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We present a numerical analysis of the cosmological evolution of scalar field dark matter (SFDM) in the
Boltzmann code CLASS, based on a dynamical system analysis of previous works. We show a detailed study
of the evolution of the different dynamical variables and in particular of the energy density and its
corresponding linear perturbations. The numerical results are in good agreement with those of the original
SFDM equations of motion and have better accuracy than other approaches. In addition, we calculate the
temperature and matter power spectra and discuss the reliability of their numerical results. We also give
simple examples in which we can put constraints on the field mass using recent likelihoods incorporated in
the Monte Carlo Markov chain sampler MontePython.
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I. INTRODUCTION

In the modern era of cosmology [1,2], it is mandatory to
develop theoretical models capable of describing the
Universe at large scales, with the precision that current
data demand [2]. One key theoretical ingredient, particu-
larly important for the formation of cosmic structure, is
dark matter (DM), which must capture the physics of such
a process in a mathematically consistent way [3]. For the
cosmological setting, this always starts with properly
solving the Einstein-Boltzmann system describing the
cosmological evolution for the initial perturbations of both
the matter components and the metric tensor at the linear
level [4].
Different Boltzmann solvers have been programmed for

the linearized form of Einstein equations in a Friedmann-
Robertson-Walker-Lemaître (FRWL) universe, such as
CMBFAST [5], CMBEASY [6], CAMB [7], and CLASS [8].
Only the latter two, CAMB and CLASS, have been kept up to
date, and both are used by the cosmology community. The
aforementioned codes consider the cold dark matter (CDM)
model as the main matter component, and they are very well
suited to explore most of its properties, although they have
been amended to study alternative dark matter models in
recent years.
One of these alternative models to CDM, which is

currently one of the compelling proposals that has been
explored for the last two decades, is that based on a scalar

field. It is found in the literature under several names:
scalar field dark matter (SFDM), ultralight axions, fuzzy
dark matter, axionlike particle, Bose-Einstein condensate,
and wave dark matter (some initial works on this model
are [9–18], whereas more recent work can be found
at [19–28]). All of these names reflect the particular
properties of this DM particle. Its mathematical descrip-
tion is given by a scalar field ϕ (which can be real or
complex), with a fiducial ultralight mass of mϕc2 ∼
10−22 eV that can be produced by the Peccei-Quinn
mechanism for pseudo-Goldstone bosons (as is the case
for QCD axions) and whose quantum nature manifests
itself at cosmological scales through its imprint on the
structure formation at small scales. Therefore, we shall
refer to this model as SFDM hereafter.
To solve for the cosmological dynamics of linear pertur-

bations of the SFDM, there exists AxionCAMB [20],1 an
amended version of CAMB for a scalar field endowed with a
quadratic potential VðϕÞ ∝ ϕ2, although a new version was
recently presented for cases similar to axions [29]. On the
other hand, one of the authors of this present work modified
CLASS with the aim of including the SFDM model with the
same quadratic potential: CLASS.FreeSF [19].2 Both afore-
mentioned codes deal with the background dynamics and
linear perturbations of the SFDM, and it is possible to obtain
the anisotropies of the cosmic microwave background
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radiation (CMB) as well as the matter power spectrum
(MPS) for several mass values of the SFDM particle.
We have made other amendments to CLASS to study

potentials with self-interaction in the scalar field potential.
For example, the full axionlike potential VðϕÞ ∝ 1 − cosϕ
was fully implemented for the first time in CLASS in the
work [30], where it was shown that this model presents an
excess of power on small scales in the MPS with respect to
CDM,3 with a greater discussion of the cosmological
signatures of this SFDM model in [32].4 The other
SFDM potential we have considered in CLASS is that of
a hyperbolic function VðϕÞ ∝ coshϕ − 1 [15,16,37,38],
where the self-interacting term has the opposite sign to that
of axions.
As we will show later, the mathematical treatment of the

SFDM cosmological evolution used in the modified ver-
sions of CLASS makes use of new dynamical variables and
the tools of dynamical systems. The output from the codes
(initial conditions in the radiation-dominated era, physical
effects on observables such as CMB, MPS, the halo mass
function, and others) turns out to be crucial for the
subsequent realization of realistic numerical simulations
of structure formation in the nonlinear regime; see, for
example, Refs. [39–43]. We have even shown that this is
useful for a unified description of different scalar potentials
in a one-parametric way [44].
Our main goal in the present work is to give more details

of the mathematical approach we have used in previously
amended versions of CLASS and in turn to show its
robustness in describing the physical processes of SFDM
up to the level of linear density perturbations. This is done
here for SFDM endowed with a quadratic potential,

VðϕÞ ¼ 1

2
m2

ϕϕ
2; ð1Þ

wheremϕ is the mass of the scalar field particle and the only
free parameter in the model. Note that we are using natural
units with ℏ ¼ c ¼ 1, and then mϕ is given in units of eV.
Whenever appropriate, we will compare our method to the
common fluid approximation to the SFDM dynamics used
in other works, following the description in Refs. [20,45,46].
This paper is organized as follows. In Sec. II, we develop

the mathematical formulation for the evolution of the
background and linear density perturbations, in terms of
new dynamical variables that are appropriate to handle the
particularities of SFDM. We also establish the appropriate

initial conditions for the scalar field to behave as the DM
component at late times, for both background and linear
quantities.
Section III is dedicated to the description of the typical

regime of rapid oscillations of the SFDM at late times in its
evolution and to the way in which we deal with them for
their reliable numerical computation. In particular, we show
a detailed study of the evolution of the (barotropic)
equation of state, the energy density, and finally the linear
density perturbations. As an application of our method in
the Boltzmann code CLASS, we present the temperature and
matter power spectra and discuss the reliability of our
numerical results. Moreover, we also give simple examples
in which we can put constraints on the field mass mϕ using
recent likelihoods incorporated in the Monte Carlo Markov
chain (MCMC) sampler MontePython [47,48], taking advan-
tage of its close interoperability with CLASS.
The comparison and equivalence between our approach

and the original formulation in terms of the scalar field
itself are presented in Sec. IV. We explicitly show the
transformation between our variables and the original field
ones ðϕ; ϕ̇Þ and that the numerical results of our method are
completely equivalent to the standard field approach.
Finally, in Sec. V, we summarize and discuss our results,
highlighting the advantages of our method.

II. MATHEMATICAL BACKGROUND

In this section, we present the equations of motion for the
SFDM model in the context of an expanding universe and
the subsequent transformations we use to make them more
suitable for numerical computations. The original motiva-
tions and some extra details of the method described here
can be found in Refs. [19,30,49].

A. Background evolution

Let us consider a spatially flat FRWL line element,

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð2Þ

where aðtÞ is the scale factor. The background equations for
ordinary matter, which is represented by perfect fluids with
density ρj and pressure pj, as well as for SFDM field ϕ
endowed with the potential (1), are given by

H2 ¼ κ2

3

 X
j

ρj þ ρϕ

!
; ð3aÞ

Ḣ ¼ −
κ2

2

"X
j

ðρj þ pjÞ þ ðρϕ þ pϕÞ
#
; ð3bÞ

ρ̇j ¼ −3Hðρj þ pjÞ; ð3cÞ

ϕ̈ ¼ −3Hϕ̇ −m2
ϕϕ; ð3dÞ

3Recently, these kinds of features in the MPS have also been
reported for a scalar field with a nonperiodic potential [31].

4Separately, the authors in Refs. [33–36] developed AxiCLASS
(the corresponding repository can be found at https://github.com/
PoulinV/AxiCLASS). The potential of the scalar field in this code
is of the form VðϕÞ ∝ ð1 − cosϕÞn. The interest in such a
generalization arose mostly for the so-called early dark energy
models.
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where κ2 ¼ 8πG. The dot denotes the derivative with
respect to cosmic time t, and H ¼ ȧ=a is the Hubble
parameter. In the equations above, the scalar field density
ρϕ and pressure pϕ are defined, respectively, as

ρϕ ¼ 1

2
ϕ̇2 þ 1

2
m2

ϕϕ
2; pϕ ¼ 1

2
ϕ̇2 −

1

2
m2

ϕϕ
2: ð4Þ

For the SFDM part, it is convenient to use the following
change of variables [19,30,32,49–51]:

κϕ̇ffiffiffi
6

p
H

¼ eβ sinðθ=2Þ; −
κmϕϕffiffiffi
6

p
H

¼ eβ cosðθ=2Þ; ð5aÞ

y1 ≡ 2mϕ

H
: ð5bÞ

To understand the meaning of the new variables, we write
here the SFDM density parameter Ωϕ and equation of state
(EOS) wϕ,

Ωϕ ¼ 8πGρϕ
3H2

¼ e2β; ð6aÞ

wϕ ¼ ϕ̇2 −m2
ϕϕ

2

ϕ̇2 þm2
ϕϕ

2
¼ − cos θ: ð6bÞ

Thus, β is the logarithm of the energy density parameter,
and θ, which is an internal polar angle, is directly related to
wϕ. Lastly, y1 is simply the ratio of the field mass to the
Hubble parameter (i.e., dimensionless by definition), which
is a ubiquitous quantity in all methods for solutions of the
SFDM equations of motion.
Using the new variables, the Klein-Gordon equation (3d)

transforms into the following set of first-order differential
equations [19]:

θ0 ¼ −3 sin θ þ y1; ð7aÞ

y01 ¼
3

2
ð1þ wtotÞy1; ð7bÞ

β0 ¼ 3

2
ðwtot þ cos θÞ: ð7cÞ

Here, a prime denotes derivatives with respect to the number
of e-folds of expansion N ¼ lna.5 The total EOS wtot,
which is used in the foregoing equations, can be calculated
from the ratio of the total pressure ptot to the total density

ρtot in the Universe, and its explicit expression is given in
terms of the EOS of the different components of matter as

wtot ¼
ptot

ρtot
¼
P

jwjρj þ wϕρϕP
jρj þ ρϕ

: ð8Þ

Although the new dynamical variables are convenient for
numerical purposes, we need to recover the standard
quantities used in Boltzmann and cosmological codes in
general, for instance, the density and pressure of the SFDM
component. It can be shown that such quantities can be
recovered in the form

ρϕ ¼ e2β

1 − e2β
X
j

ρj; pϕ ¼ − cos θρϕ; ð9Þ

where the sum takes into account only the density compo-
nents other than the SFDM one.

B. Linear density perturbations

When considering linear perturbations, the line element
in the synchronous gauge and the perturbed scalar field are
given by

ds2 ¼ −dt2 þ a2ðtÞðδij þ h̄ijÞdxidxj; ð10Þ

ϕðx⃗; tÞ ¼ ϕðtÞ þ φðx⃗; tÞ; ð11Þ

where h̄ij and φ are the spatial part of the metric perturba-
tion and scalar field fluctuation, respectively. The linearized
Klein-Gordon equation for the scalar field perturbation is
written (in Fourier space) as [52–55]

φ̈ðk⃗; tÞ ¼ −3Hφ̇ðk⃗; tÞ −
�
m2

ϕ þ
k2

a2

�
φðk⃗; tÞ − 1

2
ϕ̇ ˙̄h : ð12Þ

In a way similar to the procedure we have used for the
Klein-Gordon equation (3b), we propose the following
change of variables for the scalar field perturbation φ and
its derivative φ̇ [19,30]:

ffiffiffi
2

3

r
κφ̇

H
¼−eαþβ cosðϑ=2Þ; κy1φffiffiffi

6
p ¼−eαþβ sinðϑ=2Þ: ð13Þ

Field perturbations are then represented by the new
variables α and ϑ. However, it is more convenient to further
define two new variables in the form of

δ0 ¼ −eα sin
�
θ − ϑ

2

�
; δ1 ¼ −eα cos

�
θ − ϑ

2

�
: ð14Þ

5It is important to be aware that, since version 2.10.2 of CLASS,
differential equations are integrated in ln a rather than conformal
time. This makes the integration of our formalism into CLASS

simpler and more natural, as ln a is the preferred choice when
studying dynamical systems such as Eq. (7) [19,50].
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After some straightforward algebra, the linearized Klein-
Gordon equation (12) is represented by the following set of
first-order differential equations:

δ00 ¼
�
−3 sin θ −

k2

k2J
ð1 − cos θÞ

�
δ1 þ

k2

k2J
sin θδ0

−
h̄0

2
ð1 − cos θÞ; ð15aÞ

δ01 ¼
�
−3 cos θ −

k2

k2J
sin θ

�
δ1 þ

k2

k2J
ð1þ cos θÞδ0

−
h̄0

2
sin θ: ð15bÞ

In writing Eq. (15), there appears a natural definition of a
Jeans wave number given by k2J ¼ a2H2y1, which also acts
as a normalization factor of the wave number k.
Notice that for scales larger than the Jeans one,

k2=k2J ≪ 1, the scale-dependent terms in Eq. (15) can be
neglected, whereas in the opposite case, k2=k2J ≫ 1, the
evolution of the perturbations are different for each scale.
Our definition of the Jeans wave number coincides with
those given in the literature if we write it as k2J ¼ 2a2mϕH
using y1 ¼ 2mϕ=H [see Eq. (5b)].
To understand the physical meaning of the new dynami-

cal variables δ0, δ1, we first write their expressions in terms
of the original field variables,

δ0 ¼
m2

ϕ

κ2ρϕ

�
κφ̇

mϕ

κϕ̇

mϕ
þ ðκφÞðκϕÞ

�
; ð16aÞ

δ1 ¼
m2

ϕ

κ2ρϕ

�
κϕ̇

mϕ
ðκφÞ − κφ̇

mϕ
ðκϕÞ

�
: ð16bÞ

Now, we recall the expressions for the scalar field density
contrast δϕ and the velocity divergence Θϕ in the form

δϕ ¼ ϕ̇ φ̇þmϕϕφ

ρϕ
¼ δ0; ð17aÞ

ðρϕ þ pϕÞΘϕ ¼ k2

a
ϕ̇φ ¼ k2ρϕ

aHy1
½ð1 − cos θÞδ1 − sin θδ0�:

ð17bÞ

Hence, the variable δ0 is the scalar field density contrast,
whereas the velocity divergence is based on a combination
of the two variables δ0 and δ1. See Appendix A for an
extended discussion of the equivalence between our
approach and the fluid approximation.

C. Initial conditions

Calculation of initial conditions implies an approximate
solution of the equations of motion starting well within the
epoch of radiation domination, with a corresponding initial
value of the scale factor of the order of ai ¼ 10−14 [19].
We start with the initial condition of the auxiliary

variable, which reads

y1i ¼
2mϕ

H0

H0

Hi
¼ 1.85 × 1011

a2iffiffiffiffiffiffiffiffiffiffiffiffi
Ωr0h2

p �
mϕ

10−22 eV

�
; ð18Þ

where H0 (Hi) is the present (initial) value of the Hubble
parameter and h is its reduced value. Note that for the
calculation of Hi we assume radiation domination at early
times. It is clear from Eq. (18) that the auxiliary variable is
very small at early times, y1i ∼ 10−14, for the values of mϕ

that are of interest for SFDM models. On the contrary, its
value at present is very large y1 ∼ 1010, which means that it
changes by almost 24 orders of magnitude during its
evolution.
As for the polar angle, there is an attractor solution when

the equations of motion are solved in the linear regime at
early times, from which we obtain the following equation:

θi ¼
1

5
y1i: ð19Þ

The initial condition of the variable β is found by
matching the early- and late-time solutions at the beginning
of the rapid oscillations of the field. The resultant equation is

e2βi ¼ A × ai
Ωϕ0

Ωr0

�
4θ2i
π2

�
1þ π2=36
1þ θ2i =9

��
3=4

: ð20Þ

Here, A is a constant coefficient that is adjusted by the
numerical code, typically with a shooting mechanism, to
match the value of the desired density parameter Ωϕ0 at the
present time.
On the other hand, the initial conditions of the density

perturbations is a more involved procedure, but it reveals
the existence of an attractor solution for the dynamical
variables in the form

δ0i ¼
2

7
h̄ sinðθi=2Þ sinðθi=12Þ; ð21aÞ

δ1i ¼
2

7
h̄ sinðθi=2Þ cosðθi=12Þ: ð21bÞ

The details of the numerical implementation of the polar
method of the sections above in the amended version of the
Boltzmann code CLASS are presented in Appendix C, from
which we obtained the numerical solutions that are pre-
sented in the sections below.
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III. STAGE OF RAPID FIELD OSCILLATIONS

For the field to behave as a CDM component, it should
enter a phase of rapid oscillations around the minimum of
the potential. Under our polar transformation (4), such fast
oscillations are equivalent to the following averages during
a Hubble time: hsin θi ¼ 0 and hcos θi ¼ 0.
However, we must be careful how the oscillations are

dealt with, as the solutions at late times depend on the
choices made for the averaged dynamical quantities. Here,
we explain in detail our method for the cutoff of the rapid
oscillations proposed in Refs. [19,30,32].

A. Outline of the general method

It is well known that the stage of rapid oscillations is
difficult to solve numerically, and then we follow here the
prescription in Ref. [19] in that the cosine and sine
functions in the equations of motion are replaced by the
cutoff trigonometric functions,

cos⋆ θ ¼ 1

2
½1 − tanhðθ − θ⋆Þ� cos θ; ð22aÞ

sin⋆ θ ¼ 1

2
½1 − tanhðθ − θ⋆Þ� sin θ; ð22bÞ

where θ⋆ is a reference value. In this form, cos⋆ θ ¼ cos θ
(sin⋆ θ ¼ sin θ) if 0 ≤ θ < θ⋆, while cos⋆ θ → 0
(sin⋆ θ → 0) if θ ≫ θ⋆.
In the following, we will refer to t⋆ as the time at which

we apply the cutoff for the trigonometric functions and then
to θðt⋆Þ ¼ θ⋆. We will also refer to tosc as the time for the
beginning of the rapid oscillations. However, and in contrast
to t⋆, the value of tosc cannot be precisely determined, and in
our formalism, it is just a reference value without a major
effect on the numerical solutions.
The general method can be described as follows. We

replace all the sine and cosine terms with the cutoff
functions (22) in the equations of motion (7) and then
solve them numerically. Note that the solutions are then
continuous at t ¼ t⋆ by construction, and we only need to
be sure that the cutoff is applied after the onset of the rapid
oscillations so that t⋆ > tosc.
However, it is difficult to determine the time at the start

of the oscillations, and this also makes impractical the
calculation of t⋆. The reason is that cosmic time is a
dimensional quantity calculated from the integration of the
Friedmann equation (3a), which depends on all dynamical
variables in a cosmological model.6 As we shall show in the
following, it is better to calibrate the cutoff time using the

polar variable θ, which is dimensionless and also a direct
dynamical variable in our set of field equations.

B. Case of the polar angle θ

To understand the general behavior of the solutions after
the cutoff of the trigonometric functions, we start with the
equation of motion (7a) of the polar angle θ, which for
convenience we write in terms of cosmic time t,

θ̇ ¼ −
3

2t
sin θ þ 2mϕ; ð23Þ

where we have considered H ¼ 1=ð2tÞ for Radiation
Domination (RD). Notice that we can write Eq. (23) in
the form

dθ
dð2mϕtÞ

¼ −
3

2

sin θ
ð2mϕtÞ

þ 1; ð24Þ

which shows that the evolution of θ as a function of the
dimensionless variable 2mϕt is the same, regardless of
the value of the field mass mϕ. We will use this feature in
the plots below, but we still refer to Eq. (23) to obtain
semianalytical expressions.
First, we assume at the beginning that 0 < θ ≪ 1, and

then sin θ ≃ θ. As a consequence, Eq. (23) becomes

θ̇ ¼ −
3

2t
θ þ 2mϕ; ð25aÞ

and the solution that satisfies the initial condition
θð0Þ ¼ 0 is

θðtÞ ¼ 4

5
mϕt ðearlyÞ: ð25bÞ

We now use Eq. (25b) on the right-hand side of Eq. (23),
from which we obtain the new differential equation,

θ̇ ¼ −
3

2t
sin⋆ð4mϕt=5Þ þ 2mϕ; ð26aÞ

whose solution is

θðtÞ ¼ 2mϕt −
3

2
Sið4mϕt=5Þ; ð26bÞ

where SiðxÞ is the sine integral. It can be shown that, at early
timesmϕt ≪ 1, we recover the solution (25b). Likewise, for
the late-time evolution, we can approximate the sine integral
by its asymptotic behavior, SiðxÞ ≃ π=2 − cosðxÞ=xþ
Oð1=x2Þ for x ≫ 1, to obtain

θðtÞ ¼ 2mϕt −
3π

4
ðlateÞ: ð26cÞ

6This is a problem similar to those in other approaches that
require to set the value of the ratio mϕ=H at the start of
the oscillations, where H is also a dimensional output value of
the cosmological equations.
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Any further iteration to integrate Eq. (23) cannot be
expressed in closed form, but as we present below,
Eq. (26b) suffices to analyze the main properties in the
time evolution of the polar angle θ.
The numerical solutions of Eq. (23) for different values

of the field mass mϕ, and as a function of the scale factor a,
are shown in the top panel of Fig. 1. It can be seen that the
polar variable shows two asymptotic behaviors that corre-
spond to the semianalytical solutions: at early times,
θ=ð2mϕtÞ → 5=4, while at late times, θ=ð2mϕtÞ → 1, as
indicated by Eqs. (25b) and (26c), respectively. These
asymptotic limits are the same for any field mass mϕ, and
the latter only influences the time at which the transition
occurs between the two values.
In the bottom panel of Fig. 1, we have the evolution of

the polar variable but now in terms of dimensionless cosmic
time 2mϕt. Although the numerical solutions are shown in
different colors, it is clear that the corresponding curves are
superimposed on each other because their behavior is
the same.
It can be seen that the semianalytical solutions agree

well with the numerical ones. In particular, the iterative

solution (26b) gives a reliable description of the early- and
late-time trends of the solutions, and it even gives a good
approximation to the oscillations of the numerical sol-
utions at intermediate times 2mϕt ≃ 4, which is also the
time at which θ ≃ π=2. That is, it also corresponds to the
time at which the scalar field EOS first crosses the zero
value wϕ ≃ 0. As this occurs within radiation domination,
we also find 2mϕt ¼ mϕ=H ≃ 4, which is the typical time
for the start of the oscillations estimated for these field
systems.
Surprisingly, the bottom panel of Fig. 1 also shows that

the late-time expression (26c) also seems to work very well
from the intermediate times onward, that is, almost from the
start of the rapid oscillations. This means that we can safely
write

θðt > toscÞ ¼ 2mϕt −
3π

4
: ð27aÞ

That Eq. (27a) is also a very good approximation can be
understood from the properties of the sine integral SiðxÞ,
which rapidly converges to its asymptotic value of π=2,
with small oscillations around it that rapidly decay away. In
what follows, we will use Eq. (27a) to describe the behavior
of the polar angle after the onset of rapid oscillations of the
field ϕ.
We can also use Eq. (27a) also to convert the cutoff time

t⋆ into a cutoff polar angle θ⋆, which is both a dynamical
variable and the argument in the modified trigonometric
functions (22). Hence, the relation between the cutoff
values t⋆ and θ⋆ is

2mϕt⋆ ¼ θ⋆ þ 3π

4
: ð27bÞ

Equation (27) are a central result in the description of our
method. First, Eq. (27a) shows that the polar angle evolves
linearly with cosmic time t after the cutoff time. Second,
Eq. (27b) allows us to determine the cutoff point of rapid
oscillations by means of the polar angle θ⋆, which is more
convenient from the numerical point of view and justifies
the use of the cutoff expressions (22).
To finish this section, in Fig. 2, we show the numerical

evolution of the scalar field EOS wϕ as a function again of
the dimensionless variable 2mϕt, and we see that it first
passes through zero (for θ ¼ π=2) at around the time
2mϕtosc ≃ 3.47, which we use to mark the time tosc for the
start of the rapid oscillations. Notice that in terms of
the usual mass-to-Hubble ratio this is equivalent to
mϕ=Hosc ≃ 3.47, a value used as a reference in other
studies of field models.
For comparison, we also plot in Fig. 2 the result of the

expression cosð2mϕt − 3π=4Þ. Notice that there is very
good agreement of this curve with the original EOS wϕ

almost from the start of the rapid oscillations, which means
that we can use the following expression for the field EOS:

FIG. 1. Numerical solutions of the polar variable θ as a function
of the dimensionless variable 2mϕt. The cases correspond to
different values of the field mass logðmϕ=eVÞ ¼ −24;−23;
−22;−21. Also shown are the semianalytical solutions (26b)
(iterative, purple), (25b) (early, dashed brown), and (26c) (late,
dashed pink). See the text for more details.
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wϕðt > toscÞ ¼ − cos ð2mϕt − 3π=4Þ: ð28Þ

Equation (28) agrees with the common wisdom that the
EOS oscillates with a frequency directly related to the field
mass via 2mϕ. The phase of 3π=4 becomes negligible at
very late times, but as we shall see, it must be taken into
account for a correct description of the dynamics at
intermediate times of other variables after the onset of
the rapid oscillations.

C. Case of the energy density ρϕ
We have found semianalytical results to follow the

evolution of the polar variable θðtÞ, which are in good
agreement with the numerical results. However, one should
worry about the numerical accuracy as the scalar field
equations of motion must be solved together with other
matter components in Boltzmann codes, covering an ample
time interval for a complete description of diverse cosmo-
logical phenomena.
Here, we perform some accuracy tests using the amended

version of the Boltzmann code CLASS, taking some guide-
lines from our semianalytical results. Our main concern is
the choice of the cutoff value θ⋆. As we shall see, the cutoff
procedure leaves a residual difference with respect to the
expected late-time evolution of a given variable that can be
minimized if θ⋆ ≫ 1.
An example of the effects of the cutoff on the evolution

of different quantities is the energy density ρϕ, which obeys
the equation

ρ̇ϕ ¼ −3Hð1þ wϕÞρϕ ¼ −3Hð1 − cos θÞρϕ; ð29Þ

whose formal solution after the onset of the rapid oscil-
lations can be written as

ρϕa3 ¼ ρϕ;osca3osc exp ½FðtÞ − FðtoscÞ�; ð30aÞ

with

FðtÞ − FðtoscÞ ¼ 3

Z
t

tosc

HðxÞ cosðθðxÞÞdx: ð30bÞ

It suffices to understand the behavior of the density
before the time of radiation-matter equality, and for that, we
proceed as follows. Equation (30b) can be written in a more
convenient form if we use Eq. (27a) for the evolution of the
polar angle, and then it can be shown that

FðtÞ ¼ 3
ffiffiffi
2

p

4
½Sið2mϕtÞ − Cið2mϕtÞ�; ð31aÞ

where SiðxÞ and CiðxÞ are the sine and cosine integrals,
respectively.
We are interested in the evolution of the density at

late times, that is, 2mϕt ≫ 1. Given the asymptotic
properties of the sine and cosine integrals for x ≫ 1,
SiðxÞ ≃ π=2 − cosðxÞ=x, and CiðxÞ ≃ sinðxÞ=x, and sub-
stituting the polar angle θ using Eq. (27a), we find that

Fðt ≫ toscÞ ≃
3
ffiffiffi
2

p
π

8
þ 3 sin θ
2ðθ þ 3π=4Þ : ð31bÞ

The last term in Eq. (31b) will be responsible for a
residual oscillatory term in the density, which will decay
away. In fact, if we define

ρϕ0 ≡ ρϕ;osca3osc exp

�
3
ffiffiffi
2

p
π

8
− FðtoscÞ

�
; ð32Þ

we can also write Eq. (30a) in a neater form as

ρϕðt ≫ toscÞ ¼ ðρϕ0=a3Þ exp
�

3 sin θ
2ðθ þ 3π=4Þ

�
; ð33Þ

which is correct for θ ≫ 1. There are two parts in the rhs of
Eq. (33): one that evolves steadily at the same rate as a
pressureless component ð∼a−3Þ and another one that
contributes with a decaying oscillating term around unity
provided by the exponential function. Moreover, ρϕ0 rep-
resents the correct asymptotic value of the field density at
late times.
The following question arises: can we be assured that our

cutoff procedure of the rapid oscillations recovers the right
evolution of the density at late times? First, notice that, in
principle, ρϕ0 in Eq. (32) is fixed at the onset of the rapid
oscillations, but we do not need to be very specific about the
values of the parameters at this time. In our method, unlike
others in the literature, we do not require knowing the
precise value of tosc, and we can be completely oblivious to
it as long as we ensure t⋆ > tosc. The reason is simple: the

FIG. 2. The numerical solution of the scalar field EOS wϕ as a
function of the variable 2mϕt, under which all the different cases
collapse into a single curve (blue curve). The dashed vertical lines
mark the beginning of the rapid field oscillations at tosc. The curve
of the semianalytical approximation (28) (orange curve), which is
well matched to the numerical solutions at t > tosc, is also plotted.
See the text for more details.
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cutoff of the rapid oscillations is made smoothly at the level
of the equations of motion, and then there is no loss of
continuity in the numerical variables.
To answer our question above, Eq. (33) should be

compared with the truncated case. After the cutoff, the
equation of motion for the density is

ρ̇ϕ ¼ −3Hρϕ; ð34aÞ

whose solution simply is ρðt > t⋆Þ ¼ ρ⋆=a3, where ρ⋆ is
the density value at t ¼ t⋆. By the continuity of the
solutions at t⋆ for Eqs. (29) and (34a), we finally get

ρðt > t⋆Þ ¼ ðρϕ0=a3Þ exp
�

3 sin θ⋆
2ðθ⋆ þ 3π=4Þ

�
: ð34bÞ

The result is quite direct: the cutoff introduces a small
mismatch, and the correct asymptotic value of the density is
not recovered from the solution (34b). But the discrepancy
depends on the cutoff value θ⋆, and in principle, it can be
made as small as required if θ⋆ ≫ 1.
However, Eq. (34b) itself suggests a faster route, which

is to choose θ⋆ ¼ nπ, where n is an integer number,
although a large enough one so that still θ⋆ ≫ 1, as this
also allows us to neglect other oscillatory terms in the sine
and cosine integrals in Eq. (31a) that are of order Oð1=θ2⋆Þ
and smaller.
Numerical examples of the evolution of the field density,

in the combination ðρϕ=ρϕ0Þa3, are shown in Fig. 3, for
different values of the field mass mϕ but with a fixed value
θ⋆ ¼ 30π. Here, ρ0 is the last value in each of the numerical
solutions. Note that the asymptotic value is always unity. In
the left panel, we see that the density makes a transition to a

pressureless behavior once the rapid oscillations start, but
as before, the transition time depends on the field massmϕ.
If the density is plotted as a function of the variable θ, as

in the right panel of Fig. 3, we find that all curves collapse
again into a single one, and there is a common evolution for
all cases. Moreover, we also show the curve arising from
Eq. (33) (denoted by exp½BðθÞ�), and it can be seen that it
matches quite well the numerical curves after the onset of
the rapid oscillations.
Now, in Fig. 4, we show the effects arising from different

choices of the cutoff value θ⋆ and with a fixed mass
mϕ ¼ 10−24 eV. In the left panel, we take θ⋆ ¼ 10π;
20π; 30π, and we see that the late-time evolution is the
same for all cases (the curves are superimposed on each
other) even though the cutoff of the oscillations appears at
different times. Also, the correct asymptotic value of the
density is recovered, and in all cases, it corresponds to the
expected average of the density oscillations.
For the right panel in Fig. 4, we take the cutoff values

θ⋆ ¼ 10π; 10.5π. To have a good matching of the first
density oscillations in the two cases and to facilitate the
comparison of their asymptotic values, we applied the
correction (exponential) factor that appears in Eq. (33) to
the case θ⋆ ¼ 10.5π.7 It can be seen that the cutoff occurs at
the maximum of the last oscillation, and hence the
asymptotic value is larger than the correct one.

FIG. 3. Numerical solutions of the scalar field energy density ρϕ, in a combination that highlights the asymptotic, nonoscillatory value
at late times; the curves represent the same cases as in Fig. 1. Left: the energy density, as a function of the scale factor a, behaves as a
pressureless component from the onset of rapid oscillations, which occur at times that depend on the field mass mϕ, but the late-time
behavior is the same: decaying oscillations around a fixed value. The cutoff value was set at θ⋆ ¼ 30π for the four cases. Right: if plotted
as a function of the polar angle θ, all curves collapse into a single one. Also shown is the semianalytical formula (33), with BðθÞ≡
3 sin θ=ðθ þ 3π=4Þ (black curve), which is in good agreement with the numerical solutions from the start of the rapid oscillations at
θosc ¼ π=2 (black dashed line). The cutoff value θ⋆ ¼ 30π (red dashed line) is also shown as a reference. See the text for more details.

7It must be noticed that the value of the present density ρ0 is the
right one in all the numerical cases, as CLASS adjusts accordingly
the initial conditions of the dynamical variables to make the
numerical solution recover the same final result. This is the
reason why we needed to match the early oscillations for a fair
comparison at late times between the two cases θ⋆ ¼ 10π; 10.5π.
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We can give an estimate of the error between the two
asymptotic values, which according to Eq. (34b) is

Δρϕ0
ρϕ0

¼ exp

�
3 sin θ⋆

2ðθ⋆ þ 3π=4Þ
�
− 1: ð35aÞ

For the particular case with θ⋆ ¼ 10.5π, we get

100 ×
�
exp
�
3 sinð10.5πÞ

22.5π

�
− 1

�
¼ 4.3%: ð35bÞ

This difference is not negligible if one desires high precision
of the solution, and it clearly illustrates the necessity to
choose the cutoff value θ⋆ wisely.

D. Linear density perturbations

In contrast to the background quantities in the sections
above, the analysis of Eq. (15) is much more involved
because the evolution of the quantities δ0 and δ1 is coupled
to that of the so-called metric continuity h̄0=2 through the
perturbed Einstein equations. It is not possible to make a
clear separation of the oscillatory and nonoscillatory terms
in the formal solution, and a wise decision on the cutoff
value θ⋆ cannot easily be decided.
In Fig. 5, we show the evolution of the density contrast

δ0 for a scale much larger than the Jeans wave number, so
that k2 ≪ k2J. In the upper panels, we see the cases with the
same cutoff values θ⋆ used previously in Fig. 4. We can see
that the numerical solutions have a larger stage of rapid
oscillations for larger values of θ⋆, as in the background
case. Also, the choice θ⋆ ¼ nπ, see Eq. (34b) and the text
below, does not make the numerical solution coincide with
the nonoscillatory solutions at t⋆. There is a small, but
visible, mismatch between the solutions for the different
values of θ⋆ considered in the graphs.

Nevertheless, the numerical solution is able to catch up
with the nonoscillatory solution after the cutoff of the rapid
oscillations, and this is because of the structure of the
system (15): its solution is driven by the nonhomogeneous
term involving the metric continuity h̄0, which acts as an
attractor solution even at early times. At late times, the value
of jδ0j oscillates around h̄=2 with an amplitude that does not
decay. It is only on average that the scalar field density
contrast can be identified with the CDM one, hδ0i ¼ δCDM.
Other intrinsic oscillations, which we refer to as scale

oscillations, are noticeable for scales smaller than the Jeans
scale, k2=k2J ≳ 1, which appear even after the cutoff of the
rapid oscillations. This is because the term k2=k2J plays the
role of a frequency in terms of the number of e-folds N in
Eq. (15) and not in cosmic time t. For such small scales,
from the very beginning, there may be a combination of
rapid oscillations with scale oscillations, and the choices of
θ⋆ at the transition time give different results for δ0ðt⋆Þ
and δ1ðt⋆Þ.
Our numerical results for the density contrast δ0 for small

scales are shown in the right panels of Fig. 5, where we see
noticeable differences in the late-time behavior of the
solutions. It is clear that it is necessary to follow the
numerical solutions for longer before cutting off the rapid
oscillations and to achieve some convergence of the
solutions. However, the evolution of metric continuity
h̄=2 is always smooth and the same regardless of the cutoff
value θ⋆, although its amplitude is also highly suppressed
with respect to the CDM case.
We also present the cases θ⋆ ¼ 10π; 10.5π in Fig. 6.

Both cases show that at the cutoff time none of the
numerical solutions agrees with the CDM solution, but
the solutions quickly become the same because of the
driving term h̄0=2 in Eq. (14).
In summary, the numerical solutions clearly show that

the scalar field density contrast behaves on average like the

FIG. 4. The behavior of the normalized background density for different choices of the cutoff angle θ⋆. The density at late times
matches the average value well if θ⋆ is an integer multiple of π (left panel), while in any other cases, there is a noticeable mismatch with
respect to the average value (right panel). The dashed vertical lines mark the corresponding cutoff values θ� of the numerical solutions.
The field mass was fixed at mϕ ¼ 10−24 eV in the numerical examples. See the text for more details.

COSMOLOGICAL EVOLUTION OF SCALAR FIELD DARK … PHYS. REV. D 109, 023512 (2024)

023512-9



CDM one on large scales and that the choice θ⋆ ¼ nπ only
helps a little for the numerical solution to have a smooth
transition at the cutoff time t⋆. There are no further
consequences because the attractor character of the equa-
tions of motion for the density perturbations eventually
leads to the right numerical result.8

E. Mass power spectrum and temperature anisotropies

To study the issue of convergence in the solution of
density perturbations for all scales, we plot the resultant
MPS in the upper panel of Fig. 7, the resultant MPS for
different choices of θ⋆, and also the relative differences in
the numerical solutions. The field mass in these examples
was fixed atmϕ ¼ 10−24 eV. The first thing to notice is that

FIG. 5. Behavior of the field density contrast δ0 (top panels) and of the metric continuity h̄=2 (bottom panels), for the different wave
numbers k in the plots and for a selection of values for θ⋆. It is clear that the behavior of both quantities is the same as that of their
counterparts in the CDM for large scales (here represented by k ¼ 0.01=Mpc), whereas for small scales (k ¼ 10=Mpc), they are
considerably smaller than those of CDM at late times. The field mass was fixed at mϕ ¼ 10−24 eV in the numerical examples. See the
text for more details.

FIG. 6. Illustration of the behavior of the density contrast δ0, for
one large scale and for different choices of the cutoff angle θ⋆.
Although there is a mismatch between the solutions at the cutoff
time, both follow exactly the CDM solution at late times. The
dashed vertical line marks logðaeqÞ. The field mass was fixed to
mϕ ¼ 10−24 eV in the numerical examples. See the text for more
details.

8See also Appendix B for the equivalent fluid equations of
motion of the density perturbations after the cutoff of the rapid
oscillations. There, the fluid prescription shows more clearly that
SFDM density perturbations grow similarly to CDM under the
condition k < kJ .
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FIG. 7. MPS PðkÞ (top panel) and temperature spectrum Dl (bottom panel) calculated for the field mass of mϕ ¼ 10−24 eV, together
with their relative differences with respect to MPS P100πðkÞ and the CDM temperature spectrumD100π

l . The labels of the different curves
refer to the cutoff variable θ⋆. Note that the difference for MPS given the choices of θ⋆ can be as large as 100% in the range
k ¼ 2–20 h=Mpc (vertical gray-shaded region), while for the temperature spectrum, it is less than 0.1% (horizontal gray-shaded region).
For reference, we include in the temperature spectrum the (black) curves given by �3=l, which represents an estimated precision
threshold beyond which the parameter biases may be significant. The field mass was fixed tomϕ ¼ 10−24 eV in the numerical examples,
but the black dashed line is for mϕ ¼ 10−22 eV. The data points for the MPS are measurements from the Planck 2018 CMB [1], DES
cosmic shear [56], SDSS galaxy clustering [57], SDSS Lyman-α [58], and UV Luminosity Function (LF) [59] datasets. See the text for
more details.
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there is complete agreement with the MPS of CDM
for large scales, represented by the wave numbers
k < 0.5 h=Mpc.
Regarding the convergence of numerical solutions for

different choices of the cutoff value θ⋆, it can be seen that
there is complete agreement for almost all scales, except for
the interval k ¼ 2–20 h=Mpc, where the difference can be
as large as 100%. However, these discrepancies appear
once the MPS is greatly suppressed compared to the CDM,
although it should be noticed that the agreement is
recovered once the MPS reaches a steady stage at small
scales of the form PðkÞ ∼ k−3. Although one could use the
solution with the highest cutoff value θ⋆, the overall
conclusion is that one can safely take θ⋆ ¼ 30π for reliable
results with the additional advantage of saving computa-
tional time.
We repeat the comparison between different cutoff

values θ⋆ for the case of the temperature spectrum in
terms of the variable Dl ¼ lðlþ 1ÞCl=2π in the lower
panel of Fig. 7. This time, the solutions are more similar,
among themselves, with different resolutions and also with
the corresponding spectrum of CDM. This can be verified
in the lower graph with the relative differences of the
solutions with respect to choice θ⋆ ¼ 100π, which are very
small and below 0.1%. For reference, we also show the
estimated rule of thumb for bias-free parameter inference,
which is given by the curves �3=l at large l. We can see
that our numerical results are consistent with such a
constraint for the cutoff values chosen for θ⋆ (see also
Refs. [46,60–62]).

F. Constraints on mϕ from the matter power spectrum

Here, we describe possible constraints of SFDM models
from the matter power spectrum, according to recent
estimates of the UV galaxy luminous function [59,63]
with the package Gallumi

9 and the effective field theory of
the large scale structure (EFTofLSST) as in Refs. [64,65]
with the package PyBird.10 These two are likelihoods of a
recent addition to the MCMC software MontePython [47,48],
which are capable of exploring the power spectrum at
semilinear scales and can be as competitive as those of
Lyman-α observations.
Two notes of caution are, in turn, on these new like-

lihoods. In the case of the EFTofLSST, its possible
applicability to SFDM is explained well in Ref. [66]:
certainly, the standard approach has been designed for a
cold and collisionless dark matter particle, but considering

the previous work in Ref. [67], it is concluded that
EFTofLSST can be used on SFDM models, taking into
account the modified background evolution and linear MPS
as input for the formalism. However, the authors in
Refs. [66,67] were only interested in cases with very light
masses and low contributions of SFDM to dark matter.11

On the contrary, our aim is to extend the study to values of
the field mass to larger values, and this certainly would
require a more careful treatment. For now, our results
should be considered conservative in that any lower bounds
on the field mass mϕ would certainly be higher.
Regarding the package Gallumi, its main components are

clearly explained in Ref. [63] (see also Ref. [59]): the halo
mass function (HMF) and the halo-galaxy connection. The
HMF depends on cosmological parameters, in particular
the comoving matter density, the mass variance on a given
mass scale, and the (linear) critical density contrast for
gravitational collapse. Many previous works have dis-
cussed changes in the HMF for SFDM, especially the
necessary adjustments to avoid overcounting of small
(ghost) halos [32,73–75]. We have not made these adjust-
ments in the likelihood Gallumi. However, the calculation of
the HMF in Gallumi takes a Sheth-Tormen mass function,
which was also considered in Ref. [32] for the semi-
analytical estimation of the HMF of the SFDM models.
There, it was concluded that the Sheth-Tormen mass
function, together with the standard value of the critical
overdensity δcrit ¼ 1.686, captures relatively well the lack
of low-mass halos in SFDM simulations from the modified
linear MPS alone.
Likewise, the galaxy-halo connection depends on astro-

physics, which we also keep intact, as it is reasonable to
think that the UV emission calculated from a given halo
mass is independent of the dark matter model. For the
reasons mentioned above, our results from the use of Gallumi

should be considered reliable but conservative, and again,
most likely, any lower bounds on the field mass mϕ would
certainly be higher.
We replicated the studies in Refs. [59,64] with some

shortcuts, as our aim was to focus our attention on the
constraints on the field mass mϕ. For the analysis, we used
Gaussian priors on the following parameters: the angular
scale for the sound horizon with 100θs ¼ 1.0411 and
σθs ¼ 0.000312 and the physical density of baryons

9https://github.com/NNSSA/GALLUMI_public.
10https://github.com/pierrexyz/pybird. The code PyBird has

been calibrated to work on CDM models, which do not predict
a cutoff in the MPS. We then assume that its EFTofLSS
formalism can be extended to SFDM models in a first approxi-
mation; see [66–68], and also [69–71] for other examples beyond
ΛCDM).

11Another difference is that previous studies [66,67] were
using the CLASS-PT pipeline, instead of the PyBird one here. For a
discussion about the two EFTofLSST pipelines, see Ref. [72].

12The original study in Ref. [59] fixed the value of
100θs ¼ 1.0411, as the shooting method that code CLASS uses
to calculate it by iterations of the Hubble parameter is very
efficient for the ΛCDM model. However, the same method
usually does not converge in other alternative models. We
decided to use a Gaussian prior to avoid failed attempts of the
CLASS code under the command of MontePython.
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ωb ¼ 0.02233 with σb ¼ 0.00036.13 Fixing the sound
horizon θs is known to also fix the combination Ωmh3.4,
with Ωm the physical density of total matter and h the
reduced Hubble constant [59,76,77]. This means that our
Gaussian prior on 100θs, with h ¼ 0.657, acts as an
indirect prior on the combination Ωm ¼ Ωb þ Ωϕ. For
the field mass mϕ, we considered a flat prior on the
logarithmic scale in the range logðmϕ=eVÞ ¼ ½−26;−18�.
All other cosmological parameters in the models, such as
the amplitude of the power spectrum, were fixed to their
Planck 2018 CMB values.

The likelihood we chose for the UV luminosity function
is that of the so-called Model I in Ref. [59], with its
corresponding formalities and data. In the case of
EFTofLSST, we selected the BOSS and eBOSS datasets
as in Ref. [64]. It must be noted that some assumptions in
the likelihoods have been made under the CDM paradigm
only and would need to be amended for the case of SFDM.
Taking into account these caveats, the results reported in
the following may be stronger than in the case in which
some of the assumptions are corrected for SFDM.
The resulting posterior distributions for the physical

densities of baryons ωb and SFDM ωsfdm, and the field
mass mϕ, after marginalizing over the nuisance parameters
of the likelihoods, are shown in Fig. 8. As expected, the
separate constraints on the physical densities of baryons
and SFDM are practically the same, as they are influenced
mostly by the previously assumed priors.
Not surprisingly, the posterior distribution of the field

mass shows that each dataset only constrains mϕ from
below, which means that the likelihoods are insensitive to
variations of mϕ above a certain threshold value. The
dataset with the most constraining power is the UV
luminosity function, whereas eBOSS is the less con-
straining one.
To properly calculate the lower bounds for mϕ from the

confidence regions in Fig. 8, we use the method in
Refs. [78–80] to obtain prior independent constraints by
means of the so-called shape distortion function R,
appropriate for the so-called open likelihoods as in the
present case. As explained in Ref. [80], the functionR will
allow us to use the data to define the region below which
mϕ is disfavored, regardless of the prior assumptions we
have chosen.
An advantage of the functionR is that for its calculation

we only need to know the posterior distribution of the field
mass mϕ, which we obtained from the code MontePython.
The resultant shape distortion function is shown in the
lower panel of Fig. 8 on the logarithmic scale. Note that
R → 1 for large values of the field mass, in this case
logðmϕc2=eVÞ → −18, which is the upper value in our
prior range. The sharp decay of R at lower values of mϕ

helps us to calculate an appropriate lower bound.
Following the convention in Refs. [78–80], it can be seen
that if ln R ¼ −3 (moderate level according to Jeffrey’s
scale), we can say that the data strongly favor the regions
logðmϕc2=eVÞ > −25.4 for eBOSS, logðmϕc2=eVÞ >
−24.6 for BOSS, and logðmϕc2=eVÞ > −22 for UV LF.14
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FIG. 8. Top panel: triangle plots obtained from the MCMC code
MontePython using the likelihood of the UV galaxy luminous
function, for parameters ωb, ωsfdm, and logðmϕc2=eVÞ. Bottom
panel: plot of the shape distortion function R obtained from the
posterior distribution obtained for the field mass mϕ. See the text
for more details.

13This is the same Gaussian prior of Ref. [59] on the physical
density of baryons, which is obtained from measurements of the
abundance of primordial deuterium.

14If we follow the standard wisdom and calculate the
lower bound at the 95% confidence level of the histograms,
we find instead that logðmϕc2=eVÞ > −24.5 for eBOSS,
logðmϕc2=eVÞ > −23.8 for BOSS, and logðmϕc2=eVÞ >
−21.4 for UV LF.
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IV. COMPARISON WITH THE ORIGINAL FIELD
VARIABLES ðϕ;ϕ̇Þ

This section is dedicated to the comparison of the
numerical solutions obtained from our polar method to
those of the original scalar field equations of motion. To do
this, we use the same Boltzmann code CLASS to provide the
numerical results, so that they are subject to the same
numerical methods and limitations of the code in the two
cases. In the amended version, the polar variables are
solved as a separate dark matter component, while the field
variables are solved using the scalar field equations of the
quintessence module already implemented in CLASS.

A. Background quantities

The first comparison of background quantities is for the
variables ϕ and ϕ̇, which are the dynamical ones in the
Klein-Gordon (KG) equation (3d) and the field potential.
The relationship between the original and polar variables
can be found from the transformation equations (5), in the
form of

κϕ¼−
2
ffiffiffi
6

p

y1
eβ cosðθ=2Þ; κϕ̇

mϕ
¼ 2

ffiffiffi
6

p

y1
eβ sinðθ=2Þ: ð36Þ

We solved the KG equation (3d) separately, but with the
same initial conditions as in the polar case through trans-
formation (36). It is not possible to accurately follow the
numerical evolution after the onset of the field oscillations,
and then we only solved the KG equation (3d) up to the
equivalent time to θ⋆ ¼ 100π (2mϕt⋆ ≃ 100π). After this
time, the equations of motion are set directly to ϕ̇ ¼ 0 and
ϕ̈ ¼ 0, which means that the late-time solutions of the field
variables are just ϕðt > t⋆Þ ¼ ϕðt⋆Þ and ϕ̇ðt > t⋆Þ ¼ ϕ̇ðt⋆Þ
(and the density remains artificially constant afterward).

The two sets of solutions, the original and the polar ones,
are plotted in compact form in the phase space shown in
Fig. 9. The thick curves correspond to the system ϕ − ϕ̇,
with the different colors representing the field mass mϕ,
while the solutions of the polar system, all in black lines,
are superimposed. We see that the agreement between the
corresponding curves is exact up to t ¼ t⋆.
The same comparison exercise for field density ρϕ is

shown in Fig. 10, using the same colors for the different
curves as in Fig. 9. Furthermore, we normalize the density
to the present value of the CDM density ρCDM0, to highlight
that the final value of the field densities coincides with the
equivalent CDM case. The upper panel shows that the two
sets of solutions coincide exactly, including the oscillatory
phase, which is also confirmed by the comparison in the
lower panel: the discrepancies appear at late times in the
oscillatory phase and the cutoff in the solution of the field
variables [see the explanation below Eq. (36)].
As a final example, we show in Fig. 11 the SFDM EOS

calculated directly from the pressure-to-density ratio
wϕ ¼ pϕ=ρϕ, using the same unit system as in Fig. 2.
The variable in the horizontal axis is the dimensionless
quantity 2mϕt, under which all curves corresponding to a
given field mass mϕ become the same curve. The EOS
oscillates rapidly around the zero value, and we again see
that there is excellent agreement between the numerical
results of the two approaches.

B. Linear density perturbations

We repeated the comparison of the solutions with the
case of linear density perturbations. This time, we solved
the linearly perturbed KG equation (12), again using the
same initial conditions for the two sets of variables, the
originals φ and φ̇ and the polar ones δ0 and δ1. Although
the perturbed polar variables are α and ϑ, see Eq. (13),
recall that our final perturbed variables are those of Eq. (14)
and their corresponding equations of motion (15).
The transformation from the polar variables to the field

ones is given by the expressions

κφ ¼ −
ffiffiffi
6

p

y1
eβ½δ0 cosðθ=2Þ − δ1 sinðθ=2Þ�; ð37aÞ

κφ̇

mϕ
¼

ffiffiffi
6

p

y1
eβ½δ0 sinðθ=2Þ þ δ1 cosðθ=2Þ�: ð37bÞ

We only used Eq. (37) to set the initial conditions of the
field variables φ and φ̇ in correspondence with those of the
polar variables, and then the field equation (12) was solved
separately.
We then show in Fig. 12 the evolution of the perturbation

variables φ and φ̇ as a function of the scale factor and for
two values of the wave number k: 0.01 Mpc−1 for large

FIG. 9. The phase space of the field variables ϕ and ϕ̇, written
in their dimensionless form as in Eq. (36). The colored curves are
numerical solutions from the original field variables, whereas the
black curves are those obtained from the polar method. The curve
labels represent the value of the field mass mϕ in units of eV. See
the text for more details.

UREÑA-LÓPEZ and CEDEÑO PHYS. REV. D 109, 023512 (2024)

023512-14



scales (top panels) and 10 Mpc−1 for small scales (bottom
panels).
In the two cases, the solutions from the polar variables

via Eq. (37) are superimposed on those of the field variables
[obtained directly from Eq. (12)], which are identical up to
the time the numerical solutions were followed (θ⋆ ¼ 30π
for the polar variables and θ⋆ ¼ 100π for the field ones).
Note that the agreement goes beyond the cutoff point of the
polar variables, as shown by the bottom panels in each
figure, since the relative error is always less than 10%.15

This means that the cutoff of the trigonometric functions
(22) gives from Eq. (15) the expected results of the original
field variables.

V. DISCUSSION

Among the diverse theoretical proposals to describe dark
matter, SFDM constitutes a compelling candidate to play

FIG. 10. The evolution of the field density ρϕ for the same cases as in Fig. 3. Top panel: colored curves represent the numerical
solution of the original field variables ϕ and ϕ̇, while the corresponding solutions from the polar method are superimposed (black
curves). The divergent behavior of the colored curves is due to the cutoff applied to the oscillations of the field solutions at θ⋆ ¼ 60π.
Bottom panel: the relative difference between the curves in the upper panel for the same value of the field mass mϕ. The difference is
close to zero except for the last part, once the oscillations of the field solutions are cut off. See the text for more details.

FIG. 11. The numerical solution of the scalar field EOS wϕ,
calculated from the pressure-to-density ratio, as a function of the
variable 2mϕt, under which all cases with different field masses
mϕ collapse into a single curve. The blue curve is the solution of
the original variables ϕ − ϕ̇ (note that wϕ ¼ −1 after the
oscillations are cut off is just an artifact), whereas the orange
curve corresponds to the polar method. See the text for more
details.

15One note is in turn for the calculation of the relative error in
Fig. 12. The functions involved oscillate around zero, but their
amplitude is of order unity. The lower panels then only show their
difference, which we interpret as the relative error between the
two numerical results.
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the role of the CDM component of the Universe. The
dynamics of such a particle is modeled through a scalar
field endowed with a scalar field potential. In this work, we
were particularly interested in the free case of a real scalar
field. Given the oscillatory nature of the SFDM when it
behaves as CDM, we must be careful to properly handle the
differential equations for both background and linear
perturbations, in such a way that numerically they were
easily solved, allowing us to keep track of the evolution of
the scalar field, and of all physical quantities built from it.
By posing the Klein-Gordon equations (background and
linear perturbations) as a dynamical system once new
variables are introduced, we were able to describe the
evolution of the SFDM as a system of first-order differ-
ential equations.
With this prescription, instead of solving for the original

scalar field variables ðϕ; ϕ̇;φ; φ̇Þ, we solved a new set of
dynamical variables: the polar variable θ, the scalar field
energy density β, and the perturbations δ0 and δ1. We have
also added the variable y1 which is proportional to the ratio
of the mass of the scalar field and the Hubble parameter.

It has been a standard procedure in the literature to deal
with the rapid oscillations of the SFDM by averaging the
oscillating functions in a Hubble time and then writing
down a new set of averaged equations of motion that
resemble a standard cosmological fluid. Within our
approach, this new set of equations is easier to solve
numerically and to include in a standard Boltzmann code.
Therefore, there was no need to invoke any approximation
or average to cancel out the rapid oscillations of the scalar
field. The only consideration of this kind was the intro-
duction of the truncated trigonometric functions that we
used [see Eq. (22) in Sec. III A]. In addition, the standard
average procedure introduces an undesirable mismatch
between the early- and late-time solutions and leaves
unanswered the question of the sound speed of the density
perturbations of the averaged fluid [45].
Our method does not require a separate evolution of the

SFDM equations of motion but just a straightforward
transformation of the original field equations. Our trans-
formed system of equations remains the same throughout
the full evolution, and this applies for both the background

FIG. 12. The evolution of the perturbation variables φ (left column) and φ̇ (right column), as obtained from both the original field
variables via Eq. (12) and the polar method in Eq. (15); see also Eq. (37). The upper panels show the solutions for large scales, whereas
the lower panels show them for small scales. It can be seen that the curves of the two methods agree completely even beyond the cutoff
time for the polar variables at θ⋆ ¼ 30π (indicated by the black-dashed vertical line). Notice that each panel contains the relative error, in
percentage numbers, between the two numerical solutions in each case. See the text for more details.
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and for the linear density perturbations. Moreover, in the
case of linear perturbations, we do not need to define an
explicit expression for the sound speed, which is a slippery
quantity in the fluid approximation. Nevertheless, in
Appendixes A and B, we show the complete equivalence
between our equations and the fluid ones at late times,
which only required the implicit definition of the sound
speed. Our approach also deals successfully with the rapid
oscillations in comparison with the original field variables.
The SFDM formulation we present in this work gives

accurate predictions on observables such as the CMB
anisotropies and the MPS. Moreover, it is possible to
put constraints on the main parameter of the model, the
SFDM mass mϕ. This is of great relevance because, on the
one hand, we need numerical solutions with a high
precision level to put constraints on the SFDM model in
light of new data from present and future surveys. On the
other hand, the cosmological dynamics of the SFDM needs
to be properly solved in order to set the initial conditions for
numerical simulations of the nonlinear process of structure
formation. In this sense, our approach offers a mathematical
and numerical treatment for the SFDM model, which is
advantageous in that it suitably solves the cosmological
dynamics of such a scalar field coupled to the Einstein-
Boltzmann system.
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APPENDIX A: FLUID APPROXIMATION

Here. we discuss the possibility of rewriting the equa-
tions of motion (15) for the linear density perturbations in
their fluid counterparts. Using Eq. (17b), we find that
Eq. (15a) becomes

δ00 ¼ −
1

aH
ð1þ wϕÞΘϕ − 3 sin θδ1 − ð1þ wϕÞ

h̄0

2
; ðA1Þ

where we have also used the relation (6b). From the
definition of the adiabatic sound speed c2s ¼ δpϕ=δρϕ,
we find that

c2sδ0 ¼ sin θδ1 − cos θδ0: ðA2Þ

The preceding equation can be used to substitute the second
term on the right-hand side of Eq. (A1). After some
manipulations, we get the result

δ00 ¼−ð1þwϕÞΘϕ−3Hðc2s −wϕÞδ0− ð1þwϕÞ
h̄0

2
; ðA3aÞ

where now the primes denote the derivatives with respect to
the conformal time and H is the corresponding Hubble
parameter. These calculations show that Eq. (15a) is
completely equivalent to the equation of motion for the
density contrast in the fluid approximation.
Similarly, we can combine Eqs. (7), (15), and (A2) to

write an equation for the momentum density. After some
lengthy but otherwise straightforward manipulations, we
find that

½ð1þwϕÞΘϕ�0 ¼Hð3wϕ − 1Þð1þwϕÞΘϕþ k2c2sδ0: ðA3bÞ

Equation (A3) are the standard fluid equations for linear
density perturbations and then show that the polar equa-
tions (15) are their faithful representation in our alternative
approach.

APPENDIX B: LINEAR DENSITY
PERTURBATIONS AFTER THE CUTOFF POINT

It is illustrative to write Eq. (15) after the cutoff on the
rapid field oscillations. For times t > t⋆, we find

�
δ0

δ1

�0
≃
k2

k2J

�
0 −1
1 0

�
−
�
h̄0=2

0

�
; ðB1Þ

where again a prime denotes derivatives with respect
to N ¼ ln a.
The system (B1) has the same structure as a forced

harmonic oscillator with frequency ω ¼ k2=k2J. As
explained in Ref. [19], if we assume that ω is a constant
(as is the case during RD), for large scales, the solution is
the same as that of CDM: δ0 ≃ −h̄=2 and δ1 ≃ const. For
small scales, the solutions are oscillatory and given by
combinations of functions cosðωNÞ and sinðωNÞ. These
behaviors agree with the full numerical results in Fig. 5.
To obtain the corresponding fluid equations, we first

notice that the cutoff method applied to Eqs. (12) and (A2)
results in the following equations:

Θϕ ≃
k2

aHy1
δ1; ðc2s − wϕÞδ0 ≃ 0: ðB2Þ

The first expression in Eq. (B2) reveals a direct relation
between the divergence of the fluid velocity and variable
δ1, while the second suggests a nonvarying value of the
fluid’s EOS (that is, dwϕ=dρϕ ¼ 0; see Ref. [4]).
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Repeating the same procedure above for the calculation
of Eq. (A3), we find their counterpart for times t > t⋆,

δ00 ≃ −Θϕ −
h̄0

2
; Θ0

ϕ ≃ −HΘϕ þ
k2

4m2
ϕa

2
δ0; ðB3Þ

where a prime now denotes derivatives with respect to
conformal time. Finally, the second of Eq. (B3) suggests a
scale-dependent sound speed given by

c2s ≃
k2

4m2
ϕa

2
: ðB4Þ

One note on the sound speed of the perturbations is taken
in turn. The discussion above gives a clear answer for the
sound speed after the cutoff in the field oscillations, but
there is none for the right expression of c2s before that. Our
formalism for the perturbations does not require an explicit
expression of c2s , but the latter is necessary for a correct
fluid formulation of the SFDM linear perturbations.
A general expression of c2s was found in Ref. [86] in the

comoving gauge of the scalar field, but the same authors
argue in Ref. [87] that such an expression cannot be
transformed into the synchronous gauge, under which
SFDM lacks a definite functional form of c2s . Despite this,
the expression for c2s of Ref. [86] has been extensively used
in the literature for the fluid approximation of SFDM in the
synchronous gauge.16

An example is the so-called effective fluid approxima-
tion (EFA) discussed in Ref. [46]. The equations of motion
of the EFA are

δ00 ≃ −Θϕ − 3Hhc2siδ0 −
h̄0

2
; ðB5aÞ

Θ0
ϕ ≃ −HΘϕ þ k2hc2siδ0; ðB5bÞ

where the cycle-averaged sound speed is

hc2si ¼
k2=ð4m2

ϕa
2Þ

1þ k2=ð4m2
ϕa

2Þ : ðB5cÞ

It can be seen that our Eq. (B3) can be obtained from the
EFA if the sound speed is given by the so-called non-
relativistic expression hc2si ≃ k2=ð4m2

ϕa
2Þ. However, the

EFA considers an extra term in the equation of motion of
δ0; see Eq. (B5a).
Noticing this discrepancy, a comparison was made

between the fluid approximation and our method in
Ref. [46] (see its Appendix B), and no relevant differences

were found in the numerical results. To understand this, we
use Eq. (B2) and write the EFA equations (B5a) and (B5b)
in terms of our variables δ0, δ1 and N ¼ lna. We find that

�
δ0

δ1

�0
≃
k2

k2J

�−3=y1 −1
1 0

�
−
�
h̄0=2

0

�
: ðB6Þ

We now compare Eq. (B6) with Eq. (B1) and spot the
extra term 3=y1. The latter is very small, given that y1 ¼
2mϕ=H and then y1 ≫ 1 after the start of rapid field
oscillations. This is the reason why the comparison in
Ref. [46] did not find differences between our approach and
the EFA. It can be concluded that our method correctly
picks up the only terms in the equations of motion that are
valid in the limit H=mϕ ≪ 1.17

APPENDIX C: NUMERICAL IMPLEMENTATION
IN CLASS

Following the design of CLASS, we introduced a new
module for the SFDM equations of motion, replicating the
same structure as for other dark matter components. In this
form, the contribution of the SFDM component could be
called with its own parameters in any given parameter file
of CLASS (for example, explanatory.ini).
The equations of motion for the background variables

(12) were included in the file background.c, while those of
the density perturbations (12) were included in the file
perturbations.c. Similarly, a shooting routine was incorpo-
rated into the file input.ini to adjust the initial conditions of
the dynamical variables. In each case, the SFDM quantities
were added to the matter budget so that they contribute
correctly to the right-hand side of the Einstein equations,
for both the background and the linearly perturbed ones.
Given the oscillatory nature of all SFDM quantities, we

applied the cutoff procedure to the sine and cosine functions
that appear in their definition; see Eq. (22). For example, the
background pressure was written as pϕ ¼ − cos⋆ θ · ρϕ, and
then effectively pϕ ¼ 0 for t > t⋆. Another case would be
the combination pϕ þ ρϕ ¼ ð1 − cos⋆ θÞρϕ, so that pϕ þ
ρϕ ¼ ρϕ for t > t⋆.
The same was applied to the perturbed quantities, as in

the density perturbation written in the form δρϕ ¼ ρϕ · δ0,
which is required for the right-hand side of the perturbed
Einstein equations. Similarly, the momentum density per-
turbation ðpϕ þ ρϕÞΘϕ was written as in Eq. (17b), that is,

16See also Ref. [32] for a suggested expression of c2s in the
axion case and Ref. [33] for a generalized one in the case of early
dark energy models (for the amended code AxiCLASS).

17The study in Ref. [46], and others in which the EFA is used,
missed neglecting the extra term in Eq. (B5a) because it did not
analyze the joint term Hhc2si; otherwise the authors would have
realized that it is of orderOðH=mϕÞ. The same applies to the EFA
used in Ref. [20] that includes additional terms from the gauge
transformation: These terms are also of the order OðH=mϕÞ and
can be neglected. This effectively leads the EFA to become again
Eq. (B3).
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ðρϕ þ pϕÞΘϕ ¼ k2ρϕ
aHy1

½ð1 − cos⋆ θÞδ1 − sin⋆ θδ0�: ðC1aÞ

The result for late times t > t⋆ is well defined and is
given by

ðρϕ þ pϕÞΘϕ ¼ k2ρϕ
aHy1

δ1: ðC1bÞ

It should be noted that in some parts of the file
perturbations.c one requires calculating the velocity diver-
gence Θ, which is one of the fundamental variables in the
fluid formalism for linear perturbations of density and
momentum. However, the calculation of Θϕ itself is prob-
lematic for SFDM, as can be clearly seen in Eq. (C1a): one
needs to divide by the quantity ðpϕ þ ρϕÞ, which passes
through zero during the phase of rapid field oscillations. As
explained above, the calculation of Θϕ is not needed in the
perturbed Einstein equations, and then we only used
Eq. (C1b) as an additional source of the perturbed momen-
tum density.

A technical aspect not always mentioned for SFDM
models and its implementation in a Boltzmann code is that
a small quantity of a CDM component is always needed, as
stated in Ref. [19]. This is because, to be consistent with the
synchronous gauge, the Einstein field equations must be
solved in the comoving frame of the CDM fluid, that is,
Θcdm ¼ 0. In fact, an automatic feature in the current
versions of CLASS and its amended versions for SFDM,
is thatΩcdm ¼ 10−10 once the amount of CDM is set to zero
in the input file explanatory.ini. This ensures that there will
be practically a null contribution of CDM, so that SFDM is
the dominant nonrelativistic matter component, and also
helps us to avoid the known problem that the synchronous
gauge is not completely fixed for density perturbations
when the SFDM is the only DM component [87].
One last note is that the evolution of the perturbations

should start well before the onset of the rapid oscillations.
We include an additional condition in the file perturba-
tions.c to guarantee that the calculations begin only if
mϕ=H < 0.01. This gives the system (15) enough time
to reach its attractor solution starting from the initial
conditions (21).
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