Lyman-α forest. Indeed,
the dark matter momentum at evaporation time, being
pev ∼ T in

BH ≫ TRH, the typical limit mj ≳ 3 keV needs to
be revisited. We considered this boost factor in our analysis,
which makes the dark matter candidate relativistic for
longer. We found that the region mj < T in

BH previously
allowed for pure PBH reheating is now excluded due to
warm dark matter limit, whereas the regionmj > T in

BH stays
unaffected as we can see in Fig. 7. On the other hand, the
presence of the inflaton produces a sufficiently large
amount of entropy, decreasing the free streaming length
significantly. In this case, the warm dark matter constraint
does not affect our result either, as we also see in Fig. 7.
In conclusion, we see that the combination of two chief

systems of the world, even with very different phenom-
enology and dynamics, can considerably enlarge the
parameter space allowed by the cross constraints from
reheating and the relic abundance.
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APPENDIX A: EXPRESSION FOR THE
CRITICAL COUPLING ycϕ

In the standard reheating scenario, the reheating process
is not instantaneous, and during this phase, the inflaton
energy density transfers to the daughter particles, mostly to
the SM particles, setting proper initial conditions for the
BBN. In principle, considering different gravitational and
nongravitational couplings, there are several possibilities
for reheating. However, in this analysis, we are only
interested in the fermionic coupling with interaction
Lagrangian yϕϕff. Taking such a scenario, we have the
radiation energy density

ρDRðaÞ ¼
y2ϕ
8π

λ
1−wϕ

2ð1þwϕÞαnM4
P

�
ρend
M4

P

�3
2
− 1
1þwϕ

�
a

aend

�
−4

×

��
a

aend

�5−9wϕ
2

− 1

	
; ðA1Þ

where aend is the scale factor associated with the end
of inflation, and λ is related to the mass scale Λ of the

α− attractor potential [63,64], λ ¼
�

Λ
MP

�
4
�

2
3α

�n
2, potential

which has the form

VðϕÞ ¼ Λ4
h
1 − e−

ffiffiffi
2
3α

p
ϕ

MP

in
: ðA2Þ

The parameter λ can be represented in terms of the CMB
observables, such as the amplitude of the inflaton fluc-
tuation AR and scalar spectral index ns as [65]

λ ¼
�
2

3α

�n
2

�
3π2rAR

2

�
4

×

�
n2 þ nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 3αð2þ nÞð1 − nsÞ

p
nð2þ nÞ

	n
: ðA3Þ

The above equation suggests that the evolution of the
radiation energy density is different for wϕ > 5=9 (n > 7)
and wϕ < 5=9 (n < 7). As a consequence, the end of the
reheating, which is defined at the point of aRH where
ρϕðaRHÞ ¼ ρRðaRHÞ ¼ ρRH would be different for n > 7

and n < 7. In the case of n < 7, aRH can be written
as [13,14],

aRH
aend

¼
�
y2ϕ
8π

αn

�
λM4

P

ρend

� 1−wϕ
2ð1þwϕÞ

	 2
3ðwϕ−1Þ

: ðA4Þ

However, for n > 7 one can find

aRH
aend

¼
�
−
y2ϕ
8π

αn

�
λM4

P

ρend

� 1−wϕ
2ð1þwϕÞ

	 1
1−3wϕ

: ðA5Þ

Upon substitution, the expression for aRH, EqS. (A5) and
(A5) into (A1), ρRH can be written as

ρDRH ¼
�
y2ϕ
8π

αn

�2ð1þwϕÞ
1−wϕ

λM4
P: ðA6Þ

Whereas, for n > 7,

ρDRH ¼
�
y2ϕ
8π

αn

�3ð1þwϕÞ
3wϕ−1 ðλM4

PÞ
3ð1−wϕÞ
2ð3wϕ−1Þρ

5−9wϕ
2ð1−3wϕÞ
end : ðA7Þ

The expression for the critical coupling ycϕ below which
value PBH-driven reheating happens should be followed

ρRH ¼ ρDRH; ðA8Þ

where the left-hand side is calculated only taking PBH
evaporation as a source and the right-hand side for the
inflaton decay. The radiation energy density at the end of
PBH-driven reheating can be written as

ρRH ¼ ρRðaevÞ
�
aev
aRH

�
4

≃ ρBHðaevÞ
�
aev
aRH

�
4

; ðA9Þ

and the inflaton energy density

ρϕðaRHÞ ¼ ρϕðainÞ
�
ain
aRH

�
3ð1þwϕÞ

: ðA10Þ

Now upon substitution of Eq. (11) into Eq. (A9) and
comparing with (A10), one can find

�
aev
aRH

�
4

¼ β
4

3wϕ−1

�
ain
aev

� 12wϕ
1−3wϕ : ðA11Þ
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Utilizing the above equation, ρRH can be written as

ρRH ¼ 48π2β
3ð1þwϕÞ
3wϕ−1

�
ϵ

2ð1þ wϕÞπγ3wϕ

� 2
1−3wϕ

�
MP

Min

�6ð1−wϕÞ
1−3wϕ M4

P:

ðA12Þ

Connecting Eqs. (A12), (A8), and (A6), we have

ycϕ¼
ffiffiffiffiffiffi
8π

αn

s
β

3ð1−wϕÞ
4ð3wϕ−1Þ

�
48π2

λ

� 1−wϕ
4ð1þwϕÞ

×

�
ϵγ−3wϕ

2πð1þwϕÞ
� 1−wϕ

2ð1−3wϕÞð1þwϕÞ
�
MP

Min

�3
2

ð1−wϕÞ2
ð1−3wϕÞð1þwϕÞ; ðA13Þ

where αn ¼ 2ð1þwϕÞ
ð5−9wϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þwϕÞð1þ3wϕÞ

ð1−wϕÞ2

r
. The above equation is

true for n < 7. For n > 7, similarly, instead of using
Eq. (A6) employing Eq. (A7), one can find

ycϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
8πβ

αn

s
ð48π2Þ

3wϕ−1
6ð1þwϕÞλ

wϕ−1
4ð1þwϕÞ

�
ϵγ−3wϕ

2πð1þ wϕÞ
�− 1

3ð1þwϕÞ

×

�
MP

Min

�wϕ−1
1þwϕ

�
ρend
M4

P

� 5−9wϕ
12ð1þwϕÞ: ðA14Þ

APPENDIX B: EXPRESSION FOR ythϕ

The coupling strength ythϕ that ensures that the inflaton
reheating happens before the evaporation process com-
pletes can be determined by equating aev ∼ aRH, where the
expression for aRH=aend is followed by Eq. (A4) for n < 7
and Eq. (A5) for n > 7. And aev=aend followed by the
expression (see, for instance, Ref. [16])

aev
aend

¼
�ð1þ wϕÞ

2
ffiffiffi
3

p
ϵ

M3
in

ffiffiffiffiffiffiffiffi
ρend

p
M5

P

	 2
3ð1þwÞ

: ðB1Þ

Now, comparing the above equations, for n < 7, we have

ythϕ ¼ ν1

�
MP

Min

�3ð1−wϕÞ
2ð1þwϕÞ; ðB2Þ

and for n > 7

ythϕ ¼ ν2

�
Min

MP

�1−3wϕ
1þwϕ

�
ρend
M4

P

� 5−9wϕ
12ð1þwϕÞ; ðB3Þ

where ν1 ¼
ffiffiffiffi
8π
αn

q
ð1þwϕ

2ϵ

ffiffi
λ
3

q
Þ

wϕ−1
2ð1þwϕÞ and ν2 ¼

ffiffiffiffiffiffiffiffi
− 8π

αn

q
�
1þwϕ

2
ffiffi
3

p
ϵ

� 1−3wϕ
3ð1þwϕÞλ

wϕ−1
4ð1þwϕÞ.
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