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We consider a k-essence model in which a single scalar field can be responsible for both primordial
inflation and the present observed acceleration of the cosmological background geometry, while also
admitting a nonsingular de Sitter beginning of the Universe (it arises from de Sitter and ends in de Sitter).
The early one is driven by a slow-roll potential, and the late one is driven by a dynamical dimensional
reduction process which freezes the scalar field in a degenerate surface, turning it into a cosmological
constant. This is done by proposing a realizable stable cosmic time crystal, although giving a different
interpretation to the “moving ground state”, in which there is no motion because the system loses degrees of
freedom. Furthermore, the model is free of pathologies such as propagating superluminal perturbations,
negative energies, and perturbation instabilities.
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I. INTRODUCTION

Type IA Supernovae observations indicate that the
Universe is experiencing an accelerated expansion [1].
Furthermore, if one assumes that the Universe had a
beginning, an early accelerated expansion phase called
inflation has been postulated to overcome the horizon and
flatness problems. Inflation has also been found to yield
sensible initial conditions for the primordial inhomo-
geneous cosmological perturbations that gave rise to the
present structures in the Universe.1 Both in the early
inflationary and the late accelerated phases, the Universe
is approximately a de Sitter space-time, although the two
phases are separated by a huge difference in energy density.
In order to account for these scenarios, unusual actions—
mostly inspired in possible UV completions—involving

scalar fields have been proposed, extending the bestiary of
fundamental fields and often reproducing one expansion
phase or the other, but not both. Thus, originally motivated
by string theory, scalar fields with noncanonical kinetic
terms—k-essence fields—which approximately describe
the (anti–)de Sitter(A)dS geometry as an attractor solution,
were introduced first to model inflation [3], and dark
energy later on [4,5].
Nevertheless, the perks of a nonlinear dynamic are

shadowed by apparent unphysical features of the solutions;
superluminal propagation of perturbations [6] (even though
causality is still preserved [7]), negative energy and pertur-
bative instabilities as the system evolves into regions where
the null energy condition (NEC) is violated [8,9], and the
presence of singularities in the dynamical motion [10],
leading to loss of hyperbolicity [11], horizon formation [12],
and caustics in wave propagation [13,14].
Besides, k-essence provides an intriguing solution;

a cosmological realization of Shapere and Wilczek’s
classical time crystal [15], whose ground state has broken
time translation symmetry, only possible in systems
with a multivalued Hamiltonian. Time crystals have been
actively investigated in condensed matter physics, albeit
departing from the original proposal [16]. On the other
hand, cosmological versions were initially proposed in
Ref. [17], where the periodic behavior of the field would
lead to new cosmological phases. However, in order to
reach this ground state, the system must violate the NEC,
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1In nonsingular cosmological scenarios like bouncing models,
these problems are not necessarily present, and the existence of an
early inflationary phase might be unnecessary [2].
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the speed of sound squared becomes negative, and
perturbations would grow exponentially [18]. An effec-
tive field theory approach was able to regularize the
system [19], at the cost of new free time-dependent
parameters. Cosmic time crystals also emerged in a
purely geometric Universe with noncommutative geom-
etry corrections [20].
In this paper, we present a stable model that reaches

the so called “moving ground state” without requiring
extra dynamical additions. We interpret the physical
system not as a time crystal, but as a degeneracy in the
dynamical structure of the model [21,22]. This greatly
enriches the k-essence models, presenting the degen-
eracy as a new process in which the field that produces
an early slow-roll inflation evolves into a form of dark
energy today (not an attractor solution anymore). Hence
we have one field for both phases of accelerated
expansion. Different proposal for that exist, for example
using modified fðRÞ gravity models [23–25], and phan-
tom scalar fields [26].
Moreover, some other issues are alleviated, as the

singularity in the motion is no longer a problem, but a
dynamical feature that limits the motion in phase space to a
bounded sector in such a way that the regions where the
field is unstable and superluminal propagation occur,
are inaccessible.
This alternative interpretation was explored in [22],

where systems possessing a multivalued Hamiltonian
lose degrees of freedom as they get trapped on a surface
of phase space where the dynamical equations degenerate.
This happens because the single-valued branches of the
momenta piðqj; q̇jÞ are separated by degeneracy surfaces,
where the Hessian determinant j∂pi=∂q̇jj has a simple zero.
From the equations of motion,

∂pi

∂q̇j
q̈j ¼ −

∂pi

∂qj
q̇j þ ∂L

∂qi
;

it is clear that if the right side is nonzero, the system is
subjected to an infinite acceleration that changes sign,
therefore, being attracted or repelled by such surfaces,
sticking to it in the first case. On the degeneracy surface,
some degrees of freedom become gauge modes, and we
interpret the ground-state motion taking place at the surface
simply as a gauge transformation in a system that is
stuck there. This phenomenon of freezing out degrees of
freedom was first observed in Lovelock gravity theories
for D > 4 [27,28], and is a rather conspicuous feature of
gravitation and supergravity theories where the dynamical
loss of degrees of freedom represents a dynamical mecha-
nism for dimensional reduction [29–32].
In Sec. II, we present our model consisting of a

Friedmann-Lemaître-Robertson-Walker (FLRW) Universe
filled with a k-essence field. We review the requirements to
produce an acceptable model, and how those requirements

can be fulfilled by our proposal. In Sec. III, the modified
slow-roll inflation is presented, together with the con-
straints in the parameters imposed by the fact that the field
describes dark energy today. Then, in Sec. IV, the degen-
eracy mechanism is discussed, showing how the system
loses degrees of freedom as it degenerates, producing a
cosmological constant in the late Universe. In Sec. V, we
examine the perturbations checking that they remain well-
behaved, as expected for a reasonable k-essence theory,
to ensure stability once the field degenerates. We end up
summarizing our conclusions with some remarks for future
developments.

II. k-ESSENCE COSMOLOGY

Consider a spatially flat FLRW space-time with metric
ds2 ¼ −NðtÞdt2 þ aðtÞðdx2 þ dy2 þ dz2Þ filled with a
k-essence scalar field, where the lapse function NðtÞ will
be later set equal to one. The minisuperspace action can be
written as

S ¼
Z

dta3κ
�
−

1

2N

�
ȧ
a

�
2

þ Nκ2L
�
; ð1Þ

with κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πG=3

p ¼ ffiffiffiffiffiffiffiffiffiffi
4π=3

p
=mPl and mPl is the Planck

mass. The matter Lagrangian density is given by

L ¼ fðϕÞkðXÞ − VðϕÞ; ð2Þ

where the kinetic term is an a priori arbitrary function kðXÞ
of the canonical kinetic term X ¼ ð∇ϕÞ2=2 ¼ ϕ̇2=2N2,
to be conveniently chosen for different purposes [4,5].
Moreover, we assume fðϕÞ > 0. Writing the energy-
momentum tensor in analogy with a perfect fluid

Tμν ¼ ðεþ pÞuμuν − pgμν; ð3Þ

the field’s four-velocity being uμ ¼ sgnðϕ̇Þ∇μϕ=
ffiffiffiffiffiffi
2X

p
.

Then, it has pressure p ¼ L, and energy density

ε ¼ 2XL;X − L ¼ fð2Xk;X − kÞ þ V: ð4Þ

The dynamics is found by varying the action with respect
to ϕ and N. Hereafter we choose the time coordinate so
that N ¼ 1,

H2 ¼
�
ȧ
a

�
2

¼ 2κ2ε; ε;Xϕ̈ ¼ −3Hp;Xϕ̇ − ε;ϕ; ð5Þ

from which we see that the energy density is non-negative
ε ≥ 0, and the degeneracy surface of ϕ is reached
when ε;X ¼ 2XL;XX þ L;X ¼ fð2Xk;XX þ k;XÞ ¼ 0.
As mentioned above, the presence of such uncanny

kinetic term could account for an accelerated expansion
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through an attractor solution with an equation of state
w ¼ p=ε ¼ −1. From Eqs. (2) and (4), requiring

w ¼ fk − V
fð2Xk;X − kÞ þ V

¼ −1; ð6Þ

implies that, for some finite time, Xk;X ¼ 0.
Another important constraint is due to the stability of the

model; the speed of sound must be real,

c2s ¼
p;X
ε;X

¼ k;X
2Xk;XX þk;X

≥ 0; ð7Þ

lest the perturbations grow exponentially.
The problem now is to reach the condition ε;X ¼ 0

passing through a configuration with w ¼ −1; the solution
must cross k;X ¼ 0 with k;XX ≠ 0 there, forcing c2s to
change sign, which produces a gradient instability. In order
to avoid this, one could require kðXÞ to be such that c2s ¼ γ,

a positive constant, which gives k;X ∝ X
1−γ
2γ . However, for

0 < γ < 1, ε;X ∝ k;X=γ is null only for X ¼ ϕ̇2 ¼ 0, which
is not a simple zero, hence the acceleration does not change
sign as it passes through this point and the solutions are not
forced to end in the surface ε;X ¼ 0, i.e., the system does
not degenerate.
Another possibility is that both p;X and ε;X approach

zero for some value X ¼ Xd ≠ 0, i.e., k;XðXdÞ ¼ 0 and
k;XXðXdÞ ¼ 0. Under these conditions, expanding the
function kðXÞ around Xd, we find

L ¼ fðϕÞðX − XdÞn − VðϕÞ; ð8Þ

with n ≥ 3, which can be an approximation of a more
general theory near the degeneracy surface. From ansatz (8),
one finds a stable model that degenerates and behaves as an
Universe dominated by a cosmological constant, fitting the
description of today’s accelerated expansion thereafter.
In order to simplify the treatment and track the system

dependence on the parameters, we set n ¼ 3 and rewrite
the parameters as powers of mass dimension quantities,
f ¼ μ−8f and Xd ¼ μ4d. We also rescale time and the scalar
field into dimensionless quantities through dt̄ ¼ μ4dκ

3dt and
ϕ̄ ¼ μ2dκ

3ϕ. Then, the action takes the form

S¼
Z

dt̄a3
�
−
λ41
2N

�
1

a
da
dt̄

�
2

þλ2NðX̄−1Þ3−NVðϕ̄Þ
�
; ð9Þ

where λ1 ¼ μdκ, and λ2 ¼ ðμd=μfÞ8. Moreover, we have
incorporated a μ−4d term in the potential, so that it becomes
dimensionless. The parameters in the dimensionless poten-
tial V̄ ¼ ᾱϕ̄D, will be associated with the dimensional
ones, V ¼ αϕD, through ᾱ ¼ α=ðμ4þ2D

d κ3DÞ. The relation
between the dimensional and dimensionless energy density
and pressure is ε ¼ μ4dε̄ and p ¼ μ4dp̄.

The quantities of interest and the equations of motion are
(from now on we remove the bars for simplicity)

p ¼ L ¼ λ2Δ3 − V; ε ¼ λ2Δ2ð5X þ 1Þ þ V; ð10Þ

H2 ¼ 2

λ41
ε; ð11Þ

3λ2Δð5X − 1Þϕ̈ ¼ −9Hλ2Δ2ϕ̇ −
dλ2
dϕ

Δ2ð5X þ 1Þ − V;ϕ:

ð12Þ

The degeneracies occur at Δ ¼ X − 1 ¼ 0 and X ¼ 1=5.
We see that for the system to fall into the degeneracy at
X ¼ 1, it requires V;ϕðϕdÞ ≠ 0, where ϕd is the value of ϕ
for X ¼ 1; hence, the potential is crucial for the degeneracy
to occur.
From now on we set λ2 ¼ const for simplicity. It is

useful to write the dynamical equation as a first-order
differential equation

dX
dϕ

¼ −sgnðϕ̇Þ 6Δ
5X − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
λ41

X

�
Δ2ð5X þ 1Þ þ V

λ2

�s

−
V;ϕ

3λ2Δð5X − 1Þ : ð13Þ

Note that the Hubble drag term is proportional to Δ and
to λ2, and is negligible for Δ ≈ 0. Therefore, increasing λ2
increases the expansion effect on the field while sup-
pressing the interaction terms coming from V. Also,

c2s ¼
Δ

5X − 1
; ð14Þ

vanishes for X ¼ 1, as required. Instabilities occur for
1=5 < X < 1, and c2s → �∞ as X approaches 1=5 from
above or from below. However, the degeneracy surfaces
have the remarkable property to divide the phase space
of the system into disjoint regions [21,22]; then, in our
model, stable systems remain stable. Therefore, we are
interested in the region where X > 1, reaching Δ ¼ 0 with
positive c2s , where the system is healthy. One can also see
that in this region c2s < 1 and hence there is no super-
luminal propagation.
Finally, the presence of a potential is not only important

for the system to degenerate, but also to lead to an attractor
solution, which appears when the rhs of Eq. (13) is null for
Δ ≠ 0, and the potential term dominates over the kinetic
one, yielding an early accelerated expansion phase with a
much higher energy density.
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III. THE EARLY UNIVERSE

The field loses all its degrees of freedom at the
degenerate surface Δ ¼ 0, converting VðϕÞ into an effec-
tive cosmological constant, since from Eq. (10) one gets
p ¼ −ε for any potential V. Therefore, this stage can be
very useful to explain the accelerated expansion today, but
not an early one; an inflationary phase of the Universe must
have a finite duration for matter to cluster into the structures
we observe.
Nevertheless, the noncanonical kinetic term in our model

can also lead to the desired behavior of a late de Sitter phase
through a different physical process, allowing for a con-
comitant slow-roll inflation. Hence, the field ϕ can, by
itself, describe the two phases of accelerated expansion of
the Universe.
Before describing the mechanism itself, following [33]

let us consider the possible initial conditions of the
model—how the Universe began. If we assume something
like an initial singularity, ε → ∞ and X → ∞, we get

dϕ̇
dϕ

≈ −

ffiffiffiffiffiffiffiffiffi
3λ2
40λ41

s
ϕ̇3: ð15Þ

Integrating, and assuming an initial value ϕ̇i → ∞, we find
that ϕ̇ ∝ ðϕ − ϕiÞ−1=2. As the time derivative of the field
decays faster than its value, the field falls into the attractor
with a small deviation from its initial value, enlarging the
possible set of initial conditions.
Remarkably, our model also allows for a very interesting

beginning. In the degeneracy surface Δ ¼ 0, as the field
becomes a cosmological constant, the cosmological sol-
ution is a de Sitter universe. Hence, near the repulsive part
of the degeneracy surface the Universe shall emerge from a
singularity-free de Sitter space. In the neighborhood of the
degeneracy surface, Eq. (13) yields

dX
dϕ

≈ −
V;ϕ

3λ2Δð5X − 1Þ : ð16Þ

Again, the kinetic term grows fast until it reaches the
attractor solution, whilst the value of the field does not
change much (V;ϕ and ϕ̇ must have opposite signs for the
surface to be repulsive, so that ϕ̇ and dX=dϕ must have the
same sign).
Assume the attractor solution to be in the region X > 1,

and that it allows

V ≫ λ2Δ2ð5X þ 1Þ; ð17Þ

which implies

V ≫ λ2Δ3: ð18Þ

Then, reaching the attractor solution either from a
singularity or from a de Sitter space, space-time will
start to inflate as in the slow-roll scenario, p ≈ −ε, see
Eqs. (17), (18), and (10), with ϕi almost unchanged.
Inflation shall last for some time with ϕ̈ ≈ 0. The

above conditions on the dynamical equation for the field
[Eqs. (11) and (12)] yields

9λ2Δ2ϕ̇

ffiffiffiffiffiffiffiffiffi
2

λ41
V

s
≈ − V;ϕ: ð19Þ

Squaring this, one gets

Δ4X ≈
λ41

324λ2

V2
;ϕ

V
; ð20Þ

which has a solution for X > 1 with V > 0. This is because
hðXÞ≡ Δ4X − λ41V

2
;ϕ=ð324λ2VÞ has a local minimum at

X ¼ 1, increasing monotonically afterwards. Hence, as
hð1Þ < 0, hðXÞ ¼ 0 for some X > 1.
Furthermore, as ε ≈ V, and using Eqs. (11) and (19),

one gets

H ¼ ϕ̇
d ln a
dϕ

≈ −
V;ϕ

9λ2Δ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2V=λ41

p d ln a
dϕ

≈

ffiffiffiffiffiffiffiffiffi
2

λ41
V

s
ð21Þ

which, as ϕ̈ ¼ dX=dϕ ≈ 0 implies X ≈ cte, can be easily
integrated to give the scale factor

aðtÞ ≈ ai exp

�
18λ2Δ2

λ41

Z
ϕi

ϕ

V
V;ϕ

dϕ

�
; ð22Þ

which has to grow more than 75 e-folds [33] in order for the
mechanism to be realistic.
The situation described here is very general. Given a

potential V that allows a nearly flat attractor solution,
X ≈ const, and for large values of jϕj so that condition (17)
is satisfied, then a large set of initial conditions produce
inflation. Moreover, as one can see from the equations of
motion (13), after inflation ends X decays and the system
inevitably falls into the degenerate surface Δ ¼ 0, where
the scalar field freezes, turning VðϕÞ into a cosmological
constant.
Another relevant remark is that all phase space orbits that

reach the inflationary solution pass through approximately
the same points, falling into the degeneracy surface with the
same value for the energy density μ4dεd, corresponding to
the present value of the cosmological constant. This is
crucial as it does not require finely tuned initial conditions
and the same parameters are responsible for both phases of
accelerated expansion.
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A. An example: VðϕÞ = μ2ϕ2=2

The above assertions become more comprehensible
with the simplest dimensionless potential V ¼ μ2ϕ2=2,
with which Eq. (13) takes the form,

dX
dϕ

¼ −α1

8<
:sgnðϕ̇Þ 6Δ

5X − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
α2
α1

�
Δ2ð5X þ 1Þ

α1
þ ϕ2

2

�s

þ ϕ

3Δð5X − 1Þ

9=
;; ð23Þ

where the parameters are now

α1 ¼
μ2

λ2
¼ μ8fm

2

μ16d κ6
; α2 ¼

λ2
λ41

¼ μ4d
μ8fκ

4
: ð24Þ

The real mass of the field is given by the dimensionless
parameter μ ¼ m=ðμ4dκ3Þ. Equation (20) now becomes

Δ4X ≈
α1

162α2
; ð25Þ

which is a fifth-degree polynomial that cannot be alge-
braically solved for X. However, since it does not depend
explicitly on ϕ, it has a constant solution X ¼ Xat, which
grows with the parameters as ½α1=ð162α2Þ�1=5.
Inflation ends when the potential becomes of the order of

the kinetic term. However, when compared with its very
large initial value, the field will be negligible in the final
state so, we assume that it ends with ϕf ≈ 0. Then, from
Eq. (22) we find the number of e-folds

N ¼ ln
af
ai

¼
ffiffiffiffiffiffiffi
2

Xat

s
μϕ2

i

λ21
: ð26Þ

The minimum necessary, N > 75, can be achieved by
choosing a large enough ϕi, bounded by the requirement
that the energy density remain sub-Planckian; ϕ2

i ⪅
10μ4dκ

2=m2. Such requirements constrain Xat ⪅ 10−1=
ðm2μ4dκ

6Þ, which can be easily satisfied.
As stated, all inflationary solutions degenerate at the

same point with dimensional energy density μ4dεd ¼
μ4dμ

2ϕ2
d=2 ¼ m2ϕ2

d=ðμ8dκ6Þ, which is fixed by the free
parameters of the model. Therefore, to find this depend-
ence, we shall calculate the degenerate field ϕd for the
inflationary solutions which cannot be done analytically in
the general case; however, they can be done through some
approximations.
For the approximations, notice that h0ðXÞ ¼ XðX − 1Þ4,

the function on the lhs of (25), crosses the horizontal axis
with slope 1 at X ¼ 0, it has a local maximum at X ¼ 1=5

(h0ð1=5Þ ≈ 0; 08), and is tangent to the axis at X ¼ 1. It is
bounded by two functions and grows as ðX − 1Þ4 for
1 < X < 2 and as X5 for X ≫ 2. Thence, we will use
these two limiting behaviors as approximations. First,
h0 ≈ X5

at when α1 ≫ 106α2, because then Xat ¼ ðα1=
162α2Þ1=5 ≫ 2. Integrating X from Xat to X ¼ 1, one
can notice that the term under the square root becomes
negligible, as it is multiplied by α2=α1 ≈ 10−6. We can now
integrate, assuming that X ¼ Xat for ϕ ¼ 0,

5X3
at

3
− 3X2

at þ Xat −
1

3
≈
5X3

at

3
¼ α1

6
ϕ2
d; ð27Þ

with that we find ϕd ∝ ðα21α32Þ−1=10.
However, if α1≪102α2, then h0ðXÞ≈ðX−1Þ4¼x4≪1

[For a very small value of the rhs of (25), h0ðXÞ ¼ δ, there
are 3 values of X, X ≈ δ, X ≈ 1� δ1=4, but only one for
X > 1]. Now we integrate from xat to x ¼ 0. When x ¼ xat,
the first term inside the square brackets on the right hand
side of Eq. (23) will be approximately of order one, while
the second term in square brackets and the last therm on
rhs will go as ðα1=α2Þ−1=4 ≫ 1. Notwithstanding, when x
gets smaller, the former goes as x, being dominated by the
latter that goes as x−1 and, as we are interested just in the

FIG. 1. Stream plot of the noncanonical phase space, where we
identify ρ ¼ ϕ̇, see Sec. IV, for constant λ2 and V ¼ μ2ϕ2=2. The
red full line and the black dotted line are the degenerate surfaces
with ρ ¼ ρ� ¼ � ffiffiffi

2
p

and ρ ¼ ρ2;� ¼ � ffiffiffiffiffiffiffiffi
2=5

p
, respectively. The

dashed-green stream line is the attractor inflationary solution,
while the black dot-dashed streams are the ones that fall into it,
coming from an initial singularity or from the repulsive part of
the degeneracy surface. The full orange line denotes the curve
dX=dϕ ¼ 0, which is not a solution of the dynamical equation.
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parameter dependence, only the last term survives.
Integrating from ð0; xatÞ to ðϕd; 0Þ

α1ϕ
2
d ¼ 12x2at; ð28Þ

so that, in this case ϕd ∝ ðα1α2Þ−1=4.
As the degenerate configuration of the system is respon-

sible for the present accelerated expansion, its energy
density should be the same of the cosmological constant
μ4dεd=m

4
pl ¼ m2ϕ2

d=ðm4
plμ

8
dκ

6Þ ¼ εΛ=m4
pl ≈ 10−123, con-

straining the values of our parameters:
(i) α1 ≫ 106α2 means

�
m
mpl

�
2
�
μf
mpl

�
16
�
mpl

μd

�
20

≫ 106; ð29Þ

and the requirement of the energy density to be that
of the cosmological constant

�
m
mpl

�
6=5

�
μf
mpl

�
8=5

≈ 10−123: ð30Þ

(ii) When α1 ≪ 102α2,�
m
mpl

�
2
�
μf
mpl

�
16
�
mpl

μd

�
20

≪ 102; ð31Þ

and

�
m
mpl

��
μd
mpl

�
2

≈ 10−123: ð32Þ

Note that the admissible orders of magnitude for the
free parameters are not sensitive to the approximations that
have been use. They indicate a very small scalar field mass,
e.g., m ¼ 10−22 eV ¼ 10−50mpl, the mass of fuzzy dark
matter models, yielding μd ≈ 10−37mpl, and μf ≈ 10−40mpl.
It is also possible to have a larger mass, m ¼ 10−16mpl∼
1 TeV, which imposes much smaller values, μd ¼
10−53mpl ¼ 10−25 eV and μf ≈ 10−65mpl.
In any of these scenarios, both μd and μf have to be

very small. One can infer easily the consequences of these
small numbers in flat space-time. Going back to dimen-
sional quantities,

ϕ̈ ¼ −
μ8fV;ϕ

3ðX − μ4dÞð5X − μ4dÞ
: ð33Þ

If X ≫ μ8fV;ϕ and X > μ4d (both very small quantities), the
field will have a constant velocity as the interaction will be
dumped. Otherwise, if X ≈ μ4d, the field will be very near
the degeneracy surface, being rapidly dragged into it or out

of it, losing dynamics or rapidly reaching the high-X
regime with a constant velocity, respectively.
Small values of the free parameters commonly appear in

any attempt to accommodate the very small value of the
cosmological constant in the standard cosmological model,
and they do not constitute a satisfactory explanation for it.
However there is ample room for improvement in the
model that will not change the overall idea of the
degeneracy and can ease this problem. This matter will
be addressed in the next subsection and in the final remarks.

B. Another example: VðϕÞ= β4ϕ4=4− μ2ϕ2=2

To test the generality of the model, we introduce a Higgs-
type potential VðϕÞ ¼ β4ϕ4=4 − μ2ϕ2=2, in which2

dX
dϕ

¼ −
6Δ

5X − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
λ41

X

�
Δ2ð5X þ 1Þ þ β4ϕ4

4λ2
−
μ2ϕ2

2λ2

�s

−
β4ϕ3 − μ2ϕ

3λ2Δð5X − 1Þ : ð34Þ

Now the dimensionful parameters in the potential are
related by β ¼ ω=ðμ3dκ3Þ, and μ ¼ m=ðμ4dκ3Þ as before.
Inflation occurs for large values of the potential at large jϕj.
In this regime, we can assume V ≈ β4ϕ4=4 and from (20),

81Δ4X ≈
λ41
λ2

β4ϕ2: ð35Þ

Then X will not be a constant; a finite ϕ̇ implies that ϕ
and, consequently, the above equation changes over time.
However, when jϕj is large, it will be approximately
constant, which can be seen by noting that

dX
dϕ

≈ −
�
3

λ21

ffiffiffiffi
X

p
Δþ β2ϕ

3λ2Δ

�
β2ϕ2

5X − 1
: ð36Þ

If the term in parenthesis is nonzero, jdX=dϕj ≫ 1, and X
will decrease (or grow, if it starts from the degenerate
surface, remember that we assume Δ > 1) until the term
in parenthesis reaches zero at ϕ ¼ −9λ2Δ2

ffiffiffiffi
X

p
=β2 and

dX=dϕ ≈ 0 (remember that ϕ and ϕ̇ have opposite
signs in the inflationary phase). Moreover, we can assume
the rhs of (35) to be much larger than one, so that
X5
at ≈ λ41β

4ϕ2=ð81λ2Þ.
Inflation ends when condition (17) is not satisfied

anymore, which implies

β4

4
ϕ4
f ≈ λ2Δ2ð5X þ 1Þ ≈ 5λ2X3

at; ð37Þ

2From now on, in this section, we assume that ϕ̇ > 0, remember-
ing that the solutions are the same if ðϕ; ϕ̇Þ → ð−ϕ;−ϕ̇Þ.
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hence ϕf ≈�ðλ2λ61=β4Þ1=7. With that we can calculate the
number of e-folds from Eq. (22)

N¼9λ2
2λ41

X2
at

�
ϕ2
i −

�
λ2λ

6
1

β4

�
2=7

�
≈
91=5

4

�
λ52β

8

λ121

�
1=7

ϕ2
i ; ð38Þ

which, again, must be higher than 75, requiring a large
enough value for ϕ2

i .
Let us now estimate the value of the final cosmological

constant for orbits that experience sufficient inflation when
they reach the degeneracy surface. We will evaluate it
analytically using the information presented in the stream
plot for the Higgs-like potential shown in Fig. 2. Note that
this figure exhibits an attractor solution (the dashed green
curve) where inflation occurs for ϕ large and negative.
This attractor is approximately the curve dX=dϕ ¼ 0 (full
orange line), and that it reaches the degeneracy surface very
near the curve satisfying ε ¼ 0 (the purple dot-dashed
curve). However, after the solution departs from the orange
curve we lose its track, as the previous approximations
does not hold and the motion enters a nonlinear regime.

Near the degeneracy surface, the equations of motion could
be integrated approximately if we identify the orbits that
reach the degeneracy coming from the attractor. The
equation of motion in the coordinate x ¼ X − 1 is

dx
dϕ

¼ −
6x

λ21ð5xþ 4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þε

p
−

V;ϕ

3λ2xð5xþ 4Þ ; ð39Þ

and the energy density

ε ¼ λ2x2ð5xþ 6Þ þ V: ð40Þ

In order to find which orbits come from the attractor,
we assume they are close to the curve ε ¼ 0 for ϕ > 0, and
therefore the Hubble drag [the first term in the rhs of
Eq. (39)] is small, and is eventually overwhelmed by the
last term, somewhere between ϕ ¼ 0 and ϕþ ¼ μ2=β2,
where V;ϕ < 0—the dot-dashed green stream line meets
again the orange curve between these values, see Fig. 2—
and in this point dx=dϕ ¼ 0. Take this intersection is
approximately at the midpoint ϕi ¼ ϕþ=2. Then, from
Eq. (39) we get

−18x2i
λ2
λ21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi þ 1Þεi

p
¼ V;ϕðϕiÞ: ð41Þ

As we are near the degeneracy, x ≪ 1, and squaring
Eq. (41) we get

324ðλ2x2i Þ2εi ¼ λ41V
2
;ϕ; ð42Þ

and from (40), εi ≈ 6λ2x2i þ V, so that

λ2x2i ≈
1

6
ðεi − VÞ: ð43Þ

Moreover, near the degeneracy also ε ≪ 1 and the Hubble
drag, which is of order Oðxε1=2Þ, can be neglected in the
subsequent evolution of the system, which means that the
energy will be approximately conserved until it degener-
ates; εd ¼ εi. Substituting (43) in (42) and using VðϕiÞ ¼
−7μ4=ð64β4Þ and V;ϕðϕiÞ ¼ −3μ3=ð8β2Þ we find an equa-
tion for the degenerate energy density,

�
β4εd
μ4

þ 7

64

�
2

εd ¼
λ41
64

β4

μ2
; ð44Þ

which need more approximations to be solved. First, if
β4εd=μ4 ≪ 1, then εd ∝ λ41β

4=μ2. Again, as in the previous
subsection, we shall compare the dimensional energy
density with the energy density of the cosmological
constant driving the accelerated expansion today;
μ4dκ

4εd ¼ εΛκ
4. Substituting εd found above together with

FIG. 2. Stream plot of the noncanonical phase space, where
we identify ρ ¼ ϕ̇, see Sec. IV, for λ2 ¼ cte and V ¼ β4ϕ4=4−
μ2ϕ2=2. The red full line and the black dotted line are the
degenerate surfaces with ρ¼ρ�¼� ffiffiffi

2
p

and ρ¼ρ2;�¼� ffiffiffiffiffiffiffiffi
2=5

p
,

respectively. The dashed-green stream line is the attractor infla-
tionary solution, while the black dot-dashed streams are the ones
that fall into it, coming from an initial singularity or from the
repulsive part of the degeneracy surface. Again, the full orange
line denotes the curve dX=dϕ ¼ 0, which is not a solution of the
dynamical equation and here the dot-dashed purple curve denotes
ε ¼ 0, whose interior contains no orbits.
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the definitions of the dimensionless parameters the physical
parameters must satisfy

ω4

�
μd
mPl

�
4
�
mPl

m

�
2

≈ 10−123: ð45Þ

In this approximation a larger mass is more helpful; take
m ¼ 10−16mPl ¼ 1 TeV, as in the previous subsection.
Choosing also that ω4 ≈ 10−1, as required in the Higgs
potential for it to be renormalizable, we find that μd ≈
10−38mPl for the field to be responsible for today’s
accelerated expansion, alleviating somewhat the smallness
of the parameter. Now, for such values to satisfy the
condition β4εd=μ4 ≪ 1 we shall have

ω4

�
mPl

m

�
4
�
εΛ
m4

Pl

�
≈ 10−123ω4

�
mPl

m

�
4

≪ 1; ð46Þ

which will be satisfied.
Another option would be β4εd=μ4 ≫ 1, so that ε3d ≈

λ41μ
6=ð64β4Þ. Then, again taking the dimensional energy

density given by the present cosmological constant,
one finds

1

ω
4
3

�
μd
mPl

�4
3

�
m
mPl

�
2

≈ 10−123: ð47Þ

For an estimate, take the mass to be again the one for fuzzy
dark matter models m ¼ 10−50mPl, then

1

ω

�
μd
mPl

�
≈ 10−17: ð48Þ

If again ω¼10−1=4≈1, then μd ¼ 10−17mPl ¼ 102 GeV,
which is significantly greater than the one found in the
previous subsection, while μf is not constrained by the late
behavior of the field. Moreover β4εd=μ4 ≫ 1means, for the
dimensional parameters,

�
m
mPl

�
2
�
m4

Pl

εΛ

�
2

≈ 10246
�

m
mPl

�
2

≫ 1; ð49Þ

being again easily satisfied.
The Higgs-type potential alleviates the smallness of the

parameter μd, which defines the scale of the degenerate
surface, while not constraining μf at the cost of the new
parameter ω. As said above, further developments needed to
bring the model closer to the real Universe could help resolve
this problem, as will be discussed in the final remarks.

IV. THE LATE UNIVERSE

Different interpretations are given to the singularities
appearing in the dynamics of k-essence fields and similar
systems; terminating singularities, caustics, sonic horizons,

and cosmic time crystals. Our proposal to consider such
systems as degenerate provides fruitful new insights with a
different perspective from the standard picture as it does not
reach a moving ground state, nor is it ill-defined; the system
just freezes out, losing degrees of freedom in a dynamical
dimensional reduction process [21,22,29–32]. Hence, it is
through this loss of degrees of freedom that the k-essence
field turns into the cosmological constant that drives the
accelerated expansion today.
As the canonical phase space is apparently ill-defined,

a first-order Lagrangian L ¼ pϕðϕ; ρÞϕ̇ −Hðϕ; ρÞ in the
phase space spanned by ðϕ; ρÞ is useful, where ρ ≔ ϕ̇,

L ¼ a3ðλ2k;Xρϕ̇ − εÞ; ð50Þ

X ¼ ρ2=2 throughout this section. The dynamical equa-
tions are equivalent to Eqs. (10)–(12),

ε;Xρ̇þ 3Hp;Xρþ ε;ϕ ¼ 0; ð51Þ

ε;Xðϕ̇ − ρÞ ¼ 0; ð52Þ

where the second equation identifies ρ as ϕ̇. Within
this formalism the character of the degeneracy surface
ε;X ¼ 3λ2Δð5X − 1Þ ¼ 0 is given by the sign of Φ ¼ jini,

where j⃗ ¼ ε;Xðϕ̇; ρ̇Þ the Liouville current and ni ¼ ∂iε;X the
normal to the surface. The surface is repulsive or attractive
depending on whether the flux Φ is positive or negative,
respectively. In this case,

Φ ¼ a6ρε;XXðε;ϕ þ 3Hp;XρÞjðϕ;ρÞ→ðϕd;ρdÞ; ð53Þ

where ðϕd; ρdÞ is the point where the orbit intersects the
degenerate surface [21,22].
For Δ ¼ 0 (so that ρd ¼ ρ� ¼ � ffiffiffi

2
p

) it simplifies to

Φ ¼ −12a6V;ϕðϕdÞρ�: ð54Þ

Given ρ�, the flux depends only on the sign of V;ϕðϕdÞ.
Choosing V ¼ μ2ϕ2=2, the degeneracy surface ρþ will
be repulsive for negative values of the field, changing
character when ϕ ¼ 0, becoming attractive (the opposite
for ρ−). In addition, notice that the Hubble drag term is
negligible near the surface, as it is proportional to Δ2.
For a given potential, a clear dynamical picture is drawn

by the stream plot in the noncanonical phase space ðϕ; ρÞ.
Figure 1 describes the evolution of the system for the
harmonic potential and Fig. 2 does the same for the Higgs-
type one. The overall behavior—generic inflationary evo-
lution and final degenerate state for the current accelerated
expansion—does not change much for different choices
of the potential. The system can come from an initial
singularity, X → ∞, or from the repulsive part of the
degenerate surface, X ¼ 1, both with an arbitrary value
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of ϕi, given that it falls and stays into the attractor the
necessary amount of time. There, X ¼ Xat ≈ const and jϕj
decreases until inflation is over and the field leaves the
attractor. After that the system reaches the degeneracy
surface, ϕ freezes on a fixed value which depends on
the free parameters of the theory, the equation of state is
w ¼ −1 and the energy density μ4dεd ¼ εΛ. In the mean-
time, between the end of inflation and the degeneracy,
radiation, and possibly matter as well (if the field does not
degenerate first), will begin to dominate. The only change
in the dynamics of the field is through H, which does not
contribute significantly near the degeneracy. The degener-
ate value of the scalar field determines the cosmological
constant. If this value is small, the degenerate field will
quietly wait while cosmological perturbations grow and
structures form, for its time to dominate again the Universe
evolution, and guide another accelerated expanding phase.
Notice that the system is symmetric under ðϕ; ρÞ →
ð−ϕ;−ρÞ, so that orbits coming from the upper left are
the same as the ones from the bottom right (the plot is
invariant under rotations by π).
Once in the attractive part of the degeneracy surface, the

system cannot leave, as it is subjected to an infinite inwards
acceleration, and the dynamical equations does not apply
anymore; the field degrees of freedom are now doomed,
translations in the direction perpendicular and tangent to
the surface are not physical, the former because the system
is trapped, and the latter because there are no dynamical
laws at the surface.
One way to understand this fact is through inspection of

the constraints

G1 ¼ pϕ − 3a3λ2Δ2ρ ≈ 0; G2 ¼ pρ ≈ 0: ð55Þ

The Poisson brackets between them are fG1; G2g ¼
−a3ε;X ¼ −3a3λ2Δð5X − 1Þ. Thence, when the surface
is reached fG1; G2g ¼ 0, the constraints go from second
to first class and the degrees of freedom of the system
apparently become gauge. Notwithstanding, to be trapped
in the surface yields a new constraint

φ ¼ ρ − ρ� ≈ 0; ð56Þ

whose Poisson brackets are fφ; G1g ¼ 0 and fφ; G2g ¼ 1.
Therefore, only G1 remains a first class constraint, a
generator of gauge transformations in the direction tangent
to the degeneracy surface, whereas G2 is still second class.
We say that the gauge in the perpendicular direction is
fixed by the condition that the system remains in the
surface [21,22].
As a last remark, note that the Legendre transformation

to write the first order Lagrangian (51) from (2) is not
globally invertible. In fact, invertibility fails at the
degeneracy surface. This could sound as a problem, as
the theories would not be equivalent. However, both

Lagrangians describe identically the system in the non-
degenerate regions, where the dynamical laws are equiv-
alent. The conclusion drawn from both Lagrangians is the
same; the system that reaches the degeneracy is trapped on
the degenerate surface, where the equations of motion for
the degrees of freedom involved in this evolution are no
longer valid.

V. PERTURBATIONS

Previous cosmological time crystals proposals (degen-
erate k-essence fields in our interpretation) necessarily
violate the NEC, either becoming unstable or being
salvaged by free time-dependent parameters from an
effective field theory approach. Here we propose a model
that reaches the degeneracy surface with c2s ¼ 0, satisfying
the NEC and avoiding gradient instabilities. Nonetheless,
the degeneracy is in some sense an extreme surface of
phase space, so that naturally comes the question of
whether other inconsistencies appear as it is reached. For
that, we must investigate the behavior of perturbations in
order to assess the validity of the model as it degenerates.
Consider the Mukhanov-Sasaki equation describing

perturbations in the scalar field and in the scalar degrees
of freedom of the metric [34],

v00k þ
�
c2sk2

λ81
−
z00

z

�
vk ¼ 0; ð57Þ

with z ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffi
2Xε;X

p
=λ41H, the slash denotes derivatives

with respect to the conformal time η ¼ R
dt=a. When the

degeneracy is reached, z ∝
ffiffiffiffi
Δ

p
→ 0 and z00 ∝ Δ−7=2 → ∞,

while c2s → 0, therefore, we are in the long wavelength
limit, i.e., c2sk2=λ81 ≪ z00=z, so

vk ¼ C1ðkÞzþ C2ðkÞz
Z

dη
z2

: ð58Þ

To assert the health of the model we shall investigate
the behavior of the curvature perturbations and the
Bardeen potential

ζk ¼
vk
z
¼ C1ðkÞ þ C2ðkÞ

Z
dη
z2

; ð59Þ

Φk ¼ −
3H
aλ41k

2
z2ζ0k ¼ −

3H
aλ21k

2
C2ðkÞ: ð60Þ

The latter is well-behaved as the system degenerates, yet,
the integral on the second term in ζkZ

ηd

ηi

dη
z2

¼
Z

0

zi

dz
z0z2

; ð61Þ
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can be a problem, as, apparently, the end limit of the
integral is divergent. Still,

z0

λ41
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2Xε;X
p �

2aa0

H
−
H0a2

H2

�
þ a2X0ffiffiffiffiffiffiffiffiffiffiffiffi

2Xε;X
p

H
ðε;X þ ε;XXXÞ;

ð62Þ

and one can see from Eq. (11) that a and its derivatives are
well-behaved while, from Eq. (12),

X0 ≈ −
a

ffiffiffiffiffiffi
2X

p
V;ϕ

ε;X
; ð63Þ

as Δ → 0. Therefore, z approaches 0 infinitely fast, as
z0 ∝ Δ−3=2 → ∞, and the upper limit of the integral is well
behaved, ðz0z2Þ−1 ∝ Δ1=2 → 0.
Thence, the gauge independent perturbations freezes into

finite constants, just as the scalar field. In fact, in Ref. [18],
it is argued that higher-order quantum corrections should be
taken into account, as the measure of the action z would go
to zero, yet, we have shown that this just means that the
perturbations freeze into a finite nonzero value (remaining
in the linear regime), and have no dynamics anymore.
Accordingly, the overall behavior of the perturbations

will be in general the same as any k-essence theory with
oscillating modes that cross the sound horizon, become
constant as ζk ¼ C1ðkÞ, and remaining approximately
constant until the system freezes in the degeneracy [the
decaying modes do not contribute, as the upper limit in the
integral (62) tends to zero]. Henceforth, the power spectrum
for scalar perturbations will be

Pζ
k ¼ 64

μ4dκ
4ε

csð1þ p=εÞ
����
S
; ð64Þ

the subscript s denotes that the quantities are taken at the
sound horizon crossing [34].
Thence, the phenomenology of inflation is the same.

Notwithstanding, the parameters are now constrained not
only by the perturbations, but also by the requirement that
they source the present accelerated expansion.

VI. FINAL REMARKS

The degeneracy greatly enriches the dynamical features
of nonlinear systems, providing an interesting dynamical
dimensional reduction process that divides the phase space
into disjoint regions. In this proposal, it is throughout this
mechanism that the k-essence field not only becomes a
cosmological constant and drives the current accelerated
phase of the Universe, but it conducts an earlier slow-roll
inflationary cosmological evolution as well. Also, the
bounded dynamics eliminates the drawbacks previously
found for such systems; regions which violate the NEC,

perturbations that could violate causality, system instabil-
ities, Hamiltonian unbounded from below, are all avoided.
The theory has two attractors, one originated from the

potential term, the other coming from the noncanonical
kinetic term. They are somewhat independent; the kinetic
term is negligible in the slow-rolling era, while being the
responsible for the late-time dynamics. The parameters
have a disturbing scale difference; a very big effective
primordial cosmological constant, and a much smaller one
at late times. In this proposal, the potential is necessary and
defines the value of the degenerate field, linking both
phases of accelerated expansion, turning the theory more
predictive. Along with that, the model allows an interesting
singularity-free Universe, which starts in a de Sitter
unstable equilibrium near the repulsive part of the
degeneracy surface, for an unspecified large value of jϕj,
transits to a primordial slow-roll inflationary phase with a
possible subsequent standard FLRW evolution, and ends
in a late time de Sitter evolution with a much smaller
cosmological constant.
The model can be viewed as a possible realization

of Penrose’s conformal cyclic cosmology (CCC) proposal
[35], in which a de Sitter final phase is connected through a
conformal symmetry to a subsequent de Sitter beginning,
and a new cycle of the Universe emerges. Note that in the
final phase of our model, the scalar field falls into the
degeneracy surface where its amplitude is not a physical
degree of freedom anymore, and it may possibly jump to the
unstable part of the degeneracy surface, perhaps mediated by
a conformal symmetry generator, or some other mechanism
(quantum fluctuations?), initiating a new cycle. This is
something to be explored in future investigations.
Note that such cyclic universes, as well as the model of

Ref. [36], in which there is a net growth of the scale factor,
have, however, been shown to be geodesic past–incomplete
[37,38] and, therefore, not truly cyclical, as the geodesics
meet somewhere in the past. The geodesic completeness of
the present model will be addressed in future investigations.
This paper is a first try to show that k-essence fields

can degenerate without instabilities, produce both phases of
accelerated expansion in our Universe, and, surprisingly, a
curvature singularity free model. For that, we started with a
rather simple model in which space-time is filled solely with
the k-essence field. Nevertheless, bringing more reality to the
model may possibly ease some discomforts presented such
as the small value needed for the parameters in order to
accomplish realistically both accelerated phases. The pres-
ence of other fluids dominating after inflation could make
the Hubble drag decay slower, bringing the field to degen-
erate with smaller values; also, the ϕ dependence of λ2ðϕÞ
can be used either to find a scaling solution in the presence
of other fields, or to model a dynamical decay on the value
of μf as the degeneracy is approached; finally, a reheating
mechanism, in which the field thermalizes the Universe after
primordial inflation ends, can be introduced through the
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interaction of the scalar with other fundamental fields,
making it lose energy and fall into the degeneracy surface
with much less energy than that obtained here, without the
need for very small parameters.
Finally, it is important to stress that such modifications

are not likely to change much the overall picture. During
inflation, the energy density of the field ϕ is much larger
than the contribution of the rest, and the process will be
roughly the same as described here. After that, with the
degeneracy at X − 1 ¼ 0, if in the beginning X > 1, X
inevitably decays and ϕ becomes a cosmological constant.
Also, HΔ2 and dλ2

dϕ Δ
2 in Eq. (12) do not contribute near the

degeneracy, and will not modify its character. The only
appreciable change will be in the relation between the
parameters in the Lagrangian and the values the inflationary
solutions approach the degeneracy. Summing up, we have
constructed a stable cosmic time crystal, and shown that

interpreting it as degenerate systems can lead to improve-
ments, alleviating the problems due to the highly nonlinear
dynamics, and allowing just one field to play the role of the
inflaton and of the dark energy today, turning the theory
more economical and predictive, while shedding some
new light into this new dynamical dimensional reduction
process; the degeneracy.
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