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This paper explores the physics of second-order gravitational waves (GWs) induced by scalar-tensor
perturbation interactions in the radiation-dominated Universe. We investigate the distinctive signatures of
these GWs and their detectability compared to scalar-induced GWs. Unlike scalar-scalar induced GWs,
scalar-tensor induced GWs do not present resonances or a logarithmic running in the low frequency tail in
the case of peaked primordial spectra. But, interestingly, they partly inherit any primordial parity violation
of tensor modes. We find that chirality in primordial GWs can lead to distinguishing effects in scalar-tensor
induced GWs in the ultraviolet (UV) region. We also address a potential divergence in our GWs and
explore possible solutions. This study contributes to our understanding of GWs in the early Universe and
their implications for cosmology and GWs detection.
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I. INTRODUCTION

Pulsar timing array (PTA) collaborations, NANOGrav,
EPTA/InPTA, PPTA, and CPTA, have presented evidence
[1–4] for an isotropic stochastic gravitational wave back-
ground (SGWB). This event represents a pivotal milestone
in the field of physics, possibly heralding the advent
of gravitational wave astronomy in the early Universe.
This marks the second major breakthrough following the
groundbreaking detection of gravitational waves (GWs)
from a binary black hole merger [5] in modern cosmology,
which led to an increased focus within the scientific
community on designing more precise GWs observations
and developing robust theoretical predictions. Among the
diverse range of GWs sources [6–10], it is plausible that a
cosmic background of GWs permeates the universe. This
GWs background represents a potential smoking gun of
inflation [11–13] and encapsulates invaluable information
about the early Universe [8,10,14–18], as GWs barely
interact with intervening matter. The search for the cosmic
GWs background has always been a central focus in
cosmology, pursued through avenues such as B-mode
polarization of the cosmic microwave background (CMB)
and direct detection using interferometers [8,19–26].

Gravitational waves are metric tensor perturbations that
can arise from vacuum fluctuations during inflation, par-
ticularly in the context of single-field slow-roll inflation.
However, within the broader framework of inflationary
models, classical production mechanisms for GWs have
also been explored [8]. Regarding non-inflationary mech-
anisms, a strong GWs signal can be produced by topo-
logical defects [27,28], or phase-transitions [9,29]. GWs
are also induced by primordial fluctuations after inflation.
While at linear order in cosmological perturbation theory
scalar and tensor fluctuations decouple, it is no longer the
case at higher orders. For instance, the product of two
spatial gradients of scalar fluctuations has a non-vanishing
transverse and traceless projection that sources tensor
fluctuations. This has led to extensive research, with a
significant focus on scalar perturbations as the seeds for
second-order tensor perturbations, primarily because scalar
perturbations dominate at the linear level. Such a topic has
indeed a long history, starting from [30,31] and has been
later developed in, e.g. [32–43].
This intriguing signal from PTA results has sparked

various interpretations, including inspirals of supermassive
black hole binaries [44], phase transitions [45], and cosmic
strings [46]. Among these possibilities, scalar-induced
gravitational waves (SIGWs) have garnered attention
and are being considered in many analyses [1,2,47–49].
These “scalar-scalar induced GWs” have also been used as
probes for primordial black holes [50–53]. Analytic inte-
gral solutions for second-order GWs, induced by various
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quadratic combinations of cosmological perturbations,
during both matter and radiation-dominated epochs, are
provided in [54].
Curvature (scalar) perturbations are tightly constrained

by the latest Planck data on cosmic microwave background
(CMB) scales, with an amplitude of AS ¼ 2.1 × 10−9 [55].
On the other hand, the recent joint analysis using
Planck2018, BICEP2/Keck2015-2018, and LIGO-Virgo-
KAGRA data has placed a tight constraint on r (< 0.028)
[56], where r ¼ AT=AS is the so-called tensor-to-scalar
perturbation ratio and AT is the amplitude of the tensor
power-spectrum at CMB scales. However, these constraints
would not be applicable to smaller scales without large
extrapolations, leaving the amplitude of both scalar and
tensor fluctuations mainly unconstrained. In fact, on small
scales, there exist various well-motivated mechanisms in
the literature that can generate such large perturbations,
both scalar perturbations as mentioned in the induced
gravitational waves scenario related to primordial black
holes formation, and tensor perturbations in the context of
induced matter perturbations [57].
While the general expectation is that scalar-scalar

induced GWs dominate the secondary GWs signal, the
product of scalar-tensor and tensor-tensor also source GWs
at second order. Scalar-tensor interactions may also play an
important role in the wave-optics limit of the GW back-
ground [58] (see e.g. Refs. [59–61] for wave-optics effects
in astrophysics). It is thus important to systematically study
the physics of these additional GWs signals and investigate
their distinct signatures and any chance at detecting them.
In this paper, we focus on gravitational waves induced
by interactions between scalar and tensor perturbations in
the radiation-dominated Universe, by treating such scalar-
tensor interactions as a source to GWs in the early
Universe. Understanding these interactions in cosmology
might be important for a general description of cosmic
GWs propagating through an inhomogenous Friedmann-
Lemaître-Robertson-Walker (FLRW) universe.
Scalar-tensor induced GWs have been explored before

in Refs. [54,62]. In particular, Ref. [62] pointed out that,
for Dirac delta primordial scalar and tensor spectra, scalar-
tensor induced GWs may dominate the high-frequency
regime of the total induced GWs. However, there is no
general answer regarding the detectability of this signal
compared to scalar-induced GWs. While GWs induced by
scalar-tensor interactions are novel and intriguing in its own
right, it is important to address this latter point. We improve
and clarify previous studies on scalar-tensor induced GWs
in several ways:

(i) We derive general formulae allowing for parity
violation of primordial tensor modes. Chiral GWs
violate parity symmetry and exhibit distinct handed-
ness or helicity, where the wave’s behavior differs
between left-handed and right-handed polarizations,
while non-chiral ones, maintaining parity symmetry,

lack this distinguishing characteristic. For models
leading to primordial chiral GWs see Refs. [63–65]
and the references therein. Also see Ref. [66] for a
nice overview on the topic. We show how such
parity violation is partly inherited by scalar-tensor
induced GWs and discuss their distinct signatures.
We also take into account finite width of primordial
spectra.

(ii) We identify possible infra-red divergences in the
scalar-tensor induced GWs which can be traced to
the fact that a constant scalar mode is naively
allowed to source tensors. We propose a (rough)
procedure to remove such divergences motivated by
the existence of a locally inertial frame.

(iii) We find that for peaked primordial spectra, the low
frequency tail of scalar-tensor induced GWs does
not have a logarithmic running, in contrast to scalar-
scalar induced GWs. There is also no resonant peak.

This paper is structured as follows. The next section
presents the evolution equation for second-order induced
GWs when the primordial perturbations are scalar and
tensor. Section III discusses the general form of the power-
spectrum of scalar-tensor induced GWs and explores
properties of the kernel. In Sec. IV, an example is provided
with peaked scalar and tensor perturbations, considering
both chiral and non-chiral waves in the primordial tensor
sector. Section V explores potential strategies to circum-
vent the divergence in the ultraviolet (UV) region. Finally,
Sec. VI presents the conclusions and summarizes the
findings of the study.
In our analysis, we assume that scalar perturbations are

more pronounced on small scales than tensor perturbations,
thus neglecting tensor-tensor interactions. Under the con-
dition AT < AS, we investigate whether the scalar-tensor
contribution to GWs can be distinguished from scalar-
induced GWs. We identify a distinct signature of this
interaction related to the chirality of GWs. Specifically,
while scalar-induced GWs do not possess chirality,
we demonstrate that chiral GWs, after interacting with
scalar perturbations, exhibit different behaviors in the
ultraviolet (UV) region for left- and right-handed waves.
This characteristic can be valuable in distinguishing them
from scalar-induced GWs. We assume c ¼ ℏ ¼ Mpl ¼ 1

throughout this paper.

II. TENSOR MODES INDUCED BY
SCALAR-TENSOR INTERACTIONS

We consider a perturbed flat FLRW space-time, in the
Poisson gauge, in which the metric is described by

ds2 ¼ −e2Φ dt2 þ a2e−2ΨðeγÞijdxidxj; ð2:1Þ

where t is the coordinate time, aðtÞ the scale factor, Φ
and Ψ are scalar perturbations and γij tensor perturbations.
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We neglect vector perturbations for simplicity. To get an
evolution equation of the tensor perturbations sourced by a
mixing of first order scalar and tensor ones, we focus on
the trace-less part of the ij-th Einstein equation. We start
with a general approach: we use the ADM formulation and
compute the full non-linear equations, which we present in
Appendix A. We then expand the non-linear equations only
at linear order in γij, keeping the full dependence on Ψ
and Φ. In doing so, we obtain

̈γij − Φ̇eΦγ̇ij þ 3ðH − Ψ̇Þγ̇ij − e2ðΦþΨÞa−2∇2γij

¼ 2a−2e2ΦcTTab
ij ½e2ΨðSss

ab þ Ssst
ab Þ þ Sm

ab�; ð2:2Þ

where Sss
ij and Ssst

ij are respectively given by

Sss
ij ¼Φ;ijþΦ;iΦ;j−Ψ;iΨ;j−Ψ;ijþΦ;iΨ;jþΨ;iΦ;j ð2:3Þ

and

Ssst
ij ¼ −

h
δklγkiðΦ −ΨÞ;jl þ

1

2
δklγki;jðΦ −ΨÞ;l

þ 1

2
δklγkj;iðΦ − ΨÞ;l þ δklγikΨ;jΦ;l þ δklγikΦ;jΨ;l

þ δklγikΦ;jΦ;l − δklγikΨ;jΨ;l

i
; ð2:4Þ

and the contribution from the energy-momentum tensor of
a perfect fluid matter, namely

Sm
ij ¼ ∂iV∂jV; ð2:5Þ

where V is the scalar component of the linear perturbation
in the spatial velocity of the perfect fluid. In Eq. (2.2), cTTab

ij

is the transverse-traceless projector which can be found,
e.g., in [67], and latin indices are raised and lowered with
the spatial background metric, which at leading order is δij.
We present all the details in Appendix A.
Let us focus on the leading order terms in scalar-tensor

interactions. In this case, Eq. (2.2) becomes, in conformal
time dη ¼ dt=a,

γ00ij þ 2Hγ0ij −∇2γij ¼ 4Φ∇2γij þ 4Φ0γ0ij; ð2:6Þ

where 0 ¼ d=dη and we used that in the absence of
anisotropic stress we have Φ ¼ Ψ. In what follows we
will treat the right hand side of (2.6) as a source term. To do
so, we will follow a perturbative expansion and split

γij ¼ γð0Þij þ γð1Þij þ � � � ; ð2:7Þ

where γð0Þij is the solution to the homogeneous equation and

γð1Þij are the scalar-tensor induced GWs. Note that inside
such source term in (2.6) there is a bare Φ, namely without

gradients or time derivatives. We will later show that this
term is problematic for sufficiently flat primordial scalar
spectrum and leads to potential divergences.
Now, we decompose scalar and tensor perturbations into

their Fourier modes, we respectively have

γijðx; ηÞ ¼
1

ð2πÞ3
Z

d3k eik:xγk;σðηÞϵσijðk̂Þ; ð2:8Þ

Φðx; ηÞ ¼ 1

ð2πÞ3
Z

d3k eik:xΦkðηÞ; ð2:9Þ

where ϵσijðk̂Þ are the (transverse-traceless) polarization
tensors. To be compatible with the reality condition of
the Fourier expansion (2.8), we work with left and right
handed polarization tensors where σ ¼ R;L represents
the polarization index. We also choose the normalization
given by

ϵσ�ij ðk̂Þϵσ0ijðk̂Þ ¼ 2δσσ0 : ð2:10Þ

In Fourier space Eq. (2.6) becomes

γ00k;λ þ 2Hγ0k;λ þ k2γk;λ ¼ Sst;λðk; ηÞ; ð2:11Þ

where we defined

Sst;λðk; ηÞ ¼ −2
X
σ

Z
d3k1
ð2πÞ3 Φ

p
k−k1γ

p;σ
k1
ϵσijðk̂1Þϵij�λ ðk̂Þ

× ½k21Tγðk1ηÞTΦðcsjk − k1jηÞ
− T 0

γðk1ηÞT 0
Φðcsjk − k1jηÞ�; ð2:12Þ

cs is the sound speed of scalar fluctuations, which for
radiation domination is cs ¼ 1=

ffiffiffi
3

p
, and we abused nota-

tion and dropped the superscript “1” in γð1Þk in the left hand

side of (2.11) and used the homogeneous solutions for γð0Þk
and Φk inside the integrand. We split such homogeneous
solutions into a primordial (initial) value and a transfer
function, namely

γð0Þk;σðηÞ ¼ γpk;σTγðkηÞ ¼ γpk;σ

ffiffiffiffiffiffiffiffi
π

2kη

r
J1=2ðkηÞ; ð2:13Þ

and

ΦkðηÞ ¼ Φp
kTΦðcskηÞ ¼ Φp

k2
3
2Γ½5=2�ðcskηÞ−3

2J3=2ðcskηÞ;
ð2:14Þ

where the superscript “p” refers to primordial and TγðkηÞ
and TΦðcskηÞ are respectively the transfer functions for
the homogeneous solution to tensor and scalar modes in
radiation domination. JαðxÞ is the Bessel function of the

GRAVITATIONAL WAVES INDUCED BY SCALAR-TENSOR … PHYS. REV. D 109, 023509 (2024)

023509-3



first kind of order α. We note that TγðkηÞ is the same for
both polarizations, unless there are parity violating terms in
the gravity sector after inflation.
Applying Green’s method, the solution to Eq. (2.11)

reads

γk;λðηÞ ¼ γð0Þk;λðηÞ þ γð1Þk;λðηÞ þ � � � ; ð2:15Þ

with

γð1Þk;λðηÞ ¼
Z

η

0

dη̃Sst;λðk; ηÞGðη; η̃Þ; ð2:16Þ

where Sst;λðk; ηÞ is given by (2.12), ... refers to higher order
solutions and Gðη; η̃Þ is the Green’s function for the tensor
modes, namely

Gðη; η̃Þ ¼ y1ðη̃Þy2ðηÞ − y2ðη̃Þy1ðηÞ
y1ðη̃Þy02ðη̃Þ − y2ðη̃Þy01ðη̃Þ

: ð2:17Þ

In Eq. (2.17) y1 and y2 being the two homogeneous

solutions for γð0Þk . Concretely, if we take y1 to be given
by the “growing mode” (2.14), y2 is given by “decaying
mode” which reads as in (2.14) but with Y1=2ðxÞ, the Bessel
function of the second kind, instead of J1=2ðxÞ. Note that
the first term of Eq. (2.15) is the usual first-order (pri-
mordial) GWs, whereas the second one is for the modulated
(scalar-tensor induced) GWs. In the next section we present
analytical formulae for the kernel and the power-spectrum
of scalar-tensor induced GWs.

III. SCALAR-TENSOR INDUCED GW SPECTRUM
AND KERNEL FUNCTION

Let us derive a general formula to calculate the spectrum
of scalar-tensor induced GWs. We aim to compute the two
point function of tensor modes, namely from Eq. (2.15)

hγk;λγk0;λ0 i ¼ hγð0Þk;λγ
ð0Þ
k0;λ0 i þ hγð1Þk;λγ

ð1Þ
k0;λ0 i þ � � � ; ð3:1Þ

where ... denotes two point functions involving higher

order solutions of γk;λ, e.g. γð2Þk;λ . In this respect, it is
important to note that we are neglecting the contribution

hγð0Þk;λγ
ð2Þ
k0;λ0 i which naively would be of the same order as

hγð1Þk;λγ
ð1Þ
k0;λ0 i. However, computing γð2Þk;λ involves solving

second order equations for Φ, using the solution for γð1Þk;λ

and computing the third order components in the source
term of γk;λ. This is out of the scope of this paper.
A complete discussion of the corrections to GWs up to
third order in the perturbations can be found in [68]. Here

we focus on fully understanding the solution γð1Þk;λ and the
corresponding spectral density.
We write the two point correlation of scalar-tensor

induced GWs in terms of a dimensionless power-spectrum
which we call Δ2

γ1ðkÞ. Namely, we have that

hγð1Þk;λðηÞγð1Þk0;λ0 ðηÞi ¼ ð2πÞ3δλλ0δ3ðkþ k0Þ 2π
2

k3
Δ2

γ1;λ
ðkÞ; ð3:2Þ

where it should be noted that both δλλ0 and δ3ðkþ k0Þ
follow from the contraction of the polarization tensors in
Eq. (2.16) and keeping in mind that the two-point function
of the primordial Φ and γpk;σ are written as

hΦp
kΦ

p
k0 i ¼ ð2πÞ3δ3ðkþ k0Þ 2π

2

k3
Δ2

ΦðkÞ; ð3:3Þ

hγpk;σγpk0;σ0 i ¼ ð2πÞ3δ3ðkþ k0Þδσσ0
2π2

k3
Δ2

γ0;σðkÞ: ð3:4Þ

Doing so, we arrive at

Δ2
γ1;λ

ðkÞ ¼ k3

π

X
σ

Z
d3k1

Δ2
Φðjk − k1jÞΔ2

γ0;σðk1Þ
k31jk − k1j3

ϵij;σðk̂1Þϵλ�ij ðk̂Þϵmn;σð−k̂1Þϵλ�mnð−k̂Þ

×

�Z
η

0

dη̃Gðη; η̃Þ ½k21Tγðk1η̃ÞTΦðcsjk − k1jη̃Þ − T 0
γðk1η̃ÞT 0

Φðcsjk − k1jη̃Þ�
�

2

: ð3:5Þ

To perform the integrals, it is convenient to work with the
variables given by

v ¼ k1=k; u ¼ jk − k1j=k and x ¼ kη: ð3:6Þ

Further using the properties of the polarization tensors,

namely ϵðλÞ�ij ðk̂Þ ¼ ϵðλÞij ð−k̂Þ, and ϵλijð−k̂Þ ¼ ϵ−λij ðk̂Þ, we de-
rive a compact expression for the right and left polar-
izations of the induced GWs respectively given by

Δ2
γ1;R=L

ðkÞ ¼ 1

32

Z
∞

0

dv
Z

vþ1

jv−1j

du
v6u2

Δ2
ΦðukÞI2ðx; u; vÞ

× ½ððvþ 1Þ2 − u2Þ4Δ2
γ0;R=L

ðvkÞ
þ ððv − 1Þ2 − u2Þ4Δ2

γ0;L=R
ðvkÞ�; ð3:7Þ

where we used a slash “=” in the subscript of Δ2
γ1;λ

to
differentiate between the case of right and left polarization,
and we defined
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Iðx; u; vÞ

¼ π

2
ffiffiffi
x

p
Z

x

0

dx̃ x̃3=2ðJ1=2ðx̃ÞY1=2ðxÞ − J1=2ðxÞY1=2ðx̃ÞÞ

×

�
v2Tγðvx̃ÞTΦðcsux̃Þ −

d
dx̃

Tγðvx̃Þ
d
dx̃

TΦðcsux̃Þ
�
:

ð3:8Þ

An overline in I in Eq. (3.7) denotes oscillation average.
By averaging over multiple wavelengths, we can improve
the accuracy of parameter estimation, by mitigating the
effects of the rapid oscillations. We also note that, in what
follows, we formally take the upper limit of the time
integral (3.8) to infinity as the GW frequencies of interest
enter the horizon well inside the radiation dominated
universe, that is kτeq ≫ 1 where τeq is the (conformal)
time of radiation-matter equality. The contribution from
large values of the conformal time is therefore negligible. In
Sec. V we present the full time dependence of the kernel.
In this case, integrating and taking the oscillation average,
we can define the following quantity

I2
∞ðu; vÞ≡ x2 × I2ðx → ∞; u; vÞ

¼ 9

27

�
v
csu

�
2
�
π2ð1 − s2Þ2Θð1 − s2Þ

þ
�
2sþ ð1 − s2Þ log

���� 1þ s
1 − s

����
�

2
�
; ð3:9Þ

where the subscript ∞ refers to the limit x → ∞, we

multiplied I2ðx → ∞; u; vÞ by x2 to subtract the typical
decay of sub-horizon tensor modes, i.e., γ ∝ 1=a, so that

I2
∞ðu; vÞ is time independent and for convenience we

defined

s ¼ v2 þ c2su2 − 1

2csuv
: ð3:10Þ

The oscillation average is taken because GW detectors
measure the time average of the GW background. Note
that, in contrast to scalar-scalar induced GWs, in Eq. (3.9)
only the variable u is multiplied by cs as it corresponds
to the scalar mode, but not v which is related to the
momentum of the tensor mode.
The spectral density of scalar-tensor induced GWs is

then given by

Ωst–ind
GW;R=L;cðkÞ ¼

1

12

�
k
H

�
2

Δ2
γ1;R=L

ðkÞ

¼ 1

384

Z
∞

0

dv
Z

vþ1

jv−1j

du
v6u2

Δ2
ΦðukÞI2

∞ðu; vÞ

× ½ððvþ 1Þ2 − u2Þ4Δ2
γ0;R=L

ðvkÞ
þ ððv − 1Þ2 − u2Þ4Δ2

γ0;L=R
ðvkÞ�; ð3:11Þ

where we used that in the radiation dominated universe
H ¼ 1=η. The subscript “c” in (5.30) denotes evaluation at
a time where GWs are deep inside the horizon so that they
behave as radiation. It is interesting to note from Eq. (3.11)
that if there is primordial parity violation of GWs, such
parity violation is inherited by the scalar-tensor induced
GWs and it is smeared between the polarizations. For
completeness, we also give the formula for the total spectral
density which is the sum of both polarizations, namely

Ωst–ind
GW;cðkÞ ¼

X
λ¼R;L

Ωst–ind
GW;λðk;ηÞ

¼ 1

12

Z
∞

0

dv
Z

vþ1

jv−1j

du
v2u2

Δ2
ΦðukÞI2

∞ðu;vÞ

× ðΔ2
γ0;R

ðvkÞþΔ2
γ0;L

ðvkÞÞ

×

�ð1þv2−u2Þ2
v2

þ
�
1þ

�
1þ v2−u2

2v

�
2
�

2
�
;

ð3:12Þ

which is of course parity symmetric. In the case of no
primordial parity violation we simply take Δ2

γ0;R
¼ Δ2

γ0;L
¼

Δ2
γ0 in Eq. (3.12). To evaluate the amplitude of the GWs

spectral density today, we use [67]

Ωst–ind
GW;R=L;0h

2 ¼ 1.62 × 10−5
�

Ωrad;0h2

4.18 × 10−5

��
gρðTcÞ
106.75

�

×

�
gsðTcÞ
106.75

�
−4=3

Ωst–ind
GW;R=L;c: ð3:13Þ

Note that if one wants to use the curvature perturbation R,
one has that

Δ2
Φ ¼

�
3ð1þ wÞ
5þ 3w

�
2

Δ2
R ¼ 4

9
Δ2

R; ð3:14Þ

where in the last step we use that for radiation domination
w ¼ 1=3. This completes the general derivation of the
kernel and the spectral density of scalar-tensor induced
GWs for general primordial parity of tensor modes. This is
one of the new results of our work.

A. General behavior of the kernel and differences
with scalar-scalar induced GWs

We proceed to show the general properties of the kernel
(3.9) and its differences with the case of scalar-scalar
induced GWs. First, let us examine the infrared (k → 0)
behavior of our GWs. In this limit, u ∼ v ∼ 1=k ≫ 1.
Hence, s takes the value

s ¼ 1þ c2s
2cs

: ð3:15Þ
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In contrast, the scalar-induced gravitational waves (SIGWs)
exhibit a different behavior, as s approaches 1 (see
Appendix D). In that scenario, a logarithmic running arises,
which is not observed in scalar-tensor-induced GWs due
to the fact that s never reaches the value of 1 in IR. This
logarithmic running has been regarded as a distinctive
characteristic of SIGWs, setting them apart from primordial
GWs in the infrared (IR) region. Notably, our findings
demonstrate that such a feature is absent in our case.
In the opposite limit (k → ∞), i.e. the UVone, v → 1 and

u → 0, which corresponds to the large wavelength limit
for the scalars, we observe that the variable s approaches u.
As a result, the kernel exhibits the behavior

I2
∞ðu → 0; v → 1Þ ∼ 1

u2
: ð3:16Þ

Consequently, the integral in Eq. (3.12) becomes propor-
tional to 1=u4. The other k → ∞ limit, corresponding to a
long wavelength tensor modes, leads to u → 1 and v → 0.
In this case we have s → 1=v, which does not lead to any
divergence.
In Eq. (3.9), another notable feature occurs when

s ¼ �1. In the case of SIGWs, this scenario can lead to
a logarithmic resonance. However, in our case, the presence
of the term ð1 − s2Þ prevents such resonance from occur-
ring. In fact, for s ¼ �1, or v ¼ �ð1 − csuÞ, we have

I2
∞ ¼ 9

25

�
1 −

1

csu

�
2

: ð3:17Þ

This diverges in the u → 0 limit.
Wewould like to emphasize that the kernel remains finite

throughout the entire integration region being considered
(except for the strict limit u → 0). However, the fact that
the integrand grows unboundedly for small u can lead to
artificial enhancements in the GWs spectrum. In particular,
if both primordial scalar and tensor spectra are flat, the
integral does not converge. If the tensor spectra is flat and
primordial scalar peaked, say at u ¼ kp=k, then the GW
spectrum grows unboundedly in the UV where k ≫ kp. If
the scalar spectrum is flat and the tensor spectrum peaked at
v ¼ kp=k, then the GW spectrum diverges at k ¼ kp where
v ¼ 1 and u ¼ 0. For these reasons, we will not consider
the aforementioned cases and focus only on peaked spectra
for which no such divergences occur. We later focus on
identifying the source of the divergence and propose a
solution in Sec. V.

IV. SCALAR-TENSOR INDUCED GWs
FROM PEAKED SOURCES

Now, we proceed to demonstrate the effect using a
specific choice of input scalar and tensor perturbations:

peaked sources. We do so for simplicity and because
enhancements of primordial scalar and tensor fluctuations
during inflation often lead to peaked primordial spectra
[69–72]. We first consider Dirac delta primordial spectra
and later discuss the effects of a finite width.
Let us take a Dirac delta source located at ks=t;�, for both

scalar and tensor primordial power-spectra,

Δ2
ΦðkÞ ¼ AΦδ

�
ln

k
ks;�

�
and

Δ2
γ0;R=L

ðkÞ ¼ Aγ0;R=Lδ

�
ln

k
kt;�

�
: ð4:1Þ

Note that in general we may have ks;� ≠ kt;�. This kind of
peaked scalar sources can be relevant for primordial black
hole formation [50,73,74]. Below, we illustrate the impact
of this particular choice on the final spectra in two
scenarios: when the primordial GWs exhibit chirality
and when they do not.

A. Non-chiral primordial GWs

We first consider the case when Aγ0;R ¼ Aγ0;L ¼ Aγ0 .
Then, we consider two different cases:

(i) Peaks at the same location: The simplest possibility,
also considered in [62], is that both peaks are at the
same location, namely ks;� ¼ kt;� ¼ k�. In that case,
we have

Δ2
γ1ðkÞ ¼ AΦAγ0

�
k
k�

�
2
�
1þ k4

16k4�
þ 3k2

2k2�

�
× I2

u¼v¼k�=kΘð2k� − kÞ: ð4:2Þ

Figure 1, left panel, shows the GWs energy density
for this case. We report a small difference with Fig. 2
of [62]: the high frequency part of the spectrum
in [62] presents some wiggles, while we find no such
feature in Eq. (4.2). Unfortunately, comparison is not
so straightforward because we are not considering
tensor-tensor induced GWs and we are using a
different prescription for the metric perturbations
[Eq. (2.1)]. It is interesting to note though that the
precise form of the scalar-tensor and tensor-tensor
mixings (2.2) depends on how one expands the
metric (i.e. exponential or linear in γij and Φ).
Ultimately, the different forms should be equivalent
up to terms proportional to the linear equations of
motion.

(ii) Peaks at different locations: In general it is possible
that ks;� and kt;� are two independent parameters and
so ks;� ≠ kt;�. If so, we find
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Δ2
γ1ðkÞ ¼ AΦAγ0

k2

ks;�kt;�

�ðk2 þ k2t;� − k2s;�Þ2
k2k2t;�

þ ð4k2k2t;� þ ðk2 þ k2t;� − k2s;�Þ2Þ2
16k4k4t;�

�
× I2

v¼kt;�=k;u¼ks;�=kΘðks;� − jkt;� − kjÞΘðkt;� þ k − ks;�Þ: ð4:3Þ

Naturally, the range of wavenumber of the induced
waves increases with a decreasing separation of the
two different peaks, which can be seen from the two
Heaviside thetas, and the left panel of Fig. 1. In other
words, for Dirac delta separate peaks, the scalar-
tensor induced GWs have an IR and UV cut-off.

By looking at both panels of Fig. 1, we see that they
exhibit an enhancement in the induced GWs between the
two dips that are determined by the first Heaviside theta
function in Eq. (4.3), even though the scalar and tensor
source peaks are located at different positions. This
enhancement is related to the fact that we have a very
large value of the integrand at small u. We have been able
to obtain a solution in case of monochromatic primordial
perturbations only because in this case the momenta
acquire a single value. For other shapes of source primor-
dial spectra, we have to find a way to avoid this problem.
It is interesting to note that, contrary to the scalar-scalar

induced GWs, the scalar-tensor GWs spectrum for Dirac
delta spectra have a finite amplitude at the cut-off k ¼ 2k�.
This may look suspicious at first because one expects the
GW spectrum to be continuous. However, the sharp cut-off
is due to the Dirac delta. Once we consider a log-normal
peak the GW spectrum exponentially vanishes near the cut-
off, as we shall show later.

B. Chiral primordial GWs

For primordial GWs, which have a delta-function peak in
only one of the polarizations at the same wave-number as
the primordial scalars [Eq. (4.1)], the present-day total
spectral density of the induced GWs can be obtained from
Eq. (3.12)

Ωst–ind
GW;R=L;cðk; ηÞ

¼ 1

768
AΦAγ0;R=L

�
k
k�

�
6
�
1þ 32

�
k�
k

�
4

þ 48

�
k�
k

�
2
�

× I2
u¼v¼k�=kΘð2k� − kÞ: ð4:4Þ

The left panel of Fig. 2 displays the spectral density of
induced gravitational waves resulting from the interaction
between peaked scalar and peaked chiral gravitational
waves. In this and the right panel, it can be observed that
when the primordial chiral gravitational waves induce
gravitational waves of the same polarization, the peak of
the spectrum, which is situated in the UV region, is more
pronounced than that of the opposite polarization. In the
IR region, however, we have an unpolarized induced
wave. This could be attributed to the choice of peaked
sources. Since the IR region is located far away from the
peak of the GWs signal, there is effectively no detectable
difference in the behavior of the polarizations. Although
only the case with the right-handed primordial gravita-
tional waves are displayed, the same applies to the
left-handed ones. The trend is also manifested in the
right panel of Fig. 1, which exhibits the same scenarios
but with different peak locations of scalar and tensor
perturbations.

C. Scalar-tensor induced GWs
from log-normal peaks

We now consider a more realistic situation where the
peaks in the primordial spectra have a finite width. We do
so by considering a log-normal spectrum, namely

FIG. 1. Left: properly normalized density parameter for monochromatic scalar and non-chiral tensors, having same (k�) and different
peak locations (ks;�; kt;�). The two dips in the second case comes from the first Heaviside theta; 0.3 < k�=kt;� < 1.7 for the green curve
for example. As can be seen, different peaks contribution is for a small range due to two thetas. Right: same for the case with chiral
primordial GWs. Here ks;�=kt;� ¼ 0.8, kt;� ¼ 105 Mpc−1.
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Δ2
ΦðkÞ ¼

Asffiffiffiffiffiffi
2π

p
σ
exp

�
−
ln2ðk=ks;�Þ

2σ2

�
and

Δ2
γ1;R=L

ðkÞ ¼ Aγ0;R=Lffiffiffiffiffiffi
2π

p
σ
exp

�
−
ln2ðk=kt;�Þ

2σ2

�
; ð4:5Þ

where we will consider for simplicity that they have the
same logarithmic width σ but in principle they can differ.
We consider again the two possibilities: same peak location
and different peak location. Interestingly, we find that in
both cases the amplitude of the scalar-tensor induced GW
spectrum is not very sensitive to the width of the primordial
spectra. The spectral shape of course changes: it broadens
for broader peaks. For the log-normal we compute the
scalar-tensor induced GWs numerically. We show our
results in Figs. 3 and 4. For simplicity, we only considered
only right polarization for the primordial tensor modes.

However, one can consider the case of non-chiral primor-
dial tensor modes by summing both lines in Figs. 3 and 4
corresponding to scalar-tensor induced GWs and multiply-
ing by 2. Since we are plotting in logarithmic scale, the
change in amplitude is not significant.
In Fig. 3 we show the case of same peak position on the

left and different peak position on the right. See how as one
gets closer to the peak all lines are similar to the Dirac delta
case. Also, note that for a finite width primordial spectra
there is no sharp cut-offs in the scalar-tensor induced GWs,
as expected. Since we are considering finite width of the
primordial scalar and tensor spectra, we can also show and
compare all contributions (primordial tensor, scalar-scalar
and scalar-tensor induced GWs). We do so in Fig. 4 where
we show our results for σ ¼ 0.01 (left) and σ ¼ 0.1 (right).
See how in both cases the scalar-tensor induced GWs
dominate the spectrum near the cut-off, even for σ ¼ 0.1.

FIG. 2. Left: properly normalized total spectral density for induced GWs from monochromatic scalar and chiral GWs mixing (green),
spectral density for scalar-tensor induced right- (blue) and left-handed (red) chiral GWs, when primordial GWs are right-handed.
Right: comparison of the gravitational wave density parameter induced by: monochromatic scalars only (black), monochromatic scalar
and non-chiral tensors (green), and scalar-tensor induced right- (blue) and left-handed (cyan) chiral GWs, when primordial GWs are
right-handed. NC signifies non-chiral.

FIG. 3. Scalar-tensor induced GWs from log-normal primordial scalar and tensor fluctuations. Here we only consider right-handed
primordial tensors to illustrated the difference between Ωst–ind

GW;R (solid lines) and Ωst−ind
GW;L (dashed lines). For non-chiral primordial tensor

one has to sum both contributions and multiply by 2. Left: scalar-tensor induced GWs for same peak position for a Dirac delta (red)
and log-normals with width σ ¼ 0.01 (green) and σ ¼ 0.1 (blue). Right: different peaks positions with ks;� ¼ 0.8kt;�. We show in blue a
log-normal with σ ¼ 0.1 and in red the Dirac delta case.
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In this way, we extend the results of [62] and show that
even in the case of not too sharp and not too broad
primordial spectrum, the scalar-tensor induced GW even-
tually have the potential to show-up in the high frequency
part of the spectrum.

D. Future prospects for scalar-tensor induced GWs

After demonstrating two examples of scalar-tensor-
induced spectra without encountering divergence issues,
our attention now shifts to the detectability of these spectra.
As stated earlier, we make the assumption that Aγ0 < AΦ,
which enables us to neglect the tensor-tensor contribution
and results in an effect that is subdominant compared to
scalar-scalar induced GWs.
In the right panel of Fig. 2, it is evident that there

exists only a limited range of scales (approximately
k=k� ∈ ½1.34; 2�), where the scalar-induced GWs do not
surpass the scalar-modulated ones. Detecting the modu-
lated waves amidst the dominance of the former requires
identifying a characteristic that can distinguish our effect.
As observed in previous section, non-chiral primordial
waves lack such a property. However, when scalar modu-
lation affects chiral primordial GWs, a disparity in the
energy density between left and right circularly polarized
waves becomes apparent. This distinction offers a potential
avenue for detecting and studying the modulated waves.
Figure 5 provides a comprehensive comparison between

the primordial GWs, the realistic log-normal case, and the
sensitivities of various probes. It is evident from the plot
that while scalar-tensor induced GWs can dominate over
SIGWs in the high-frequency range, this dominance is
limited to a small range of scales. We observe the same
behavior for σ ¼ 0.1 and σ ¼ 0.01 in Fig. 4. On the other

hand, the behavior of the different-parity induced waves
presents a distinguishing characteristic that sets them apart
from SIGWs, particularly in the UV scales. This parity-
violating behavior of the scalar-tensor induced waves can
be observed in Fig. 5, where it extends beyond the peak of
the primordial tensor spectrum. While this effect is not very
significant for σ ∼ 0.1, it becomes important for σ ≲ 0.01.
We would like to clarify that the figure shown in Fig. 5
provides a quantitative description of the power-spectrum
shape of the induced GWs, rather than the detectability of
their chiral properties. It is important to note that planar
detectors typically do not have the capability to directly
detect the chirality of GWs, unless specific methods are
employed, such as leveraging the motion of the solar
system with respect to the cosmic reference frame (as
discussed in [75], see also the references therein). However,
studies have shown that by cross-correlating the output of
multiple detectors, such as LISA and Taiji, it is possible
to detect and study the parity violation in the stochastic
gravitational wave background [76,77]. While we mention
the potential of using this chirality to distinguish our
induced GWs, the actual detectability of the same requires
further detailed analysis beyond the scope of this work.
In the low-frequency range, however, the induced waves
consistently remain unpolarized, as depicted in the corre-
sponding figures. Upon examining Fig. 10 in [78] and
Fig. 3 in [79], we observe a similar behavior in the induced
GWs as depicted in our Fig. 2. It is noteworthy that these
studies investigate GWs production mechanisms involving
chiral dark photons, which are entirely distinct from
our approach. Based on these observations, a hypothesis
emerges, suggesting that there is a distinct polarization
behavior present in the UV region of induced GWs. It says
that the polarized primordial component makes the peak of

FIG. 4. Collection of GWs spectrum from log-normal peaked Eq. (4.5) primordial scalar and tensor spectra. For illustration purposes
we assume only right-handed primordial tensor modes and we normalized the amplitude of the GW spectra setting Aγ0 ¼ AΦ ¼ 1. In
orange we show the primordial tensor spectrum, in purple the scalar-scalar induced GWs and in green and blue respectively the left and
right handed scalar-tensor induced GWs. Left: GWs spectra for σ ¼ 0.01. Right: same for σ ¼ 0.1. Scalar-tensor induced GWs may
dominate in the high frequency part of the GW spectrum and extend the parity violation beyond frequencies covered by the primordial
tensor spectrum.
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the induced GWs of the same polarization more enhanced
compared to that of the oppositely polarized GWs, while
the IR region remains unpolarized. However, the thorough
investigation and verification of this hypothesis are left for
future endeavours.
In Fig. 6, we present the recent results from the

NANOGrav [1], which may have detected the stochastic
gravitational wave background using pulsar timing arrays
(PTAs). The SGWB observed by PTAs can be considered as
the IR tail of the SIGWs [48]. We leave a detailed analysis of
our scalar-tensor induced GWs signal with the new PTA data
[1,2] for future work. Here, we demonstrate an example
where the peak of the SIGWs lies in the 0.1 μHz range,
which is currently beyond the sensitivity range of existing
detectors. However, there has been proposals for a future
detectors in this frequency range [92,93]. If such a detector,
preferably with better sensitivity and ability to detect
chirality, is realized, it would be capable of detecting the
peak, where it can be distinguishable from our signal based
on the latter’s chirality properties.

V. ORIGIN OF POTENTIAL DIVERGENCES
AND POSSIBLE SOLUTIONS

In Sec. III A we have anticipated that the momentum
integral in scalar-tensor induced GWs contains red poten-
tial divergence for vanishing scalar mode momentum.1

The divergence in the integrand appears as 1=u4 ∼ ðk=qÞ4
for q ≪ k, where here k and q respectively are the internal
tensor and scalar mode momentum (note that the because
q ≪ k we have that the internal tensor mode momentum is

FIG. 5. GW spectrum from primordial tensor modes (orange dashed), scalar-scalar induced GWs (purple dashed) and scalar-tensor left
(solid green) and right (solid blue) handed induced GWs for log-normal spectra [Eq. (4.5)] with Aγ0;R ¼ 10−3 and AΦ ¼ 10−2,
f� ¼ 10−3 Hz. The left figure is for σ ¼ 0.01 and the right for σ ¼ 0.1. See how the scalar-tensor induced GWs extend primordial tensor
parity violation to the high frequency part of the spectrum. Also note how the low frequency part of the spectrum quickly becomes non-
chiral. We include the power-law integrated sensitivity curves [80] for PTA, LISA, Taiji [81,82], DECIGO, Einstein Telescope (ET),
Cosmic Explorer (CE), Voyager and LIGO A+ experiments. The sensitivity curves can be found in [83–86]. We also plot the upper
bounds on the GW background from the LIGO/Virgo/KAGRA collaboration [87]. The horizontal thick long dashed lines qualitatively
present the current constraint from BBN [88–90] (in blue) and future constraints from CMB-S4 experiments (in purple) [89,91].

FIG. 6. GWs spectrum from primordial tensor modes (orange
dashed), scalar-scalar induced GWs (purple dashed) and scalar-
tensor left (solid green) and right (solid blue) handed induced
GWs for log-normal spectra [Eq. (4.5)] with Aγ0;R ¼ 10−2 and
AΦ ¼ 10−1, f� ¼ 10−7 Hz. Gray violins indicate recent NANO-
Grav results [1]. We also include future sensitivity of μ-Ares [92]
and Lunar Laser Ranging in magenta from Ref. [93]. See
also [94] for other ideas to detect μHz GWs. Also included
are the sensitivity curves of the LISA and Taiji detectors, to show
that these detectors are unable to detect the peak of SIGWs,
which could potentially explain the observations made by the
NANOGrav collaboration.

1We note that in practice there are always IR and UV cut-offs
on the primordial scalar spectrum, respectively related to the start
and end of inflation. Therefore, for physical primordial spectra
the divergence appears as an artificial enhancement of the scalar-
tensor induced GW spectrum.

BARI, BARTOLO, DOMÈNECH, and MATARRESE PHYS. REV. D 109, 023509 (2024)

023509-10



jk − qj ∼ k so there is not much difference between the
external and internal mode in this limit). It should also be
noted that we did not encounter such issues in Sec. IV, as
we considered scalar-tensor induced GWs from peaked
primordial spectra. But, as soon as we consider a relatively
flat scalar primordial spectra, the divergence shows up.
For flat scalar and tensor primordial spectra the integral
divergences for all k. It is important to stress that the
potential divergence simply appears in the solution of
the second order tensor modes. But, as a purely classical
calculation, such term must somehow cancel when dealing
with observables. It is thus plausible that such problematic
terms disappear when including higher order contributions.
Nevertheless, for practical purposes, in this section we
identify the source of such potential divergence and
propose a well-motivated way to circumvent it. We leave
a deeper study for future work.
We proceed as follows. We first derive the general time-

dependent kernel to show that divergence is not completely
associated with the limit x ¼ kτ → ∞ and that artificial
enhancements appear for scalar modes with wavelengths
larger than that of tensor modes. We will see that this is
independent on whether scalar modes are superhorizon or
subhorizon. In fact, we show that removing the contribution
from superhorizon scalar modes does not solve the prob-
lem. We then provide an argument based on a local inertial
frame to bypass the problem.

A. General time dependent kernel

We start by rewriting the kernel (3.8) in a more practical
form for the general integrations. We rewrite the Bessel
functions, JαðxÞ, in terms of spherical Bessel functions,
jαðxÞ, as

Iðx;u; vÞ ¼ v2

x
ðIyðx;v;uÞ sin xþ Ijðx;v;uÞ cosxÞ; ð5:1Þ

where we defined

Ij;yðx;v;uÞ≡
Z

x

xi

dx̃ x̃2
�
j0ðx̃Þ
y0ðx̃Þ

	
× ðj0ðvx̃Þj0ðcsux̃Þ− j2ðvx̃Þj2ðcsux̃ÞÞ: ð5:2Þ

Figure 7 demonstrates the behavior of the respective
kernels. In this way, we have that the first term in
Eq. (5.1) corresponds to the “growing mode” of a free
tensor mode in a FLRW background and the second one to
the “decaying mode.” We will now compute the functional
form of IjðxÞ and IyðxÞ for general x. Without loss of
generality we will take xi → 0, which does not influence
the present discussion. After several integrations, similar to
those in Ref. [41], we obtain that

Ijðx; v; uÞ ¼
3ð1− s2Þ
8csuv

G0½Si½x�� þ
3ð1− s2Þ
8csuvx

G1½cos x�

þ 3

8ðcsuvxÞ2
G2½sinx� þ

3

16ðcsuvxÞ3
G3½cos x�

þ 9

16ðcsuvÞ3x4
G4½sin x�; ð5:3Þ

and

Iyðx; v; uÞ

¼ −
3

8csuv

�
2sþ ð1 − s2Þ

�
log

���� 1þ s
1 − s

����þ F0½Cijxj�
��

þ 3ð1 − s2Þ
8csuvx

F1½sin x� − 3

8ðcsuvxÞ2
F2½cos x�

−
3

16ðcsuvxÞ3
F3½sin x� − 9

16ðcsuvÞ3x4
F4½cos x�:

ð5:4Þ

In the expressions above we have defined

F0½Cijxj�¼Cijð1þcsu−vÞxjþCijð1−csuþvÞxj
−Cijð1þcsuþvÞxj−Cijð1−csu−vÞxj; ð5:5Þ

and

F1½sin x� ¼
sin ½ð1þ csu − vÞx�

1þ csu − v
þ sin ½ð1 − csuþ vÞx�

1 − csuþ v

−
sin ½ð1þ csuþ vÞx�

1þ csuþ v
−
sin ½ð1 − csu − vÞx�

1 − csu − v
:

ð5:6Þ

Then, G0½Si½x�� is obtained by replacing Cijxj by Si½x� in
F0½Cijxj�. Similarly, G1½cos x� is obtained by replacing
sin x by cos x in F1½sin x�. The other functions F2, F3, F4

and G2, G3, G4 are suppressed when csuvx ≫ 1. For the
interested reader, we write them explicitly in Appendix E. It
is straightforward to check that we recover Eq. (3.9) in the
limit of x → ∞ and we take the oscillation average.2

1. Long wavelength scalar modes

With the full time dependence of the kernel, we can
study two limits involving a subhorizon induced tensor
mode (x ≫ 1) and a long wavelength scalar mode

2The function F0½Cijxj� with Ci½x� vanish when x → ∞. The
other function gives

G0½Si½x→∞��¼πΘð1− jcsu−vjÞ−πΘð1−ðcsuþvÞÞ: ð5:7Þ

It is only non-vanishing when jcsu − vj < 1 < csuþ v which
corresponds to s2 < 1.
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(u ≪ 1): (i) the scalar mode is superhorizon at the time x,
i.e. ux ≪ 1, and (ii) the scalar mode is subhorizon at time x,
namely ux ≫ 1. Note that the limit u ≪ 1 corresponds to
the regime where u ∼ 0, v ∼ 1 and s ∼ 0 in the kernel. For
case (i), where ux ≪ 1, we find that

Ijðx; ux ≪ 1Þ ≈ x − cos x sin x
2

þOðu2; u2x2Þ;

Iyðx; ux ≪ 1Þ ≈ −
sin2 x
2

þOðu2; u2x2Þ: ð5:8Þ

Note that the integral Ij in Eq. (5.8) is diverging for x → ∞.
This is one of the sources of the divergence in the naive
oscillation average presented in Eq. (3.9). Nevertheless,
even if we consider the total time dependence of the kernel
before doing the oscillation average, the situation does not
improve. For instance, the kernel Eq. (5.1) in this limit
leads us to

Iðx; ux ≪ 1; x ≫ 1Þ ≈ 1

2

�
cos x −

sin x
x

�
: ð5:9Þ

Looking at Eq. (5.9), we see that in addition to the regular
“growing” mode (sin x=x) there is a non-decaying mode
(cos x). As we shall shortly show, after the mode u enters
the Hubble horizon, the integrals Ij;yðxÞ approach a
constant. However, the constant will be larger for smaller
u modes, since these modes had more time to grow. This
can be seen in case ðiiÞ, where ux ≫ 1, in which the
integrals Ij and Iy respectively yield

Ijðu ≪ 1; ux ≫ 1Þ ≈ 3π

8csu
−
3csπu
32

;

Iyðu ≪ 1; ux ≫ 1Þ ≈ −
3

4
þ c2su2

16
: ð5:10Þ

We see that despite the fact that after the mode u enters the
Hubble horizon, the kernel (5.1) behaves as a regular kernel
for tensor modes in the sense that there is a growing
and decaying mode, coefficient of the decaying mode,
that is Ij given in Eq. (5.10) diverges for small u. This is
the same divergence that we found in Eq. (3.16) for

I2
∞ðu ≪ 1; v ∼ 1Þ ∼ 1=u2. However, the total integrand

diverges as 1=u4. We will come back to the remaining
1=u2 at the end of the section.
In passing, we mention that we find no such behavior

when the wavenumber of the primordial tensor mode
vanishes, i.e. when v→0, u→1 and s→−∞. Explicitly,
in the limit where x ≫ 1, ux ≫ 1, vx ≫ 1, we find that

Ijðv ≪ 1; x ≫ 1Þ ≈ 0;

Iyðv ≪ 1; x ≫ 1Þ ≈ 1

1 − c2s
þ ð5 − c2sÞv2
5ð1 − c2sÞ3

: ð5:11Þ

The integrand of the momentum integral for scalar-tensor
induced GWs, Eq. (3.12), vanishes for v → 0.3 Thus, the
only issue are scalar modes with wavelengths longer than
the tensor mode.

2. Removing superhorizon scalar mode contribution

To illustrate the fact that the issue is more subtle, let us
show that even if we remove the strange non-decaying
mode in Eq. (5.9) by subtracting the contribution from
superhorizon scalar modes, the divergence is not cured. The
problematic term in the equations of motion for induced
tensor modes Eq. (2.6) is the term that has Φ in front of
∇2γij. For analytical purposes, we remove the contribution

FIG. 7. Left: behavior of kernel functions Ij, Right: the same for Iy (5.2), for various values of the scalar momenta: in blue
ðu ¼ 1; v ¼ 1Þ, in green ðu ¼ 2; v ¼ 2Þ, in purple ðu ¼ 0.01; v ¼ 1Þ and in orange ðu ¼ 1; v ¼ 0.01Þ. See how for Ij on the left figure
as we lower the value of u the function Ij grows with x. Instead, Iy on the right figure approaches a constant (or oscillations around a
constant) as xτ > 1.

3The cs ¼ 1 case has to be treated separately but one can check
that it is regular as well in the limit v → 0.
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of superhorizon Φ coming from the mentioned term by
introducing the following correction terms in Eq. (5.2),
which is to be subtracted to the coefficients of the growing
and decaying modes Ij;y

Cj;yðx; vÞ≡
Z

x

xi

dx̃ x̃2
�
j0ðx̃Þ
y0ðx̃Þ

	
j0ðvx̃Þ; ð5:12Þ

where we used that TΦðx ≪ 1Þ ∼ 1. We will later cut the
integral near sound horizon crossing, that is at αcsux ¼ 1
where α is a free parameter. After integration, we find that

CjðxÞ ¼
cosðxÞ sinðvxÞ − v sinðxÞ cosðvxÞ

vðv2 − 1Þ ; ð5:13Þ

and

CyðxÞ¼
sinðxÞ sinðvxÞþvcosðxÞ cosðvxÞ

vðv2−1Þ −
1

v2−1
: ð5:14Þ

We can see that the correction terms Cj and Cy cancel the
leading order terms of the non-decaying modes we found in
Eq. (5.8). To see this, we take the limit v ∼ 1 in Eqs. (5.13)
and (5.14), which respectively yields

Cjðux≪1;v∼1Þ≈x−cos x sin x
2

≈Ijðx;ux≪1Þ; ð5:15Þ

and

Cyðux ≪ 1; v ∼ 1Þ ≈ −
sin2x
2

≈ Iyðx; ux ≪ 1Þ: ð5:16Þ

We can now follow the corrected kernel until the scalar
mode enters the sound Hubble horizon, i.e. we evaluate
Cj=y at αcsux ¼ 1 where α ∼Oð1Þ free parameter to be
fixed shortly. The corrected kernel is then given by

Iðux≫ 1Þ ¼ v2

x
ð½IyðxÞ−Cyðx¼ 1=ðαcsuÞÞ�sinx

þ ½IjðxÞ−Cjðx¼ 1=ðαcsuÞÞ�cosxÞ: ð5:17Þ

In the limit where the divergence appeared, that is for
ux ≫ 1, u ≪ 1 and v ∼ 1, we find that

Cjðux ≫ 1; v ∼ 1Þ ≈ 1

2αcsu
−
1

4
sin

�
2

αcsu

�
; ð5:18Þ

and

Cyðux ≫ 1; v ∼ 1Þ ≈ −
1

2
sin2

�
1

αcsu

�
: ð5:19Þ

By requiring that the divergence in Ij is cancelled by that in
Cj we fix α to

α ¼ 4

3π
≈ 0.42: ð5:20Þ

This value of α means that we subtract a constant Φ a little
bit after sound Hubble horizon crossing, i.e. at ucsx ≈ 2.3.
The results of this section show that the divergence in

the kernel can be made finite in the limit x → ∞ [as in
Eq. (3.9)] by subtracting the superhozion contribution of a
constant Φ. Nevertheless, the coefficient of the kernel
become constant which implies that the integrand for
scalar-tensor induced GWs Eq. (3.12) still diverges as
1=u2 for u ≪ 1. This means that the divergences for long
wavelength scalar modes are not entirely due to their
superhorizon contribution but in fact some subhorizon as
well. In the next subsection we identify the full source of
the divergence.

B. Source of the potential divergence
and possible solutions

To understand the source of the divergence, let us split
the gravitational potential Φ into a short and a long
wavelength contribution, namely

Φ ¼ Φshort þΦlong; ð5:21Þ
where ∂kΦlong ≪ ∂kγij. In other words, if LΦ is the
characteristic length of Φlong and Lγ the characteristic
length of γij, we have that ∂kΦlong × Lγ ∼OðϵÞΦlong where
we defined ϵ ¼ Lγ=LΦ. In that case, the equations of
motion for scalar-tensor induced tensor modes (2.6) read

γ00ij þ 2Hγ0ij −∇2γij ¼ 4ðΦshort þΦlongÞ∇2γij

þ 4ðΦ0
short þΦ0

longÞγ0ij: ð5:22Þ
For the time derivatives we have that Φ0

long ≪ Φ0
short so we

can neglect Φ0
long. However, in front of ∇2γij we have

directly Φshort þΦlong. In radiation domination, the ampli-
tude of Φshort has decayed more than that of Φlong and
therefore, it appears that the amplitude Φlong could be the

dominant contribution and have a big impact on γð1Þij . For
instance, if we consider that Φlong ¼ constant, we see that
the right hand side of Eq. (5.22) has now a term propor-
tional only to ∇2γij. If we think of it as a “source,” then γij
is resonating with itself and leading to divergences. We will
see this when computing the general kernel.
However, our intuition from the equivalence principle

tells us that long wavelength modes cannot affect signifi-
cantly the physics of short wavelength modes. We can use
the fact that ∂kΦlong ≪ ∂kγij to consider that Φlong ≈
constant from the point of view of γij. We then rescale
the spatial coordinates as

dxi → ð1 − 2ΦlongÞdxi so that ∇2 → ð1þ 4ΦlongÞ∇2:

ð5:23Þ
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This coordinate transformation cancels the constant factor
ofΦlong∇2γij in the right hand side of Eq. (5.22) and we are
left with

γ00ij þ 2Hγ0ij −∇2γij ≈ 4Φshort∇2γij þ 4Φ0
shortγ

0
ij: ð5:24Þ

Thus, we conclude that long wavelength scalar modes
cannot affect the local generation of tensor modes.
Although in the strict sense Φlong is not a constant, it shows
that if we view the scalar-tensor mixing in the right hand side
of Eq. (2.6) as a local source, then we must remove the
contribution from long wavelength scalar modes. However,
if we are dealing with propagation effects, the amplitude of
Φ is very real as it can be seen in the gravitational lensing of
gravitational waves and time-delay effects (for the latter case
see, e.g. the analysis in [95]).
If we go to the next to leading order in the gradient

expansion, we roughly expect that

Φlong ≈ constantþOðϵ2ÞΦlong; ð5:25Þ

where ϵ2 ¼ L2
γ=L2

Φ ≈ q2=k2, where q is the wavenumber
of Φ and k the wavenumber of γij. The fact that it
starts at second order in ϵ is because of symmetry: the
“amplitude” of Φ cannot depend on the direction of q. This
is consistent with the superhorizon expansion of Φ, i.e.
TΦðx ≪ 1Þ ¼ 1þOðx2Þ. This argument is also supported
by the existence of a local inertial frame. In the so-called
Conformal Fermi Coordinates, see e.g. Ref. [96] for the
local expansion of the metric (although in a very different
context), the scalar piece of the spatial component of the
metric expanded around the local Fermi frame reads

gijðxFÞ ¼ a2ðηFÞ
�
δij −

1

3
RF
ikjlx

k
Fx

l
F

�
; ð5:26Þ

where the subscript “F” refers to evaluation at the Fermi
frame. We then have that at leading order in ΦF

RF
ikjlx

k
Fx

l
F ¼ 1

2
ðxi;FxkF∂k∂jΦF þ xj;FxkF∂k∂iΦF

− ∂i∂jΦFxkFxk;F − δijxkFx
l
F∂k∂lΦFÞ: ð5:27Þ

Since ∂i∂jΦF ∼ q2ΦF and xF ≲ Lγ ∼ 1=k (i.e. the expan-
sion is valid on the surroundings of the point xF which are
smaller than the tensor wavelength), this is consistent with
Eq. (5.25) since

RF
ikjlx

k
Fx

l
F ≈Oðϵ2ÞΦF: ð5:28Þ

However, note that although we understand the depend-
ence on ϵ, the coefficient that would enter in Eq. (5.22) is
not determined. To do that, we need a careful treatment of

these subtle coordinate transformations and their relation
between gauge transformations. This is out of the scope of
this paper and we leave it for future work. Instead, we use
the above arguments to propose a phenomenological
solution. We interpolate between PΦ and P∇2Φ for short
and long wavelength scalar modes by including in the
integral Eq. (3.11) the following function of u:

fðuÞ≡ u4

d4 þ u4
: ð5:29Þ

This function goes from fðu ≫ 1Þ ∼ 1 to fðu ≪ 1Þ∼
ðu=dÞ4 and cures any divergence. This also removes the
need to subtract superhorizon contributions as they are
naturally suppressed. The factor d reflects the uncertainty
in the right moment for the transition between short
and long wavelength scalar modes which should be
d ∼Oð0.1Þ −Oð1Þ. Thus, we propose the regular form
of the scalar-tensor induced GWs as

Ωst–ind
GW;R=LðkÞ¼

1

384

Z
∞

0

dv
Z

vþ1

jv−1j

du
v6u2

Δ2
ΦðukÞfðuÞI2

∞ðu;vÞ

× ½ððvþ1Þ2−u2Þ4Δ2
γ0;R=L

ðvkÞ
þððv−1Þ2−u2Þ4Δ2

γ0;L=R
ðvkÞ�: ð5:30Þ

For example, if we take d ¼ 1, Δ2
Φ ¼ AΦ and Δ2

γ;R=L ¼
Aγ;R=L we have

Ωst–ind
GW.R=L;cðkÞ ≈ AΦð0.48Aγ;R=L þ 0.043Aγ;L=RÞ; ð5:31Þ

which is a sensible result if one compares it to the scalar-
scalar induced GWs for flat primordial spectrum,
which gives Ωss-ind

GW ≈ 0.82A2
Φ [41,97]. Equation (5.31)

also tells us that if we have primordial tensor parity
violation with a scale invariant spectrum, the scalar-
tensor induced GWs are also scale invariant and mostly
parity violating.
For a Dirac delta spectrum, we have that u ¼ v ≥ 1=2,

so that the correction from fðuÞ is bounded below by
fðuÞ ≥ 2−4=ðd4 þ 2−4Þ. If we choose d ¼ 1, the suppres-
sion factor at u ¼ v ¼ 1=2 is ∼0.06, quickly becoming 1
for u ¼ v > 1. However, we do not expect large corrections
for the Dirac delta case with the same peak location, which
means that the factor d should be Oð0.1Þ, giving us
fðuÞ ≳ 0.99, and barely modifying the prediction in the
Dirac delta case. This also implies that the suppression
effect should only be important when the scalar mode has at
least a wavelength ten times larger than the tensor mode.
Note that one may argue that there should be a gauge in

which such divergences do not occur and the amplitude
of curvature perturbation does not appear directly into the
equations of motion for tensor modes. If that is the case,
that particular gauge might be more appropriate for
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calculations. Unfortunately, we have found no standard
gauge choice in which that occurs. For example, the third
order action in Maldacena’s paper in the flat and comoving
gauges contain these kind of couplings. So if such gauge
exist is by no means a trivial transformation. And, impor-
tantly, we would then enter into the discussion of the well-
known gauge dependence of the energy density of GWs at
second order in perturbation theory. For these reasons, we
propose a method within the Poisson gauge which, besides
some uncertainty, should provide a good estimate for the
correct scalar-tensor induced GWs spectrum.

VI. SUMMARY AND DISCUSSION

While the focus of GWs hunt has traditionally been on
first-order GWs generated during primordial inflation, there
is also a growing interest in the second-order effects,
specifically scalar-induced GWs (SIGWs). These SIGWs
arise from the nonlinear interactions between scalar per-
turbations and GWs, and their detection could provide
valuable insights into the early Universe and inflationary
models. In this context, we are investigating a nonlinear
interaction between first-order scalar perturbations and
first-order tensor perturbations. Instead of directly generat-
ing gravitational waves from zero, these interactions
modulate the existing waves. While similar modulated
waves have been studied before [54,62] our analysis
generalizes, for the first time, to the case of general chirality
of primordial GWs [63–66], hoping to address the detect-
ability of this effect compared to SIGWs. Our work aims to
explore the distinctive features and implications of chiral
modulated gravitational waves.
We have presented an analysis of both chiral and non-

chiral peaked gravitational waves, modulated by a peaked
scalar perturbation. Our investigation aimed to determine
the extent to which these modulated waves are buried under
the dominant SIGWs. Interestingly, while non-chiral waves
are expected to surpass SIGWs only in a limited range of
wave numbers, we have discovered a distinguishing feature
in the case of chiral waves. This feature enables us to
differentiate between the two induced polarization modes,
providing a potential avenue for detecting and character-
izing the modulated waves amidst the dominant SIGWs.
We also anticipate the possibility of a universal unpolarized
IR behavior of induced GWs. However, further investiga-
tion is needed to confirm and fully understand this effect.
Another significant finding in this study is the identi-

fication of a potential divergence in the momentum integral
of the kernel. This divergence emerges due to the existence
of exceptionally long wavelengths in the scalar modes,
compared to that of the tensor modes. It is important to note
that such divergences do not occur in the SIGWs case,
as it involves a source term that includes the gradient of
the gravitational potential Φ. However, in the current
scenario, the divergence arises from the multiplication of
the gravitational potential Φ with the gradient of the tensor

mode.4 We observe this potential divergence for the first
time in the context of scalar-modulated tensor modes,
originating from the long-wavelength Φ modes. To address
this divergence issue, a possible solution involves separat-
ing the long and short modes of the scalar field and
absorbing the long modes into a new background. This
approach can help mitigate the divergence problem.
However, to fully resolve this issue, further investigation
is required, and it will be explored in future work. A factor
with a free parameter is introduced in the kernel to address
the divergence, but its effectiveness and implications need
to be thoroughly investigated in subsequent studies.
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APPENDIX A: EVOLUTION EQUATION
OF SCALAR-TENSOR INDUCED

GRAVITATIONAL WAVES

We expand the three-space metric in Eq. (2.1), keeping
the tensor terms up to the linear order, as

hij ¼ a2e−2Ψðδij þ γijÞ; ðA1Þ

hij ¼ a−2e2Ψðδij − γijÞ: ðA2Þ

With these metric components, the extrinsic curvature
reads [100]

Kij ¼ −
1

2N
ḣij: ðA3Þ

4To avoid any confusion, we want to emphasize that our
divergence is unrelated to the renormalization process in Quan-
tum Field Theories (QFTs). Instead, it is a purely classical
calculation.
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To get an evolution equation of the tensor perturbations
sourced by a mixing of first order scalar and tensor ones, we
focus on the trace-less part of the ij-th Einstein equation. It
can be written as below [100], defining the trace-less part of
Eq. (A3) as Kij ¼ Kij − 1

3
Khij,

∂K̄i
k

∂t
¼−Nji

jkþ
1

3
Njl

jlδ
i
kþNðKK̄i

kþð3ÞR̄i
k−8πGS̄ikÞ; ðA4Þ

where ð3ÞR̄i
k is the Ricci tensor associated with the three-

metric hik, and S̄ik is the space-space contribution of the
matter energy-momentum tensor. Vertical bars denote

three-space covariant derivatives with connection coeffi-
cients determined from hij. Trace and trace-less parts of Kij

are, respectively,

K ¼ −
1

2N
hijḣij ¼ −

3

N
ðH − Ψ̇Þ; ðA5Þ

K̄i
k ¼ hijK̄jk;

¼ −
1

2N
γ̇ik: ðA6Þ

We obtain the rest of the terms of the trace-less ij-th
equation Eq. (A4) from hij,

Nji
jk ¼ γijNjjk ¼

Ne2Ψ

a2

�
Φ;i

;k þΦ;iΦ;k −Φ;mΨ;mδik þΦ;iΨ;k þΨ;iΦ;k þ
1

2
Φ;mγ

i;m
k −

1

2
Φ;mγ

im
;k

−
1

2
Φ;mγ

m;i
k þ γmtΦ;mΨ;tδ

i
k − γijΦ;jk − γijΦ;jΦ;k − Ψ;kΦ;jγ

ij −Φ;kΨ;jγ
ij

�
; ðA7Þ

Njl
jl ¼

Ne2Ψ

a2
½∇2Φ − Ψ;lΦ;l þΦ;lΦ;l −Φ;mγ

lm
;l þ γmtΦ;mΨ;t −Φ;mlγ

lm −Φ;mΦ;lγ
lm�; ðA8Þ

ð3ÞRjk ¼ ∇2Ψðδjk þ γjkÞ −
1

2
∇2γjk −

1

2
γjk;mΨ;m þ Ψ;jΨ;k þ Ψ;jk þ

1

2
γmj;km þ 1

2
γmk;jm

− γmt
;mΨ;tδjk − γmtΨ;tmδjk − Ψ;λΨ;λδjk − Ψ;λΨ;λγjk −

1

2
Ψ;λγ

λ
j;k −

1

2
Ψ;λγ

λ
k;j þ Ψ;λΨ;tγ

λtδjk; ðA9Þ

ð3ÞRi
k ¼ γij ð3ÞRjk ¼

e2Ψ

a2

�
∇2Ψδik −

1

2
∇2γik −

1

2
γik;mΨ;m þΨ;iΨ;k þΨ;i

;k þ
1

2
γmi
;km þ 1

2
γm;i
k;m − γmt

;mΨ;tδ
i
k − γmtΨ;tmδ

i
k

−Ψ;λΨ;λδ
i
k −

1

2
Ψ;λγ

iλ
;k −

1

2
Ψ;λγ

λ;i
k þ γλtΨ;tΨ;λδ

i
k −Ψ;jkγ

ij −Ψ;kΨ;jγ
ij

�
; ðA10Þ

ð3ÞR ¼ ð3ÞRi
i ¼

e2Ψ

a2
½4∇2Ψ − 2Ψ;iΨ;i þ γmi

;im − 3γmt
;mΨ;t − 3γmtΨ;tm −Ψ;mγ

im
;i þ 3γmtΨ;tΨ;m −Ψ;jiγ

ij −Ψ;iΨ;jγ
ij�; ðA11Þ

ð3ÞR̄i
k ¼ ð3ÞRi

k −
1

3
ð3ÞRδik ¼

e2Ψ

a2

�
−
1

3
∇2Ψδik −

1

2
∇2γik −

1

2
Ψ;mγik;m þ Ψ;iΨ;k þ Ψ;i

;k þ
1

2
γmi
;km þ 1

2
γm;i
k;m þ 1

3
γmtΨ;tΨ;mδ

i
k

þ 1

3
γmtΨ;mtδ

i
k −

1

3
Ψ;mΨ;mδ

i
k −

1

2
γim;k Ψ;m −

1

2
γm;i
k Ψ;m − γijΨ;jk − γijΨ;kΨ;j −

1

3
γmt
;mtδ

i
k

þ 1

3
γmt
;t Ψ;mδ

i
k −

1

3
∇2ðΦ −ΨÞδik

�
: ðA12Þ

Hence Eq. (A4) becomes

̈γik − Φ̇eΦγ̇ik þ 3ðH − Ψ̇Þγ̇ik −
e2ðΦþΨÞ

a2
∇2γik

¼ 2
e2ðΦþΨÞ

a2

�
Φ;i

;k þΦ;iΦ;k −Ψ;iΨ;k −Ψ;i
;k þΦ;iΨ;k þ Ψ;iΦ;k −

2

3
Φ;lΨ;lδ

i
k −

1

3
Φ;lΦ;lδ

i
k þ

1

3
Ψ;lΨ;lδ

i
k

�
þ S; ðA13Þ
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where S contains scalar-tensor mixed terms like ∼ΦðγijÞ, and contribution from the matter component of the Universe, S̄ik,

S ¼ 2
e2ðΦþΨÞ

a2

�
−γijðΦ −ΨÞ;jk þ

1

3
γlmðΦ − ΨÞ;lmδik −

1

2
γim;kðΦ − ΨÞ;m þ 1

2
γi;mk ðΦ −ΨÞ;m

−
1

2
γm;i
k ðΦ −ΨÞ;m þ 1

3
γlm;lðΦ −ΨÞ;mδik − γijΨ;kΦ;j − γijΦ;kΨ;j − γijΦ;kΦ;j

×
1

3
γlmΦ;lðΦþ 2ΨÞ;mδik þ γijΨ;kΨ;j −

1

3
γlmΨ;lΨ;mδ

i
k −

1

2
γm;i
k;m −

1

2
γim;km þ 1

3
γlm;lmδ

i
k

�
þ 16πGe2ΦS̄ik: ðA14Þ

These equations lead to Eq. (2.2), after collecting scalar-scalar and scalar-tensor terms.

APPENDIX B: CALCULATION OF THE KERNEL FUNCTION

The dimension-less power-spectrum for each polarization λ of the correction to GWs, γ1ðk; ηÞ, i.e. the second term on the

right hand side of Eq. (2.15), is given by Eq. (3.5), where we have used the definition of the two-point function ofΦ and γðσÞk

hΦk−k1ð0ÞΦk0−k0
1
ð0Þi ¼ ð2πÞ3δ3ðk − k1 þ k0 − k01Þ

2π2

jk − k1j3
Δ2

Φðjk − k1jÞ; ðB1Þ

hγðσÞk1
ð0Þγðσ0Þk0

1
ð0Þi ¼ ð2πÞ3δ3ðk1 þ k01Þδσσ0

2π2

k31
ΔðσÞ2

γ0 ðkÞ: ðB2Þ

Contraction of the polarization tensors give

Δ2
γ1;R=L

ðkÞ ¼ k3

π

Z
d3k1

Δ2
Φðjk − k1jÞ
k31jk − k1j3

½4 cos8θ=2ΔðσÞ2
γ0;R=L

ðk1Þ þ 4 sin8θ=2ΔðσÞ2
γ0;L=R

ðk1Þ�

×

�Z
η

0

dη̃Gðη; η̃Þ½k21Tγðk1η̃ÞTΦðjk − k1jη̃Þ − T 0
γðk1η̃ÞT 0

Φðjk − k1jη̃Þ�
�

2

; ðB3Þ

which leads to Eq. (3.7). The Green’s function is given by

Gðx; x̃Þ ¼ π

2k
x̃

ffiffiffĩ
x
x

r
ðJ1=2ðx̃ÞY1=2ðxÞ − J1=2ðxÞY1=2ðx̃ÞÞ: ðB4Þ

Here the kernel has been written as, taking the upper limit of the time integral to be ∞,

I ¼
Z

∞

0

kdx̃Gðx; x̃Þ½v2Tγðvx̃ÞTΦðcsux̃Þ − Ṫγðvx̃ÞṪΦðcsux̃Þ�;

¼ π

4

v
csu

1

x

�
− cosxð1− P0

2ðcosmÞÞΘðvþ csu− 1ÞΘð1− jv− csujÞ

−
2

π
sin x½ðQ0

0ðcosh nÞ−Q0
2ðcosh nÞÞΘð1− v− csuÞ − ðQ0

0ðcosmÞ−Q0
2ðcos mÞÞΘðvþ csu− 1ÞΘð1− jv− csujÞ�

	
;

ðB5Þ

where 2uvcs cos m ¼ v2 þ c2su2 − 1 and 2uvcs cosh n ¼ 1 − v2 − c2su2, and Pl
m;Ql

m are the associated Legendre
polynomials of the first and second kind. It gives the oscillation average of the kernel squared (cos m ¼ s ¼ − cosh n)

hI2i ¼ 9

27x2

�
v
csu

�
2
�
π2ð1 − s2Þ2Θð1 − jsjÞ þ

�
2sþ ð1 − s2Þ log

���� 1þ s
1 − s

����
�

2
�
: ðB6Þ
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APPENDIX C: USEFUL FORMULAE FOR THE CALCULATION OF THE KERNEL FUNCTION
IN THE INDUCED GRAVITATIONAL WAVES INTEGRAL

We here write down some formulae used to calculate Eq. (3.8) with Gðx; x̃Þ defined in Eq. (B4), and using

TΦðxÞ ¼ 23=2Γð5=2Þ
�

xffiffiffi
3

p
�

−3=2
J3=2

�
xffiffiffi
3

p
�
;

ṪΦðuxÞ ¼ −
3

x
j2ðux=

ffiffiffi
3

p
Þ ¼ −

35=4

x
ffiffiffi
x

p
ffiffiffiffiffiffi
π

2u

r
J5=2ðux=

ffiffiffi
3

p
Þ;

TγðxÞ ¼
ffiffiffiffiffi
π

2x

r
J1=2ðxÞ;

ṪγðvxÞ ¼ −vj1ðvxÞ ¼ −
ffiffiffiffiffiffi
πv
2x

r
J3=2ðvxÞ; ðC1Þ

the kernel turns out to be, for radiation domination (cs ¼ 1=
ffiffiffi
3

p
)

I ¼
Z

∞

0

dx̃

�
π

2

�
2

35=4
ffiffiffi
v
u

r
1ffiffiffiffiffi
xx̃

p ðJ1=2ðx̃ÞY1=2ðxÞ − J1=2ðxÞY1=2ðx̃ÞÞ
h ffiffiffi

3
p v

u
J1=2ðvx̃ÞJ3=2ðux̃=

ffiffiffi
3

p
Þ − J3=2ðvx̃ÞJ5=2ðux̃=

ffiffiffi
3

p
Þ
i
:

ðC2Þ

Using the recurrence relation 2n=zJnðzÞ ¼ Jn−1ðzÞ þ Jnþ1ðzÞ, we have, putting n ¼ 3=2,

I ¼
Z

∞

0

dx̃

�
π

2

�
2

v
ffiffiffiffiffiffiffiffiffiffiffiffi
v

u=
ffiffiffi
3

p
r ffiffiffĩ

x
x

r
ðJ1=2ðx̃ÞY1=2ðxÞ − J1=2ðxÞY1=2ðx̃ÞÞ½J1=2ðvx̃ÞJ1=2ðux̃=

ffiffiffi
3

p
Þ − J5=2ðvx̃ÞJ5=2ðux̃=

ffiffiffi
3

p
Þ�;

¼
�
π

2

�
2

v
ffiffiffiffiffiffiffiffiffiffiffiffi
v

u=
ffiffiffi
3

p
r

1ffiffiffi
x

p
�
Y1=2ðxÞ

Z
∞

0

dx̃
ffiffiffĩ
x

p
J1=2ðx̃Þ½J1=2ðvx̃ÞJ1=2ðux̃=

ffiffiffi
3

p
Þ − J5=2ðvx̃ÞJ5=2ðux̃=

ffiffiffi
3

p
Þ�

− J1=2ðxÞ
Z

∞

0

dx̃
ffiffiffĩ
x

p
Y1=2ðx̃Þ½J1=2ðvx̃ÞJ1=2ðux̃=

ffiffiffi
3

p
Þ − J5=2ðvx̃ÞJ5=2ðux̃=

ffiffiffi
3

p
Þ�
	
: ðC3Þ

Using the formulae given in [101], we have

Z
∞

0

dτ̃
ffiffiffĩ
x

p
J1=2ðx̃ÞJ1=2ðvx̃ÞJ1=2ðux̃=

ffiffiffi
3

p
Þ ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffi
3

p
2πvu

q ���v − uffiffi
3

p
��� < 1 < vþ uffiffi

3
p

0
���v − uffiffi

3
p
��� > 1

or vþ uffiffi
3

p < 1

Z
∞

0

dx̃
ffiffiffĩ
x

p
J1=2ðx̃ÞJ5=2ðvx̃ÞJ5=2ðux̃=

ffiffiffi
3

p
Þ ¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffiffiffi
3

p
2πvu

q
P0
2ðcosmÞ

for jv − uffiffi
3

p j < 1 < vþ uffiffi
3

p

0

for 1 < jv − uffiffi
3

p j or 1 > vþ uffiffi
3

p
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Z
∞

0

dx̃
ffiffiffĩ
x

p
Y1=2ðx̃ÞJ1=2ðvx̃ÞJ1=2ðux̃=

ffiffiffi
3

p
Þ ¼

8>>>>>><
>>>>>>:

− 1
π

ffiffiffiffiffiffiffi
2
ffiffi
3

p
πvu

q
Q0

0ðcos mÞ
for jv − uffiffi

3
p j < 1 < vþ uffiffi

3
p

1
π

ffiffiffiffiffiffiffi
2
ffiffi
3

p
πvu

q
Q0

0ðcosh nÞ
for 1 > vþ uffiffi

3
p

Z
∞

0

dx̃
ffiffiffĩ
x

p
Y1=2ðx̃ÞJ5=2ðvx̃ÞJ5=2ðux̃=

ffiffiffi
3

p
Þ ¼

8>>>>>><
>>>>>>:

− 1
π

ffiffiffiffiffiffiffi
2
ffiffi
3

p
πvu

q
Q0

2ðcos mÞ
for jv − uffiffi

3
p j < 1 < vþ uffiffi

3
p

1
π

ffiffiffiffiffiffiffi
2
ffiffi
3

p
πvu

q
Q0

2ðcosh nÞ
for 1 > vþ uffiffi

3
p

ðC4Þ

where 2uv=
ffiffiffi
3

p
cosm¼v2þu2=3−1 and 2uv=

ffiffiffi
3

p
coshn¼

1−v2−u2=3, and

P0
2ðcos mÞ ¼ 3cos2m − 1

2
; ðC5Þ

Q0
0ðcos mÞ ¼ 1

2
ln
1þ cos m
1 − cos m

; ðC6Þ

Q0
2ðcos mÞ ¼ 3 cos2m − 1

4
ln
1þ cos m
1 − cos m

−
3 cos m

2
: ðC7Þ

Applying all these, we have Eq. (B5). Remembering that
hcos2xi ¼ hsin2xi ¼ 1=2, we have, for the oscillation
average, Eq. (3.9). The same procedure can be applied
to the scalar induced GWs.

APPENDIX D: SCALAR-INDUCED TENSOR
PERTURBATIONS

Since we have assumed Aγ0 < AΦ, the SIGWs are
expected to have larger amplitudes compared to our
modulated GWs. To assess the magnitude of this difference
and evaluate the prospects of detecting our effect, we
compare the amplitudes of SIGWs to those of our modu-
lated GWs. To get the SIGWs, we need the matter
contribution in Eq. (A14). Previously it was ignored as
we considered linear scalar-linear tensor and it contains no
linear tensor if not some anisotropic stress.

Now,

S̄ik ¼ hijS̄jk

¼ Sik −
1

3
ðδik − γijγjkÞðδnp − γmnγnpÞSpn ; ðD1Þ

where

Sik ¼ ðρþ PÞuiuj þ Pδij

¼ ðρ̄þ P̄ÞV2 þ 3ðP̄þ δP1 þ δP2Þ − P̄γmnγmn: ðD2Þ
Hence,

S̄ik ¼ ðρ̄þ P̄Þ
�
vivk −

1

3
v2δik

�
þ P̄

�
γijγjk þ

1

3
γmnγmnδ

i
k

�
:

ðD3Þ
Here ρ̄; P̄ are the background energy density and pressure
respectively. The perturbation in pressure in first and
second orders are given by δP1; δP2 respectively. For
scalar-scalar interaction, we need only the first term. As
we are taking transverse trace-less component, there is no
first order contribution. The evolution equation becomes

γ̈ikþ3Hγ̇ikþ
k2

a2
γik¼

4

a2
Φ;iΦ;kþ16πGðρ̄þ P̄ÞViVk; ðD4Þ

where

Vi ¼ −
2

8πGa2ðρ̄þ P̄Þ ∂
iðΦ0 þHΦÞ: ðD5Þ

In terms of conformal time and Fourier space, it is

γ00k þ 2Hγ0k þ k2γk ¼ 4

Z
d3k1
ð2πÞ3Φkð0ÞΦk−k1ð0Þϵki ðk̂Þki1k1k

�
TΦðk1ηÞTΦðjk − k1jηÞ

þ 1

2
ðHTΦðk1ηÞ þ T 0

Φðk1ηÞÞðHTΦðjk − k1jηÞ þ T 0
Φðjk − k1jηÞÞ

�
: ðD6Þ
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The sum of polarization states is

X
λ¼þ;×

ðϵikðλÞðk̂Þk1ik1kÞ2 ¼ k41

�
1 −

�
1þ x2 − y2

2x

�
2
�

2

¼ k41 sin
4θ: ðD7Þ

Defining the kernel as

Iðk1;jk−k1jÞ¼
Z

η

0

dη̃Gðη;η̃Þ
�
TΦðk1ηÞTΦðjk−k1jηÞþ

1

2
ðHTΦðk1ηÞþT 0

Φðk1ηÞÞðHTΦðjk−k1jηÞþT 0
Φðjk−k1jηÞÞ

�
; ðD8Þ

the total GWs power-spectrum for both polarization is (τ ¼ kη)

Δ2
γ1ðkÞ ¼

8k3

π

Z
d3k1

Δ2
Φðk1ÞΔ2

Φðjk − k1jÞ
k3jk − k1j3

X
λ¼þ;×

ðϵikðλÞðk̂Þk1ik1kÞ2hI2i;

¼ 8k3

π

Z
d3k1

Δ2
Φðk1ÞΔ2

Φðjk − k1jÞ
k3jk − k1j3

k41 sin
4 θhI2i;

¼ 16k2
Z

∞

0

dv
Z

vþ1

jv−1j
du

v2

u2

�
1 −

�
1þ v2 − u2

2v

�
2
�

2

Δ2
ΦðukÞΔ2

ΦðvkÞ

×

�Z
τ

0

dτ̃Gðτ; τ̃Þ
�
TΦðvτ̃ÞTΦðuτ̃Þ þ

1

2
ðHTΦðvτ̃Þ þ kṪΦðvτ̃ÞÞðHTΦðuτ̃Þ þ kṪΦðuτ̃ÞÞ

��
2

: ðD9Þ

The time integral is

I¼
Z

τ

0

dτ̃
3π2

8k
ffiffiffiffiffiffi
uv

p
ffiffiffiffiffi
3τ̃

τ

r
ðJ1=2ðτ̃ÞY1=2ðτÞ−J1=2ðτÞY1=2ðτ̃ÞÞ½J1=2ðvτ̃=

ffiffiffi
3

p
ÞJ1=2ðuτ̃=

ffiffiffi
3

p
Þþ2J5=2ðvτ̃=

ffiffiffi
3

p
ÞJ5=2ðuτ̃=

ffiffiffi
3

p
Þ�; ðD10Þ

and its oscillation average reads (taking the upper limit of the integration as infinity)

hI2i ¼ 34

25k2

�
1

uvτ

�
2
�
Θ
�
uþ vffiffiffi

3
p − 1

�
9π2

4
n4 þ

�
3n2

2
ln
1þ n
1 − n

− 3n

�
2
	
: ðD11Þ

Equation (D9) becomes

Δ2
γ1ðkÞ ¼

34

2

�
1

τ

�
2
Z

∞

0

dv
Z

vþ1

jv−1j
dy

1

u4

�
1 −

�
1þ v2 − u2

2v

�
2
�

2

× Δ2
ΦðukÞΔ2

ΦðvkÞ
�
Θ
�
uþ vffiffiffi

3
p − 1

�
9π2

4
n4 þ

�
3n2

2
ln
1þ n
1 − n

− 3n

�
2
	
: ðD12Þ

For a Dirac delta input scalar spectrum, we have

hΔ2
γ1ðkÞi ¼ 16A2

Φðk�=kÞ2
�
1 −

k2

4k2�

�
2

hI2iu¼v¼k�=kΘð2k� − kÞ: ðD13Þ

APPENDIX E: EXPLICIT FORMULAE FOR THE GENERAL KERNEL

Here we present the explicit formulas for the general kernel in Sec. V. These are given by:

G0½Si½x��≡ Si½ð1þ csu − vÞx� þ Si½ð1 − csuþ vÞx� − Si½ð1þ csuþ vÞx� − Si½ð1 − csu − vÞx�; ðE1Þ

G1½cos x�≡ cos ½ð1þ csu − vÞx�
1þ csu − v

þ cos ½ð1 − csuþ vÞx�
1 − csuþ v

−
cos ½ð1þ csuþ vÞx�

1þ csuþ v
−
cos ½ð1 − csu − vÞx�

1 − csu − v
; ðE2Þ
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G2½sin x�≡
�
1þ ð1þ csuþ vÞ2

4csuv

�
sin ½ð1 − csu − vÞx� þ

�
1 −

ð1 − csuþ vÞ2
4csuv

�
sin ½ð1þ csu − vÞx�

þ
�
1 −

ð1þ csu − vÞ2
4csuv

�
sin ½ð1 − csuþ vÞx� þ

�
1þ ð1 − csu − vÞ2

4csuv

�
sin ½ð1þ csuþ vÞx�; ðE3Þ

G3½cos x�≡ −ð1þ 3csuþ 3vÞ cos½ð1 − csu − vÞx� þ ð1 − 3csuþ 3vÞ cos½ð1þ csu − vÞx�
þ ð1þ 3csu − 3vÞ cos½ð1 − csuþ vÞx� − ð1 − 3csu − 3vÞ cos½ð1þ csuþ vÞx�; ðE4Þ

G4½sin x�≡ sin ½ð1þ csu − vÞx� þ sin ½ð1 − csuþ vÞx� − sin ½ð1þ csuþ vÞx� − sin ½ð1 − csu − vÞx�; ðE5Þ

F1½sin x�≡ sin ½ð1þ csu − vÞx�
1þ csu − v

þ sin ½ð1 − csuþ vÞx�
1 − csuþ v

−
sin ½ð1þ csuþ vÞx�

1þ csuþ v
−
sin ½ð1 − csu − vÞx�

1 − csu − v
; ðE6Þ

F2½cos x�≡
�
1þ ð1þ csuþ vÞ2

4csuv

�
cos ½ð1 − csu − vÞx� þ

�
1 −

ð1 − csuþ vÞ2
4csuv

�
cos ½ð1þ csu − vÞx�

þ
�
1 −

ð1þ csu − vÞ2
4csuv

�
cos ½ð1 − csuþ vÞx� þ

�
1þ ð1 − csu − vÞ2

4csuv

�
cos ½ð1þ csuþ vÞx�; ðE7Þ

F3½sin x�≡ ð1þ 3csuþ 3vÞ sin½ð1 − csu − vÞx� − ð1 − 3csuþ 3vÞ sin½ð1þ csu − vÞx�
− ð1þ 3csu − 3vÞ sin½ð1 − csuþ vÞx� þ ð1 − 3csu − 3vÞ sin½ð1þ csuþ vÞx�; ðE8Þ

F4½cos x�≡ cos ½ð1þ csu − vÞx� þ cos ½ð1 − csuþ vÞx� − cos ½ð1þ csuþ vÞx� − cos ½ð1 − csu − vÞx�: ðE9Þ
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