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We calculate the reheating temperature in scenarios where heavy particles are gravitationally produced
during a phase transition. We explore two distinct situations: the decay of these particles both during and
after the kination phase. Subsequently, we determine the respective reheating temperatures. Finally, we
constrain these temperatures based on considerations related to the overproduction of gravitational waves
during the phase transition from the end of inflation to the onset of kination.
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I. INTRODUCTION

The investigation into various reheating mechanisms
within the framework of quintessential inflation has been
a longstanding and intricate pursuit. Cosmologists have
dedicated significant efforts to unravel the dynamics and
implications associated with reheating processes specific to
quintessential inflation.
Initially, the authors explore a mechanism rooted in the

gravitational production of light particles, as elucidated
in Refs. [1–4]. This mechanism, while providing a low
reheating temperature around 103 GeV, encounters signifi-
cant challenges, including the potential overproduction of
gravitational waves (GWs) [1] and the effects of vacuum
polarization during inflation [5]. These challenges cast
doubt on its viability. Consequently, an alternative mecha-
nism, known as instant preheating [5–8], emerges as a more
promising solution. Grounded in the interaction between
the inflaton field and a quantum scalar field, this approach
circumvents the aforementioned issues.
Within the quintessential inflation framework, this alter-

native mechanism of reheating involves the creation of
particles with an effective mass that grows over time. As
these particles become nonrelativistic, they undergo decay,
contributing significantly to the reheating of the universe
at an exceptionally high temperature, on the order of
109 GeV [9] [recall that in supersymmetric theories, a
reheating temperature below 109 GeV is needed to avoid
interferences with the success of big bang nucleosynthesis
(BBN), caused by the late decay of gravitationally inter-
acting particles, such as the gravitino or the moduli
fields [10]. This is the so-called “gravitino problem”].
This innovative perspective not only mitigates the chal-
lenges posed by the gravitational production of light

particles but also introduces a more efficient reheating
mechanism, leading to higher reheating temperatures.
Only a potential challenge of this mechanism is that the
coupling constant between the inflaton and the quantum
field responsible for particle production is highly con-
strained ranging in a very narrow range [9].
Concurrently, there has been a recent resurgence of

interest in gravitational particle production, with a shift
in focus toward the creation of heavy particles that
subsequently decay into lighter ones, aligning with the
hot big bang model [11–14]. Motivated by this perspective,
the present work delves into this novel scenario, providing
analytical formulas for the reheating temperature associated
with the gravitational production of heavy particles. A
comprehensive discussion ensues, evaluating temperatures
around 107 GeV, obtained when the created particles have
heavy masses close to the scale of inflation, which is close
to 10−6Mpl, and assessing their compliance with constraints
arising from the potential overproduction of gravitational
waves. This exploration represents a significant advance-
ment in understanding the dynamics of the reheating
mechanisms in quintessential inflation through the produc-
tion of supermassive particles.
Throughout the manuscript we use natural units, i.e.,

ℏ ¼ c ¼ kB ¼ 1, and the reduced Planck’s mass is denoted
by Mpl ≡ 1ffiffiffiffiffiffi

8πG
p ≅ 2.44 × 1018 GeV.

II. REHEATING VIA GRAVITATIONAL
PRODUCTION OF HEAVY PARTICLES

We begin by denoting ρBðtÞ and hρðtÞi as the energy
densities of the background and the heavy massive particles
produced gravitationally, respectively.
During the kination epoch, which in quintessential

inflation takes place shortly after the end of inflation
and where all of the energy of the background is kinetic,*jaime.haro@upc.edu
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prior to the decay of the produced particles, using the
subindex kin to signify the onset of kination, the evolution
of the respective energy densities is

ρBðtÞ ¼ ρB;kin

�
akin
aðtÞ

�
6

; hρðtÞi ¼ hρkini
�
akin
aðtÞ

�
3

; ð1Þ

because due to the significant mass, namely mχ, of the
particles under consideration, their energy density scales
akin to nonrelativistic matter. Specifically, during the
kination phase, the background energy density scales
proportionally to a−6, while the energy density of the
produced particles is calculated utilizing the β-Bogoliubov
coefficients, as follows [15]:

hρðtÞi ¼ 1

2π2a4ðtÞ
Z

∞

0

k2ωkðtÞjβkj2dk

≅
mχ

2π2a3ðtÞ
Z

∞

0

k2jβkj2dk; ð2Þ

with ωkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χa2ðtÞ
q

being the frequency of the

modes,wherewe employ the approximationωkðtÞ≅mχaðtÞ.
The Bogoliubov coefficients are subject to the following
differential equations [15]:

8<
:

α̇kðtÞ ¼ ω̇kðtÞ
2ωkðtÞ e

−2i
R

tωkðtÞ
aðtÞ dtβkðtÞ

β̇kðtÞ ¼ ω̇kðtÞ
2ωkðtÞ e

2i
R

tωkðtÞ
aðtÞ dtαkðtÞ

ð3Þ

and the relationship jαkðtÞj2 − jβkðtÞj2 ¼ 1. It is crucial to
recognize that the β-Bogoliubov coefficients encapsulate
both vacuum polarization effects and particle production.
Shortly after the initiation of kination, the polarization effects
become negligible. This implies that when they stabilize at a
value denoted by βk, the coefficients only reflect the con-
tribution of the produced particles [16].
At this juncture, it is important to note that solving (3)

requires an understanding of the evolution of the scale
factor, which is derived from the semiclassical Friedmann
equation:�

ȧðtÞ
aðtÞ

�
2 ≡H2ðtÞ ¼ 1

3M2
pl

ðρBðtÞ þ hρðtÞiÞ; ð4Þ

that incorporates the back-reaction stemming from particle
production, indicating that the evolution of the scale factor
is influenced by the Bogoliubov coefficients.
Fortunately, the approach to solving (3) involves recog-

nizing that well before the conclusion of kination, the
energy density of the produced particles becomes sub-
dominant. As a result, the semiclassical Friedmann equa-
tion can be approximated by the classical Friedmann
equation H2ðtÞ ¼ ρBðtÞ

3M2
pl
. Thus, the scale factor can be

determined by solving the background equation:

ϕ̈þ
ffiffiffi
3

p

Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̇2

2
þ VðϕÞ

s
ϕ̇þ V 0ðϕÞ ¼ 0; ð5Þ

where the background is represented by the inflaton field ϕ.
Effectively, once we have the evolution of the inflaton field
up to the end of kination, one can calculate the energy
density of the background. By inserting this value into the
classical Friedmann equation, the evolution of the Hubble
rate and, consequently, the scale factor can be determined
well beyond the commencement of kination. This infor-
mation is sufficient for numerical solutions of (3) and the
determination of the stabilized Bogoliubov coefficient.
However, numerically solving (3) poses considerable

difficulty, prompting the use of an analytical formula for the
energy density of conformally coupled produced particles
at the onset of kination [17]

hρkini ≅
1

4π3
e
− πmχ

2
ffiffi
2

p
HEND

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχffiffiffi
2

p
HEND

r
H2

ENDm
2
χ ; ð6Þ

where HEND denotes the value of the Hubble rate at the
end of inflation, which can be calculated analytically by

equating the slow-roll parameter ϵ ¼ M2
pl

2
ðV 0ðϕÞ
VðϕÞÞ2 to 1, what

provides the value of the inflaton field at the end of inflation
Additionally, one has to take into account that at the end of
inflation one has

ϕ̇2
END ¼ VðϕENDÞ ⇒ HEND ≅

1ffiffiffi
3

p
Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̇2
END

2
þ VðϕENDÞ

s

¼ 1ffiffiffi
2

p
Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕENDÞ

p
: ð7Þ

After understanding the evolution of these energy
densities before the decay of the heavy particles into lighter
ones, two distinct scenarios unfold: decay during and after
the conclusion of the kination regime. Consequently, we
will delve into both situations with attention to detail.

A. Decay before the end of kination

Let Γ be the decay rate of the heavy massive particles,
and it is worth noting that the decay process concludes
when Γ is of the same order as the Hubble rate.
Denoting ρB;dec and hρdeci as the energy density of the

background and that of the produced particles at the end of
the decay, respectively, after the decay, they evolve as

ρBðtÞ ¼ ρB;dec

�
adec
aðtÞ

�
6

and hρðtÞi ¼ hρdeci
�
adec
aðtÞ

�
4

; ð8Þ

because the background dominates the evolution during
the kination and, after the decay, the particles are currently
relativistic.
Hence, given the virtually instantaneous nature of the

thermalization process, the universe undergoes reheating at
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the conclusion of kination, denoted by the subindex end,
that is, when both energy densities are of the same order.
This leads to the relation�

adec
aend

�
2

¼ hρdeci
ρB;dec

⇒ hρendi ¼
hρdeci3
ρ2B;dec

: ð9Þ

Therefore, from the Stefan-Boltzmann law, the reheating
temperature has the following expression:

Treh ≡
�

30

π2greh

�
1=4

hρendi14 ¼
�

30

π2greh

�
1=4

hρdeci14
ffiffiffiffiffiffiffiffiffiffiffi
hρdeci
ρB;dec

s
;

ð10Þ
where greh ¼ 106.75 is the effective number of degrees of
freedom for the Standard Model.
At this juncture, we can enhance this formula by

considering the evolution of the corresponding energy
densities before the decay. They follow the expressions

ρBðtÞ ¼ ρB;kin

�
akin
aðtÞ

�
6

¼ 3H2
kinM

2
pl

�
akin
aðtÞ

�
6

;

hρðtÞi ¼ hρkini
�
akin
aðtÞ

�
3

; ð11Þ

where we have taken into account that hρkini ≪ ρB;kin,
implying ρB;kin ≅ hρkini þ ρB;kin ¼ 3H2

kinM
2
pl.

Then, when the heavy particles have completely
decayed, which occurs when H ∼ Γ, the semiclassical
Friedmann equation becomes

3Γ2M2
pl ¼ ρB;kin

�
akin
adec

�
6

þ hρkini
�
akin
adec

�
3

; ð12Þ

which is a quadratic equation in terms of x ¼ ðakinadec
Þ3, and

whose well-known solution is given by

�
akin
adec

�
3

¼ 1

2Hkin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2

q
−HkinΘ

�
; ð13Þ

where we have introduced the concept of heating efficiency
as [18]

Θ≡ hρkini
ρB;kin

: ð14Þ

Using this definition, we can write

hρdeci
ρB;dec

¼ 2HkinΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2
p

−HkinΘ
and hρdeci ¼ ρB;kinΘ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2
p

−HkinΘ
2Hkin

; ð15Þ

and thus, taking into account that ρB;kin ≅ 3H2
kinM

2
pl, after some algebra, the reheating temperature (10) is given by

Treh ¼
�

90

π2greh

�
1=4

�
2HkinΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
kinΘ2 þ 4Γ2

p
−HkinΘ

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘHkin

Mpl

s
Mpl: ð16Þ

On the other hand, given that the decay occurs during kination, we have the constraints Γ ≤ Hkin and hρdeci ≤ ρB;dec,
resulting in

ffiffiffi
2

p
ΘHkin ≤ Γ ≤ Hkin: ð17Þ

This is because, before the decay, the energy density of the produced particles scales as a−3, leading to

hρdeci ≤ ρB;dec ⇒ hρkini ≤ ρB;kin

�
akin
adec

�
3

⇒ Θ ≤
1

2Hkin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2

q
−HkinΘ

�

⇒ 3HkinΘ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2

q
⇒ 9H2

kinΘ2 ≤ H2
kinΘ2 þ 4Γ2 ⇒ 2H2

kinΘ2 ≤ Γ2 ⇒
ffiffiffi
2

p
HkinΘ ≤ Γ: ð18Þ

Next, recognizing that when the decay occurs well before to the end of kination the decay rate satisfies Γ ≫
ffiffiffi
2

p
ΘHkin,

and the reheating temperature will become

Treh ¼
�

90

π2greh

�
1=4

�
ΘHkin

Γ

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘHkin

Mpl

s
Mpl: ð19Þ
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Additionally, the maximum reheating temperature is attained when Γ ¼ ffiffiffi
2

p
ΘHkin and the minimum one when Γ ¼ Hkin,

yielding the following expressions:

Tmax
reh ¼

�
90

π2greh

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘHkin

Mpl

s
Mpl; and Tmin

reh ¼
�

90

π2greh

�
1=4

�
2Θffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Θ2 þ 4
p

− Θ

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘHkin

Mpl

s
Mpl; ð20Þ

where, given that Θ ≪ 1, the minimum reheating temper-
ature can be approximated as

Tmin
reh ¼

�
90Θ
π2greh

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘHkin

Mpl

s
Mpl: ð21Þ

Finally, also observe that to address the gravitino
problem and ensure that the universe has been sufficiently
reheated well before the BBN epoch, which occurs around
1 MeV, these constraints must be imposed:

Tmax
reh ≤ 109 GeV and Tmin

reh ≥ 1 MeV; ð22Þ

which leads to the following initial bound for the heating
efficiency:

10−24 ≤ Θ ≤ 10−12: ð23Þ

B. Decay after the end of kination

In this subsection, we will examine the scenario
where the decay occurs after the end of kination. In
this case, given the instantaneous nature of the thermal-
ization process, reheating is concluded upon the com-
pletion of decay. Therefore, the reheating temperature is
determined by

Treh ¼
�

30

π2greh

�
1=4

hρdeci1=4; ð24Þ

where one must ensure that Γ ≤ Hend. The value of the
Hubble rate at the end of kination can be calculated by
considering that, in this scenario, the energy density of
the produced particles decays as a−3 throughout the
entire kination phase. Thus, at the end of kination,�

akin
aend

�
3

¼ hρkini
ρB;kin

¼ Θ ⇒ H2
end ¼

2ρB;end
3M2

pl

¼ 2ρB;kin
3M2

pl

�
akin
aend

�
6

¼ 2H2
kinΘ2; ð25Þ

and thus, the constraint Γ ≤ Hend, obviously becomes
Γ ≤

ffiffiffi
2

p
ΘHkin.

To refine the formula for the reheating temperature (24),
we perform the following calculation:

hρendi ¼ ρB;end ¼ 3H2
kinΘ2M2

pl ⇒ hρdeci1=4

¼ hρendi1=4
�
aend
adec

�
3=4

¼ 31=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘHinMpl

q �
aend
adec

�
3=4

:

ð26Þ
Next, note that after kination, the potential of the

inflaton field can be disregarded until the onset of matter
domination, at which point it begins to be significant and
eventually becomes dominant, leading the universe into the
dark energy epoch. For this reason, the dynamical equation
of the background

ρ̇B þ 3Hð1þ wBÞρB ¼ 0 ⇒ dρB þ 3ð1þ wBÞρBda
¼ 0 ⇒ dρB þ 6ρBda ¼ 0; ð27Þ

where the effective equation of state parameter is

wB ¼ ϕ̇2−2VðϕÞ
ϕ̇2−2VðϕÞ ≅ 1, has the solution

ρBðtÞ ¼ ρB;end

�
aend
aðtÞ

�
6

: ð28Þ

Therefore, when the decay is immediately finished,
introducing the notation x ¼ ðaendadec

Þ3, the semiclassical
Friedmann is given by

3Γ2M2
pl ¼ ρB;endðxþ x2Þ ⇒ x2 þ x −

�
Γ

ΘHkin

�
2

¼ 0;

ð29Þ

having as a solution

�
aend
adec

�
3

¼ 1

2HkinΘ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2

q
−HkinΘ

�
; ð30Þ

and thus, using the formulas (30) and (26), the reheating
temperature takes the following form:

Treh ¼
�

90

π2greh

�
1=4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2
p

−HkinΘ
2HkinΘ

�1=4

×

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘHkin

Mpl

s
Mpl: ð31Þ

Remark: the formulas (16) and (31) match when the
decay is at the end of kination, i.e., when Γ ¼ ffiffiffi

2
p

ΘHkin,
obtaining the maximum reheating temperature (20).
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Finally, when the decay is well after the end of kination,
i.e., when Γ ≪

ffiffiffi
2

p
ΘHkin, the reheating temperature has the

simple form

Treh ¼
�

90

π2greh

�
1=4

ffiffiffiffiffiffiffiffi
Γ
Mpl

s
Mpl; ð32Þ

and thus, for a decay well after the end of kination, by
enforcing 1 MeV ≤ Treh to ensure reheating before the
BBN, one obtains the bound:

6 × 10−43Mpl ≤ Γ ≪
ffiffiffi
2

p
× 10−6ΘMpl ⇒ Θ ≫ 4 × 10−37:

ð33Þ

C. Calculation of the heating efficiency

Given that the reheating temperature is contingent on the
value of Θ, its calculation becomes imperative. To facilitate
this computation, we employ the analytic formula for the
energy density of conformally coupled particles produced
at the initiation of kination (6).
Assuming the conventional scenario where there is no

significant drop in energy during the phase transition, i.e.,
HEND ∼Hkin, we can derive

Θ ≅
1

12π3
e
− πmχ

2
ffiffi
2

p
HEND

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχffiffiffi
2

p
HEND

r �
mχ

Mpl

�
2

: ð34Þ

We observe that its maximum value is attained when

mχ ¼ 5
ffiffi
2

p
π HEND, yielding

Θmax ¼
1

6π3

�
5

πe

�
5=2

�
HEND

Mpl

�
2

≅ 10−3
�
HEND

Mpl

�
2

≅ 10−15;

ð35Þ

where we consider HEND ∼ 10−6Mpl. Consequently, con-
sidering (23) and (35), we can deduce that when the decay
occurs before the end of reheating, the heating efficiency
falls within

10−24 ≤ Θ ≤ 10−15; ð36Þ

and when the decay takes place well after the end of
kination,

10−36 ≪ Θ ≤ 10−15: ð37Þ

III. OVERPRODUCTION
OF GRAVITATIONAL WAVES

This section is dedicated to presenting the constraints on
quintessential inflationary models through the lens of big

bang nucleosynthesis. Here, we explicitly incorporate BBN
constraints derived from the logarithmic spectrum of
gravitational waves, and consequently, the BBN bounds
arising from the potential overproduction of GWs.

A. BBN bounds from the overproduction of GWs

The success of BBN imposes the condition [1]

ρGW;reh

hρrehi
≤ 7 × 10−2; ð38Þ

where ρGWðtÞ represents the energy density of the GWs
produced during the phase transition from the end of
inflation to the onset of kination, and both quantities are
assessed at the reheating time. The expression for the
energy density of GWs is given by [3]

ρGWðtÞ ≅ 10−2H4
kin

�
akin
aðtÞ

�
4

: ð39Þ

Remark: here, we can observe one of the issues with the
gravitational production of light particles, as their energy
density evolves according to [1],

hρðtÞi ≅ 10−2NsH4
kin

�
akin
aðtÞ

�
4

; ð40Þ

where Ns is the number of produced scalar fields, and the
bound (38) becomes

ρGW;reh

hρrehi
¼ ρGW;kin

hρkini
¼ 10−2

Ns
≤ 10−2 ⇒

1

Ns
≤ 1: ð41Þ

However, for the minimal grand unification theory one has
Ns ¼ 4, and thus, the bound is not surpassed.
Next, continuing with massive particles, let us consider

the constraints arising from the overproduction of GWs
when the decay of the produced particles occurs during and
after kination.

1. Decay during kination

Since, after the decay, the energy density of the produced
particles scales similarly to the energy density of GWs, we
will have

ρGW;reh

hρrehi
¼ ρGW;dec

hρdeci
¼ ρGW;kin

hρkini
Θ1=3

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2
p

−HkinΘ
2HkinΘ

�1=3

≅ 3 × 10−3Θ−2=3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
kinΘ2 þ 4Γ2

p
−HkinΘ

2HkinΘ

�1=3

×

�
Hkin

Mpl

�
2

; ð42Þ
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where we have utilized the formulas (13), (39), and the fact
that at the onset of kination, the energy density of the
produced particles is negligible compared to that of the
background, i.e., ρB;kin ≅ 3H2

kinM
2
pl.

Now, since in the majority of models kination starts
when Hkin ∼ 10−6Mpl, the bound (38) becomes

3 × 10−13Θ−2=3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
kinΘ2 þ 4Γ2

p
−HkinΘ

2HkinΘ

�1=3

≤ 7: ð43Þ

We will analyze this constraint when the reheating
temperature is close to its maximum and its minimum.
(1) Decay at the end of kination.

In this situation, the reheating temperature reaches
its maximum, and Γ ∼

ffiffiffi
2

p
HkinΘ. Then, the bound

(43) becomes

3 × 10−13Θ−2=3 ≤ 7 ⇒ Θ ≥ 9 × 10−21; ð44Þ

which, combined with the bound (36), leads to

9 × 10−21 ≤ Θ ≤ 10−15: ð45Þ

Applying this constraint to the maximum reheat-
ing temperature (20), we obtain the following
bound:

Tmax
reh ≥ 5 × 10−14Mpl ≅ 105 GeV: ð46Þ

In fact, the maximum value of this temperature

is achieved when Θ ¼ Θmax ⇒ mχ ¼ 5
ffiffi
2

p
π HEND,

obtaining

Tmax
reh ¼

�
90

π2greh

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
Hkin

10Mpl

s
10−7Mpl

≅ 2 × 10−11Mpl ≅ 5 × 107 GeV; ð47Þ

where, once again, we have taken Hkin ∼ 10−6Mpl.
Therefore, we have

105 GeV ≤ Tmax
reh ≤ 5 × 107 GeV: ð48Þ

(2) Decay at the beginning of kination.
In this scenario, the reheating temperature reaches

its minimum when Γ ∼Hkin. Then, since Θ ≪ 1, the
bound (43) becomes

Θ ≥ 4 × 10−14; ð49Þ

which is incompatible with the maximum value of
the heating efficiency obtained in (35). Therefore,
we can conclude that the decay must be produced
well before the onset of kination.

2. Decay after kination

First of all, we have to note that when the decay of the
heavy particles is after the end of kination, the reheating
concludes when the decay is completed. In addition, before
the decay, the energy density of the produced particles
scales as a−3. Therefore, keeping this in mind, we can
calculate

ρGW;reh

hρrehi
¼ ρGW;dec

hρdeci
¼ ρGW;kin

hρkini
akin
adec

¼ 10−2
H4

kin

ΘρB;kin
akin
aend

aend
adec

¼ 10−2

3
Θ−1 akin

aend

aend
adec

�
Hkin

Mpl

�
2

: ð50Þ

Next, using, as we have already showed, that when the
decay is after kination

�
akin
aend

�
3

¼ Θ and�
aend
adec

�
3

¼ 1

2HkinΘ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2

q
−HkinΘ

�

≅
�

Γ
ΘHkin

�
2

; ð51Þ

where, once again, we have assumed Γ ≪
ffiffiffi
2

p
ΘHkin, we

obtain

ρGW;reh

hρrehi
¼ 10−2

3
Θ−4=3

�
Γ

Hkin

�
2=3

�
Hkin

Mpl

�
2

: ð52Þ

And taking Hkin ∼ 10−6Mpl, the bound (38) becomes

10−8
�

Γ
Mpl

�
2=3

≤ 21Θ4=3 ⇒ Γ ≤ 1014Θ2Mpl; ð53Þ

which combined with (33) leads to

6 × 10−43 ≤ 1014Θ2 ⇒ Θ ≥ 10−28; ð54Þ

and thus, when the decay is after kination, one has

10−28 ≤ Θ ≤ 10−15: ð55Þ

B. BBN constraints from the logarithmic spectrum
of GWs

The logarithmic spectrum of GWs, namely ΩGW defined

as ΩGW ≡ 1
ρc

dρGWðkÞ
d ln k , where ρGWðkÞ is the energy density

spectrum of the produced GWs and ρc ¼ 3H2
0M

2
pl is the

critical density. It is well known that it scales as k during
kination [18], producing a spike in the spectrum of GWs at
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high frequencies. Therefore, to prevent GWs from destabi-
lizing the BBN, the following bound must be imposed [19]:

I ≡ h20

Z
kEND

kBBN

ΩGWðkÞd ln k ≤ 5 × 10−6; ð56Þ

where h0 ≅ 0.678 parametrizes the experimental uncertainty
in determining the current value of the Hubble constant, and
kBBN and kEND represent the momenta associated with the
horizon scale at the BBN and the end of inflation, respec-
tively. The primary contribution to the integral (56) arises
from modes that exit the Hubble radius before the infla-
tionary epoch and subsequently reenter during the kination
phase, i.e., for kend ≤ k ≤ kkin, where kend ¼ aendHend and
kkin ¼ akinHkin. For these modes, one can calculate the
logarithmic spectrum of GWs as outlined in [20]

ΩGWðkÞ ¼ ϵ̃Ωγh2GW
k

kend
ln2

�
k
kkin

�
; ð57Þ

where h2GW ¼ 1
8π ðHkin

Mpl
Þ2 represents the amplitude of theGWs,

Ωγ ≅ 3 × 10−5h−20 is the present density fraction of radiation,
and the quantity ϵ̃—approximately equal to 0.05 for the
Standard Model of particle physics—accounts for the varia-
tion in massless degrees of freedom between decoupling and
thermalization. Now, inserting expression (57) into (56) and
neglecting the subleading logarithmic terms, one arrives at
the bound

2 × 10−2
�
Hkin

Mpl

�
2 kkin
kend

≤ 1: ð58Þ

On the other hand, to compare the bounds (38) and (56),
start by noting that I ¼ h20

ρGW;0

ρc
, with ρGW;0 representing the

energy density of gravitational waves at the present time.
Let hρ0i be the current energy density of matter. Then,
express I as follows:

I ¼ ρGW;0

hρ0i
h20Ωm;0; ð59Þ

where Ωm;0 ¼ hρ0i
ρc

stands for the density parameter for
matter.
Since the evolution of the energy densities of the

produced particles and gravitational waves is the same
during radiation, we have ρGW;reh

hρrehi ¼ ρGW;eq

hρeqi . Here, the subindex
eq indicates quantities evaluated at matter-radiation equal-
ity. After matter-radiation equality, the energy density of
produced particles scales as a−3, yielding

ρGW;0

hρ0i
¼ ρGW;eq

hρeqi
1

1þ zeq
¼ ρGW;reh

hρrehi
1

1þ zeq
; ð60Þ

where zeq ¼ a0
aeq

− 1 is the redshift at matter-radiation

equality. Consequently, we obtain

I ¼ ρGW;reh

hρrehi
h20Ωm;0

1þ zeq
≅ 4 × 10−5

ρGW;reh

hρrehi
; ð61Þ

where we used zeq ¼ 3387 and h20Ωm;0 ¼ 0.1424, as pro-
vided in the last column of Table 2 in [21]. Upon inserting the
bound (38), we obtain I ≤ 3 × 10−6, which is of the same
order as the constraint (56). This suggests that (38) practi-
cally imposes equally restrictive conditions on the heating
efficiency as (56), as we will demonstrate in III B 1.
Finally, it is important to note that in [20,22], to calculate

(57), the author considers a model with a transition from
kination to radiation. This implies that the produced particles
are either very light, or if they are heavy, they must decay
during kination. If the decay occurs after kination, the
transition would involve kination, a brief period of matter-
domination, and then radiation. In other words, the bound
(58) only holds when the decay occurs during kination. As
we will see in Sec. III B 2, the constraint (58), applied to
particles decaying after the end of kination, leads to a more
restrictive bound on the heating efficiency than (38), which
contradicts our earlier explanation.

1. Decay before the end of kination

First we start with the formula

3H2
endM

2
pl ¼ 2ρB;end ⇒ Hend ¼

ffiffiffi
2

p
Hkin

�
akin
aend

�
3

; ð62Þ

to obtain

kkin
kend

¼ akinHkin

aendHend
¼ 1ffiffiffi

2
p

�
akin
aend

�
−2

¼ 1ffiffiffi
2

p
�
adec
aend

�
−2
�
akin
adec

�
−2
:

ð63Þ

Next, we use that

�
adec
aend

�
2

¼ hρdeci
ρB;dec

¼ 2HkinΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2
p

−HkinΘ
; ð64Þ

where we have used the formula (15) and also (14), to get

kkin
kend

¼ 1ffiffiffi
2

p Θ−2=3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
kinΘ2 þ 4Γ2

p
−HkinΘ

2HkinΘ

�1=3

: ð65Þ

Inserting it into (58), for Hkin ∼ 10−6Mpl, we obtain

ffiffiffi
2

p
Θ−2=3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

kinΘ2 þ 4Γ2
p

−HkinΘ
2HkinΘ

�1=3

≤ 1014: ð66Þ

As we have already shown in Sec. III B 1, we need to
assume that the decay is close to the end of kination.
Choosing Γ ∼

ffiffiffi
2

p
HkinΘ, we find
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Θ ≥ 2 × 10−21; ð67Þ

which is of the same order as (44).
Similarly, when the decay occurs near the beginning of

kination, the bound (56) results in Θ ≥ 10−14, which is also
of the same order as (49).
Therefore, as we have already argued, the condition (38)

imposes the same constraint on the heating efficiency
as (56).

2. Decay after the end of kination

In this case, during all the kination period the energy
density of the produced particles scales as a−3, which
implies

Θ ¼
�
akin
aend

�
3

and Hend ¼
ffiffiffi
2

p
HkinΘ: ð68Þ

Therefore,

kkin
kend

¼ akinHkin

aendHend
¼ 1ffiffiffi

2
p Θ−2=3; ð69Þ

and the bound (58), will become

ffiffiffi
2

p
× 10−2

�
Hkin

Mpl

�
2

Θ−2=3 ≤ 1; ð70Þ

which for Hkin ∼HEND ∼ 10−6Mpl, leads to

Θ ≥ 2 × 10−21; ð71Þ

which is more restrictive than the bound (54). Recall that
(54) is obtained by imposing that the decay occurs well
after the end of kination, i.e., by imposing Γ ≪

ffiffiffi
2

p
ΘHkin.

Additionally, Θ ∼ 10−28 is obtained for a reheating temper-
ature close to 1 MeV.
However, as we have previously explained, we cannot

apply the bound (56) together with (57) when the decay is
after kination. This is because the formula (57) is derived
under the assumption that radiation immediately follows
kination. In cases where the decay of heavy particles occurs
well after kination, there is an intermediate period of matter
domination between kination and radiation, making the
application of (57) inappropriate. In conclusion, the fact
that the bound (71) is more restrictive than (54) does not
imply that the constraint (56) is more restrictive than (38)
when the decay occurs after kination. This discrepancy is
due to the incorrect application of the formula (57).

C. Bounds coming from the overproduction

In summary, considering the constraints arising from
the overproduction of GWs, we can draw the following
conclusions:

(1) When the decay is close to the end of kination, the
heating efficiency is bounded by

9 × 10−21 ≤ Θ ≤ 10−15; ð72Þ

which corresponds to masses in the range

2.2 × 10−6 ≤
mχ

Mpl
≤ 1.9 × 10−5; ð73Þ

leading to a maximum reheating temperature (20)
within the bounds

105 GeV ≤ Tmax
reh ≤ 5 × 107 GeV; ð74Þ

and a minimum temperature (21) satisfying

10 GeV ≤ Tmin
reh ≤ 7 × 103 GeV: ð75Þ

(2) When the decay is well after the end of kination, the
heating efficiency is bounded by

10−28 ≤ Θ ≤ 10−15; ð76Þ

which is satisfied for masses in the range

2.2 × 10−6 ≤
mχ

Mpl
≤ 3.7 × 10−5; ð77Þ

and thus, for a decay well after the end of kination,
i.e., for Γ ≪

ffiffiffi
2

p
ΘmaxHkin and taking into account

the formula (32), the reheating temperature is
bounded by

1 MeV ≤ Treh ≪ 5 × 107 GeV: ð78Þ

IV. CONCLUSIONS

We have developed analytical formulas, specifically
(16), (19)–(21), and (31), for the reheating temperature
within the framework of quintessential inflation, a scenario
where the universe undergoes reheating postinflation
through the gravitational production of heavy particles
conformally coupled with gravity. These heavy particles
subsequently decay into lighter ones, contributing to the
thermalization of the universe. One of the aspects of our
investigation lies in considering the timing of this decay,
whether it occurs during or after the kination epoch, leading
to distinct reheating temperatures.
These reheating formulas are intricately linked to the con-

cept of heating efficiency, defined as the ratio, at the initiation
of kination, between the energy density of the produced
particles and that of the background. Additionally, these
formulas are influenced by the decay rate of the heavy
particles and the Hubble parameter at the onset of kination.
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To ensure the viability of the model, we have established
bounds on the heating efficiency, stemming from constraints
aimed at mitigating the overproduction of gravitational waves.
Once these bounds are ascertained, they furnish the

means to constrain not only the reheating temperature
but also the masses of the produced particles. This
comprehensive analysis unravels the intricate interplay
between various factors influencing the reheating process

in quintessential inflation, specifically through gravita-
tional particle production.
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