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The possibility of an expanding decelerating Universe in the distant future is investigated in the context
of a quintessence scalar field cosmology. Such a conceivable evolution is tested against SNe Ia and HðzÞ
cosmic chronometers data, and also through a model independent method based on Gaussian processes.
The scalar field model is an extension of the exponential Ratra-Peebles (RP) quintessential cosmology
whose potential now depends on a pair of parameters (α; λ) and predicts a decelerated expansion in the
future. Different from the RP approach the α parameter allows for a decelerating cosmology in the future
thereby frustrating the inevitable evolution for a de Sitter cosmology as predicted by the cosmic
concordance model (ΛCDM). The statistical model analysis is updated with the most recent SNe Ia and
HðzÞ data thereby obtaining H0 ¼ 68.6� 3.7 km=s=Mpc, ΩΦ0 ¼ 0.735þ0.083

−0.069 , α < 6.56 and λ < 0.879 (at
2σ c.l.). It is also found that the extended RP model allows for a future deceleration both for HðzÞ and SNe
Ia data. In the (model-independent) Gaussian processes analysis, however, future deceleration is allowed
only in the case of HðzÞ data.
DOI: 10.1103/PhysRevD.109.023514

I. INTRODUCTION

The current phase of accelerated expansion of the
universe, initially confirmed in 1998 with observations
of type Ia supernovae (SNe Ia) by two independent groups
[1,2] and reaffirmed by the most recent observations of the
cosmic microwave background (CMB) radiation [3], is
usually attributed to the domination of a material compo-
nent with negative pressure thereby affecting the dynamics
of the universe. This component corresponds to ∼60–80%
of the whole material content of the universe and does not
interact with electromagnetic radiation, for this reason it is
called dark energy (DE).
The flat ΛCDM cosmic concordance model assumes that

DE is described by the cosmological constant Λ. This is the
model that best describes most astronomical observations,
both from the early universe, like nucleosynthesis [4], CMB
[3] and baryon acoustic oscillations (BAO) data [5], and from
the late time universe, such as measurements of SNe Ia and
the Hubble parameter data,HðzÞ. However, it is well known
that the flat ΛCDM model suffer from several observational
limitations, among them the Supernova-CMB tension on the

current values of the Hubble parameter (H0) [6], as well as
the so-called S8 tension [7]. In this context, if one excludes
the possibility of unaccounted systematic effects [8–10],
alternativemodels are now required in order to solve both the
theoretical and observational problems plaguing the ΛCDM
model (see [11–13] for detailed discussions about all the
problems).
Among several others, quintessence models arise as an

alternative todescribe theDEsector into theuniverse [14,15].
This kind of model consider DE as a single minimally
coupled real scalar field ϕ endowed with a certain associated
potential VðϕÞ. Scalar fields are widely used in several areas
of physics, and particularly in cosmology they are applied to
the whole evolution of the universe, since the grand unified
theories (GUT) [16,17], inflation [18–20], scalar field dark
matter models [21,22] and scalar field dark energy models
[23–26]. This is due to its simple mathematical formalism,
since all important information about the field is contained in
the potential VðϕÞ.
In a quintessential cosmological model one can describe

the different dynamic phases of the universe by determining
the appropriate potential VðϕÞ. Using the available obser-
vational data, it is also possible to obtain limits for the free
parameters of the potential thereby constraining the specific
model. An intuitive proposal to start studies with scalar
fields is the simplest potential, namely the quadratic
potential (VðϕÞ ∝ ϕ2), as done in [27,28]. A more general
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form of analysis for this kind of potential can be done
by studying more general power laws potentials, like
(VðϕÞ ∝ ϕn), as discussed by Peebles and Ratra [29,30].
In addition to these particular forms of potentials, many
others have been adopted to describe quintessential cos-
mologies [31]. Even other alternative candidates to accel-
erate the Universe, different from quintessence models,
may also ultimately be described in terms of canonical
scalar fields [32–34].
In this work we revisit the quintessence model proposed

in [35]. This scalar field model is endowed with several
interesting properties, among them: (i) at early times it
behaves like a subdominant cosmological constant in a
decelerating universe in perfect agreement with nucleo-
synthesis constraints, (ii) Such a decelerating phase is
followed by an accelerating stage with quintessence domi-
nance, and, finally, (iii) it allows a deceleration of the
universe in the distant future. Beyond a scalar field
approach, models with future deceleration can also be
found from a more phenomenological viewpoint when the
variable equation of state parameter of dark energy [ωðzÞ�
goes to zero in the distant future (see, for instance, [36]
and Refs. therein). We also notice that a possible transition
in the future for a decelerating stage thereby finishing
naturally the eternal accelerating regime is a remarkable
feature from a physical viewpoint. An eternal de Sitter
phase as predicted by the ΛCDMmodel, for instance, is not
in agreement with the requirements of S-matrix describing
particle interactions [37,38].
In this context we seek to find stronger constraints to

the free parameters of the quintessence model adopted
here through the use of new observational data. By
combining the SNe Ia data from the Pantheon sample [39]
with the HðzÞ data [40] from cosmic chronometers, we
performed the statistical analysis of the model using
Bayesian statistics thereby constraining the free parame-
ters of the proposed model (see also [41] for an earlier
model-independent analysis). Furthermore, we compared
the results obtained by our analysis with the results from
nonparametric methods, in this case the Gaussian proc-
esses (GP) [42–45], in order to obtain a better validation
of the obtained results.
The paper is organized as follows. In Sec. II, the

theoretical foundations of the adopted scalar field cos-
mology plus CDM are briefly reviewed. In Sec. III, the
observational data used in our analyses are described
and, in Sec. IV, we present the basic results derived here.
We carry out the conclusions and final remarks of our
work in Sec. V. Finally, some technicalities including the
most relevant accounts describing the model can be seen
in the Appendix.

II. COSMOLOGICAL MODEL

Let us now determine the set of equations driving the
dynamics of thequintessential cosmologicalmodel. The dark

energy component is described by a homogeneous canonical
scalar field ϕ with energy density and pressure:

ρϕ ¼ 1

2
ϕ̇2 þ VðϕÞ; ð1Þ

pϕ ¼ 1

2
ϕ̇2 − VðϕÞ: ð2Þ

The potential VðϕÞ contains all the physical information
about the field. The independent Friedmann equations take
the following form:

H2 ¼ 8πG
3

ðρm þ ρϕÞ −
k
a2

; ð3Þ
ä
a
¼ −

4πG
3

ðρm þ ρϕ þ 3pϕÞ; ð4Þ

where H ¼ ȧ=a is the Hubble parameter. From now on, we
shall work in an spatially flat Universe (k ¼ 0), as indicated
by Planck [3] and required by inflation [46]. The equation of
motion obeyed by the scalar field which is also contained in
the energy conservation law (uμT

μν
ðϕÞ;ν ¼ 0) can bewritten as:

ϕ̈þ 3Hϕ̇þ dVðϕÞ
dϕ

¼ 0: ð5Þ

Now, in order to simplify our calculations, let us
introduce the dimensionless field Φ and the dimensionless
potential UðΦÞ defined in terms of ϕ by the following
expressions:

Φ ¼
ffiffiffiffiffiffiffiffiffi
8πG
3

r
ϕ; ð6Þ

UðΦÞ ¼ 8πG
3H2

0

VðΦÞ; ð7Þ

which are explained with more detail in the Appendix.
The potential UðΦÞ adopted in our analysis follows

directly from the work [35] (see discussion below their
Eq. (4) and also (A18) in the Appendix). It is given by

UðΦÞ ¼ ΩΦ0e−
1
2
½3αΦ2þ2

ffiffiffiffi
3λ

p
Φ�
�
1 −

λ

6

�
α

ffiffiffi
3

λ

r
Φþ 1

�2�
; ð8Þ

where α and λ are constants proposed in the approximation
made in [35] [see their Eq. (A7)]. As should be expected,
the above expression in the limit α → 0 can be seen as the
dimensionless potential associated to the Ratra-Peebles
model [30].
At this point, it is also convenient to change the time

coordinate t to the redshift z through the standard trans-
formation:

d
dt

¼ −Hð1þ zÞ d
dz

: ð9Þ
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In this way, the equation of motion (5) becomes:

Φ00 þ
�
3Ωm0ð1þ zÞ2 þ

�
3ð1þ zÞΦ02 −

4

1þ z

��

×
Φ0

2E2
þ 1

E2ð1þ zÞ2
dUðΦÞ
dΦ

¼ 0; ð10Þ

where primes denote derivatives d=dz while the dimen-
sionless quantity E is defined in the usual manner,
E2 ≡H2=H2

0, which in the present context takes the form:

E2 ¼ Ωm0ð1þ zÞ3 þ 2UðΦÞ
1 − w

; ð11Þ

where Ωm0 is the present day matter density parameter
(hereafter a subindex “0” will denote a present time
quantity). Being w the parameter of the equation of
state (EoS) of the form

pϕ ¼ wρϕ; ð12Þ

it is easy to obtain the expression for the parameter w:

w ¼ Ωm0ð1þ zÞ5Φ02 þ 2UðΦÞ½ð1þ zÞ2Φ02 − 1�
Ωm0ð1þ zÞ5Φ02 þ 2UðΦÞ : ð13Þ

In the same vein, it is also possible to rewrite the
deceleration parameter qðtÞ

q ¼ −
ä

aH2
; ð14Þ

in terms of the redshift z, this may be written as:

qðzÞ ¼ 3½Ωm0ð1þ zÞ5Φ02 þ 2UðΦÞðð1þ zÞ2Φ02 − 1Þ�
4Ωm0ð1þ zÞ3 þ 4UðΦÞ þ 1

2
:

ð15Þ

Let us now determine an equation that allows us to
analyze the SNe Ia data, which depends on the dimension-
less luminosity distance DL given in terms of the dimen-
sionless comoving distance, DC as

DL ¼ ð1þ zÞDC: ð16Þ

where dimensionless distances Di relate to dimensionful
distances di as:

Di ≡ di
dH

; ð17Þ

where dH ≡ c
H0

is Hubble distance. Now, since DC depends
on EðzÞ but we do not have an analytic expression for EðzÞ,

we need a differential equation for DC. For a spatially flat
universe we can write:

dDC

dz
≡ 1

EðzÞ : ð18Þ

Thus, with the equation of motion of the field Φ given
by (10) and with the Eq. (11) that we have just determined,
we have all the equations necessary to start the statistical
analysis. Let us then determine the initial conditions of the
fieldΦ and its derivativeΦ0. As shown in the Appendix, we
consider the initial condition for the field currently to be

Φ0 ¼ Φðz ¼ 0Þ ¼ 0: ð19Þ

From the value of Φ0, we can determine Φ0 through the
Eq. (A19), since E2ðz ¼ 0Þ ¼ 1, we then have

Φ0
0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
λ

3
ΩΦ0

r
: ð20Þ

Now we have all the tools to perform the numerical
analysis for the model using the HðzÞ and SNe Ia observa-
tional data.

III. COSMOLOGICAL DATA

As remarked in the introduction, the observational dataset
used in this work consists of two independent classes of
astronomical observations, namely: (i) the compilation of
SNe Ia from the Pantheon sample [39], and (ii) the latest
measurements of the Hubble parameter, HðzÞ [40].
The Pantheon sample has 1048 data from SNe Ia, within

the redshift range 0.01 < z < 2.3, containing measure-
ments of SDSS, Pan-STARRS1 (PS1), SNLS, and various
HST and low-z datasets.
The idea behind SNe Ia is that they work as standard

candles, in the sense that they have nearly the same
luminosity when the supernova event occurs. This is due
to the fact that the explosion occurs when the dwarf star in
the binary system reaches always the samemass, namely, the
Chandrasekhar mass limit. However, due to differences in
environment, color etc., they are not exactly standard candles
but they are really standardizable. The process of standard-
izing SNe Ia involves calibrations that are independent of
cosmological models, based just on astrophysical assump-
tions, as the reddening due to dust, for instance [39,47].
The Hubble HðzÞ parameter data used in our analysis

covers a redshift range of 0.07 < z < 1.965. We have used
the most complete sample of HðzÞ measurements, with 31
data, obtained by estimating the differential age of galaxies
[48–53], usually dubbed cosmic chronometers. It is inter-
esting to use this observational dataset here because they
are obtained through astrophysical assumptions only, as the
luminosity of the main-sequence turnoff [54], being inde-
pendent of the choice of the background cosmological
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model. The idea basically is to obtain ages of extragalactic
globular clusters, then use these ages to obtain an envelope
in the age-redshift relation. This can be used to estimate dz

dt

and finally to estimate HðzÞ ¼ − 1
1þz

dz
dt, without the neces-

sity of a specific evolution model.
Our analysis consists of two steps: First of all, we make a

parameter estimation of the scalar field model. Second, we
compare this analysis with a model independent recon-
struction, which is the GP method. In the first step, we
choose to work only with SNe Ia andHðzÞ because they are
independent of cosmological model assumptions and so
we can make a comparison with the model-independent
GP method.
In Fig. 1, we plot the observational data used in this

work. The 31CCdata are shown in the left panel, jointlywith
the HðzÞ function of the analyzed model at a confidence
interval of 2σ. The right panel, on the other hand, shows
the dimensionless comoving distances obtained with the
Pantheon sample jointly with the DCðzÞ 2σ confidence
intervals of the model. The best fit model and the confidence
intervals shown correspond to the mean values of the
parameters and errors of Table II.

IV. ANALYSES AND RESULTS

We have used Bayesian statistics in order to find the
values of the free parameters of the model. Using a flat prior
π over the parameters with a likelihood of the form
L ∝ e−χ

2=2, we can write the posterior probability distri-
bution p ∝ πL. The prior used on the parameters is shown
in the Table I, we have used the following flat priors:
H0 ∈ ½50; 100�, Ωϕ0 ∈ ½0; 1�, α∈ ½0; 10�, λ∈ ½0; 5�.
It is worth to mention that we have chosen to work in the

interval α > 0 due to divergences in the potential in the
region α < 0. In addition, the interval λ > 0 has also been

selected in order to have a real-valued dϕ
da as can be seen in

Eqs. (A6) and (A7).
By sampling the probability functions of the combination

of the data ofHðzÞ and SNe Ia, using a simple and powerful
MCMC method called affine invariant MCMC ensemble
sampler [55], which was implemented in the PYTHON

language with the EMCEE [56] software. The convergence
of the chains is obtained using the autocorrelation time (τ)
provided by the EMCEE software. As explained in the EMCEE

documentation [57], a good estimate of τ is obtained when
nsamples ≫ τ (wherensamples is the number ofMCMCsamples
from each walker and we have used 100 walkers). We found
nsamples > 50τ for all free model parameters. As suggested in
the EMCEE documentation, we have discarded as burn-in∼2τ
samples and have thinned the chains at each ∼τ=2 samples.
Constraints are plotted on the same figure, Fig. 2. We use

the freely available software GetDist [58], in its PYTHON

version. We were able to determine the region with the
highest probability of finding the values of the free
parameters of the model, as shown in the Fig. 2, with
contours corresponding to 1σ and 2σ (68% and 95% c.l.).
We show in the Table II the values of the free parameters

of the model in a confidence interval of 95%. We get
ΩΦ0 ¼ 0.735þ0.083

−0.069 . The constraints obtained for the pair
of parameters (α, λ), defining the scalar field potential are
α < 6.56 and λ < 0.879, while the Hubble constant for the

FIG. 1. Left: plot of the 31 CC data along with the HðzÞ curve from the best fit model and 1 and 2σ confidence intervals. HðzÞ is in
units of km/s/Mpc. Right: plot ofDCðzÞ taken from the Pantheon sample together with theDCðzÞ curve from the best fit model and 1 and
2σ confidence intervals. The best fit model and the confidence intervals shown correspond to the mean values of the parameters and
errors of Table II.

TABLE I. Chosen priors for the free parameters.

Parameter Flat prior interval

H0 (km=s=Mpc) [20, 120]
Ωϕ0 [0, 1]
α [0, 10]
λ [0, 5]
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model is 68.6� 3.7 km=s=Mpc. ThisH0 value is similar to
what is obtained in the same analysis, in the context of flat
ΛCDM model [59], H0 ¼ 69.1� 1.8 km=s=Mpc (1σ c.l.)
With the sample of parameters generated by emcee, we

have plotted the deceleration parameter qðzÞ in a confi-
dence interval of 2σ as shown in the left panel of Fig. 3,
where we expanded qðzÞ to z ≈ −0.5. Thus, we can see that

the model allows qðzÞ > 0 within 1σ confidence for
z≲ −0.4, approximately. With the same data sample in
the right panel of Fig. 3, we plot the dimensionless potential
UðzÞ, which is also displayed at a confidence interval of 2σ.
Here, we should mention that the confidence intervals that
are shown in Fig. 3 were obtained as if qðzÞ and UðzÞ were
derived parameters, with the following method: for a fixed
redshift, let us say, z ¼ 0, one obtains the chain for qðzÞ [or
UðzÞ] from the chains of the free (primitive) parameters,
indicated in Table II. In this way, any correlations between
the parameters, as well as any asymmetries coming from
their distributions will be taken into account in the
determination of qðzÞ and UðzÞ.
From the nonparametric method GP [60], using the SNe

Ia and HðzÞ data, the reconstruction of the dimensionless

FIG. 2. Triangular plot of parameters, with data from HðzÞ and SNe Ia combined. The contours correspond to 68% and 95% c.l.

TABLE II. Mean values of the free parameters.

Parameter 95% limits

H0 (km=s=Mpc) 68.6� 3.7
Ωϕ0 0.735þ0.083

−0.069
α <6.56
λ <0.879
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potentialUðΦÞwas done in [61], for a generic quintessence
model. In [45], the deceleration parameter qðzÞ was
reconstructed. Based on such analyses, we will expand
the reconstruction of qðzÞ and UðzÞ to the future time, that
is, in the redshift range of −1 < z < 0, in order to find a
nonparametric result to compare with the analyzed model.
The reconstructions were obtained using a correlation
function (kernel) [45] exponential square, kðxi; xjÞ,
between points xi and xj of the data sample. The expo-
nential square kernel is given by:

kðxi; xjÞ ¼ σ2f exp

�
−
ðxi − xjÞ2

2θ2

�
; ð21Þ

where θ and σf are the GP hyperparameters obtained from
the data. The qðzÞ reconstruction can be obtained from the
observables HðzÞ and DCðzÞ as:

qðzÞ ¼ ð1þ zÞH
0

H
− 1 ¼ −ð1þ zÞD

00
C

D0
C
− 1: ð22Þ

As explained in Ref. [61], UðzÞ can be obtained,
assuming spatial flatness, from the observables as:

UðzÞ ¼ E2 −
Eð1þ zÞ

3

dE
dz

−
Ωm0ð1þ zÞ3

2
: ð23Þ

UðzÞ ¼ 1

D02
C
þ
�
1þ z
3

�
D00

C

D03
C
−
Ωm0ð1þ zÞ3

2
: ð24Þ

As one can see from these equations, UðzÞ depends on
the parameter Ωm0, which cannot be obtained from the GP
method alone. As our idea with the GP method is to obtain
reconstructions which are the most model independent as
possible, we choose to work with a large prior over Ωm0,
namely, Ωm0 ¼ 0.30� 0.05, which was also used in [61].
We have implemented this Gaussian process method, in

order to obtain model independent reconstructions of qðzÞ
and UðzÞ from the data alone, by using the freely available
package GaPP [42,62]. The hyperparameters θ and σf were
obtained by optimization of the GP marginal likelihood.

FIG. 3. Left: plot of qðzÞ using the chains of the free parameters generated by emcee. Both reconstructions correspond to the joint
analysis of PantheonþHðzÞ data. Right: plot of UðzÞ using the chains of the free parameters generated by emcee.

FIG. 4. Plot of the qðzÞ of the analyzed model together with qðzÞ reconstructed by GP. Also shown are the 1σ and 2σ confidence
intervals, in red for the model and in green for the GP reconstructions. Left: GP reconstruction fromHðzÞ data. Right: GP reconstruction
from Pantheon.
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The values obtained for the hyperparameters ðσf; θÞ were,
respectively, (133.75,1.93) in the case ofHðzÞ reconstruction
and ð9.11 × 104; 2.51Þ in the case of DCðzÞ reconstruction
from SNe Ia data.
In Fig. 4, we plot the reconstruction of qðzÞ via GP and

the numerical result of qðzÞ as predicted by the investigated
model. On the left we show the reconstruction of qðzÞ
via GP obtained from the HðzÞ data. We see that the
reconstruction of qðzÞ reaches positive values for z < 0
being less than 1σ compatible with the qðzÞ of the analyzed
model. On the right we present the reconstruction of qðzÞ
via GP using the SNe Ia data and we also show the qðzÞ for
the studied model. Although the qðzÞ found to match 1σ
over most of the redshift range we do not get values of
qðzÞ > 0 for the reconstruction from the SNe Ia data.
The reconstruction of the dimensionless potential UðzÞ

obtained by the GP has a downward trend as shown in the
Fig. 5. In the same figure we also show the potential UðzÞ
of the model that has a more constant form. The left figure
presents the reconstruction of UðzÞ for the HðzÞ data, and
we also show the UðzÞ of the analyzed model. We see the
compatibility of the results within 1σ or less over the
entire redshift range. On the right, we show UðzÞ
reconstructed from the SNe Ia data in contrast to the
curve for UðzÞ of the studied model. We see that both are
compatible in 1σ or less in almost the entire analyzed
redshift range.

V. CONCLUSIONS AND FINAL COMMENTS

As remarked in the introduction, the possible slowing
down of the future cosmic expansion was discussed long
ago through a cosmographic approach [41]. Here, we have
tested the scalar field plus CDMmodel as proposed in [35],
which allows for a deceleration of the expansion in the
future. In our statistical analysis we have adopted the
Pantheon SNe Ia sample and the latest HðzÞ data.

In the context of this model, we have found a large
possibility for deceleration in the distant future, as can be
seen on Fig. 4. We have also tried to find evidence for
future deceleration in the context of a model independent
method, namely, the Gaussian Processes. In this case, by
using the HðzÞ data, we have also obtained a large
possibility for deceleration in the vicinity of the future
redshift z ≈ −0.5. However, by using SNe Ia data, no
evidence for future deceleration was found in this model-
independent method based on Gaussian processes.
It should be stressed that a decelerating regime in the

future is impossible not only in the context of the cosmic
concordance cosmology (ΛCDM) but also in the Ratra-
Peebles model. However, such a prediction comes out
analytically when the α-parameter is added to the original
Ratra-Peebles approach. It should also be remarked that de
Sitter solution is a future stable attactor of the ΛCDM
cosmology regardless of the spatial curvature. In this
concern, based on qualitative phase space techniques, it
seems interesting to investigate whether a similar deceler-
ating attractor exists and how it depends on the values of the
α parameter.
In principle, given the present observed tensions in the

ΛCDM model, it is urgent to verify whether such tensions
can be solved or at least alleviated in this enlarged quintes-
sence framework. It has been shown in Sec. IV that no
considerable difference to ΛCDMwas obtained forH0 with
the present data, but future data, as well as a CMB analysis
may shed light on theH0 tension in the context of the present
model. In addition, since the model at intermediate redshifts
evolves in a slightly different way of ΛCDM model, and,
finally, departs considerably of it, it seemsvery compelling to
investigate all tests related to the theory of small density
fluctuations. Further analysis, including different datasets,
other nonparametric methods or even the possible influence
of the spatial curvature in this framework,will be postpone to
a forthcoming communication.

FIG. 5. Plot of the UðzÞ of the analyzed model together with UðzÞ reconstructed by the GP. Also shown are the 1σ and 2σ confidence
intervals, in red for the model and in green for the GP reconstructions. Left: GP reconstruction fromHðzÞ data. Right: GP reconstruction
from Pantheon.
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APPENDIX: QUINTESSENCE COSMOLOGY
WITH FUTURE DECELERATION

The authors of reference [35] proposed a class of
quintessential cosmological models that allows for a
possible deceleration of the universe in the future. Here
we will discuss with more detail the expressions presented
in that article. It is important to mention that this class of
models has the Ratra-Peebles model as a particular case, for
α ¼ 0, and it allows for future deceleration only when
α > 0. For a flat geometry, the Friedmann equation plus the
energy conservation expressions for a model driven by a
scalar field plus cold dark matter (separately conserved)
take the form:

H2 ¼ 8πG
3

ðρm þ ρϕÞ; ðA1Þ

ρ̇m þ 3Hρm ¼ 0; ðA2Þ

ρ̇ϕ þ 3Hðρϕ þ pϕÞ ¼ 0 ðA3Þ

where the energy density and pressure of the scalar field are
defined by Eqs. (1) and (2) while its equation of motion is
given by (5).
By using Eqs. (1) and (2), we see that (A3) becomes:

ρ̇ϕ þ 3Hϕ̇2 ¼ 0: ðA4Þ

Now, changing the time derivative for the scale factor a
through the identity:

d
dt

¼ da
dt

d
da

¼ aH
d
da

; ðA5Þ

For a universe filled only with field ϕ, we obtain for (A4):

dϕ
da

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

a8πG
1

ρϕ

dρϕ
da

s
: ðA6Þ

Now, let us consider the ansatz proposed in [35]:

1

ρϕ

dρϕ
da

¼ −
λ

a1−2α
; ðA7Þ

which corresponds to the Ratra-Peebles assumption for
α ¼ 0 [30]. In general one finds,

dϕ ¼ ffiffiffi
σ

p
a−ð1−αÞda; ðA8Þ

where we have defined

σ ≡ λ

8πG
: ðA9Þ

Note also that a simple integration of (A6) yields:

ϕ − ϕ0 ¼
ffiffiffi
σ

p �
aα − 1

α

�
; ðA10Þ

so that we can use the relation (6) to find the dimensionless
field Φ:

Φ −Φ0 ¼
ffiffiffiffiffiffiffiffiffi
8πG
3

r ffiffiffiffiffiffiffiffiffi
λ

8πG

r �
aα − 1

α

�
¼

ffiffiffi
λ

3

r �
aα − 1

α

�
:

The expression above allows us to write aðΦÞ, as

aαðΦÞ ¼ α

ffiffiffi
3

λ

r
ðΦ −Φ0Þ þ 1: ðA11Þ

As we shall see, it is more advantageous to leave aαðΦÞ
defined instead of aðΦÞ.
Now let us determine a specific form of the potential

VðΦÞ, which is obtained from (1):

VðΦÞ ¼ ρϕ

�
1 −

a2

2

�
dΦ
da

�
2
�
: ðA12Þ

Since

dΦ
da

¼ d
da

� ffiffiffi
λ

3

r �
aα − 1

α

��
¼

ffiffiffi
λ

3

r �
αaα−1

α

�
¼

ffiffiffi
λ

3

r
aα−1;

ðA13Þ

we return to (A12) and obtain:

VðΦÞ ¼ ρϕ

�
1 −

λ

6
a2α

�
: ðA14Þ

We can determine ρϕ according to the ansatz (A7), where

ρϕ ¼ ρΦ0e−
λ
2αða2α−1Þ: ðA15Þ

For completeness, we use the expression (A11) to obtain:

a2α ¼
�
α

ffiffiffi
3

λ

r
ðΦ −Φ0Þ þ 1

�2

;

a2α ¼ 3α2

λ
ðΦ −Φ0Þ2 þ 2α

ffiffiffi
3

λ

r
ðΦ −Φ0Þ þ 1;
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And finally:

ρΦ ¼ ρΦ0e−
1
2
½3αðΦ−Φ0Þ2þ2

ffiffiffiffi
3λ

p ðΦ−Φ0Þ�: ðA16Þ

Before writing the final expression for VðΦÞ, let us
consider an initial condition for the field Φ, given by
Φ0 ¼ 0, which is the same initial condition assumed in
Ref. [35]. Then we get for (A14):

VðΦÞ ¼ ρΦ0e−
1
2
½3αΦ2þ2

ffiffiffiffi
3λ

p
Φ�
�
1 −

λ

6

�
α

ffiffiffi
3

λ

r
Φþ 1

�2�
;

ðA17Þ

and using the definition (7), we find an expression for
UðΦÞ given by:

UðΦÞ ¼ ΩΦ0e−
1
2
½3αΦ2þ2

ffiffiffiffi
3λ

p
Φ�
�
1 −

λ

6

�
α

ffiffiffi
3

λ

r
Φþ 1

�2�
;

ðA18Þ

where we have used H2
0 ¼ 8πG

3
ρc0 and ρΦ0 ¼ ρc0ΩΦ0.

Now that we have an expression for the dimensionless
potentialUðΦÞ, we can rewrite the equation for E2 given by

E2¼
Ωm0e−3N þΩΦ0e−

1
2
½3αΦ2þ2

ffiffiffiffi
3λ

p
Φ�
h
1− λ

6

�
α

ffiffi
3
λ

q
Φþ1

�
2
i

1−Φ02
2

:

ðA19Þ

For the equation of motion of the field Φ, we have:

Φ00 þ 1

2E2

	�
3Ωm0e−3N þ 6ΩΦ0e−

1
2
½3αΦ2þ2

ffiffiffiffi
3λ

p
Φ�
�
1 −

λ

6

�
α

ffiffiffi
3

λ

r
Φþ 1

�2��
Φ0 þ 2

dU
dΦ



¼ 0: ðA20Þ

where

dU
dΦ

¼ 1

6
ΩΦ0e−

1
2
½3αΦ2þ2

ffiffiffiffi
3λ

p
Φ�
n
3αΦ½αð3αΦ2 þ 3

ffiffiffiffiffi
3λ

p
Φ − 2Þ þ 3λ − 6� þ

ffiffiffiffiffi
3λ

p
ðλ − 6 − 2αÞ

o
:

It is important to mention that in Eqs. (A19) and (A20), the primes correspond to derivatives with respect to N ≡ lnðaÞ,
the number of e-folds.
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