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We have discovered a class of dynamically stable coherent states for motion on the half line. The
regularization of the half line boundary and the consequent quantum motion are expounded within the
framework of covariant affine quantization, although alternative approaches are also feasible. The former
approach is rooted in affine coherent states and offers a consistent semiclassical representation of quantum
motion. However, this method has been known to possess two shortcomings: (a) the dependence of affine
coherent states on the choice of a vector, denoted as the “fiducial vector” (which remains unspecified),
introduces significant arbitrariness in boundary regularization, and (b) regardless of the choice of fiducial
vector, affine coherent states fail to evolve parametrically under the Schrödinger equation, thus limiting the
accuracy of the semiclassical description. This limitation, in particular, hampers their suitability for
approximating the evolution of compound observables. We demonstrate that a distinct and more refined
definition of affine coherent states can simultaneously address both of these issues. In other words, these
new affine coherent states exhibit parametric evolution only when the fiducial vector, denoted as jψ0i,
possesses a highly specific character, such as being an eigenstate of a well-defined Hamiltonian. Our
discovery holds significant relevance in the field of quantum cosmology, particularly in scenarios where the
positive variable is the scale factor of the universe, and its regularized motion plays a crucial role in
avoiding the big-bang singularity.
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I. INTRODUCTION

This paper deals with the problem of quantization of a
system on the half line and of finding its exact quantum
motion. Our motivation comes from quantum cosmology,
where the scale factor of the universe is a positive variable
and its regularized motion represents the avoidance of the
big-bang singularity (see, e.g., [1]). We derive a new class
of coherent states (defined on the half line) that evolve
parametrically under the Schrödinger equation. By the
latter we mean that a complete set of solutions to the
Schrödinger equation are expressible in terms of trajecto-
ries in the space of coherent states’ parameters, and these
trajectories satisfy simple Hamilton’s equations generated
by a “semiclassical” Hamiltonian. Unlike the standard
coherent states (defined on the real line), the new coherent

states do not solve the classical equations of motion but
semiclassical ones that include an important quantum
correction regularizing the behavior of the system at the
boundary. Because of this regularizing effect of quantiza-
tion and of the key role of the semiclassical Hamiltonian,
we work in the framework of covariant affine quantization.
We use the latter to derive and discuss our results, which
can, however, be viewed independently of this particular
framework, having applications beyond it.
Covariant affine quantization is a special case of a

generic approach to quantization named covariant integral
quantization (CIQ) [2–5]. Introduced ten years ago, CIQ is
based on operator-valued measures, with covariant mean-
ing that the quantization map intertwines classical (geo-
metric operations) and quantum (unitary transformations)
symmetries, while integral refers to the fact that the map
uses the resources of integral calculus, in order to imple-
ment the method for singular situations. Furthermore, CIQ
is not only a method to build a quantum model from a
classical theory, but it is also a tool to build a semiclassical
portrait of quantum behavior.
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CIQ includes the so-called Berezin-Klauder-Toeplitz
quantization, and more generally coherent state quantiza-
tion [3,6,7]. On the mathematical level, CIQ is part of
important developments such as time-frequency and wave-
let analyses (see, for instance, Refs. [8–11] and references
therein). A famous example is the covariant integral
quantization of the plane (phase space of the motion on
the real line) based on the Weyl-Heisenberg group, such as
Weyl-Wigner [12–15] and (standard) coherent states quan-
tization [6]. Many other quantizations follow this frame-
work [2,16].
Another important example of CIQ concerns the half

plane Πþ ¼ fðq; pÞjq > 0; p∈Rg viewed as the phase
space for the motion on the half line [2,4,16,17] (see
also [18] and references therein). The Lie group involved is
that of affine transformations

x ↦ ðq; pÞ · x ≔
x
q
þ p; q > 0;

of the real line. If Πþ is equipped with the combination law
ðq; pÞ · ðq0; p0Þ ¼ ðqq0; pþ p0=qÞ, it can be identified with
the affine group AffþðRÞ, the left invariant measure
being dμðq; pÞ ¼ dqdp.
In many previous papers involving the half plane and

devoted to quantum cosmology [17,19–23], CIQ was
implemented using affine coherent states (ACS) built from
a unitary irreducible representation (UIR) of the group
AffþðRÞ acting on the Hilbert space H ¼ L2ðRþ; dxÞ as
Ûq;p∶ ψ ∈H ↦ Ûq;pψðxÞ ¼ q−1=2eipxψðx=qÞ, with H the
Hilbert space of the quantum representation (we work in
units with ℏ ¼ c ¼ 1). The ACS are defined as

jq; piψ0
¼def Ûq;pjψ0i∈H;

where jψ0i∈H is a fixed normalized vector named
the fiducial vector. Besides the supplementary condition
ψ0 ∈L2ðRþ; dx=xÞ, the state jψ0i is a free parameter of the
quantization procedure. Then the quantization map
fðq; pÞ ↦ Âf is implemented through the family of
ACS fjq; piψ0

gðq;pÞ∈Πþ [2,24], the resulting operators

Âf acting on the Hilbert space H. The physical meaning
of the fiducial vector becomes clear upon considering the
quantization of the classical states represented by Dirac’s
delta functions on the phase space:

δðq0; p0Þ ↦ jq0; p0ihq0; p0jψ0
:

They are thus replaced with the respective projector
operators on H that depend on the fiducial vector. At
the semiclassical level these sharply defined classical states
become smooth probability distributions:

δðq − q0; p − p0Þ ↦ jhq0; p0jq; piψ0
j2;

which again are determined by jψ0i. These smooth prob-
ability distributions (e.g., Gaussians) encode the basic uncer-
tainty and are used to regularize all the observables
fðq; pÞ ↦ f̌ðq; pÞ ¼ R

dq0dp0fðq0; p0Þjhq0; p0jq; pij2.
To recover the simple correspondence Âq ¼ x̂ and

Âp ¼ p̂, where x̂ψðxÞ ¼ xψðxÞ and p̂ψðxÞ ¼ −iψ 0ðxÞ, auto-
matically ensuring the commutation relation ½Âq; Âp� ¼ i,
it suffices to impose a few relations on the expectation values
of jψ0i. Let us notice that although x̂ is self-adjoint onH, p̂ is
only symmetric and does not possess any self-adjoint
extension on H [25]. We also obtain the canonical corre-
spondence Âqp ¼ 1

2
ðx̂ p̂þp̂ x̂Þ ¼ d̂, i.e., the self-adjoint

generator of dilations on H. But the canonical correspon-
dence is broken for p2 since Âp2 ≠ p̂2. We instead have

Âp2 ¼ p̂2 þ Cψ0
q̂−2 where Cψ0

> 0 is a positive constant
depending on the choice of the fiducial vector jψ0i.
The operator p̂2 often being part of the Hamiltonian for

many quantum systems, it should be made self-adjoint.
There exist different self-adjoint extensions of p̂2 on the half
line, depending on the boundary condition at x ¼ 0 that is
not a part of canonical rules. Therefore, p̂2 is not uniquely
defined as a self-adjoint operator, so that, if Ĥ ∝ p̂2, the
unitary evolution is not uniquely specified. On the other
hand, if Âp2 ¼ p̂2 þ Cψ0

q̂−2 with Cψ0
> 3

4
, then Ĥ has a

unique self-adjoint extension [25,26] on H, so the
Hamiltonian and the quantum evolution are completely
specified by the quantization procedure. At the semi-
classical level, for any quantum operator Ô the mapping
Ô ↦ hq; pjÔjq; pi gives a semiclassical picture of the
quantum observable Ô. More details about the semiclassical
expressions and probabilistic aspects can be found in [2,17].
Let us note finally that the affine group and related coherent
states were also used for the quantization of the half plane in
works by Klauder, although from a different point of view
and with a definite fiducial state ψ0 selected along an
algebraic condition (see [27–29] with references therein).
An interesting application of the ACS quantization lies in

quantum cosmology, i.e., models of a homogeneous uni-
verse that in the classical theory suffer from the big-bang/
big-crunch singularity. The regularizing potential ∝ q̂−2 of
the quantized Hamiltonian naturally acts as an “antigravity”
component that eventually overtakes the attractive force of
gravity, bringing the contracting universe to a halt and
triggering reexpansion [17,19–23]. One then extends these
models by adding perturbations to homogeneity. The use of
affine coherent states allows one to conveniently account
for the coupling of these perturbations to the quantized
background spacetime via expectation values of some
background quantities and next to solve the full dynamical
system [30–32].
Unfortunately, the approach discussed above crucially

depends on the choice of the family of coherent states and
on how well they approximate the exact dynamics. This is
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particularly true when the coupling is through a compound
variable. Some effort has been undertaken to better control
the accuracy of this approach by allowing some dynamics
in the fiducial vectors, thereby making it less rigid and thus
more adjustable to a given dynamics [33]; although there
are indisputable positive points to be credited to ACS
quantization on the half plane, some aspects of the method
still need clear-cut justifications.
The first aspect concerns the arbitrariness of the fiducial

vector jψ0i. Since only a small number of constraints on
jψ0i are necessary to obtain the results mentioned above—
and they concern only some expectation values, i.e.,
integrals over the state, so jψ0i remains largely unspecified.
Depending on the point of view about “what a quantization
procedure must be,” this can be seen as an advantage or a
weakness. On the one hand, the main quantum observables
Âf given by the procedure are the same, up to a few number
of constraints on jψ0i: one can consider the arbitrariness of
jψ0i as a necessary mathematical feature to be able to deal
with the quantization of all functions fðq; pÞ, while, in fact,
the most important quantum observables are not modified
by a change of jψ0i. From this point of view, the
arbitrariness of jψ0i is seen as a degree of freedom that
allows one to generate different possible “complete”
quantum frameworks that share a common subset of
quantum observables, each of these frameworks being
mathematically consistent. In principle, only experiments
could be able to select the good/best one. On the other
hand, if one considers that a quantization procedure must
directly provide “the complete right quantum theory” with
“certainty,” or with a finite list of unknown parameters that
can be fixed by experiments, then the arbitrariness of jψ0i is
a drawback: one expects that the mathematical expression
of ψ0ðxÞ should be specified as a function dependent on
some unknown parameters. This entails that something is
missing.
The second point concerns the dynamical properties of

the ACS jq; piψ0
. First, examining the dynamical properties

at the quantum level means that, at the classical level, we
view the half plane not only as a geometric domain
invariant under affine transformations but also as the phase
space (equipped with its Poisson bracket) of some system
whose evolution is ruled by some classical Hamiltonian H.
Therefore, the classical structure is much richer than the
simple affine symmetry. Let us focus in the remainder on
the case where H ¼ p2. If the vectors jq; piψ0

are distin-
guished as “special,” because allowing a mapping between
classical and quantum pictures through ACS quantization,
we can try to impose that this “classical to quantum”
mapping is valid not only at a given time (affine symmetry)
but also during evolution with time (dynamical symmetry).
This means that we can try to impose that, at least up to a
time-dependent phase factor, the jq; piψ0

evolve parametri-
cally through the Schrödinger equation, and this for some
specific choice of the fiducial vector jψ0i. Said differently,

we demand that there exists a phase-space trajectory
ðqt; ptÞ and a phase ϕðtÞ such that i∂t½e−iϕðtÞjqt; ptiψ0

� ¼
e−iϕðtÞĤjqt; ptiψ0

for some specific choice of jψ0i, where
the quantum Hamiltonian Ĥ would be precisely the
operator obtained from the ACS quantization, i.e.,
Ĥ ¼ Âp2 . If possible, this enhanced framework would be
a consistent way to fix the existing unease with the
procedure. However, and this could be viewed as a draw-
back of the existing framework, the ACS used in all papers
cited above are not evolving parametrically whatever the
choice of the fiducial vector jψ0i; therefore, this idea
cannot be taken any further without modifying the ACS.
The purpose of this article is to prove that it is possible to

define the ACS quantization for a specific type of classical
Hamiltonian and for a specific choice of the fiducial vector
jψ0i evolving parametrically through the Schrödinger
equation in such a way that it always gives the same basic
quantum operators. One is left with a single unknown
parameter in this procedure, namely the coefficient C > 0

that appears in the repulsive term of Âp2 ¼ p̂2 þ Cq̂−2. The
key point is to use a degree of freedom (a parameter) that
exists in the definition of the UIR of the affine group
AffþðRÞ, a parameter that is usually considered irrelevant
and chosen to vanish; it turns out that a different choice
allows for the new effects we are interested in.
The article is organized as follows. In Sec. II, we define

the new UIR of the affine group needed for our calcu-
lations. Section III is devoted to the application of the ACS
quantization to recover the most important quantum
observables, and in Sec. IV, we prove that for a special
choice of jψ0i, we obtain ACS that evolves parametrically.
The final Sec. V presents some concluding remarks.

II. NEW DEFINITION OF THE ACS

The affine coherent state quantization discussed in the
Introduction can be generalized through the use of a
seemingly innocuous and irrelevant parameter. We first
show why this parameter may label physically different
representations and justify a specific choice for its value.

A. The new framework

The usual UIR of the affine group is defined on the
Hilbert space H ¼ L2ðRþ; dxÞ as

Ûq;p∶ ψ ∈H ↦ Ûq;pψðxÞ ¼
eipxffiffiffi
q

p ψ

�
x
q

�
; ð1Þ

which can be cast into the operator form

Ûq;p ¼ eipx̂e−iðln qÞd̂; ð2Þ
where d̂ ¼ 1

2
ðx̂ p̂þp̂ x̂Þ is the generator of dilations and

x̂ψðxÞ ¼ xψðxÞ and p̂ψðxÞ ¼ −iψ 0ðxÞ as usual. The
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relation ½d̂; x̂� ¼ −ix̂ characterizes the Lie algebra of the
affine group.
Equivalent representations can be defined on the Hilbert

spaces Hα ¼ L2ðR; x−αdxÞ, a choice that imposes ψ ∈Hα

to obey jψðxÞj ∼ xγ as x → 0 with γ > ðα − 1Þ=2. The
choice H≡Hα¼0 has been made because of the apparent
absence of the effect of α ≠ 0. In turns out that such effects
do exist if we use this degree of freedom differently. Indeed,
these possibilities have a representation on the initial
Hilbert space H ¼ L2ðRþ; dxÞ by choosing as generators
of the group not the pair ðx̂; d̂Þ but the pair ðx̂α; d̂=αÞ with
α > 0. Indeed, we have again ½d̂=α; x̂α� ¼ −ix̂α which
specifies the Lie algebra of the affine group. Therefore,
there are infinitely many (equivalent) ways to represent the
affine group on H dependent on a free parameter α > 0.
They read

ÛðαÞ
q;p ¼ eipx̂

α
e−iðln qÞd̂=α: ð3Þ

Note that using the change of variable x ¼ ey the dilation d̂
becomes p̂y ¼ −i d

dy, canonical rules are restored, and the

classical phase space isR2. Then the above transform of the
canonical pair is nothing more than the plane dilation
y ↦ αy; py ↦ py=α. Together with plane rotation and
upper triangular matrix action y ↦ yþ tpy; py ↦ py,
these three actions are the Iwasawa factors of SPð2;RÞ ≅
SLð2;RÞ. This observation paves the way to the use of
more possibilities in dealing with representations of affine
symmetries.
In the following we are especially interested in the case

α ¼ 2. The reason will be explained below. Because we
wish to preserve the correspondence q ↔ x̂ and therefore

q2 ↔ x̂2, we first make a change of parameters in Ûð2Þ
q;p,

substituting q ↦ q2. Since the pair ðq; pÞ is a canonical
pair, we also change p as p ↦ p=ð2qÞ, to preserve
canonicity. We then obtain a new realization of the affine
group UIR that we call V̂q;p acting on the same Ĥ ¼
L2ðRþ; dxÞ as

V̂q;p ¼ ei
p
2qx̂

2

e−iðln q2Þd̂=2 ¼ ei
p
2qx̂

2

e−iðln qÞd̂: ð4Þ

With this new parametrization of the affine group, the
previous law of the group ðq; pÞ:ðq0; p0Þ ¼ ðqq0; pþ p0=qÞ
is, of course, modified, and we now have ðq; pÞ:ðq0; p0Þ ¼
ðqq0; q0pþ p0=qÞ. Nevertheless, the left invariant measure
remains unchanged, i.e., dμðq; pÞ ¼ dqdp, because our
new parametrization results from a canonical transforma-
tion of the half plane.
This UIR V̂qp of AffþðRÞ is square integrable, akin to

the former one, which implies similar functional pro-
perties: picking some unit-norm vector ψ0 ∈L2ðRþ; dxÞ ∩
L2ðRþ; dx=x2Þ, and we define ACS as previously

jq; piψ0
¼ V̂q;pjψ0i: ð5Þ

In the remainder, to lighten notations as there should be no
ambiguity, we remove the label ψ0, i.e., jq; piψ0

→ jq; pi.
Setting

cγðψÞ ¼
Z þ∞

0

dx
xγþ2

jψðxÞj2; ð6Þ

the fiducial vector jψ0i is admissible and square integrable
if the constant c0ðψ0Þ is finite, and one getsZ

Πþ

dqdp
2πc0ðψ0Þ

jq; pihq; pj ¼ 1; ð7Þ

which is the expression of the resolution of the identity
operator 1 in H.

B. Choice rationale

We extend the pure geometric symmetry group (i.e., the
affine group) to a larger dynamical group at both classical
and quantum levels. Classically, the affine Lie algebra
(through Poisson brackets) is usually assumed to be
generated by the pair ðq; d ¼ qpÞ, but adding the
assumption that the classical Hamiltonian is H ¼ p2,
one can obtain a larger closed algebraAwith the generators
ðH;p; q; d; 1Þ. Unfortunately, this algebra is no longer
closed if the Hamiltonian is changed into

H̃ ¼ p2 þ Cq−2; ð8Þ

and since noncanonical quantum corrections precisely
involve such a repulsive term Cq−2, it is impossible to
keep the algebra A: the structure of the algebra must be the
same for both classical and quantum systems because, by
assumption, the symmetry group we are seeking must act at
both levels.
The pair ðq2; d=2Þ also generates a representation of the

Lie algebra of the affine group, and the triplet ðH; q2; d=2Þ is
the basis of a closed Lie algebra. Furthermore, if we
change from H to H̃, the algebra generated by ðH̃; q2; d=2Þ
remains closedwith the same structure coefficientswhatever
the repulsive potential Cq−2. With this choice, the affine
symmetry appears as a part of the same dynamical symmetry
group that acts both classically and quantum mechanically.
In addition, the Lie-Poisson algebra generated by
ðH̃; q2; d=2Þ is just the well-known spð2Þ ≅ slð1; 1Þ ≅
suð1; 1ÞLie algebra (see, for instance, [34]). At the classical
level, the usual canonical representation of suð1; 1Þ con-
sisting of the three generators ðk0; k1; k2Þ verifying
fk0; k1g ¼ k2, fk0; k2g ¼ −k1, fk1; k2g ¼ −k0 is recovered
with k0¼ 1

2
ðH̃þq2=4Þ, k1¼ 1

2
½cosωðH̃−q2=4Þþsinωd�

and k2 ¼ 1
2
½− sinωðH̃ − q2=4Þ þ cosωd�, where ω is an

arbitrary angle. The canonical generators of a SUð1; 1Þ
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unitary representation on some Hilbert space are three self-
adjoint operators ðK̂0; K̂1; K̂2Þ verifying the commutation
rules

½K̂0; K̂1� ¼ iK̂2; ½K̂0; K̂2� ¼ −iK̂1; ½K̂1; K̂2� ¼ −iK̂0:

ð9Þ

The Casimir operator of the representation is given by
Q̂ ¼ K̂2

1 þ K̂2
2 − K̂2

0. It can be shown (see Appendix B) that,
in our case, Q̂ ¼ λ1, where the c-number λ is directly related
to the coefficient C involved in the quantization of p2, i.e.,
that leading to Âp2 ¼ p̂2 þ Cq̂−2. In other words, the
appearance of a repulsive term C ≠ 0 in the Hamiltonian
corresponds to a change of UIR of suð1; 1Þ. This explains
the key role of suð1; 1Þ in our problem. Furthermore, if we
introduce the ladder operators

K̂� ¼ K̂2 ∓ iK̂1; ½K̂þ; K̂−� ¼ −2K̂0; ð10Þ

the operators V̂q;p of (4) can be expressed in terms of K̂�;0

(see Appendix B),

V̂q;p ¼ eðξK̂þ−ξ̄K̂−ÞeiθK̂0 ¼ eiθ
0K̂0eðξ0K̂þ−ξ0K̂−Þ; ð11Þ

where the coefficients ξ and θ depend on q and p. The
unitary operator eðξK̂þ−ξ̄K̂−Þ is the SU(1,1) analogous of the
displacement operator in the Weyl-Heisenberg symmetry
case, and was used by Perelomov to build his SU(1,1)
coherent states [35,36].

III. NEW ACS QUANTIZATION
OF THE HALF PLANE

Having settled the framework, we now move to the
actual quantization and the establishment of the semi-
classical setup through which we can define meaningful
trajectories.

A. The quantized observables

From the resolution of the identity the covariant integral
quantization follows [2,16] for any function fðq; pÞ as

f ↦ Âf ¼
Z
Πþ

dqdp
2πc0ðψ0Þ

fðq; pÞjq; pihq; pj: ð12Þ

If we assume the fiducial vector ψ0ðxÞ to be a real
function and rapidly decreasing on Rþ, i.e., ψ0ðxÞ∈R

is C∞ on Rþ and ∀ n;m∈N, limx→0þ x−nψ
ðmÞ
0 ðxÞ ¼

limx→þ∞ xnψ ðmÞ
0 ðxÞ ¼ 0, the basic quantized observables

can be obtained easily [and the coefficients cγðψ0Þ of (7)
are finite for all γ]. Without this assumption of rapid
decrease, calculations need more caution because of
possible divergencies, or supplementary terms coming

from integration by parts at different levels. Details can
be found in Appendix A.
We obtain first

∀ α∈R; Âqα ¼
cαðψ0Þ
c0ðψ0Þ

x̂α ⇒ Âq ¼
c1ðψ0Þ
c0ðψ0Þ

x̂; ð13Þ

and we find also

Âp ¼ c1ðψ0Þ
c0ðψ0Þ

p̂: ð14Þ

Therefore, it suffices to add the supplementary constraint
on the fiducial vector c1ðψ0Þ ¼ c0ðψ0Þ, which is obtained
by a simple rescaling of ψ0ðxÞ, to recover the canonical rule
½Âq; Âp� ¼ i with Âq ¼ x̂ and Âp ¼ p̂.
The quantization of the generator of dilations d ¼ qp

yields

Âqp ¼ c2ðψ0Þ
c0ðψ0Þ

d̂ with d̂ ¼ 1

2
ðx̂ p̂þp̂ x̂Þ: ð15Þ

We recover the expected quantum generator of dilations
up to a renormalization factor c2=c0. Let us remark
that the renormalization factor c2=c0 cannot be removed
if we have already imposed c1=c0 ¼ 1. If we try to impose
at the same time c2 ¼ c1 ¼ c0, the unique solution is
ψ0ðxÞ2 ¼ δðx − 1Þ, δðxÞ being the Dirac distribution,
which is not acceptable. If c1=c0 ¼ 1, then we have
necessarily c2=c0 > 1.
Quantization of the classical Hamiltonian H ¼ p2 gives

Ĥ ¼ Âp2 ¼ c2ðψ0Þ
c0ðψ0Þ

�
p2 þ

�
K

c2ðψ0Þ
−
3

2

�
1

x̂2

�
; ð16Þ

with

K ¼
Z

∞

0

dy
y2

ψ 0
0ðyÞ2: ð17Þ

While not obvious at first sight, the constant in front of x̂−2

is positive since we have (keeping the assumption of rapid
decrease for ψ0)

K −
3

2
c2ðψ0Þ ¼

Z
∞

0

dy

�
y2ϕ0ðyÞ2 þ 1

2
ϕðyÞ2

�
; ð18Þ

where

ϕðyÞ ¼ yψ0ð1=yÞ: ð19Þ

Therefore, we recover the main feature of the ACS
quantization, namely the appearance of a repulsive poten-
tial in the quantum Hamiltonian.
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B. The semiclassical framework

The semiclassical framework is obtained by the mapping
Ô ↦ hq; pjÔjq; pi with always jq; pi ¼ V̂q;pjψ0i. In what
follows, although we do not assume ψ0 to be the vector
already used in the quantization procedure, we keep the
same generic assumptions for ψ0. We easily obtain

∀ α∈R; hq; pjx̂αjq; pi ¼ c−α−2ðψ0Þqα; ð20Þ

which implies

hq; pjx̂jq; pi ¼ c−3ðψ0Þq ð21Þ

and

hq; pjp̂jq; pi ¼ c−3ðψ0Þp: ð22Þ

With a rescaling of ψ0, it is possible to impose c−3ðψ0Þ ¼ 1
in order to obtain the expected relations hq; pjx̂jq; pi ¼ q
and hq; pjp̂jq; pi ¼ p. Indeed, if we define ψ0;λðxÞ ¼
λ−1=2ψ0ðx=λÞ, ψ0;λ is always a unit-norm vector and
c−3ðψ0;λÞ ¼ λc−3ðψ0Þ. Then choosing λ ¼ c−3ðψ0Þ−1 we
obtain c−3ðψ0;λÞ ¼ 1.
The generator of dilation d̂ is obtained in a similar

fashion, namely

hq; pjd̂jq; pi ¼ c−4ðψ0Þqp; ð23Þ

and finally for p̂2

hq; pjp̂2jq; pi ¼ c−4ðψ0Þp2 þ C
q2

ð24Þ

with

C ¼
Z

∞

0

ψ 0
0ðxÞ2dx ð25Þ

a positive definite constant.

IV. STABILITY IN TIME OF ACS

From Sec. III A above, we know that the quantum
Hamiltonian obtained from the covariant affine quantiza-
tion with these new ACS is, in fact, that provided by the old
procedure, up to some renormalization factor. Therefore,
the details of the ACS quantization are not so important,
and we assume in this part that the quantized Hamiltonian
Ĥ is just

Ĥν ¼ p̂2 þ ν2 − 1
4

x̂2
; ð26Þ

where the coefficient of the repulsive potential has been
written as ν2 − 1

4
with ν > 1

2
for later convenience. As

indicated in the Introduction, we are looking for a fiducial
vector ψ0 such that the ACS jqt; ptiψ0

evolves parametri-
cally through the Schrödinger equation, for some semi-
classical trajectory ðqt; ptÞ and up to some global phase
factor e−iϕðtÞ, i.e.,

i∂t½e−iϕðtÞjqt; ptiψ0
� ¼ e−iϕðtÞĤνjqt; ptiψ0

: ð27Þ

Furthermore, since a simple rescaling on ψ0 is able to give
c−3ðψ0Þ ¼ 1, we assume in what follows that this rescaling
has been done. To find all solutions of our problem, we split
the argument into two parts: the first is devoted to necessary
conditions, and the second part to sufficient ones.

A. Necessary conditions on semiclassical
trajectories ðqt;ptÞ

To begin with, let us assume that there exists a choice
for ψ0 such that Eq. (27) holds true. We now show that this
implies that the semiclassical trajectories ðqt; ptÞ are those
generated by the semiclassical Hamiltonian Hscðq; pÞ ¼
c−4ðψ0Þ−1hq; pjĤνjq; pi.
Let us define jψðtÞi ¼ e−iϕðtÞjqt; pti satisfying the

Schrödinger equation (27). From the Ehrenfest equation
we have

d
dt
hψðtÞjÔjψðtÞi ¼ ihψðtÞj½Ĥν; Ô�jψðtÞi: ð28Þ

Because of the expression (26) of Ĥν we obtain

d
dt
hψðtÞjx̂jψðtÞi ¼ 2hψðtÞjp̂jψðtÞi; ð29aÞ

d
dt
hψðtÞjp̂jψðtÞi ¼ 2

�
ν2 −

1

4

�
hψðtÞjx̂−3jψðtÞi; ð29bÞ

and finally

d
dt
hψðtÞjĤνjψðtÞi ¼ 0: ð30Þ

Using Eqs. (20), (22), and (24), together with the
assumption c−3ðψ0Þ ¼ 1, we obtain

dqt
dt

¼ 2pt; ð31aÞ

dpt

dt
¼ 2

�
ν2 −

1

4

�
c1ðψ0Þ
q3t

; ð31bÞ

and therefore,

d
dt

�
c−4ðψ0Þp2

t þ
ðν2 − 1

4
Þc0ðψ0Þ þ C

q2t

�
¼ 0; ð32Þ
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where C was defined in (24). Equation (31) imply that the
possible trajectories ðqt; ptÞmust be those generated by the
semiclassical Hamiltonian Hscðq; pÞ, defined as

Hscðq; pÞ ¼ p2 þ ðν2 − 1
4
Þc1ðψ0Þ
q2

; ð33Þ

up to an arbitrary and irrelevant additive constant.
Consistency of the above with Eq. (32) implies that the
constraint on ψ0,

C ¼
Z

∞

0

ψ0
0ðxÞ2dx

¼
�
ν2 −

1

4

�
½c1ðψ0Þc−4ðψ0Þ − c0ðψ0Þ�; ð34Þ

must hold. If this constraint is not fulfilled, Eqs. (31)
and (32) are incompatible, and therefore, the ACS cannot
evolve parametrically with the Schrödinger equation.
If the constraint (34) is fulfilled, then it may be possible
to have ACS evolving parametrically with the Schrödinger
equation, and in that case the trajectories are necessarily
given by the Hamiltonian of (33), which is justHscðq; pÞ ¼
c−4ðψ0Þ−1hq; pjĤνjq; pi.

B. Finding ψ0

Let us now consider in more details the conditions
required for the existence of the fiducial state.

1. Necessary conditions

We assume that some ψ0 exists satisfying Eq. (27) with
the rescaling c−3ðψ0Þ ¼ 1. We then have

iV̂†
qtpt

∂t½e−iϕðtÞV̂qtpt
�jψ0i ¼ e−iϕðtÞV̂†

qtpt
ĤνV̂qtpt

jψ0i: ð35Þ

Using the relations (31) that necessarily hold true, and
given the commutation relation between x̂2 and d̂, we first
deduce that

eiϕðtÞiV̂†
qtpt

∂t½e−iϕðtÞV̂qtpt
�

¼ ϕ0ðtÞ þ p2
t x̂2 −

ðν2 − 1
4
Þc1ðψ0Þ
q2t

x̂2 þ 2pt

qt
d̂: ð36Þ

Besides, we find

V̂†
qtpt

ĤνV̂qtpt
¼ 1

q2t
p̂2 þ p2

t x̂2 þ
2pt

qt
d̂þ ν2 − 1

4

q2t x̂2
; ð37Þ

so that Eq. (35) becomes

�
p̂2 þ ν2 − 1

4

x̂2
þ
�
ν2 −

1

4

�
c1ðψ0Þx̂2

�
jψ0i ¼ q2tϕ0ðtÞjψ0i:

ð38Þ

This implies that q2tϕ0ðtÞ ¼ ωwhere ω is an eigenvalue of a
fixed operator Ĥ0, which is nothing but the radial
Hamiltonian of a three-dimensional (3D) harmonic oscil-
lator, and furthermore, ψ0 is the eigenvector of Ĥ0

associated with ω. Let us remark that in this case,
ψ0ðxÞ is not a rapidly decreasing function on Rþ because
ψ0ðxÞ ∝ xα when x → 0. Nonetheless, because our initial
assumption of rapid decrease was just a way to simplify
proofs and was not, in fact, mandatory, this choice of ψ0

turns out to be completely valid: the different constants
cγðψ0Þ are merely only defined for some domain of γ
bounded above.
Taking into account the equations of motion (31) the

condition q2tϕ0ðtÞ ¼ ω yields

q2tϕ0ðtÞ ¼ ω

⇒ ϕðtÞ ¼ ω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 − 1

4
Þc1ðψ0Þ

q arctan

2
64 qtptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðν2 − 1
4
Þc1ðψ0Þ

q
3
75;
ð39Þ

in which we used the relation d
dt ðqtptÞ ¼ 2Hscðqt; ptÞ

stemming from (31) and (33). Therefore, the phase factor
ϕðtÞ is itself a function of q and p, namely

e−iϕðtÞ

¼
�
exp

�
−2i arctan

qtptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 − 1

4
Þc1ðψ0Þ

q ��1
4
ω½ðν2−1

4
Þc1ðψ0Þ�−1=2

;

ð40Þ

which can also be written as

e−iϕðtÞ ¼

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 − 1

4
Þc1ðψ0Þ

q
− iqtptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðν2 − 1
4
Þc1ðψ0Þ

q
þ iqtpt

3
75

1
4
ω½ðν2−1

4
Þc1ðψ0Þ�−1=2

:

ð41Þ

2. Sufficient conditions

Reciprocally, let us assume that Ĥ0 is the following
Hamiltonian:

Ĥ0 ¼ p̂2 þ ν2 − 1
4

x̂2
þ ξ2x̂2; with ν >

1

2
and ξ > 0;

ð42Þ
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and let jψ0i be a normalized eigenvector of Ĥ0 with
eigenvalue ω, i.e.,

Ĥ0jψ0i ¼ ωjψ0i: ð43Þ
We know from the general properties of eigenfunctions that
ψ0ðxÞ are all real as required.
In Eq. (43), ξ determines the length scale of the problem.

If we now impose c−3ðψ0Þ ¼ 1 as before, this constraint
defines a relation between ξ and ν that uniquely specifies ξ
as a function of ν: we call ξν this specific value set ξ ¼ ξν
from now on. The constraint c−3ðψ0Þ ¼ 1 is thus auto-
matically fulfilled.
Provided the relation

Cþ
�
ν2 −

1

4

�
c0ðψ0Þ þ ξ2νc−4ðψ0Þ ¼ ω ð44Þ

holds, in which

C ¼
Z

∞

0

ψ 0
0ðxÞ2dx; ð45Þ

we have that hψ0jĤ0jψ0i ¼ ω. Besides, since jψ0i is an
eigenvector of Ĥ0, we know that for any observable Ô, we
have hψ0j½Ĥ0; Ô�jψ0i ¼ 0. Applying this relation for
Ô ¼ p̂ and Ô ¼ d̂, we obtain two new relations�

ν2 −
1

4

�
c1ðψ0Þ − ξ2νc−3ðψ0Þ ¼ 0; ð46aÞ

Cþ
�
ν2 −

1

4

�
c0ðψ0Þ − ξ2νc−4ðψ0Þ ¼ 0: ð46bÞ

Because of the scaling c−3ðψ0Þ ¼ 1, Eq. (46a) yields�
ν2 −

1

4

�
c1ðψ0Þ ¼ ξ2ν; ð47Þ

while from (44) and (46b), we obtain

c−4ðψ0Þ ¼
ω

2ξ2ν
; ð48Þ

as well as

C ¼ ω

2
−
�
ν2 −

1

4

�
c0ðψ0Þ

¼
�
ν2 −

1

4

�
½c1ðψ0Þc−4ðψ0Þ − c0ðψ0Þ�; ð49Þ

so that the (mandatory) constraint (34) is also fulfilled.
Let us assume that the semiclassical trajectory ðqt; ptÞ is

obtained from the semiclassical Hamiltonian Hscðq; pÞ,
defined as

Hscðq; pÞ ¼ p2 þ ξ2ν
q2

¼ p2 þ
�
ν2 −

1

4

�
c1ðψ0Þ
q2

; ð50Þ

the last equality stemming from (47). The Hamiltonian
Hscðq; pÞ coincides with that of Eq. (33), and therefore, the
Hamiltonian equations derived from Hscðq; pÞ satisfy
Eq. (31). Thus, Eqs. (36) and (37) of the previous section
are valid, and therefore, jψ0i solves our problem if (and
only if) Eq. (38) holds true, which is equivalent to
q2tϕ0ðtÞ ¼ ω. Taking into account (39) and (47), we finally
obtain ϕðtÞ as

ϕðtÞ ¼ ω

2ξν
arctan

�
qtpt

ξν

�
; ð51Þ

and

e−iϕðtÞ ¼
�
ξν − iqtpt

ξν þ iqtpt

� ω
4ξν
: ð52Þ

The above lines of arguments show that the fiducial vectors
generating affine coherent states stable in time are exactly
all eigenvectors of Ĥ0. Since the eigensystem for Ĥ0 is
completely solvable, we can go a step further with explicit
formulas.

C. Summary

Since the solutions to our problem are given by the
eigenvectors (and the eigenvalues) of the Hamiltonian (42),
we begin by recalling some known results about it.

1. Definitions

The solutions of Ĥ0jΦni ¼ ωnjΦni where n∈N, and
jΦni being normalized, are

ωn ¼ 2ξð2nþ νþ 1Þ; ð53Þ

ΦnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
Γðνþ nþ 1Þ

s
ξ
νþ1
2 xνþ1=2Lν

nðξx2Þe−1
2
ξx2 ; ð54Þ

where the Lν
nðyÞ are Laguerre polynomials and we have

definedΦnðxÞ ¼def hxjΦni. The first three fiducial vectors are
plotted in Fig. 1.
Let us introduce for convenience the functions Gnðα; νÞ

for αþ ν > 0, ν > 0, and n∈N

Gnðα; νÞ ¼
n!

Γðνþ nþ 1Þ
Z

∞

0

xνþα−1Lν
nðxÞ2e−xdx: ð55Þ

Although they can easily be computed for each value of n,
there does not exist, to the best of our knowledge, a generic
formula in terms of usual special functions. The normali-
zation factor in front of the integral has been chosen such

BERGERON, GAZEAU, MAŁKIEWICZ, and PETER PHYS. REV. D 109, 023516 (2024)

023516-8



that Gnð1; νÞ ¼ 1 and G0ðα; νÞ ¼ Γðνþ αÞ=Γðνþ 1Þ.
With this definition we obtain

cγðΦnÞ ¼ ξ1þγ=2Gn

�
−
γ

2
; ν

�
; ð56Þ

so that the scaling condition c−3ðΦnÞ ¼ 1 previously used
gives, for ξν;n,

ξν;n ¼
�
Gn

�
3

2
; ν

��
2

: ð57Þ

To end with the useful definitions, we call ω̃ν;n the values of
ωn for ξ ¼ ξν;n, i.e.,

ω̃ν;n ¼ 2ξν;nð2nþ νþ 1Þ ¼ 2

�
Gn

�
3

2
; ν

��
2

ð2nþ νþ 1Þ:

ð58Þ

We are now in a position to summarize the results of the
previous sections.

2. General case

Given the quantum Hamiltonian Ĥν (26), all families
of ACS e−iϕq;p jq; piψ0

evolving parametrically by

the Schrödinger equation as i∂tðe−iϕqt;pt jqt; ptiψ0
Þ ¼

e−iϕqt;pt Ĥνjqt; ptiψ0
depend on an integer n and, of course,

on the parameter ν of Ĥν. If we introduce the notation

jq; p; ν; ni ¼def e−iϕq;p jq; piψ0
that makes explicit all the

parameters involved, we have the complete formula

hxjq; p; ν; ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
Γðνþ nþ 1Þ

s �
ξν;n − iqp
ξν;n þ iqp

�1
2
ð2nþνþ1Þ

ξ
νþ1
2
ν;n

xνþ1=2

qνþ1
Lν
n

�
ξν;n

x2

q2

�
exp

�
−
1

2
ðξν;n − iqpÞ x

2

q2

�
: ð59Þ

The semiclassical trajectories ðqt; ptÞ compatible with the
Schrödinger equation (with Hamiltonian Ĥν) for a family
fjqp; ν; nigðq;pÞ∈Πþ are those resulting from the following

semiclassical Hamiltonian Hðν;nÞ
sc ðq; pÞ:

Hðν;nÞ
sc ðq; pÞ ¼ p2 þ ξ2ν;n

q2
: ð60Þ

Furthermore, we have

hq; p; ν; njx̂jq; p; ν; ni ¼ q and

hq; p; ν; njp̂jq; p; ν; ni ¼ p; ð61Þ

and, in addition,

hq; p; ν; njĤνjq; p; ν; ni ¼ c−4ðΦnÞHðν;nÞ
sc ðq; pÞ

¼ ω̃ν;n

2ξ2ν;n
Hðν;nÞ

sc ðq; pÞ

¼ 2nþ νþ 1

ξν;n
Hðν;nÞ

sc ðq; pÞ: ð62Þ

For each pair ðν; nÞ, the family of states fjq; p; νnigðq;pÞ∈Πþ
solves the identity according to the general formula (7), i.e.,

Z
ðq;pÞ∈Πþ

dqdp
2πc0ðν; nÞ

jq; p; ν; nihq; p; ν; nj ¼ 1; with

c0ðν; nÞ ¼
�
Gn

�
3

2
; ν

��
2

Gnð0; νÞ; ð63Þ

the expression of c0ðν; nÞ resulting from Eqs. (56) and (57).
Therefore, for any jψi∈H we have

jψi ¼
Z
Πþ

dqdp
2πc0ðν; nÞ

ψðq; pÞjq; p; ν; ni with

ψðq; pÞ ¼ hq; p; ν; njψi: ð64Þ

It follows that the time-dependent vector jψðtÞi ¼ e−iĤνtjψi
verifies

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

FIG. 1. The probability distributions of positions for the first
three fiducial vectors: jhxjΦnij2 for n ¼ 0, n ¼ 1, and n ¼ 2
(ν ¼ 3 and Hsc ¼ 1).
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jψðtÞi ¼ e−iĤνtjψi ¼
Z
Πþ

dqdp
2πc0ðν; nÞ

ψ tðq; pÞjq; p; ν; ni

with ψ tðq; pÞ ¼ hq; p; ν; nje−iĤνtjψi: ð65Þ

Let us define ðq; pÞ ↦ ½Qtðq; pÞ; Ptðq; pÞ� as the Hamil-
tonian flow resulting from the semiclassical Hamiltonian

Hðν;nÞ
sc ðq; pÞ. Since the states jq; p; ν; ni evolve parametri-

cally, we have e−iĤνtjq; p; ν; ni ¼ jQtðq; pÞ; Ptðq; pÞ; ν; ni
from which it follows that

ψ tðq; pÞ ¼ hq; p; ν; nje−iĤνtjψi
¼ hQ−tðq; pÞ; P−tðq; pÞ; ν; njψi
¼ ψ ½Q−tðq; pÞ; P−tðq; pÞ�: ð66Þ

Thus, the time-dependent vector jψðtÞi of (65), written
in the ACS (overcomplete) basis jq; p; ν; ni, possesses
coefficients ψ tðq; pÞ of splitting that follow exactly
the classical Liouville equation (but with a semiclassical
Hamiltonian)

∂ψ t

∂t
¼ −fψ t; H

ðν;nÞ
sc g: ð67Þ

Therefore, the use of the ACS jq; p; ν; ni allows one (as
desired) to completely intertwine quantum and classical
evolutions of states for the quantum Hamiltonian Ĥν.

3. Special case n = 0

In the particular case n ¼ 0, the previous generic formula
can be simplified, giving

hxjq; p; ν; 0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Γðνþ 1Þ

s �
ξν;0

ξν;0 − iqp
ξν;0 þ iqp

�νþ1
2 xνþ1=2

qνþ1
exp

�
−
1

2
ðξν;0 − iqpÞ x

2

q2

�
with ξν;0 ¼

�
Γðνþ 3=2Þ
Γðνþ 1Þ

�
2

: ð68Þ

The semiclassical trajectories ðqt; ptÞ compatible with the
Schrödinger equation are now coming from the semi-

classical Hamiltonian Hðν;0Þ
sc ðq; pÞ,

Hðν;0Þ
sc ðq; pÞ ¼ p2 þ ξ2ν;0

q2
: ð69Þ

We keep the relations

hq;p;ν;0jx̂jq;p;ν;0i¼ q and hq;p;ν;0jp̂jq;p;ν;0i¼p;

ð70Þ

and

hq; p; ν; 0jĤνjq; p; ν; 0i ¼
νþ 1

ξν;0
Hðν;0Þ

sc ðq; pÞ: ð71Þ

Furthermore, since the vectors jq; p; ν; 0i solve the identity,
the function ρψ ðq; pÞ ¼ jhq; p; ν; 0jψij2=½2πc0ðν; 0Þ� is a
semiclassical probability density that gives a phase-space
portrait of any quantum state jψi. In particular, we can
obtain a phase-space portrait for jψ ti ¼ jqt; pt; ν; 0i at any
time t along a semiclassical trajectory. A straightforward
calculation gives

jhq0;p0;ν;0jq;p;ν;0ij2¼ ð2ξν;0Þ2νþ2h
ξ2ν;0

	
q0
qþ q

q0



2þðqp0−q0pÞ2

i
νþ1

:

ð72Þ
An example of ρψ t

ðq; pÞ for jψ ti ¼ jqt; pt; ν; 0i is given in
Fig. 2.

4. Special case n = 1

For n ≠ 0, the functions x ↦ jhxjq; p; ν; nij2 have
several maxima and zeros, so that these states are
highly nonclassical, although their structure is always
stable with time. Figure 3 shows the semiclassical
probability density ρψ ðq; pÞ ¼ jhq; p; ν; 0jψij2=ð2πc0Þ for
jψi ¼ jq ¼ 2; p ¼ 0; ν; n ¼ 1i compared with the one
obtained for jψi ¼ jq ¼ 2; p ¼ 0; ν; n ¼ 0i, i.e., keeping
the same parameters at the exception of n. While in the case
n ¼ 0 the structure is simple with a well-defined
peak reaching its maximum at one point, at the opposite
for n ¼ 1 the structure is more complex with always a peak

FIG. 2. Some phase-space portraits of ρψ t
ðq; pÞ for ν ¼ 3. Time

t is increasing from top left to bottom right. The semiclassical
trajectory in red is going through the point ðq ¼ 5; p ¼ −4Þ.
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but equipped with a central hole and a ring for maximal
values.

V. CONCLUSION

Focusing on the case of a classical Hamiltonian H ¼ p2

on the half plane, we discovered a class of dynamically
stable coherent states parametrized by the half plane phase
space. They are expected to play an important role in
quantum cosmology, e.g., by providing exact expressions
for expectation values of compound dynamical quantum
observables. The latter are requisite for coupling primordial
perturbations to quantum models of the universe.
Moreover, these new coherent states enhance the frame-

work of ACS quantization. By fixing the choice of the
fiducial vector they remove some ambiguous aspects of the
framework. On the one hand, the new ACS evolve para-
metrically through the Schrödinger equation, with the
parameters following a trajectory in phase space given
by a semiclassical Hamiltonian. On the other hand, the

fiducial vector usually unspecified is now given as an
eigenvector of a well-defined Hamiltonian. The basic
quantum observables given by this enhanced procedure
remain unchanged, up to some normalization factors.
Therefore, the new ACS are really “exceptional” states
among all possible definitions of affine coherent states. If
one accepts the general framework of coherent state
quantization as an admissible one, it becomes clear that
these new coherent states should be favored. The crucial
point is that they are explicit solutions to the Schrödinger
equation, allowing one to avoid troublesome approxima-
tions. We plan to use them in our future works on quantum
cosmology.
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APPENDIX A: QUANTIZATION FORMULA

In this appendix, we sketch the proof for the formula of
Sec. III A. To obtain the operators Âf, we need to calculate
the matrix elements hxjÂfjx0i, i.e., to calculate in the sense
of distributions, the integrals

hxjÂfjx0i ¼
Z
Πþ

dqdp
2πc0

hxjq; pihq; pjx0ifðq; pÞ:

For the cases mentioned in Sec. III A, i.e., fðq; pÞ ¼
qα; p; qp; p2, fðq; pÞ is factorized as a product of a
function of q by a function of p, and the technique is
the same. We have

hxjÂqαpβ jx0i ¼
Z
Πþ

dqdp
2πc0

qαpβ exp

�
ip
2q

ðx2 − x02Þ
�
1

q
ψ0

�
x
q

�
ψ0

�
x0

q

�
: ðA1Þ

First, we can use a change of canonical variables ½Q ¼ q2; P ¼ p=ð2qÞ�, leading to

hxjÂqαpβ jx0i ¼ 2β
Z
Πþ

dQdP
2πc0

Q
1
2
ðαþβÞPβ exp ½iPðx2 − x02Þ� 1ffiffiffiffi

Q
p ψ0

�
xffiffiffiffi
Q

p
�
ψ0

�
x0ffiffiffiffi
Q

p
�
: ðA2Þ

Therefore, we have

hxjÂqαpβ jx0i ¼ 2β

c0

�Z þ∞

−∞

dP
2π

PβeiPðx2−x02Þ
� Z

∞

0

dQQ
1
2
ðαþβ−1Þψ0

�
xffiffiffiffi
Q

p
�
ψ0

�
x0ffiffiffiffi
Q

p
�
: ðA3Þ

The basic relationsZ þ∞

−∞

dP
2π

eiPy ¼ δðyÞ ⇒
Z þ∞

−∞

dP
2π

PeiPy ¼ −iδ0ðyÞ and
Z þ∞

−∞

dP
2π

P2eiPy ¼ −δ00ðyÞ

show that, to calculate expressions (A3), at least for β ¼ 0, 1, 2, we need to simplify the formula of the type
fðx; aÞδðβÞðx2 − a2Þ with the constraint x, a > 0.

FIG. 3. A phase-space portrait ρψ ðq; pÞ with ν ¼ 3 for jψi ¼
jq ¼ 2; p ¼ 0; ν; n ¼ 0i (left panel) and jψi ¼ jq ¼ 2; p ¼ 0;
ν; n ¼ 1i (right panel).
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Using the well-known relations for the Dirac δ-function

fðxÞδðx − aÞ ¼ fðaÞδðx − aÞ;
fðxÞδ0ðx − aÞ ¼ fðaÞδ0ðx − aÞ − f0ðaÞδðx − aÞ;
fðxÞδ00ðx − aÞ ¼ fðaÞδ00ðx − aÞ − 2f0ðaÞδ0ðx − aÞ þ f00ðaÞδðx − aÞ;

and the fact that δðx2 − a2Þ ¼ 1
2a δðx − aÞ if x, a > 0, it is straightforward to obtain

fðxÞδðx2 − a2Þ ¼ fðaÞ
2a

δðx − aÞ; ðA4aÞ

fðxÞδ0ðx2 − a2Þ ¼ fðaÞ
4a2

δ0ðx − aÞ þ
�
fðaÞ
4a3

−
f0ðaÞ
4a2

�
δðx − aÞ; ðA4bÞ

fðxÞδ00ðx2 − a2Þ ¼ fðaÞ
8a3

δ00ðx − aÞ þ
�
3fðaÞ
8a4

−
2f0ðaÞ
8a3

�
δ0ðx − aÞ þ

�
f00ðaÞ
8a3

−
3f0ðaÞ
8a4

þ 3fðaÞ
8a5

�
δðx − aÞ: ðA4cÞ

Let us show how, for instance, Eq. (A4a) allows one to
recover Âqα. We have

hxjÂqα jx0i ¼
1

c0
δðx2 − x02Þfðx; x0Þ; ðA5Þ

in which we set

fðx; x0Þ ¼
Z

∞

0

dQQ
α−1
2 ψ0

�
xffiffiffiffi
Q

p
�
ψ0

�
x0ffiffiffiffi
Q

p
�
; ðA6Þ

so that from (A4a)

hxjÂqα jx0i ¼
1

c0

fðx0; x0Þ
2x0

δðx − x0Þ; ðA7Þ

fðx0; x0Þ ¼ 2ðx0Þαþ1cαðψ0Þ; ðA8Þ

and finally,

hxjÂqα jx0i ¼
cαðψ0Þ
c0ðψ0Þ

ðx0Þαδðx − x0Þ; ðA9Þ

which implies

Âqα ¼
cαðψ0Þ
c0ðψ0Þ

x̂α: ðA10Þ

Similarly, we find

hxjÂpjx0i ¼ −
2i
c0

δ0ðx2 − x02Þfðx; x0Þ; ðA11Þ

with

fðx; x0Þ ¼
Z

∞

0

dQψ0

�
xffiffiffiffi
Q

p
�
ψ0

�
x0ffiffiffiffi
Q

p
�
: ðA12Þ

Using (A4b) we obtain first

hxjÂpjx0i ¼ −
2i
c0

�
fðx0; x0Þ
4x02

δ0ðx − x0Þ þ
�
fðx0; x0Þ
4x03

−
∂xfðx0; x0Þ

4x02

�
δðx − x0Þ

�
: ðA13Þ

Then a change of variable and an integration by parts (assuming ψ0 to be rapidly decreasing) gives

fðx0;x0Þ¼2x02c1ðψ0Þ and ∂xfðx0;x0Þ¼2x0c1ðψ0Þ: ðA14Þ

Thus, we conclude that

hxjÂpjx0i ¼ −i
c1ðψ0Þ
c0ðψ0Þ

δ0ðx − x0Þ ⇒ Âp ¼ c1ðψ0Þ
c0ðψ0Þ

p̂: ðA15Þ

More complicated formulas involving p or p2 can be obtained in a similar fashion.
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APPENDIX B: DETAILED RELATIONS
INVOLVING SU(1, 1)

The basic SUð1; 1Þ self-adjoint generators K̂0;1;2 on
H ¼ L2ðRþ; dxÞ mentioned in Sec. II B read in our case

K̂0 ¼
1

2

�
Ĥ þ x̂2

4

�
; ðB1Þ

K̂1 ¼
1

2

�
cosω

�
Ĥ −

x̂2

4

�
þ sinωd̂

�
; ðB2Þ

K̂2 ¼
1

2

�
− sinω

�
Ĥ −

x̂2

4

�
þ cosωd̂

�
; ðB3Þ

where Ĥ ¼ p̂2 þ C
x̂2 with C > 0 and ω is a free real

parameter. They verify the usual commutation rules of
suð1; 1Þ, i.e.,

½K̂0;K̂1�¼ iK̂2; ½K̂0;K̂2�¼−iK̂1; ½K̂1;K̂2�¼−iK̂0:

ðB4Þ

Conversely, we have

Ĥ ¼ K0 þ cosωK̂1 − sinωK̂2; ðB5Þ

x̂2

4
¼ K̂0 − cosωK̂1 þ sinωK̂2; ðB6Þ

d̂
2
¼ sinωK̂1 þ cosωK̂2: ðB7Þ

In the unit disk realization of SU(1,1) actions, K̂0 is the
generator of rotations while K̂1 and K̂2 are generators of
hyperbolic transforms. Introducing the ladder operators

K̂� ¼ K̂2 ∓ iK̂1; ½K̂þ; K̂−� ¼ −2K̂0; ðB8Þ

one can also write

Ĥ ¼ K̂0 −
1

2i
ðK̂þeiω − K̂−e−iωÞ; ðB9Þ

x̂2

4
¼ K̂0 þ

1

2i
ðK̂þeiω − K̂−e−iωÞ; ðB10Þ

d̂ ¼ K̂þeiω þ K̂−e−iω: ðB11Þ

The Casimir operator is given by

Q̂ ¼ K̂2
1 þ K̂2

2 − K̂2
0 ¼

1

2
fK̂þ; K̂−g − K̂2

0; ðB12Þ

which gives, in this representation,

Q̂ ¼ 1

4

�
3

4
− C

�
1 with C > 0: ðB13Þ

Hence, the corresponding SUð1; 1Þ UIR is identified
through the Bargman index η > 0 such that ηðη − 1Þ ¼
1
4
ðC − 3

4
Þ, i.e., η ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffi
Cþ 1

4

q
. For C ¼ 3

4
, which corre-

sponds to the lowest value allowing the operator Ĥ to have
a unique self-adjoint extension, we get the element lying at
the bottom of the genuine discrete series corresponding
to η ¼ 1.
Since the parameter ω introduced above is free, we

choose in what follows ω ¼ 0 to simplify expressions and
calculations.
With this material at hand, the unitary operator V̂q;p of

Eq. (4) can be viewed as a combination of SUð1; 1Þ
displacement operators [37] allowing us to interpret our
CS in terms of Perelomov CS for SU(1,1). We first have
from Eq. (4)

V̂q;p ¼ e2ipðK̂0−K̂1Þ=qe−2i ln qK̂2 : ðB14Þ

One can rewrite V̂q;p differently in terms of the generators
(see below) as

V̂q;p ¼ eðξK̂þ−ξ̄K̂−ÞeiθK̂0 ¼ eiθ
0K̂0eðξ0K̂þ−ξ0K̂−Þ: ðB15Þ

The unitary operator eðξK̂þ−ξ̄K̂−Þ is the SU(1,1) analog of the
displacement operator in the Weyl-Heisenberg symmetry
case, and was used by Perelomov to build his SU(1,1)
coherent states [35,36]. On the other hand, the exponen-
tiation of the operator K̂0, i.e., eiθK̂0 , leads to the compact
subgroup of rotations in the unit disk. In doing so, we use
the one-to-one correspondence

iK̂0 ↔ N0 ¼
1

2

�
i 0

0 −i

�
; ðB16aÞ

iK̂1 ↔ N1 ¼
1

2

�
0 1

1 0

�
; ðB16bÞ

iK̂2 ↔ N2 ¼
1

2

�
0 i

−i 0

�
; ðB16cÞ

i.e.,

iK̂þ ↔ Nþ ¼
�

0 0

−i 0

�
and iK̂− ↔ N− ¼

�
0 i

0 0

�
:

ðB17Þ

Then, one uses the generic exponentiation correspondence
between X∈ suð1; 1Þ and g∈SUð1; 1Þ,
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X ¼
X

i¼0;1;2

λiNi ¼
1

2

�
iλ0 z

z̄ −iλ0

�
; z ¼ λ1 þ iλ2;

↦ g ¼ expX ¼
�
α β

β̄ ᾱ

�
; jαj2 − jβj2 ¼ 1;

so that, for V̂q;p of Eq. (B14), we have the corres-
pondences between unitary operators ↦ 2 × 2 matrices
∈SUð1; 1Þ:

e2ipðK̂0−K̂1Þ=q ↦

0
B@

1þ i pq − p
q

− p
q 1 − i pq

1
CA; ðB18Þ

e−2i ln qK̂2 ↦

0
B@

qþq−1

2
−i q−q

−1

2

i q−q
−1

2
qþq−1

2

1
CA; ðB19Þ

and so

V̂q;p ↦
�
α β

β̄ ᾱ

�
; ðB20Þ

with

α¼qþq−1

2
þ i

p
q2

and β¼−i
�
q−q−1

2
− i

p
q2

�
: ðB21Þ

We also have the left and right Cartan factorizations of
SU(1,1), namely

�
α β

β̄ ᾱ

�
¼

�
δ δζ

δζ̄ δ

��
ei

θ
2 0

0 e−i
θ
2

�
≡ pðζÞhðθÞ

¼
�
e−i

θ
2 0

0 ei
θ
2

��
δ δζ0

δζ̄0 δ

�
≡ hð−θÞpðζ0Þ;

with ei
θ
2 ¼ α

jαj, ζ ¼ βᾱ−1, ζ0 ¼ βα−1, and δ ¼ jαj ¼
ð1 − jζj2Þ−1=2. In terms of exponentials of suð1; 1Þ ele-
ments and corresponding unitary operators, the decom-
position factors read

hðθÞ ¼ eθN0 ↦ e−iθK0 ;

pðζÞ ¼ e−iξNþþiζ̄N− ↦ eξKþ−ξ̄K− ;

with ζ ¼ − tanh jξj expð−i arg ξÞ. The application of these
relations to (B15) yields quite involved expressions in
terms of the original variables q and p whose explicit form
we do not write here.
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Wigner on quantizations of the plane and the half-plane,
Entropy 20, 787 (2018).

[17] H. Bergeron, E. Czuchry, J.-P. Gazeau, and P. Małkiewicz,
Quantum mixmaster as a model of the primordial universe,
Universe 6, 7 (2019).

[18] T. Paul, Functions analytic on the halfplane as quantum
mechanical states, J. Math. Phys. (N.Y.) 25, 3252 (1980).

[19] H. Bergeron, A. Dapor, J. P. Gazeau, and P. Małkiewicz,
Smooth big bounce from affine quantization, Phys. Rev. D
89, 083522 (2014).

[20] H. Bergeron, A. Dapor, J. P. Gazeau, and P. Małkiewicz,
Smooth bounce in the affine quantization of a Bianchi I
model, Phys. Rev. D 91, 124002 (2015); 91, 129905(A)
(2015).

[21] H. Bergeron, E. Czuchry, J.-P. Gazeau, P. Małkiewicz, and
W. Piechocki, Smooth quantum dynamics of the mixmaster
universe, Phys. Rev. D 92, 061302 (2015).

[22] H. Bergeron, E. Czuchry, J.-P. Gazeau, P. Małkiewicz, and
W. Piechocki, Singularity avoidance in a quantum model of
the mixmaster universe, Phys. Rev. D 92, 124018 (2015).

[23] H. Bergeron, E. Czuchry, J.-P. Gazeau, and P. Małkiewicz,
Vibronic framework for quantum mixmaster universe, Phys.
Rev. D 93, 064080 (2016).

[24] C. R. Almeida, H. Bergeron, J. P. Gazeau, and A. C.
Scardua, Three examples of quantum dynamics on the
half-line with smooth bouncing, Ann. Phys. (Amsterdam)
392, 206 (2018).

[25] M. Reed and B. Simon, Methods of Modern Mathematical
Physics. 2. Fourier Analysis, Self-Adjointness (Academic
Press, London, 1975).

[26] R. Pouliquen, Schrödinger operators in l2ðrÞ with pointwise
localized potential, J. Math. Anal. Appl. 235, 180 (1999).

[27] J. R. Klauder and E.W. Aslaksen, Elementary model for
quantum gravity, Phys. Rev. D 2, 272 (1970).

[28] J. R. Klauder, An affinity for affine quantum gravity, Proc.
Steklov Inst. Math. 272, 169 (2011).

[29] M. Fanuel and S. Zonetti, Affine quantization and the
initial cosmological singularity, Europhys. Lett. 101, 10001
(2013).

[30] P. Małkiewicz and A. Miroszewski, Dynamics of primordial
fields in quantum cosmological spacetimes, Phys. Rev. D
103, 083529 (2021).

[31] J. d. C. Martin, P. Małkiewicz, and P. Peter, Unitarily
inequivalent quantum cosmological bouncing models, Phys.
Rev. D 105, 023522 (2022).

[32] J. de Cabo Martin, P. Małkiewicz, and P. Peter, Ambiguous
power spectrum from a quantum bounce, arXiv:2212.
12484.

[33] P. Małkiewicz, A. Miroszewski, and H. Bergeron, Quantum
phase space trajectories with application to quantum cos-
mology, Phys. Rev. D 98, 026030 (2018).

[34] M. del Olmo and J.-P. Gazeau, Covariant integral quantiza-
tion of the unit disk, J. Math. Phys. (N.Y.) 61, 022101
(2020).

[35] A. Perelomov, Generalized Coherent States and Their
Applications, Theoretical and Mathematical Physics
(Springer, New York, 1986).

[36] A. Perelomov, Coherent states for arbitrary Lie group,
Commun. Math. Phys. 26, 222 (1972).

[37] J. Gazeau, Coherent States in Quantum Physics (Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).

NEW CLASS OF EXACT COHERENT STATES: ENHANCED … PHYS. REV. D 109, 023516 (2024)

023516-15

https://doi.org/10.3390/e20100787
https://doi.org/10.3390/universe6010007
https://doi.org/10.1063/1.526072
https://doi.org/10.1103/PhysRevD.89.083522
https://doi.org/10.1103/PhysRevD.89.083522
https://doi.org/10.1103/PhysRevD.91.124002
https://doi.org/10.1103/PhysRevD.91.129905
https://doi.org/10.1103/PhysRevD.91.129905
https://doi.org/10.1103/PhysRevD.92.061302
https://doi.org/10.1103/PhysRevD.92.124018
https://doi.org/10.1103/PhysRevD.93.064080
https://doi.org/10.1103/PhysRevD.93.064080
https://doi.org/10.1016/j.aop.2018.03.010
https://doi.org/10.1016/j.aop.2018.03.010
https://doi.org/10.1006/jmaa.1999.6390
https://doi.org/10.1103/PhysRevD.2.272
https://doi.org/10.1134/S0081543811010159
https://doi.org/10.1134/S0081543811010159
https://doi.org/10.1209/0295-5075/101/10001
https://doi.org/10.1209/0295-5075/101/10001
https://doi.org/10.1103/PhysRevD.103.083529
https://doi.org/10.1103/PhysRevD.103.083529
https://doi.org/10.1103/PhysRevD.105.023522
https://doi.org/10.1103/PhysRevD.105.023522
https://arXiv.org/abs/2212.12484
https://arXiv.org/abs/2212.12484
https://doi.org/10.1103/PhysRevD.98.026030
https://doi.org/10.1063/1.5128066
https://doi.org/10.1063/1.5128066
https://doi.org/10.1007/BF01645091

