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We explore a generalized unified dark energy model that incorporates a nonminimal interaction between
a tachyonic fluid and an additional scalar field. Specifically, we require that the second field possesses a
vacuum energy, introducing an ineliminable offset due to a symmetry-breaking mechanism. After the
transition (occurring as due to the symmetry-breaking mechanism of the second field), the corresponding
equation of state (EoS) takes the form of a combination between a generalized Chaplygin gas (GCG)
component and a cosmological constant contribution. We reinterpret this outcome by drawing parallels to
the so-called Murnaghan EoS, widely-employed in the realm of solid-state physics to characterise fluids
that, under external pressure, counteract the pressure’s effect. We examine the dynamic behavior of this
model and highlight its key distinctions compared to the GCG model. We establish parameter bounds that
clarifies the model’s evolution across cosmic expansion history, showing that it, precisely, exhibits behavior
akin to a logotropic fluid that eventually converges to the ΛCDM model in the early universe, while
behaving as a logotropic or Chaplygin gas at intermediate and late times respectively. We explain our
findings from a thermodynamic perspective, and determine the small perturbations in the linear regime. At
very early times, the growth factor flattens as expected while the main departures occur at late times, where
the Murnagham EoS results in a more efficient growth of perturbations. We discuss this deviation in view of
current observations and conclude that our model is a suitable alternative to the standard cosmological
paradigm, introducing the concept of a matterlike field with nonzero pressure.
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I. OVERVIEW

Assuming that on large scales the geometry of the
universe is described by a Robertson-Walker metric,
observations have conclusively shown that the expansion
of the universe is currently accelerating [1–10]. This
phenomenon is commonly attributed to the thermodynamic
properties of an exotic fluid with an unknown negative EoS
that yields an effective repulsive gravity [11–13]. This
cosmic speed up cannot be attributed to ordinary fluids,
such as dustlike matter or radiation, for which the pressures
are zero and one third, respectively, thus acting to decel-
erate the universe today.

Thus, the common belief is that there exists an addi-
tional exotic fluid which is responsible for the cosmic
speed-up [12,14,15], whose nature is currently attributed
to the cosmological constant, Λ [16] or, more broadly to
some sort of dark energy contribution [17]. However,
this scenario is absolutely not exhaustive yet and, in fact,
the precise nature of this fluid remains very poorly
understood [18]. Several conjectures have been put for-
ward to explain the origins of the acceleration and identify
the constituents responsible for it [19–25].
As stated above, the cosmological constant appears as the

principal candidate responsible for the cosmic speed-up,
making the concordance model statistically favored [26]
as it depends on one parameter only, namely the cosmic
mass. However, there are still conceptual and theoretical
issues raised by observed cosmological tensions [27], which
are yet to be solved. Nevertheless, dark energy remains a
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plausible explanation for these issues [28]. Unfortunately,
having an evolving EoS also provides nonequilibrium
effects and, moreover, we do not have direct evidence for
dark energy reconstruction.
Additionally, the nature of dark matter provides a further

challenge for theoretical cosmology [29]. It is known to
interact through gravity, but its properties beyond that, i.e.,
microphysics, scattering properties, structure, etc., are still
not well understood [30]. Several candidates have been
proposed, such as ultralight fields, extremely massive par-
ticles, geometric contributions, extensions of Einstein’s
gravity and so forth [29,31] albeit no direct evidence has
been found so far [32]. Consequently, the search for dark
matter particles is ongoing, through experiments involving
direct and indirect detection. Discovering dark matter origin
would represent one of themost significant breakthroughs in
our understanding toward the universe and its constituents.
Even though dark energy and dark matter are often

considered as separate and completely different compo-
nents [33], some theories propose a unified approach in
which a single dark fluid can explain both phenomena1 [35].
Recently, unifiedmodels, also known as unified dark energy
or dark matter models, have been proposed to eliminate
the degrees of freedom due to quantum fluctuations in the
early universe [36]. These models have been characterized
by barotropic fluids or scalar fields [37] and the main
assumption is that the fluid is a single entity, rather than a
sum of dark matter and dark energy, and its net pressure is
negative enough to drive the universe’s present-day accel-
eration [38]. Indeed, unifying dark energy and dark matter
has two significant advantages: first, it requires only a
single component to explain both the observed accelerated
expansion and structure formation; second, it enables us to
treat dark matter and dark energy at the perturbation level in
the same way [39]. The prototype of such models is the
Chaplygin gas [40–42]. These models have however been
severely criticized in the last decade [43]. On the other
hand, dark fluids [44] and logotropic models [45] are also
possible alternative toward unifying dark energy and dark
matter, however, again, a pure logotropic model cannot
describe the universe’s dynamics as shown in Ref. [46],
while a dark fluid needs additional explanations, as shown
in Refs. [47,48].
Motivated by these ideas, we explore how to construct a

single dark fluid with almost negligible pressure at early
times, but negative pressure at late times. To do so, we
assume a tachyonic field minimally-coupled to a further
scalar field carrying vacuum energy. The underlying
scenario is to incorporate vacuum energy under the form
of a quantum field cosmological constant into a tachyonic
field that provides similar behavior than previous unified

dark energy models, such as the Chaplygin gas [41]. We
obtain this way a Chaplygin-like gas that includes quantum
fluctuations as due to a symmetry breaking mechanism
associated with the field transporting vacuum energy.
Consequently, we find that an effective dark matter field
arises, reducing at late times to a genuine cosmological.
Contrary to the standard ΛCDM paradigm, our model
induces a net pressure at early times that influences
structure formation. Hence, the coincidence problem
appears to be resolved, since dark energy evolves in time,
i.e., the corresponding effective framework works as a
generalization of the Chaplygin gas with vacuum energy.
Afterward, we search for a physical interpretation of our
fluid and demonstrate that our EoS is akin to the
Murnaghan fluid [49], where a single matter fluid with
nonzero EoS shows dust and dark energy as the cosmo-
logical scale changes. In particular, this implies that matter
is not described by a dustlike fluid, but it behaves differ-
ently on cosmic scales. The Murnaghan fluid, initially
proposed in contexts of solid state physics, is therefore
applied to the universe at different scales. To this end, the
fluid naturally invokes the existence of a negative EoS we
first physically interpret it in view of the background
dynamics and then investigate how it affects the clustering
of structures at early times.
Different stages are thus investigated to get constraints

on the free parameters of the model, showing a good
compatibility with observations. To do so, we work out the
most recent type Ia supernovae (SNe Ia), baryonic acoustic
oscillation (BAO) and observational Hubble data (OHD)
catalogs to perform Markov chain Monte Carlo (MCMC)
simulations based on Metropolis-Hastings algorithm, and
compare our findings with the standard backgroundΛCDM
model. Further, we explore the thermodynamics of the
Murnaghan fluid highlighting the main differences with
respect to the Chaplygin gas. Specifically, we show that
there are regions in which the model predicts a logotropic
behavior, emphasizing the consequences on the observable
universe, while having regions in which the fluid acts as a
dark fluid. In other words, we conclude that our scenario
predicts a unified model that incorporates previous frame-
works into a single fluid of matter with pressure, making it
a serious candidate for an alternative description of dark
energy on large scales.
The paper is organized as follows. In Sec. II, we

describe how to incorporate vacuum energy into a
tachyonic field coupling it to a further scalar minimally-
coupled with the first one. In such a way, we introduce the
basic demands of the Murnaghan fluid that is better
described in Sec. III, emphasizing the corresponding
thermodynamics of the fluid itself and the limiting cases
predicted by our approach. In Sec. IV, we work out our
numerical analysis. In Sec. V, in view of our numerical
analysis, we propose a physical interpretation of our fluid,
discussing in particular the thermodynamic consequences

1This idea is similar to the concept of extended and/or
modified gravity scenarios [34], where an additional fluid can
be inferred from the field theory.
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of our recipe. Hence, introducing the concept of matter
with pressure, we study the impact of such a scenario on
linear perturbations, in Sec. VI. Finally, in Sec. VII, we
present the conclusion and perspectives of our work.

II. MINIMALLY COUPLED TACHYONIC FIELD
WITH VACUUM ENERGY

The existence of matter with nonzero pressure has posed
a longstanding challenge in modern cosmology [50]. This
concept has been extensively explored in the frameworks of
unified dark energy models, where dark matter is charac-
terized by a nonzero pressure. These models offer a way to
unify these two elusive components of the universe, where
the primary unknown ingredient becomes solely dark
matter. Noteworthy, such models can be derived from
fundamental representations that consider the Lagrangian
of specific fields associated with the dark matter constitu-
ent. By incorporating these unified models, we can poten-
tially gain a deeper understanding of the nature and
properties of dark matter and its interplay with dark energy.
A prototype of these models is represented by the dark

fluid. Here, one has one fluid only, determined by an EoS
that resembles the total EoS induced by the ΛCDM model,
where instead, at late times, two fluids are involved, i.e.,
dust plus the cosmological constant Λ. A possible defi-
nition of dark fluid is recovered from the quasi-quintes-
sence fluid [51–53], induced by an energy-momentum
tensor of the form

ρ ¼ Kð∂ϕÞ þUðϕÞ; ð1aÞ

P ¼ −UðϕÞ; ð1bÞ

whereU > 0 is the potential induced by a scalar field, whose
generalized kinetic energy Kð∂ϕÞ is a function of the
velocity ∂ϕ≡ ∂

μϕ of the scalar field, ϕ. The Lagrangian
representation can bewritten bymeans ofL ¼ K − U þ λY,
with λ the Lagrange multiplier. For additional details see
Ref. [48]. The quasiquintessence fluid is capable of solving
the cosmological constant problem, as demonstrated in
Ref. [51] and so it appears a viable alternative to the standard
background model [48,54,55].
Even though quite relevant, the dark fluid is not the

unique example of unified models of dark energy. Among
all the other possibilities, some relevant approaches are
the well-established Chaplygin gas or its generaliza-
tions [40,41,56]. These models have been extensively
investigated at late and early times, providing a funda-
mental representation in terms of tachyonic fields [57,58].
Incidentally, tachyon condensate cosmological models
have been first considered in a class of string field
theories [59] and have gained further consideration in
the literature [60,61].
Motivated by such considerations, an interesting exten-

sion of the above models may also consider the case in

which a tachyonic fluid transports vacuum energy, in
analogy to the cosmological constant. To do so, we demand
that a nonminimally coupled tachyonic field incorporates
vacuum energy by means of a further field transporting it.
Thus, we conjecture the existence of a Lagrangian able to

feature both a GCG model and a cosmological constant and
consider

Ls ¼ bðϕÞfðXÞ; ð2Þ

where X ≡ ∂σϕ∂
σϕ is the kinetic term of the field ϕ and

bðϕÞ and fðXÞ are analytical functions. Given the action
Ŝ ¼ R

Ls
ffiffiffiffiffiffi−gp

dx4, the energy-momentum tensor reads

Tμν ¼ −
2ffiffiffiffiffiffi−gp δŜ

δgμν
¼ −2

δL
δgμν

þ gμνL; ð3Þ

and the four-velocity uμ ¼ ∂μϕ=
ffiffiffiffi
X

p
, the pressure and the

density of this fluid become

ρs ¼ bðϕÞfðXÞ − 2XbðϕÞfXðXÞ; ð4aÞ

Ps ¼ −bðϕÞfðXÞ; ð4bÞ

where fX labels the derivative of f with respect to the
kinetic term.
It turns out that, in this framework, a constant term in the

EoS cannot be recovered either assuming algebraic equa-
tions for bðϕÞ and fðXÞ, or by assuming b ¼ bðϕ;∇ϕÞ
and f ¼ fðX;□XÞ.
Nevertheless, assuming we modify Ps to include a

constant term, or more generally a lðϕÞ contribution, and
get the GCG simultaneously, would lead to a modification
in the Lagrangian of the form Ls → Ls − lðϕÞ that however
disagrees with the requirement to shift Ps → Ps þ lðϕÞ.
Consequently, there is no chance to include into a GCG a
pure constant contribution working out with one single
dynamical field, identified by ϕ and X.

A. Double field approach

As a byproduct of our conjecture, we justify the need of
introducing a double-field, noncoupled Lagrangian of the
form

L ¼ bðϕÞfðXÞ þ Y − VeffðψÞ: ð5Þ

Here, it is interesting to focus on each term, emphasizing
the role of generalized kinetic energy and potential.
Particularly,

(i) ψ represents the second field, whose kinetic energy
is Y ≡ ∂σψ∂

σψ , and
(ii) Veff is the second field potential providing the main

departures from the pure GCG case. Specifically,
we require it to furnish a further vacuum energy
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contribution modifying the net GCG EoS and, de
facto, resolving the conceptual issues prompted
above.

Accordingly, the first field is free, while the second is
modeled through the inclusion of scalar field potential with
vacuum energy.
The first step is therefore to reproduce the GCG-like part

of the total EoS. So, we consider [58]

fðXÞ ¼
�
1 − X

1þα
2α

�1þα
α ; ð6Þ

and, varying the corresponding action with respect to the
metric tensor gμν, we obtain the energy-momentum tensor

Tμν ¼
bðϕÞX1−α

2α�
1 − X

1þα
2α

� 1
1þα

∂μϕ∂νϕ − 2∂μψ∂νψ þ Lgμν: ð7Þ

In particular, the GCG, as well as many other fluid-based
cosmological models, can be put into correspondence with
scalar fields or tachyons. Hence, to fulfill the existence of a
second fluid exhibiting a vacuum energy contribution, it
appears straightforward to write down the corresponding
potential by

VMurnaghan ¼ V0 þ V1ðψ2 − v2Þ2; ð8Þ

that represents the simplest approach to enable a scalar field
to transport vacuum energy, once falling into one of the two
minima, ψ ¼ �v. This scenario represents a quartic power-
law potential that breaks the symmetry of the system, while
falling into �v.
We can reinterpret this choice of the potential in terms of

the so-called Murnaghan EoS, corresponding to a GCG
plus vacuum energy. Indeed, a direct comparison with the
perfect fluid energy-momentum tensor provides

ρ ¼ bðϕÞ�
1 − X

1þα
2α

� 1
1þα

− 2Y − V0 − V1ðψ2 − v2Þ2; ð9aÞ

P ¼ −bðϕÞ
�
1 − X

1þα
2α

� α
1þα þ V0 þ V1ðψ2 − v2Þ2; ð9bÞ

where the four-velocities for the fields ϕ and ψ are given by
uμ ¼ ∂μϕ=

ffiffiffiffi
X

p
and vμ ¼ ∂μψ=

ffiffiffiffi
Y

p
, respectively.

It appears evident that, as ψ → �v, a vacuum energy
contribution remains in both density and pressure, under
the form of a nonzero offset, V0 > 0.
For the sake of completeness, every potential of the form

V0 → VMurnaghanGðψÞ; ð10Þ

with the additional potential GðψÞ fulfilling the condi-
tion GðvÞ ¼ Gð−vÞ ¼ 1, can be used to describe the
Murnaghan potential that therefore is not unique.

In this work, by virtue of the freedom in choosing VðψÞ,
we focus on Eq. (8) only in order to require the existence of
an effective cosmological constant associated with the
second field, ψ .
Hence, choosing the minimum v, once the symmetry is

broken as ϕ → v and Y → 0, by introducing a shift of the
density ρ → ρ − V0, Eq. (9) reduce to the EoS

P ¼ −
bðϕÞ1þα

ρα
þ V0: ð11Þ

This, however, has been achieved by working out a shift of
the density that is valid only after the transition induced by
the symmetry-breaking potential. In such a case we are able
to freeze-out the kinetic term of ψ , that in general differs
from X.
The above finding is manifestly a GCG with an addi-

tional constant term, reinterpreted as a cosmological con-
stant, predicted by vacuum energy. Naively, because of the
presence of the offset V0, the model can exhibit regimes in
which dark energy arises naturally, leading however to the
existence of a matter fluidlike that provides pressure at all
stages of the universe evolution.
In the next section, we discuss the physics of this fluid

from a macroscopic perspective.

III. MACROSCOPIC INTERPRETATION
OF TACHYONIC FLUID WITH BARE
COSMOLOGICAL CONSTANT TERM:

THE THERMODYNAMIC ACCELERATON

Bearing Eq. (11) in mind, we reinterpret it in terms of the
so-called Murnaghan EoS, that in standard thermodynam-
ics is constructed with an additive constant contributing to a
GCG and resembling the aforementioned approach that
uses fields.
Specifically, in solid state physics, the Murnaghan EoS

establishes a relationship between the volume V and the
pressure P of a given physical system that features the
behavior of matter under high pressure. Its thermodynamics
reflects that experimentally the more a solid is compressed,
the more difficult is to compress it further. This process is
related to characteristics such as Poisson coefficient,
compressibility, etc. [62], and is extremely similar to what
happens in the context of the Anton-Schmidt fluid [63],
recently characterized as an extensions of logotropic
fluids [64].
Thus, the basic assumption behind the Murnaghan EoS

is that the bulk modulus of the incompressibility K ¼
−Vð∂P=∂VÞT at constant temperature T is a linear function
of pressure given by K ¼ K0 þ K0

0P. This provides a
pressure defined as

P ¼ K0

K0
0

��
V
V0

�
−K0

0

− 1

�
; ð12Þ
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where K0 is the first derivative of the bulk modulus with
respect to P and the subscript “0” labels the values of each
quantity describing the system taken when P ¼ 0.
A straightforward application of the above EoS in

describing the dynamics of the universe can be obtained
by considering V ∝ ρ−1, where ρ is the density. However,
key differences exist between solids and the universe.

(i) For the universe, the condition P ¼ 0 occurs at
intermediate/early times, when the pressureless
matter dominates the dynamics, namely, at a nor-
malization density ρ⋆ or at volume V0 ∝ ρ−1⋆ .

(ii) The universe expands, therefore, the volume V0 ∝
ρ−1⋆ is smaller than the volume V ∝ ρ−1 at pressure
onset, implying that ρ⋆ > ρ.

(iii) By definitionK > 0, so at P ¼ 0 it has to beK0 > 0.
Similarly, at the on-set of the cosmic pressure P < 0
causing the accelerated expansion of the universe, to
keep K > 0 requires K0

0 < 0.
In view of the above considerations, we may perform the
substitutions K0 → A⋆ and K0

0 → −α, where α > 0 and
A⋆ > 0 are constants, therefore, ending up with

P ¼ −
A⋆

α

��
ρ⋆
ρ

�
α

− 1

�
: ð13Þ

Equation (13) describes a Chaplygin-like behavior P ∝ ρ−α

with an additional constant term, as above noticed.
Remarkably, we can notice that the original scalar field

scenario assumes two fluids, identified by ψ and ϕ.
However, in the Murnaghan picture we focus on one fluid
only that unifies dark energy and dark matter under the
same standards. While in the Murnaghan model a further
constant contribution arises naturally, in the field repre-
sentation the constant contribution comes from vacuum
energy induced by ψ. Nevertheless, since ψ falls in its
minimum, the corresponding dynamics for ψ is frozen.
This is analogous to claim that we obtain only one
dynamical field, namely ϕ, in analogy to the Murnaghan
macroscopic representation of having one fluid only.
Interestingly, the magnitude of the constant term, mim-

icking the cosmological constant, is already tuned and can
be compatible with both observations andWeinberg’s no go
theorem, see e.g. [65]. We will focus on these points later in
the text, discussing the cosmological constant problem in
view of our framework.

A. Large-scale dynamics

By solving the continuity equation of a dark fluid with
the above pressure,

ρ0 þ 3ðPþ ρÞ ¼ 0; ð14Þ

where the prime represents the derivative with respect to
ln a and a is the scale factor, in principle, it is possible to
obtain the dark fluid density ρ.

This strategy, however, does not provide any analytical
solutions. Thus, to explore the feasibility of our EoS, it
would be useful to constrain the model parameters A, α and
ρ⋆ to obtain approximate but meaningful solutions.
In other words, we will approximate our EoS, Eq. (13),

for different epochs, demanding that from each epoch we
will bound the free parameters of our model.

B. Mimicking a ΛCDM-like solution

The first behavior is associated with reproducing the
ΛCDM scenario from our model. To this aim, we utilise the
recent constraints on theGCG fromRef. [66], where quasars
x-ray and UV flux measurements, Pantheon sample of SNe
Ia, compact radio quasars from very-long baseline interfer-
ometry, and BAO data have been used. Reference [66]
provides α¼ 0.03þ0.17

−0.14 . However, in Eq. (13), α < 0 implies
P > 0 and α ¼ 0 implies jPj → ∞; hence, it might be α≳ 0.
Since the scale factor a is related to the redshift z via
a ¼ ð1þ zÞ−1, if z ≈ 0 or a0 ≈ 1 we may approximate
ρ ≈ ρc—where ρc ¼ 3H2

0=ð8πGÞ is the universe’s critical
density, Hða0Þ≡H0 is the Hubble constant and G is the
gravitational constant—to get

ρðzÞ ≈ ρc

�
ΩDF þ

P
ρc

�
a−3 − P; ð15aÞ

P ≈ −A⋆ ln

�
ρ⋆
ρc

�
< 0; ð15bÞ

where ΩDF ≡ ρ=ρc is the dark fluid density parameter.
Remarkably, the above result is degenerate with the

ΛCDM paradigm, as we required. In fact, including the
contributions of pressureless baryonic matter and radiation,
we obtain

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMa−3 þ ΩRa−4 þ ΩΛ

q
; ð16Þ

where ΩB, ΩCDM, ΩR, and ΩΛ are the baryonic matter, the
cold dark matter, the radiation, and the cosmological
constant Λ density parameters, respectively, and their
relations are: ΩM ≡ΩB þΩCDM, ΩCDM ≡ΩDF −ΩΛ,
and ΩΛ ≡ −P=ρc, and the flat universe prior pro-
vides ΩM þΩR þ ΩΛ ≡ 1.

C. Mimicking a logotropiclike solution

If K0 is constant or very weakly dependent upon P, then
K0

0 ≈ 0 and from K0 ¼ −Vð∂P=∂VÞT , one gets
P ¼ −K0 lnðV=V0Þ. Resorting the usual substitutions to
adapt the result to cosmological purposes, we get

P ≈ −A⋆ ln

�
ρ⋆
ρ

�
< 0; ð17Þ

which generally holds for any value of ρ and not only when
ρ ≈ ρc. This result is remarkable, because it closely
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resembles the Anton-Schmidt EoS [46,67,68]

P ¼ An

�
ρ

ρ⋆

�
−n

ln

�
ρ

ρ⋆

�
; ð18Þ

with the index n ¼ 0, related to the Grüneisen parameter
γG ¼ −1=6 [69], and the imposition An → A⋆. Strictly
speaking, Eq. (18) with the constraint n ¼ 0 is referred to as
logotropic model [45,46].
From the first law of thermodynamics for adiabatic

systems and Eq. (17), the energy density ϵ can be expressed
in terms of the total matter density ρMðaÞ as

ϵðaÞ ¼ ρMðaÞ þ ρMðaÞ
Z

P½ρ0MðaÞ�
ρ0MðaÞ2

dρ0MðaÞ

¼ ρMðaÞ − A⋆

	
1þ ln

�
ρMðaÞ
ρ⋆

�

: ð19Þ

By defining in Eq. (19) the quantities

B≡ ½lnðρ⋆=ρMÞ − 1�−1; ð20aÞ

A⋆ ≡ BρcΩΛ; ð20bÞ

and dividing by ρc, so that ρMðzÞ=ρc ≡ΩMa−3, we obtain

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMa−3 þΩRa−4 þ ΩΛð1þ 3B ln aÞ

q
; ð21Þ

where we introduced the contribution of the radiation and,
knowing that ΩM ≡ΩB þ ΩCDM, the flat universe prior
provides ΩM þ ΩR þΩΛ ≡ 1.
In Ref. [70], the density ρ⋆, is identified with the Planck

density ρP ¼ c5=ðℏG2Þ, where c is the speed of light and ℏ
is the reduced Planck constant. We refer to this case as GL1
model. In general, ρ⋆ may be kept as a model parameter
through B. We refer to this second case as GL2 model.

D. Mimicking a generalized
Chaplygin gaslike solutions

Another interesting approximation of the Murnaghan
EoS, that follows from the assumption of a bulk modulus
with K0 ≪ K0

0P, is given by

P ≈
K0

K0
0

�
V
V0

�
−K0

0

: ð22Þ

By substituting K0 → αAcρ⋆ and K0
0 → −α, we obtain the

GCG EoS [56]

P ¼ −Acρ⋆

�
ρ⋆
ρ

�
α

: ð23Þ

From Eq. (14) we get

ΩDFðaÞ ¼ ΩDF

h
As þ ð1 − AsÞa−3ð1þαÞ

i 1
1þα; ð24Þ

with ΩDFðaÞ≡ ρðaÞ=ρc and ΩDF ≡ ρða0Þ=ρc. From the
choices made for the model parameters, we have that

As ≡ Ac

�
ρ⋆

ρða0Þ
�
1þα

; ð25aÞ

A⋆ ≡ αAcρ⋆: ð25bÞ

Also, As can be written in terms of the effective total matter
density ΩM and α as [66]

As ¼ 1 −
�
ΩM − ΩB

1 −ΩB

�
1þα

: ð26Þ

Including baryonic matter and radiation, we get

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩBa−3 þ ΩRa−4 þΩDFðaÞ

q
; ð27Þ

where the flat universe prior gives ΩB þΩR þ ΩDF ≡ 1.
To focus on which epochs are related to the above

approximations, we now intend to constrain our models and
fix the bounds over the free parameters. We will thus
conclude on how to interpret the model throughout the
evolution of the universe.

IV. NUMERICAL CONSTRAINTS

In the concordance model, the total energy density can
be decomposed into pressure-less (baryonic and dark)
matter and cosmological constant Λ. When the Murnaghan
EoS is taken into account, the above decomposition is less
trivial because the solution of the continuity equation is not
analytic and our dark matter component does not exhibit a
vanishing pressure. Among the above analyzed approxi-
mated solutions of the Murnaghan EoS, we have seen that
in ΛCDM-like and logotropic solutions dark energy and
dark matter components are “disentangled,” whereas in the
GCG solution these components are intertwined.
In view of these considerations, the study of the above

approximated solutions can provide constraints for the
model parameters of the full numerical solution of the
Murnaghan EoS. Therefore, we perform a set of MCMC
analyses to fix the cosmological bounds over the different
paradigms. We employ the standard low-redshift data
surveys: OHD [71], the Pantheon catalog of SNe Ia [72],
and BAO [73], all referring to the cosmological redshift z,
which is easier to measure. The best set of model parameters
is set by maximizing the total log-likelihood function

lnL ¼ lnLO þ lnLS þ lnLB: ð28Þ

Below, we define the contribution of each probe.
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A. Hubble rate data log-likelihood

OHD are cosmology-independent estimates of the
Hubble rate HðzÞ ¼ −ð1þ zÞ−1Δz=Δt, obtained through
spectroscopic measurements of the age difference Δt and
redshift difference Δz of couples of passively evolving
galaxies that formed at the same time [74]. The corre-
sponding log-likelihood function is then given by

lnLO ¼ −
1

2

XNO

i¼1

	
ln ð2πσ2Hi

Þ þ
�
Hi −HðziÞ

σHi

�
2


; ð29Þ

where NO ¼ 32 corresponds to the OHD data points [71].

B. SNe Ia log-likelihood

The Pantheon dataset of 1048 SNe Ia [72] is equivalently
described as a EðzÞ−1 ≡H0=HðzÞ catalog, at NS ¼ 6
redshifts, which accurately reproduce the cosmological
constraints of the whole SN Ia dataset [75]. The corre-
sponding SN log-likelihood function is given by

lnLS ¼ −
1

2

XNS

i¼1

½E−1
i − EðziÞ−1�TC−1

S ½E−1
i − EðziÞ−1�

−
1

2

XNS

i¼1

ln ð2πj detCSjÞ; ð30Þ

where E−1
k are the measurements from SNe Ia and CS is the

covariance matrix [75].

C. BAO log-likelihood

BAO are the observed peaks in the large scale structure
correlation function and enable angular measurements in
different redshift slabs that might be correlated or not.
For uncorrelated data points we define

ΘðzÞ≡ rs

�
HðzÞ
cz

�1
3

�ð1þ zÞ
dLðzÞ

�2
3

; ð31Þ

where, for a flat universe, the luminosity distance is

dLðzÞ ¼ cð1þ zÞ
Z

z

0

dz0

Hðz0Þ ; ð32Þ

and rs is the comoving sound horizon at the baryon
drag redshift, calibrated through the CMB data for a
given cosmological model. Hereafter we fix rs ¼
147.09 Mpc [76]. The corresponding log-likelihood is
given by

lnLu
B ¼ −

1

2

XNu
B

i¼1

	
lnð2πσ2Θi

Þ þ
�
Θi − ΘðziÞ

σΘi

�
2


; ð33Þ

where the Nu
B ¼ 8 measurements are taken from Ref. [77].

For correlated data, we define

ΞðzÞ≡H0rs
cz

ffiffiffiffiffiffiffi
Ωm

p
ΘðzÞ ; ð34Þ

and write the corresponding log-likelihood

lnLc
B ¼ −

1

2

XNc
B

i¼1

½Ξi − ΞðziÞ�TC−1
B ½Ξi − ΞðziÞ�

−
1

2

XNc
B

i¼1

ln ð2πj detCBjÞ; ð35Þ

where the Nc
B ¼ 3measurements and the covariance matrix

CB are taken from Ref. [78].
Therefore, the full BAO log-likelihood is given by

lnLB ¼ lnLu
B þ lnLc

B: ð36Þ

D. Numerical results

Table I and Fig. 1 show, respectively, the contour plots
and the best-fit parameters got from ΛCDM, GL1, GL2,
and GCG models. We parametrized H0 ¼ 100h0 and fixed
ΩR ¼ 9.265 × 10−5 and ΩB ¼ 0.0493 [76].
The statistical comparison of the above models is based

on the Aikake information criterion (AIC) and Bayesian
information criterion (BIC) [79], respectively,

TABLE I. Best-fit and derived parameters (with 1 − σ errors), and statistical tests of ΛCDM, GL1, GL2, and GCG models. As the
Murnagham fluid cannot be integrated analytically, we separately fit each of the above approximations, namely the ΛCDM, GL1, GL2
and GCG scenarios, to constrain the free parameters of our overall model, based on the nonminimal coupling between two scalar fields.

Best-fit parameters Derived parameters Statistical tests

Model h0 ΩM B α logðρ⋆=ρcÞ logðA⋆=ρcÞ − lnL AIC (BIC) Δ

ΛCDM 0.690þ0.012
−0.011 0.304þ0.028

−0.024 � � � � � � 122.76 −2.608þ0.019
−0.020 65.50 135 (139) 0 (0)

GL1 0.691þ0.011
−0.011 0.305þ0.027

−0.025 � � � � � � 122.76 −2.610þ0.019
−0.020 65.50 135 (139) 0 (0)

GL2 0.711þ0.012
−0.013 0.358þ0.031

−0.029 0.319þ0.042
−0.041 � � � 1.35þ0.09

−0.12 −1.135þ0.038
−0.042 74.98 156 (162) 21 (23)

GCG 0.691þ0.014
−0.013 0.307þ0.035

−0.028 � � � 0.03þ0.22
−0.17 122.76 −4.971þ0.019

−0.020 65.50 137 (143) 2 (4)
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AIC ¼ −2 lnLþ 2p; ð37aÞ

BIC ¼ −2 lnLþ p lnN; ð37bÞ

where lnL is the maximum of the log-likelihood, p is the
number of parameters, and N is the number of data points.
The model with the lowest values of the above criteria,
labeled with AIC0 and BIC0, is referred to as the fiducial
(best-suited) model. The comparison between the proposed
models and the fiducial one is performed by computing the
differences Δ ¼ AIC − AIC0 or BIC − BIC0, that provide
evidence against the proposed model or, equivalently, in
favor of the fiducial one, as follows

(i) Δ∈ ½0; 3�, weak evidence;
(ii) Δ∈ ð3; 6�, mild evidence; and
(iii) Δ > 6, strong evidence.
Looking at the statistical test part of Table I, we

can conclude that ΛCDM and GL1 models are equally

best-suited to fit the data, the GCG model is weakly/mildly
disfavored, whereas the GL2 model is strongly excluded.

V. PHYSICAL INTERPRETATION
OF OUR DOUBLE-FIELD MODEL

From the results of the statistical analysis summarized
Table I, now we can provide handful constraints on the
parameters (α, ρ⋆, A⋆) of the Murnaghan EoS.

(i) ΛCDM. For this limiting case, we assumed α≳ 0.
However, we are unable to constrain ρ⋆ and A⋆
because from Eq. (15) we get only one condition

A⋆ ¼ 3H2
0

8πG

�
ln

�
8πGρ⋆
3H2

0

��
−1
ð1 − ΩM −ΩRÞ: ð38Þ

In Table I, to break the above-described degeneracy,
we impose ρ⋆ ≡ ρP and derive A⋆.
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FIG. 1. Contour plots and best-fit parameters (black dots) of ΛCDM (top left), GL1 (top right), GL2 (bottom left), and GCG (bottom
right) models. Darker (lighter) areas mark 1 − σ (2 − σ) confidence regions.
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(ii) GL1 and GL2. Also for these models we assumed
α≳ 0 but now, from Eq. (20), we are able to set
conditions on both ρ⋆ and A⋆, i.e.,

ρ⋆ ¼ 3H2
0ΩM

8πG
exp

�
1þ 1

B

�
; ð39aÞ

A⋆ ¼ 3H2
0B

8πG
ð1 −ΩM − ΩRÞ: ð39bÞ

For the GL1 model, the condition ρ⋆ ≡ ρP holds,
thus in Table I we evaluated only A⋆. For the GL2
model, we evaluated both ρ⋆ and A⋆.

(iii) GCG. In this case α is a model parameter and its
best-fit value (see Table I) agrees with the results got
in Ref. [66]. On the other hand, like in the ΛCDM
case, from Eq. (25) we obtain only one condition

A⋆ ¼ α
As

ρα⋆

�
3H2

0

8πG

�
1þα

ð1 − ΩB −ΩRÞ1þα; ð40Þ

that does not allow us to disentangle ρ⋆ and A⋆ and
the expression of As is given by Eq. (26).

Now, we can draw some interesting considerations.
(i) At late times, when a ≈ 1, the Murnaghan EoS in

Eq. (13) is approximated by the ΛCDM model for
ρ ≈ ρc; the GL1 and GL2 models represent the
limiting cases of Eq. (13) for ρ ≠ ρc.

(ii) Looking at Table I, we notice that the GL1 is
statistically identical to and degenerates with the
ΛCDM model, whereas the model GL2 is strongly
excluded. Therefore, since ΛCDM and GL1 models
are limiting cases of Eq. (13), we can safely deduce
that the condition ρ⋆ ≡ ρP holds also for the more
general Murnaghan EoS.

(iii) At intermediate times 0≲ a ≲ 1, once the condition
ρ⋆ ≡ ρP is set-up, the term ðρP=ρÞα dominates and
Eq. (13) can be approximated by the GCG model.
Since this model is the only one able to constraint
the parameter α, we use the corresponding value
listed in Table I as a constraint for the Murna-
ghan EoS.

(iv) Putting together in Eq. (40) the constraint ρ⋆ ≡ ρP
got from ΛCDM and GL1 models and the value of α
got from the GCG model, we get the value of A⋆
listed in Table I for the GCG case that represents the
last constraint for the Murnaghan EoS.

(v) Finally we notice that, at early times, when a ≈ 0
and x ¼ ρP=ρ ≈ 1, at the lowest order we have
xα − 1 ≈ ln xα, therefore, Eq. (13) becomes the
EoS of the GL model in Eq. (17).

In view of the above findings, viable constraints on the
parameters of the Murnaghan EoS are

ᾱ ¼ 0.03þ0.22
−0.17 ; ð41aÞ

ρ̄⋆ ¼ ρP; ð41bÞ

Ā⋆ ¼ ð1.07þ0.05
−0.05Þ × 10−5ρc; ð41cÞ

where we indicated with upper bars the parameters,
pointing out that those limits are average quantities got
from the fits, performed at different times.
The corresponding best-fit cosmological parameters,

with associated errors, can be found from the numerical
bounds obtained from ΛCDM, GL1 and GCG models,
having:

h̄0 ¼ 0.691þ0.14
−0.13 ; ð42aÞ

Ω̄M ¼ 0.305þ0.037
−0.026 : ð42bÞ

In particular, bearing such intervals in mind, we notice
that Fig. 2, top panel, displays the numerical density of
the Murnaghan EoS for the parameters (ᾱ, ρ̄⋆, Ā⋆) listed
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FIG. 2. Top: numerical density from the Murnaghan EoS,
compared with dark matter and dark energy behaviors of the
ΛCDM case; the shaded area marks the radiation density
behavior. Bottom: comparison among the pressures of Murna-
ghan, GCG, GL1 (rescaled to match the Murnaghan one at
a → 0), and ΛCDM. The insets show the behaviors at
0.1 ≤ a ≤ 1. The parameter values are taken from Table I.
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in Eq. (41) and the cosmological parameters (h̄0, Ω̄M)
summarized in Eq. (42). Being a dark fluid numerical
solution, it is compared with the dark (matter and energy)
sector behaviors obtained with the parameters (h0, ΩM)
taken from the ΛCDM case in Table I.
The comparison of the pressures of Murnaghan, GCG,

GL1 (rescaled to match the Murnaghan one at a → 0), and
ΛCDM are portrayed in the bottom panel of Fig. 2. The
curves, obtained using the values of Table I, show explicitly
that the full numerical solution behaves like

(i) ΛCDM and GL1 cases at a ≈ 0,
(ii) the GCG model at 10−5 ≲ a≲ 1, and
(iii) a scaled GL1 case at a ≲ 10−5.

Hence, we find the physical interpretation below.
(i) At very early times, the model acts as logotropic

fluid that reduces to the ΛCDM model. This implies
that, in view of structure formation, we do not expect
significant departures adopting our model. Phrasing
it differently, a similar behavior of our current
standard cosmological model is expected even at
the level of structure formation.

(ii) At early times, the model appears as a logotropic
fluid, being a limiting case of the Anton-Schmidt
EoS. This is not in contrast with current knowledge
about this epoch, albeit possible comparisons adopt-
ing high-distance indicators, such as gamma-ray
bursts, would clearly help a lot to check whether
the model is well-suited at this stage.

(iii) From intermediate time up to our epoch, the model
appears as a Chaplygin gas. Particularly, the model
acts as a GCG solution and agrees with late time
observations. This behavior can also reconcile the
matter-dominated phase with the dark energy-
dominated phase, being compatible with our
expectations.

(iv) Remarkably, we can wonder whether the Murnaghan
EoS can alleviate the h0 tension. This aspect can be
investigated in view of the numerical results that we
obtained in Table I. There, apparently the case GL2
can increase the value of h0 only, although within
1σ the departure from the local value obtained by
Riess [80] fromCepheids is only slightlymatching.At
large redshifts, however, the Murnaghan EoS appears
indistinguishable from the ΛCDM paradigm. So, we
cannot expect to heal the cosmological tensions on h0
easily. This can be due to the form of the Murnaghan
EoS obtained from a double-scalar field, where the
second falls in the minimum. Possibly, assuming a
more complicated form of the potential may lead to
improvements on the h0 tension, i.e., generalizing the
Murnaghan EoS through more complicated versions.

A. Thermodynamics of matter with pressure

Matter exhibiting pressure behaves as an effective dark
energy contribution. Any evolving dark energy components

comply with the laws of thermodynamics and might be
described as perfect fluids, particularly in the context of
background cosmology. Specifically, the role of specific
heats in cosmology has been examined in light of obser-
vational data [81], showing that dark energy exhibits
strange behavior for specific heats, similar to the case of
black holes, where the specific heat appears negative [82].
Our EoS mimics dark energy as due to the different

thermodynamic stages throughout the universe evolution.
This may be prompted easily, emphasizing how it can
extend the standard ΛCDM model, by simply working out
the adiabatic indices coming from the requirement that heat
capacities are constructed in equilibrium thermodynamics
for the matter fluid itself, namely assuming they can evolve
with time.
As in standard thermodynamics, the heat capacities con-

form to the relationship between internal energy, enthalpy,
and so, in view of the fact that the thermal exchange process
is purely adiabatic, implying that the volume scales as
V ∝ a3, the inferred dark energy contribution exhibits weak
interactions with the other constituents, behaving akin to a
gaseous fluid source in Einstein’s equations.
So, we consider the possibility that the adiabatic index,

denoted as γ, can take specific values while excluding
regions where it is not allowed to vary. To do so, we resort
the definition of internal energy and enthalpy,

U ¼ ρV; ð43aÞ

h ¼ ðρþ PÞV; ð43bÞ

respectively, which are positive definite functions of the
volume V, the pressure P, and the temperature T. Since all
state variables evolve with z, it is natural to assume the
simplest hypothesis where U and h are solely functions of
T, so that ρ ¼ ρðTÞ and P ¼ PðTÞ. Adopting the standard
definition V ¼ V0a3, which captures the evolution of the
universe at early and late times, and the relations H0=H ≡
ð1þ qÞð1þ zÞ−1 and H00=H≡ ðj−q2Þð1þ zÞ−2, we define

CP ¼ 2V0

T 0
ðj − 1Þ
ð1þ zÞ4H

2; ð44aÞ

CV ¼ 3V0

T 0
ð2q − 1Þ
ð1þ zÞ4 H

2; ð44bÞ

where q is the deceleration parameter and j the jerk
parameter, related to the so-called cosmography of the
universe [83–87] and the prime here indicates derivative
with respect to the redshift, z. Then, combining these
relations among them, the adiabatic index γ yields

γ ¼ 2ðj − 1Þ
3ð2q − 1Þ : ð45Þ
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The three allowed regimes are: 0 < γ < 1, γ ¼ 1 and γ > 1
and so the consequences on the thermodynamics of dark
energy are summarized as follows: CV;CP < 0 in the first
case, CP ¼ 0 and CV < 0 in the second case and CV; CP >
0 in the last case, and furthermore there also exists a region
for which2 CP ¼ 0 and CV ¼ 0, occurring as q → 1=2 and
j → 1. Therefore, we have

γ ¼ CP

CV
¼ ðρ0 þ P0ÞV þ ðρþ PÞV 0

ρ0V þ ρV 0 ; ð46Þ

thus, for each epoch the Murnaghan pressure changes
accordingly as we list below.

(i) At primordial time:

q ≃ 1; ð47aÞ

j ≃ 3; ð47bÞ

γ ¼ 4

3
: ð47cÞ

Here, the adiabatic index is positive-definite, as a
consequence of the jerk parameter [88]. This indi-
cates an effective polytropic fluid that acts as a
cosmological constant plus the contribution of matter
and radiation. Clearly, the effective value of the
cosmological constant involved in our approximation
cannot be exactly that of the ΛCDM model, since it
differs due to the offset imposed from the beginning
into the Murnhagam EoS. Further, a slight variation
in time is also expected, differently from the standard
cosmological model, albeit leaving unaltered the
signs of CP and CV .

(ii) At early times: the model appears as a logotropic
fluid, but since at early times we are at very high
redshift, again conditions (47) are fulfilled. Hence,
once again the model resembles the findings of the
standard cosmological model even at this stage,
implying a suitable thermodynamics as the specific
heats are well-defined. Thus, the condition on γ
suggests that very slight departures occur and,
consequently, weak changes at the level of pertur-
bations are also expected.

(iii) At our time: the model appears as a GCG. Here, the
conditions got in Eq. (47) are clearly violated, having

q ≃ −0.5; ð48aÞ

j ≥ 1; ð48bÞ

γ < 0: ð48cÞ

Here the model works very differently than the
previous case, indicating a negative adiabatic index.
This thermodynamic instability has been explored in
view of dark energy and appears related to the form of
the two specific heats. Specifically, CP > 0 and
CV < 0, showing that the dark energy fluid behaves
very differently than a standard constituent, although
the Mayer relation, CP − CV > 0 is fully preserved,
showing that dark energy is approximately described
by means of a perfect gas.

In both the latter cases, the model shows that it corresponds
to a polytropic fluidlike with effective pressure, rescaled by
a constant term, with γ ≃ α. The model is therefore long-
ranging, when a specific heat is negative, exhibiting a
behavior that changes significantly as the universe temper-
ature is modified accordingly. The effect of expansion tends
to mostly modify the overall form of P, changing con-
sequently the physics associated with the fluid itself. The
effects of this behavior are however more evident at
intermediate and small redshifts, while at smaller ones
the fluid acts as a matterlike component with small
pressure. In this respect, it is possible to model the fluid
by assuming a double polytrope. Models like this are
written as [89]

P ¼ P1ρ
γ1 þ P2ρ

γ2 ; ð49Þ

with P1, P2, γ1, γ2 constants to be defined. The Murnagham
fluid appears therefore a limiting case that occurs as γ1 < 0
and γ2 ¼ 0, identifying P2 with the constant value of
vacuum energy.
For the sake of completeness, there is a further consid-

eration to take into account. The value of vacuum energy,
associated to primordial quantum fluctuations, imposed
since the very beginning is fine-tuned since it cannot be
related to the very large values of quantum fields, but rather
to the value measured by the Planck satellite [90]. This is
related to the cosmological constant problem, namely the
inability to cancel out the degrees of freedom related to
high-energy scales associated with quantum fluctuations
before and after the phase transition, described in the
beginning, at the same time [91]. In other words, our
model predicts a matterlike component that arose only after
a fine-tuning mechanism of cancellation has occurred to
delete the cosmological constant. Hence, our model does
not solve the cosmological constant problem by itself, but
rather it assumes that it has been resolved somehow during
the transition. A possible explanation toward the value of
the constant may arise investigating the microphysics of the
Murnaghan EoS, i.e., its quantum origin. This is however
beyond the purpose of this work and may be subject of
further investigations. For additional details about the kind
of cancellation mechanisms, expected to erase the cosmo-
logical constant, one can refer to Refs. [48,51,54,55,92,93].

2In general, this could happen at a redshift z ≫ 1, under the
hypothesis of de-Sitter contribution to dark energy.
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VI. IMPACT OF MATTER WITH PRESSURE
ON LINEAR PERTURBATIONS

To form structures in the universe requires small initial
density perturbations, most likely due to the clustering of
matter. In the linear regime, assuming a homogeneous
and isotropic universe [94], the evolution of such matter
density perturbations can be express by the matter fluid
δ ¼ δρM=ρM and it is described by [46]

δ00 þ ðSδÞ0 þ
�
2þH0

H
−
T 0

T

�
ðδ0 þ SδÞ − TWδ ¼ 0; ð50Þ

with S¼ 3ðs−wÞ, T ¼ 1þ w, andW ¼ 3ð1þ 3sÞΩðaÞ=2.
The sound speed entering into perturbations is the adiabatic
one and its effect is taken into account by

s ¼ c2s ¼
�
∂P
∂a

��
∂ρM
∂a

�
−1
: ð51Þ

Defining the matter component density parameter of the
perturbed fluid ΩðaÞ and the barotropic index w,

ΩðaÞ ¼ ρMðaÞ
EðaÞ2 ; ð52aÞ

wðaÞ ¼ −1 −
2

3

H0ðaÞ
HðaÞ ; ð52bÞ

and introducing the logarithmic growth factor f ¼ ðln δÞ0,
Eq. (50) becomes [46]

f0 þ
�
2þ f þH0

H
−
T 0

T

�
ðf þ SÞ þ S0 − TW ¼ 0: ð53Þ

The general approach to the solution of Eq. (53) consists of
the steps below [46].
(1) The clustering component is assumed to be the dark

matter, so one can set w ¼ 0.
(2) The phenomenological solution f ≈ Ωγ

MðaÞ [95],
where γ is the so-called growth index, enables to
solve a first-order differential equation for γ.

(3) To linearize the above differential equation in γ, the
matter component is assumed to be Ωm ≈Oð1Þ.

(4) A vanishing sound speed is assumed through s ¼ 0.
In the following, we take only the above step 1 and proceed
with the numerical evaluations for ΛCDM, GL1, GCG, and
numerical Murnaghan models. The numerical comparisons
of the Hubble rates, the sound speeds, and the logarithmic
growth factors of the Murnaghan, GCG, GL1, and ΛCDM
models are portrayed in Fig. 3. The parameter values used
in the plots of the ΛCDM, GL1 and GCG models are taken
from Table I; the parameters for the Murnaghan model are
taken from Eqs. (41) and (42).
The evolution of the Hubble parameter in Fig. 3 (top

panel) is portrayed as the relative departure with respect to

the reference ΛCDM model. For all models the departure
within 1% error for 0 ≤ a ≤ 1.
The most interesting quantity for the evolution of pertur-

bations is the adiabatic sound speed, which is shown in Fig. 3
(middle panel). The sound speed determines the stability and
the validity of a given model against perturbations.
The evolution of the growth factor f is depicted in the

bottom panel of Fig. 3.
The main findings can be easily listed as follows:
(i) All the models derived from the Murnagham EoS

have a roughly negligible and positive-defined
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FIG. 3. Numerical comparison among Murnaghan, GCG, GL1,
and ΛCDM models. Top: Hubble rate relative differences (with
respect to the ΛCDM one). Middle: squared sound speeds.
Bottom: logarithmic growth factors. The parameters used in
the plots are taken from Table I.
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sound speeds (identically zero only for the ΛCDM
model).

(ii) At very early times, for all models, f flattens and is of
the order unity as expected, then it tends to decrease.

(iii) At late times, the small departures of GL1 and GCG
models from the ΛCDM one are due to the very
small (but non-negligible) values of the sound
speeds for these two models.

(iv) On the contrary, for the Murnaghan EoS we have a
large deviation from the ΛCDM paradigm, resulting
in a more efficient growth of perturbations. This
deviation cannot be explained by the sound speed of
this model, since it is comparable to the sound speed
of the GCG model (see the middle panel of Fig. 3).
The main responsible for this effect is the density
parameter of the perturbed fluid ΩðaÞ. Unlike the
analytic case of the GCG model, the Murnaghan
EoS does not allow us to disentangle the contribu-
tion of the dark matter density from the dark fluid
density, therefore, ΩðaÞ accounts for the total dark
fluid density enhancing the growth of perturbations.

VII. FINAL OUTLOOKS AND PERSPECTIVES

We investigated a class of generalized unified dark
energy models in which a nonminimal coupling between
a tachyonic and scalar fields is introduced. In particular, we
demanded that the second field, coupled to the tachyon
environment, carries vacuum energy, as predicted by the
standard model of particle physics. As a consequence of
this recipe, we considered that the second scalar field
determines the existence of a vacuum energy term, invok-
ing a corresponding nonremovable offset imposed from a
symmetry breaking mechanism.
After the transition, in which the second field appears no

longer dynamical, the corresponding EoS appears com-
posed as a sum between a GCG and cosmological constant
contribution. We reinterpreted this result in view of the so-
called Murnagham EoS, widely-adopted in contexts of
solid state physics to characterize those fluids, which under
the action of external pressure, tend to act against the
pressure itself.
We studied the corresponding dynamics of this model

and emphasized the main differences with respect to the
GCG. Specifically, since the model is not analytically
integrable, we argued how it can reduce to particular cases,
such as to the ΛCDM paradigm, to a logotropic fluid and to
a Chaplygin gas. To do so, we analyzed each approxima-
tion and constrained the corresponding bounds over the
free parameters in order to fix them.
Numerical results are taken into account, showing that

the model adapts well to cosmic data, as demonstrated by
numerical analyses performed by means of MCMC analy-
ses, based on the Metropolis-Hastings algorithm. Using

cosmic data, such the OHD, the Pantheon SNe Ia and the
BAO catalogs, we found limits over the parameters that
suggest how the model changes throughout the universe’s
expansion history.
Precisely, at very early times, we found that the model

acts as a logotropic fluid that reduces to the ΛCDM model,
while from early to intermediate times, and up to our time,
the model appears to described by a GCG. We interpreted
our findings in terms of thermodynamics, showing where
the model resembles a polytrope and discussing the role of
specific heats.
We then determined the evolution of the density contrast

in the linear regime. According to our findings about the
possible approximations inferred from the Murnagham
EoS, we found that in all cases a nonzero sound speed
is accounted for. At very early times, the growth factor
flattens and is of the order unity as expected, then it tends to
decrease. At late times, the small departures of GL1 and
GCGmodels from the ΛCDM one are due to the very small
(but non-negligible) values of the sound speeds, while for
the Murnaghan EoS we found a large deviation from the
ΛCDM paradigm, resulting in a more efficient growth of
perturbations. We critically discussed this deviation in view
of current observations. We thus concluded that our
model appears viable in describing structure formation.
Consequences on the h0 tension are also discussed, in view
of possible generalizations of the Murnaghan EoS too.
Consequently, we conclude that our framework appears

to be well suited for describing the universe through the
action of a single fluid, namely a matterlike fluid with
pressure. In other words, we argued that our approach
seems to be a suitable candidate to unify dark energy and
dark matter under the same standards, applying the non-
minimal coupling between two fields, in which at least one
of them transports vacuum energy.
Future developments will deal with nonlinear perturba-

tions of the fluid itself. We will also focus on how the
thermodynamics of this fluid can justify the negative sign
of the pressure. Of particular interest, it will be the
discussion on how the Murnaghan EoS can heal the σ8
tension, as it appears particularly suitable in framing out the
cosmological structure formation. Last but not least, we
will focus on how to obtain a quantum origin of the
Murnaghan EoS, possibly able to find a way out to the
cosmological constant problem, in order to obtain more
hints toward the nature of unified dark energy models [96].
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