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In this work, we investigate the dynamics of bulk viscous models with decaying vacuum energy density
(VED) in a spatially homogeneous and isotropic flat Friedmann-Lemaître-Robertson-Walker spacetime.
We particularly are interested to study the viscous models which consider first-order deviation from
equilibrium, i.e., the Eckart theory. In the first part, using the most general form of bulk viscous coefficient,
we find the analytical solutions of main cosmological parameters, like Hubble parameter, scale factor,
matter density, deceleration parameter, and equation of state parameter, and discuss the evolutions of the
models accordingly. We also discuss the cosmological consequences of the evolutions and dynamics of
three particular viscous models with decaying VED depending on the choices of bulk viscous coefficient.
We examine the linear perturbation growth of the model to see if it survives this further level of scrutiny.
The second part of the work is devoted to constrain one of the viscous models, viz., ζ ∝ H, where ζ is the
bulk viscous coefficient and H is the Hubble parameter, using three different combinations of data from
type Ia supernovae (Pantheon), HðzÞ (cosmic chronometers), baryon acoustic oscillation, and fðzÞσ8ðzÞ
measurements with the Markov chain Monte Carlo method. We show that the considered model is
compatible with the cosmological probes and the ΛCDM recovered in late time of the evolution of the
Universe. Finally, we obtain selection information criteria (Akaike information criteria and Bayesian
information criteria) to study the stability of the models.
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I. INTRODUCTION

Different observations such as luminosity distances of
type Ia supernova, measurements of anisotropy of cosmic
microwave background (CMB), and gravitational lensing
have confirmed that our Universe is spatially flat and
expanding with an accelerated rate. It has been observed
that the Universe contains a mysterious dominant compo-
nent, called dark energy (DE) with large negative pressure,
which leads to this cosmic acceleration [1–7]. In the
literature, several models have been proposed to explain
the current accelerated expansion of the Universe. The two
most accepted DE models are that of a cosmological
constant and a slowly varying rolling scalar field (quintes-
sence models) [8–11].
The cosmological constant Λ (CC for short), initially

introduced by Einstein to get the static Universe, is a natural
candidate for explaining DE phenomena with the equation
of state parameter equal to −1. The natural interpretation
of CC arises as an effect of quantum vacuum energy. Thus,
the cold-dark-matter-based cosmology together with a
CC, called ΛCDM cosmology, is preferred as the standard
model for describing the current dynamics of the Universe.
It is mostly consistent with the current cosmological

observations. However, despite its success, the ΛCDM
model has several strong problems due to its inability to
renormalize the energy density of quantum vacuum,
obtaining a discrepancy of ∼120 orders of magnitude
between its predicted and observed value, the so-called
CC or fine-tuning problem [12–14]. It also has the
coincidence problem, i.e., why the Universe transition,
from decelerated to an accelerated phase, is produced at
late times [15].
Many models have been proposed to tackle these issues.

One possible proposal is to incorporate energy transfer
among the cosmic components. In this respect, the models
with time-varying vacuum energy density (VED), also
known as “decaying vacuum cosmology,” seems to be
promising. The idea of a time-varying VED model [ρΛ ¼
ΛðtÞ=8πG] is physically more viable than the constant Λ
[16–19]. Although no fundamental theory exists to describe
a time-varying vacuum, a phenomenological technique has
been suggested to parametrize ΛðtÞ. In the literature, many
authors [20–41] have carried out analyses on decaying
vacuum energy in which the time-varying vacuum has
been phenomenologically modeled as a function of time
in various possible ways, as a function of the Hubble
parameter. Such attempts suggest that the decaying VED
model provides the possibility of explaining the acceler-
ation of the Universe as well as it solves both cosmological
constant and coincidence problems.
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Shapiro and Solà [42], and Solà [43] proposed a
possible connection between cosmology and quantum
field theory on the basis of renormalization group (RG)
which gives the idea of running vacuum models (RVMs),
characterized by VED ρΛ; see Refs. [32,35,39] for a
review. The RVM has been introduced to solve the
coincidence problem where the term Λ is assumed to
be varying with the Hubble parameter H. Carneiro et al.
[27] proposed that the vacuum term is proportional to the
Hubble parameter: ΛðaÞ ∝ HðaÞ. However, this model
fails to fit the current CMB data. It is interesting to note
that RG in quantum field theory (QFT) provides a time-
varying vacuum, in which ΛðtÞ evolves as Λ ∝ H2 [44].
Basilakos [28] proposed a parametrization of the func-
tional form of ΛðtÞ by applying a power series expansion
in H up to the second order. Recently, a large class of
cosmologies has been discussed where VED evolves like
a truncated power series in the Hubble parameter H; see
Refs. [45,46], and references therein.
On the other hand, in recent years, the observations

suggest that the Universe is permeated by dissipative fluids.
Based on the thermodynamics point of view, phenom-
enological exotic fluids are supposed to play the role for
an alternative DE models. It has been known since a long
time ago that a dissipative fluid can produce acceleration
during the expansion of the Universe [47,48]. The bulk
and shear viscosity are the most relevant parts of dis-
sipative fluid. The bulk viscosity characterizes a change in
volume of the fluid which is relevant only for the com-
pressed fluids. The shear viscosity characterizes a change
in shape of a fixed volume of the fluid which represents
the ability of particles to transport momentum. In general,
shear viscosity is usually used in connection with the
spacetime anisotropy, whereas bulk viscosity plays the
role in isotropic cosmological models. The dynamics of
homogeneous cosmological models has been studied in
the presence of viscous fluid and has application in
studying the evolution of the Universe.
Eckart [49] extended a classical irreversible thermody-

namics from Newtonian to relativistic fluids. He proposed
the simplest noncausal theory of relativistic dissipative
phenomena of first order which was later modified by
Landau and Lifshitz [50]. The Eckart theory has some
important limitations. It has been found that all the
equilibrium states are unstable [51] and the signals can
propagate through the fluids faster than the speed of
light [52]. Therefore, to resolve theses issues, Israel and
Stewart [53] proposed a full causal theory of second order.
When the relaxation time goes to zero, the causal theory
reduces to Eckart’s first-order theory. Thus, taking advan-
tage of this limit of vanishing relaxation time at late time, it
has been used widely to describe the recent accelerated
expansion of the Universe. An exhaustive reviews on
noncausal and causal theories of viscous fluids can be
found in Refs. [54–67]. In recent years, direct observations

indicate for a viscosity-dominated late epoch of accelerat-
ing expansion of the Universe. In this respect, many authors
have explored the viability of a bulk viscous Universe
to explain the present accelerated expansion of the
Universe; cf. [68–89].
In Eckart theory, the effective pressure of the cosmic

fluid is modeled as Π ¼ −3ζH, where ζ is the bulk viscous
coefficient and H the Hubble parameter. The bulk viscous
coefficient can be assumed as a constant or function of the
Hubble parameter. It allows one to explore the presence of
interacting terms in the viscous fluid. Since the imperfect
fluid should satisfy the equilibrium condition of thermo-
dynamics, the pressure of the fluid must be greater than
the one produced by the viscous term. To resolve this
condition, it is useful to add an extra fluid such as
cosmological constant. Many authors [90–94] have studied
viscous cosmological models with constant or with time-
dependent cosmological constant. Hu and Hu [93] have
investigated a bulk viscous model with cosmological
constant by assuming bulk viscous proportional to the
Hubble parameter. Herrera-Zamorano, Hernández-Almada,
and García-Aspeitia [94] have studied a cosmological
model filled with two fluids under Eckart formalism, a
perfect fluid as DE mimicking the dynamics of the CC,
while a nonperfect fluid as dark matter with viscosity term.
In this paper, we focus on discussing the dynamics of a

viscous Universe which consider the first-order deviation
from equilibrium, i.e., Eckart formalism with decaying
VED. Using different versions of bulk viscous coefficient
ζ, we find analytically the main cosmological functions
such as the scale factor, Hubble parameter, matter density,
deceleration, and equation of state parameters. We discuss
the effect of a viscous model with varying VED in
perturbation level. We implement the perturbation equation
to obtain the growth of matter fluctuations in order to study
the contribution of this model in structure formation. We
perform a Bayesian Markov chain Monte Carlo (MCMC)
analysis to constrain the parameter spaces of the model
using three different combinations involving observational
data from type Ia supernovae (Pantheon), Hubble data
(cosmic chronometers), baryon acoustic oscillations, and
fðzÞσ8ðzÞ measurements. We compare our model and
concordance ΛCDM to understand the effects of viscosity
with decaying vacuum by plotting the evolutions of the
deceleration parameter, equation of state parameter, and
Hubble parameter. We also study the selection information
criterion such as Akaike information criteria (AIC) and
Bayesian information criteria (BIC) to analyze the stability
of the model.
The work of the paper is organized as follows. In Sec. II,

we present the basic cosmological equations of Friedmann-
Lemaître-Robertson-Walker (FLRW) geometry with bulk
viscosity and decaying VED. In Sec. III, we find the
solution of the field equations by assuming the most
general form of bulk viscous coefficient. Section IV is
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devoted to study the evolutions of some particular forms
of bulk viscous coefficient with varying VED. We discuss
the growth rate equations that govern the perturbation in
Sec. V. Section VI presents the observational data and
method to be used to constrain the proposed model. The
results and discussion on the evolution of the various
parameters are presented in Sec. VII. In Sec. VIII, we
present the selection information criterion to distinguish
the presented model with concordance ΛCDM. Finally,
we conclude our findings in Sec. IX.

II. VISCOUS MODEL WITH VARYING Λ

Let us start with the FLRW metric in the flat space
geometry as the case favored by observational data:

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð1Þ

where ðr; θ;ϕÞ are the comoving coordinates and aðtÞ is the
scale factor of the Universe. The large-scale dynamics
of (1) is described by the Einstein field equations, which
include the cosmological constant Λ, and is given by

Gμν ¼ Rμν −
1

2
gμνR ¼ 8πGðTμν þ gμνρΛÞ; ð2Þ

where Gμν is the Einstein tensor, ρΛ ¼ Λ=8πG is the
vacuum energy density (the energy density associated to
the CC vacuum term), and Tμν is the energy-momentum
tensor of matter. It is to be noted that for simplicity we
use geometrical units 8πG ¼ c ¼ 1. We introduce a bulk
viscous fluid through the energy-momentum tensor which
is given by [95]

Tμν ¼ ðρm þ PÞuμuν þ gμνP; ð3Þ

where uμ is the fluid four-velocity, ρm is the density of
matter, and P is the pressure which is composed of the
barotropic pressure pm of the matter fluid plus the viscous
pressure Π, i.e., P ¼ pm þ Π. The origin of bulk viscosity
is assumed as a deviation of any system from the local
thermodynamic equilibrium. According to the second law
of thermodynamics, the reestablishment to thermal equi-
librium is a dissipative processes which generates entropy.
Because of generation of entropy, there is an expansion in
the system through a bulk viscous term.
In homogeneous and isotropic cosmological models,

the viscous fluid is characterized by a bulk viscosity. It is
mostly based on Eckart’s formalism [49], which can be
obtained from the second-order theory of nonequilibrium
thermodynamics proposed by Israel and Stewart [53] in
the limit of vanishing relaxation time. The viscous effect
can be defined by the viscous pressure Π ¼ −3ζH, where
ζ is the bulk viscous coefficient and H is the Hubble
parameter. The bulk viscous coefficient ζ is assumed
to be positive on thermodynamical grounds. Therefore,

it makes the effective pressure as a negative value which
leads to modification in the energy-momentum tensor of
perfect fluid.
If we denote the total energy-momentum tensor

Tμν þ gμνρΛ as modified T̃μν on the right-hand side of
field equations (2), then the modified T̃μν can be assumed
the same form as Tμν; that is, T̃μν ¼ ðρþ pÞuμuν þ gμνp,
where ρ ¼ ρm þ ρΛ and p ¼ pm − 3ζH þ pΛ are the total
energy density and pressure, respectively. Furthermore, we
assume that the bulk viscous fluid is the nonrelativistic
matter with pm ¼ 0. Thus, the contribution to the total
pressure is due to only the sum of negative viscous pressure
−3ζH and vacuum energy pressure pΛ ¼ −ρΛ.
Using the modified energy-momentum tensor as dis-

cussed above, the Einstein field equations (2) describing
the evolution of the FLRW Universe dominated by bulk
viscous matter and vacuum energy yield

3H2 ¼ ρ ¼ ρm þ ρΛ; ð4Þ

2Ḣ þ 3H2 ¼ −p ¼ 3ζH þ ρΛ; ð5Þ

where H ¼ ȧ=a is the Hubble parameter and an overdot
represents the derivative with respect to cosmic time t. In
this paper, we propose the evolution of the Universe based
on decaying vacuum models, i.e., vacuum energy density
as a function of the cosmic time. From (2), the Bianchi
identity ∇μGμν ¼ 0 gives

∇μT̃μν ¼ 0 ð6Þ

or, equivalently,

ρ̇m þ 3Hðρm þ pm − 3ζH þ ρΛ þ pΛÞ ¼ −ρ̇Λ; ð7Þ

which imply that there is a coupling between a dynamicalΛ
term and viscous CDM. Therefore, there is some energy
exchange between the viscous CDM fluid and vacuum.
Using the equation of state of the vacuum energy pΛ¼−ρΛ
and pm ¼ 0, Eq. (7) leads to

ρ̇m þ 3Hðρm − 3ζHÞ ¼ −ρ̇Λ: ð8Þ

Now, combining (4) and (8), we get

Ḣ þ 3

2
H2 ¼ 1

2
ρΛ þ 3

2
ζH: ð9Þ

The evolution equation (9) has three independent unknown
quantities, namely,H, ζ, and ρΛ. We get the solution only if
ζ and ρΛ are specified. In what follows, we discuss the
dynamics of the Universe depending on the specific forms
of ρΛ and ζ.
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III. SOLUTION OF FIELD EQUATIONS

In this paper, we parametrize the functional form of ρΛ as
a function of the Hubble parameter. The motivation for a
function ρΛ ¼ ρΛðHÞ can be assumed from different points
of view. Although the correct functional form of ρΛ is not
known, a QFT approach within the context of the RG was
proposed in Refs. [96,97] and further studied by many
authors [29,32,35,43,98,99]. In Ref. [36], the following
ratio has been defined between the two fluid components:

γ ¼ ρΛ − ρΛ0

ρm þ ρΛ
; ð10Þ

where ρΛ0
is a constant vacuum density. If ρΛ ¼ ρΛ0

, then
γ ¼ 0, and we get the ΛCDM model. On the other hand, if
ρΛ0

≠ 0, then we get

ρΛ ¼ ρΛ0 þ γðρm þ ρΛÞ ¼ ρΛ0 þ 3γH2: ð11Þ

The above proposal was first considered by Shapiro
and Solà [42] in the context of RG. Many authors have
studied the evolution of the Universe by assuming this
form [33,34,41]. Hereafter, we shall focus on the simplest
form of ρΛ which evolves with the Hubble rate.
Specifically, in this paper, we consider

ρΛ ¼ c0 þ 3νH2; ð12Þ

where c0 ¼ 3H2
0ðΩΛ0 − νÞ is fixed by the boundary con-

dition ρΛðH0Þ ¼ ρΛ0. The suffix “0” denotes the present
value of the parameter. The dimensionless coefficient ν is
the vacuum parameter and is expected to be very small
value jνj ≪ 1. A nonzero value of it makes possible the
cosmic evolution of the vacuum.
The choice of ζ generates different viscous models, and

in the literature there are different approaches to assume the
evolution of bulk viscosity. In this paper, we consider the
most general form of the bulk viscous term ζ, which is
assumed to be the sum of three terms: The first term is a
constant, ζ0, the second term is proportional to the Hubble
parameter H ¼ ȧ=a, which is related to the expansion, and
the third term is proportional to the acceleration, ä=ȧ. Thus,
we assume the parametrization of bulk viscous coefficient
in the form [67,72,73,79,82,100,101]

ζ ¼ ζ0 þ ζ1
ȧ
a
þ ζ2

ä
ȧ
; ð13Þ

where ζ0, ζ1, and ζ2 are constants to be determined by the
observations. The term ä=ȧ in Eq. (13) can be written as
ä=aH. The basic idea about the assumption of ζ in Eq. (13)
is that the dynamic state of the fluid influences its viscosity
in which the transport viscosity is related to the velocity and
acceleration.

Using Eqs. (12) and (13), the differential equation for the
Hubble parameter (9) finally reduces to

�
1−

3

2
ζ2

�
Ḣþ 3

2
ð1− ζ1 − ζ2 − νÞH2 −

3

2
ζ0H −

1

2
c0 ¼ 0;

ð14Þ

which on integration gives

H ¼ ζ0
2ð1 − ζ1 − ζ2 − νÞ þ σ

�
1þ e−3ð1−ζ1−ζ2−νÞσt

1 − e−3ð1−ζ1−ζ2−νÞσt

�
; ð15Þ

where σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ζ0
2ð1−ζ1−ζ2−νÞ

�
2 þ H2

0
ðΩΛ0−νÞ

ð1−ζ1−ζ2−νÞ

r
.

The above equation simplifies to give

H ¼ ζ0
2ð1 − ζ1 − ζ2 − νÞ þ σ coth

�
3

2

ð1 − ζ1 − ζ2 − νÞσ
ð1 − 3

2
ζ2Þ

t

�
:

ð16Þ

Using the Hubble parameter H ¼ ȧ=a, the scale factor of
the model aðtÞ with the condition aðt0Þ ¼ 1 is given by

a ¼ e
ζ0

2ð1−ζ1−ζ2−νÞt
�
sinh

�
3

2

ð1 − ζ1 − ζ2 − νÞσ
ð1 − 3

2
ζ2Þ

t

�� 2ð1−3
2
ζ2Þ

3ð1−ζ1−ζ2−νÞ;

ð17Þ

which shows that the scale factor increases exponentially as
t increases. From (17), one can observe that, in general, it is
not possible to express cosmic time t in terms of the scale
factor a. It is possible only if the viscous coefficient terms
are zero. In the absence of bulk viscosity, we obtain the
result of decaying vacuum model as discussed in Ref. [29].
Furthermore, for constant Λ, the solution reduced to the
ΛCDM model with no viscosity.
It is worthwhile to compute the evolution of matter

energy density as a function of scale factor (or redshift) or
function of cosmic time. Using (12) and (13), the continuity
equation (8) takes the form

ρ̇mþ3ð1−νÞHρm¼9ð1−νÞ
�
ζ0þζ1

ȧ
a
þζ2

ä
ȧ

�
H2: ð18Þ

The solution of the above equation involves a big expres-
sion. Therefore, we avoid writing the expression for matter
density. However, we present the numerical solution of this
equation for different combinations of viscous and ν terms
in Fig. 1. It is observed that the matter energy density
decreases as t increases, and it approaches to the finite
value as t → ∞. However, in the absence of viscous terms,
ρm → 0 as t → ∞.
To discuss the decelerated and accelerated phases and its

transition during the evolution of the Universe, we study a
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cosmological parameter, known as “deceleration param-
eter,” q, which is defined as

q ¼ −
ä
a

1

H2
¼ −

�
1þ Ḣ

H2

�
: ð19Þ

Using (16), the deceleration parameter is calculated as

q¼−1þ3

2

ð1−ζ1−ζ2−νÞ
ð1−3

2
ζ2Þ σ2csc2h

�
3
2

ð1−ζ1−ζ2−νÞ
ð1−3

2
ζ2Þ σt

�
�

ζ0
2ð1−ζ1−ζ2−νÞþσcoth

�
3
2

ð1−ζ1−ζ2−νÞ
ð1−3

2
ζ2Þ σt

��
2
: ð20Þ

From (20), we observe that the model transits from
decelerated phase to accelerated phase. As t increases,
the deceleration parameter decreases, and as t → ∞, it
approaches to q ¼ −1. The rate of deceleration parameter
attaining to −1 depends on the viscous terms.
For sake of completeness, we discuss another important

cosmological parameter, known as effective equation of
state (EOS) parameter, which is defined as

weff ¼ −1 −
2

3

Ḣ
H2

: ð21Þ

Using (16), Eq. (21) gives

weff ¼−1þ
ð1−ζ1−ζ2−νÞ

ð1−3
2
ζ2Þ σ2csc2h

�
3
2

ð1−ζ1−ζ2−νÞ
ð1−3

2
ζ2Þ σt

�
�

ζ0
2ð1−ζ1−ζ2−νÞþσcoth

�
3
2

ð1−ζ1−ζ2−νÞ
ð1−3

2
ζ2Þ σt

��
2
: ð22Þ

It can be observed that the effective EOS parameter
decreases to negative values and finally saturated to

weff ¼ −1 corresponding to a de Sitter epoch in future
time of evolution.

IV. SOME PARTICULAR SOLUTIONS

In order to calculate specific expressions for cosmologi-
cal parameters of the viscous model with decaying vacuum
energy, let us analyze three particular popular proposals
depending on the choice of ζ defined in Eq. (13).

A. Case I: ζ = ζ0 = const

This is the simplest parametrization of Eckart’s bulk vis-
cosity model. Many authors [70,71,78,85,88,89,92,102–104]
have studied the viscous cosmological models with a
constant bulk viscous coefficient. In this case, the evolution
equation (14) reduces to

Ḣ þ 3

2
ð1 − νÞH2 −

3

2
ζ0H ¼ 1

2
c0: ð23Þ

Solving (23) or directly taking ζ1 ¼ ζ2 ¼ 0 in (16), for ν < 1,
we get

H ¼ ζ0
2ð1 − νÞ þ σ1 coth

�
3

2
ð1 − νÞσ1t

�
; ð24Þ

where σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ζ0
2ð1−νÞ

�
2 þ H2

0
ðΩΛ0−νÞ
ð1−νÞ

r
. It can be observed that

the solution reduces to the standard Λ for ζ0 ¼ 0 and ν ¼ 0,
whereas for ζ0 ¼ 0 and ν ≠ 0 it gives the solution for the
ΛðtÞmodel fromquantum field theory [29]. The scale factor is
given by

aðtÞ ¼ e
ζ0

2ð1−νÞt
�
sinh

�
3

2
ð1 − νÞσ1t

�� 2
3ð1−νÞ

; ð25Þ

which shows that the scale factor increases exponentially as t
increases. From (25), one can observe that, in general, it is not
possible to express cosmic time t in terms of the scale factor a.
It is possible only if ζ0 ¼ 0. In the absence of bulk viscosity,
we obtain the result of decaying vacuum model as discussed
in Ref. [29]. Furthermore, for constantΛ, the solution reduced
to the ΛCDM model with no viscosity.
The deceleration parameter and effective EOS parameter

are, respectively, given by

q ¼ −1þ 3

2

ð1 − νÞσ21csc2 h
�
3
2
ð1 − νÞσ1t

�
�

ζ0
2ð1−νÞ þ σ1 coth

�
3
2
ð1 − νÞσ1t

��
2

ð26Þ

and

weff ¼ −1þ
ð1 − νÞσ21csc2 h

�
3
2
ð1 − νÞσ1t

�
�

ζ0
2ð1−νÞ þ σ1 coth

�
3
2
ð1 − νÞσ1t

��
2
: ð27Þ

FIG. 1. The matter energy density as a function of cosmic time t
for decaying vacuum with ζ ¼ ζ0 þ ζ1

ȧ
a þ ζ2

ä
ȧ.
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The time evolutions of q and weff are similar to the
evolutions of these parameters as discussed for the general
form of viscous term in Sec. III.
The continuity equation (18) in this case has the form

˙ρm þ 3ð1 − νÞHρm ¼ 9ð1 − νÞζ0H2: ð28Þ

Solving (28), one may find the time evolution of the
matter density. We will present only a numerical solution
of this equation. In Fig. 2, we plot the time evolution of
matter energy density ρmðtÞ for different combinations
of ζ0 and ν. This figure shows that the matter density
diverges at the beginning of cosmic evolution, decreases
as t increases, and finally approaches to a finite value as
t → ∞ for ζ ≠ 0 and ν ≠ 0. In the absence of viscosity or
decaying vacuum energy, the matter energy density tends
to zero as t → ∞.

B. Case II: ζ = ζ0 + ζ1H

We assume that the bulk viscous coefficient is a linear
combination of two terms: ζ0 and ζ1H, i.e., ζ ¼ ζ0 þ ζ1H.
In the literature, many authors [73,79,80] have assumed
such a form of ζ to study the dynamics of Universe. In this
case, Eq. (14) reduces to

Ḣ þ 3

2
ð1 − ζ1 − νÞH2 −

3

2
ζ0H ¼ 1

2
c0: ð29Þ

Solving Eq. (29) or directly putting ζ2 ¼ 0 in Eq. (16),
the solution for the Hubble parameter for ðζ1 þ νÞ < 1 is
given by

H ¼ ζ0
2ð1 − ζ1 − νÞ þ σ2 coth

�
3

2
ð1 − ζ1 − νÞσ2t

�
; ð30Þ

where σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ζ0
2ð1−ζ1−νÞÞ

2 þ H2
0
ðΩΛ0−νÞ

ð1−ζ1−νÞ

q
. The corresponding

expression for the scale factor in normalized unit has
the form

a ¼ e
ζ0

2ð1−ζ1−νÞt
�
sinh

�
3

2
ð1 − ζ1 − νÞσ2t

�� 2
3ð1−ζ1−νÞ: ð31Þ

The respective deceleration parameter and effective EOS
parameter are calculated as

q¼−1þ
3ð1−ζ1−νÞσ22csc2h

�
3
2
ð1−ζ1−νÞσ2t

�

2
�

ζ0
2ð1−ζ1−νÞþσ2coth

�
3
2
ð1−ζ1−νÞσ2t

��
2

ð32Þ

and

weff ¼−1þ
ð1−ζ1−νÞσ22csc2h

�
3
2
ð1−ζ1−νÞσ2t

�
�

ζ0
2ð1−ζ1−νÞþσ2coth

�
3
2
ð1−ζ1−νÞσ2t

��
2
: ð33Þ

The time evolutions of q and weff are similar to the
evolutions of these parameters as discussed for the general
form of the viscous term in Sec. III.
The continuity equation (18) in this case has the form

˙ρm þ 3ð1 − νÞHρm ¼ 9ð1 − νÞðζ0H2 þ ζ1H3Þ: ð34Þ

We present only a numerical solution of Eq. (34). In Fig. 3,
we plot the time-dependent matter energy density ρmðtÞ for
different combinations of ζ0, ζ1, and ν. It is observed from
the figure that the matter density diverges at the beginning
of cosmic evolution, decreases as time passes, and finally
approaches to a finite value as t → ∞ for ζ ≠ 0, ζ1 ≠ 0, and

FIG. 2. The time evolution of matter energy density for the
decaying vacuum model with viscosity ζ ¼ ζ0.

FIG. 3. The time evolution of matter energy density for the
decaying vacuum model with viscosity ζ ¼ ζ0 þ ζ1H.
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ν ≠ 0. In the absence of viscous terms or decaying vacuum
energy, the matter energy density tends to zero as t → ∞.

C. Case III: ζ = ζ1H

Finally, let us consider the case where the bulk viscous
coefficient is proportional to the Hubble parameter, i.e.,
ζ ¼ ζ1H. Such a form of ζ has been studied by many
authors [54,60,73,81,105,106]. In this case, the evolution
equation (14) for Hubble parameter reduces to

Ḣ þ 3

2
ð1 − ζ1 − νÞH2 −

1

2
c0 ¼ 0: ð35Þ

The above equation with change of a variable from t to
x ¼ ln a can be written as

dh2

dx
þ 3ð1 − ζ1 − νÞh2 ¼ 3ðΩΛ0 − νÞ; ð36Þ

where h ¼ H=H0 is the dimensionless Hubble parameter
and ΩΛ0 ¼ ρΛ0=3H2

0. Assuming ðζ1 þ νÞ < 1 and using
the normalized scale factor–redshift relation a ¼ ð1þ zÞ−1,
we can express the normalized Hubble function EðzÞ≡
HðzÞ=H0 as

EðzÞ¼ 1

ð1−ζ1−νÞ1=2
× ½ð1−ζ1−ΩΛ0Þð1þzÞ3ð1−ζ1−νÞ þΩΛ0−ν�1=2: ð37Þ

From the above equation, it is clear that, for ν ¼ 0 and
ζ1 ¼ 0, we recover exactly the ΛCDM expansion model,
whereas only ζ1 ¼ 0 gives the solution obtained in
Ref. [41]. It is observed that at very late time we get a

cosmological-constant-dominated era, H ≈H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ0−ν

ð1−ζ1−νÞ
q

,

which implies a de Sitter phase of the scale factor.
Using H ¼ ȧ=a, the solution for the scale factor in terms
of cosmic time t is given by

a¼
�ð1−ζ1−ΩΛ0Þ

ΩΛ0−ν

� 1
3ð1−ζ1−νÞ

×

�
sinh

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ζ1−νÞðΩΛ0−νÞ

p
H0t

�� 2
3ð1−ζ1−νÞ: ð38Þ

It can be observed that the scale factor evolves as
power-law expansion, i.e., a ∝ t2=3ð1−ζ1−νÞ, for small
values of t, whereas it expands exponentially, i.e.,

a ∝ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩΛ0−νÞ
3ð1−ζ1−νÞ

q
H0t, for large values of time t. In other

words, the model expands with decelerated rate in early
time of its evolution and expands with accelerated rate in
late time of its evolution.
From Eq. (38), we can find the cosmic time in terms of

the scale factor, which is given by

tðaÞ ¼ 2

3H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ζ1 − νÞðΩΛ0 − νÞp sinh−1
��

a
aI

�3ð1−ζ1−νÞ
2

�
;

ð39Þ

where aI ¼
�
ð1−ζ1−ΩΛ0Þ
ðΩΛ0−νÞ

�
1=3ð1−ζ1−νÞ.

Using (37), the value of q in terms of redshift is
calculated as

qðzÞ ¼ −1þ 3

2

ð1 − ζ1 −ΩΛ0Þð1þ zÞ3ð1−ζ1−νÞh
ðΩΛ0−νÞ
ð1−ζ1−νÞ þ ð1 − ðΩΛ0−νÞ

ð1−ζ1−νÞÞð1þ zÞ3ð1−ζ1−νÞ
i :

ð40Þ

The above equation shows that the dynamics of q depends
on the redshift which describes the transition of the Universe
from decelerated to accelerated phase. We observe that,
as z → −1, qðzÞ approaches to −1. However, the model
decelerates or accelerates if ΩΛ0 ¼ ν, which gives q ¼
−1þ 1.5ð1 − ζ1 − νÞ. Thus, a cosmological constant is
required for a transition phase. Also, for z ¼ 0, we find
the present value of q which is given by

q0 ¼ −1þ 1.5ð1 − ζ1 −ΩΛ0Þ: ð41Þ

The transition redshift ztr of the Universe, which is
defined as a zero point of the deceleration parameter,
q ¼ 0, can be calculated as

ztr ¼ −1þ
�

2ðΩΛ0 − νÞ
ð3ð1 − ζ1 − νÞ − 2Þð1 − ζ1 −ΩΛ0Þ

� 1
3ð1−ζ1−νÞ:

ð42Þ

In this case, the effective EOS parameter is defined by
weff ¼ −1 − 1

3
d ln h2
dx , where x ¼ ln a and h ¼ H=H0. Using

Eq. (37), we get

weffðzÞ ¼ −1þ ð1 − ζ1 − ΩΛ0Þð1þ zÞ3ð1−ζ1−νÞh
ðΩΛ0−νÞ
ð1−ζ1−νÞ þ ð1 − ðΩΛ0−νÞ

ð1−ζ1−νÞÞð1þ zÞ3ð1−ζ1−νÞ
i :

ð43Þ

The present value of weff at z ¼ 0 is given by

weffðz ¼ 0Þ ¼ −1þ ð1 − ζ1 −ΩΛ0Þ: ð44Þ

We can observe that the model will accelerate provided
3weffðz ¼ 0Þ þ 1 ¼ −2þ 3ð1 − ζ1 −ΩΛ0Þ < 0.
Let us discuss the behavior of the matter energy density

in this model as a function of scale factor (or redshift).
Transforming the time derivative into derivative with
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respect to the scale factor, the conservation equation (18)
reduces to a differential equation for matter density:

dρm
da

þ 3ð1 − νÞ
a

ρm ¼ 9ð1 − νÞζ1
a

H2: ð45Þ

Using (37) into (45) and integrating, we find

ρm ¼
�
ρm0 −

3ζ1H2
0ðΩΛ0 − νÞ

ð1 − ζ1 − νÞ
�
a−3ð1−ζ1−νÞ

þ 3ζ1H2
0ðΩΛ0 − νÞ

ð1 − ζ1 − νÞ ; ð46Þ

where ρm0 ¼ ρmða ¼ 1Þ is the present matter density.
Substituting Eq. (38) in the above equation, one may
obtain the explicit time evolution of the matter density if
desired. It can be observed from Eq. (46) that the matter
density no longer evolves as ρm ¼ ρm0 a−3. There is a
correction in the exponent of the scale factor and some
additional constant terms. This is due to the fact that matter
is exchanging energy from vacuum and viscous term.
We also note that, as t → ∞, ρm ¼ 3ζ1H2

0ðΩΛ0 − νÞ=
ð1 − ζ1 − νÞ; i.e., matter density does not approach zero
in infinitely far future due to viscosity. In the absence of a
viscous term, the matter density tends to zero as t → ∞.
The detailed discussion on the evolutions of matter energy
density and other cosmological parameters of this particular
model is presented in Sec. VII.
In the following section, we constrain the parameters

of this model by using the latest observational datasets
and analyze the evolutions of all above discussed various
cosmological parameters using the best-fit values. We
compare the proposed model with the existing model
through the stability criteria.

V. GROWTH OF PERTURBATIONS

In cosmic structure formation, it is assumed that the
present abundant structure of the Universe was developed
through gravitational amplification of small density per-
turbations generated in its early evolution. In this section,
we briefly discuss the linear perturbation within the
framework of viscous fluid with varying ΛðtÞ. We refer
the reader to Refs. [107,108] for the detailed perturbation
equations, since here we have discussed some basic
equations only. The differential equation for the matter
density contrast δm ≡ δρm=ρm for our model considered
here can be approximated as follows [109]:

δ00m þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0m −

4πGρm
H2ðaÞ

δm
a2

¼ 0; ð47Þ

where prime represents derivative with respect to the scale
factor a. The above second-order differential equation turns

out to be accurate, since the main effects come from the
different expression of the Hubble function. We consider
the Hubble function as obtained in case III in Sec. IV.
Equation (47) describes the smoothness of the matter
perturbation in the extended viscous ΛðtÞ model.
The linear growth rate of the density contrast, f, which is

related to the peculiar velocity in the linear theory [110],
is defined as

fðaÞ ¼ d lnDmðaÞ
d ln a

; ð48Þ

where DmðaÞ ¼ δmðaÞ=δmða ¼ 1Þ is the linear growth
function. The weighted linear growth rate, denoted by
fσ8, is the product of the growth rate fðzÞ, defined in (48),
and σ8ðzÞ. Here, σ8 is the root-mean-square fluctuation in
spheres with radius 8h−1 Mpc scales [111,112], and it is
given by [113]

σ8ðzÞ ¼
δmðzÞ

δmðz ¼ 0Þ σ8ðz ¼ 0Þ: ð49Þ

Using (48) and (49), the weighted linear growth rate is
given by

fσ8ðzÞ ¼ −ð1þ zÞ σ8ðz ¼ 0Þ
δmðz ¼ 0Þ

dδm
dz

: ð50Þ

In what follows, we perform the observational analysis
of case III in Sec. IV to estimate the parameters of the
model and analyse the evolution and dynamics of the model
in detail.

VI. DATA AND METHODOLOGY

In this section, we present the data and methodology
used in this work. We constrain the parameters of the GR-
ΛCDM and ζ ¼ ζ1H with varying Λ models using a large,
robust, and latest set of observational data which involve
observations from (i) distant type Ia supernovae (SNe Ia);
(ii) a compilation of cosmic chronometer measurements of
Hubble parameter HðzÞ at different redshifts; (iii) baryonic
acoustic oscillations (BAO); and (iv) fðzÞσ8ðzÞ data.
A brief description of each dataset follows.

A. Pantheon SNe Ia sample

The most known and frequently used cosmological
probe are distant type Ia supernovae (SNe Ia) which are
used to understand the actual evolution of the Universe.
A supernova explosion is an extremely luminous event,
with its brightness being comparable with the brightness of
its host galaxy [114]. We use the recent SNe Ia data points,
the so-called Pantheon sample which includes 1048 data
points of luminosity distance in the redshift range 0.01 <
z < 2.26. Specifically, one could use the observed distance
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modulo μobs to constrain cosmological models. The Chi-
squared function for SNe Ia is given by

χ2SNe Ia ¼
X1048
i¼1

ΔμTC−1Δμ; ð51Þ

where Δμ ¼ μobs − μth. Here, μobs is the observational
distance modulus of SNe Ia and is given as μobs ¼
mB −M, where mB is the observed peak magnitude in
the rest frame of the B band and M is the absolute B-band
magnitude of a fiducial SNe Ia, which is taken as −19.38.
The theoretical distance modulus μth is defined by

μthðz;pÞ ¼ 5log10

�
DLðzhel; zcmbÞ

1 Mpc

�
þ 25; ð52Þ

where p is the parameter space and DL is the luminosity
distance, which is given as DLðzhel; zcmbÞ ¼
ð1þ zhelÞrðzcmbÞ. Here, rðzcmbÞ is given by

rðzÞ ¼ cH−1
0

Z
z

0

dz0

Eðz0;pÞ ; ð53Þ

where c is the speed of light, EðzÞ≡HðzÞ=H0 is the
dimensionless Hubble parameter, and zhel and zcmb are
heliocentric and CMB frame redshifts, respectively.
Here, C is the total covariance matrix which takes the
form C ¼ Dstat þ Csys, where the diagonal matrix Dstat and
covariant matrix Csys denote the statistical uncertainties and
the systematic uncertainties, respectively.

B. BAO measurements

In this work, we have used six points of BAO datasets
from several surveys, which includes the Six Degree Field
Galaxy Survey (6dFGS), the Sloan Digital Sky Survey
(SDSS), and the LOWZ samples of the Baryon Oscillation
Spectroscopic Survey (BOSS) [115–117].
The dilation scale DvðzÞ introduced in [118] is given by

DvðzÞ ¼
�
d2AðzÞz
HðzÞ

�
1=3

: ð54Þ

Here, dAðzÞ is the comoving angular diameter distance and
is defined as

dAðzÞ ¼
Z

z

0

dy
HðyÞ0 : ð55Þ

Now, the corresponding Chi-squared function for the BAO
analysis is given by

χ2BAO ¼ ATC−1
BAOA; ð56Þ

where A depends on the considered survey and C−1
BAO is the

inverse of the covariance matrix [117].

C. HðzÞ data
The cosmic chronometer (CC) data, which are deter-

mined by using the most massive and passively evolving
galaxies based on the “galaxy differential age” method,
are model independent (see Ref. [119] for detail). In our
analysis, we use 32 CC data points of the Hubble parameter
measured by differential age technique [119] between the
redshift range 0.07 ≤ z ≤ 1.965. The Chi-squared function
for HðzÞ is given by

χ2HðzÞ ¼
X32
i¼1

½Hðzi;pÞ −HobsðziÞ�2
σ2HðziÞ

; ð57Þ

where Hðzi;pÞ represents the theoretical values of Hubble
parameter with model parameters, HobsðziÞ is the observed
values of Hubble parameter, and σi represents the standard
deviation measurement uncertainty in HobsðziÞ.

D. f ðzÞσ8ðzÞ data
In Sec. IV, we have mainly discussed the background

evolution of the growth perturbations and defined the
weighted linear growth rate by Eq. (50). To make a more
complete discussion on the viscous ΛðtÞ model in pertur-
bation evolution, we focus on an observable quantity of
fðzÞσ8ðzÞ. We use 18 data points of “Gold-17” compilation
of robust and independent measurements of weighted linear
growth fðzÞσ8ðzÞ obtained by various galaxy surveys as
compiled in Table III in Ref. [120]. In order to compare the
observational dataset with that predicted by our model, we
define the Chi-square function as

χ2ðfσ8Þ ¼
X18
i¼1

½fσthe8 ðzi;pÞ − fσobs8 ðziÞ�2
σ2fσ8ðziÞ

; ð58Þ

where fσthe8 ðzi;pÞ is the theoretical value computed by
Eq. (50) and fσobs8 ðziÞ is the observed data [120].
Using the observational data as discussed above, we use

the MCMC method by employing the EMCEE PYTHON

package [121] to explore the parameter spaces of viscous
model with decaying vacuum density as discussed in
Sec. III by utilizing different combinations of datasets.
The combinations are as follows:

(i) BASE: The combination of two datasets SNeIaþ
BAO is termed as “BASE,” whose joint χ2 function
is defined as χ2tot ¼ χ2SNe Ia þ χ2BAO.

(ii) þCC: We combine CC data to the BASE, where
χ2tot ¼ χ2SNe Ia þ χ2BAO þ χ2HðzÞ.

(iii) þfσ8ðzÞ: The BASE data are complemented
with CC and fσ8, where χ2tot ¼ χ2SNe Ia þ χ2BAO þ
χ2HðzÞ þ χ2fσ8 .

We consider theΛCDMmodel as a reference model, and its
parameters are also constrained with the above sets of data.
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VII. RESULTS AND DISCUSSION

In this section, we present the main results obtained
through the observational data on the viscous ΛðtÞ model
of the form ζ ¼ ζ1H with Λ ¼ c0 þ 3νH2 (refer to case III

in Sec. IV). We also present the cosmological observation
forthe ΛCDM model using the three combination of
datasets. The viscous ΛðtÞ model has four free parameter
spaces fH0;ΩΛ; ζ1; νg, whereas ΛCDM has two free
parameters fH0;ΩΛg. We calculate the best-fit values by
minimizing the combination of χ2 function for the above
defined datasets. We also provide the fitting values of the
ΛCDM for comparison with the viscous ΛðtÞ model. The
constraints of the statistical study are presented in Tables I
and II. Figures 4–6 show the 1σð68.3%Þ and 2σð95.4%Þ
confidence level (CL) contours with marginalized like-
lihood distributions for the cosmological parameters of
ΛCDM and viscous ΛðtÞ models considering combination
of different datasets, respectively. It is observed from
Tables I and II that the constraints on the parameter spaces
of ΛCDM and viscous with ΛðtÞ are nearly the same.
Using best-fit values of parameters obtained from BASE,

þCC, and þfσ8 data into Eq. (40), the evolutions of the
deceleration parameter with respect to the redshift are
shown in Figs. 7–9 for the viscous ΛðtÞ model along
with the ΛCDM model. It is observed that with each
dataset qðzÞ varies from positive to negative and shows the
similar trajectory that is comparable to the ΛCDM model.
Thus, both the models depict a transition from the early
decelerated phase to the late-time accelerated phase.
Furthermore, qðzÞ approaches to −1 in late time of
evolution. Thus, the models successfully generate late-time
cosmic acceleration along with a decelerated expansion
in the past. Figures 7–9 show that the transition from
decelerated to accelerated phase take place at redshift
ztr ¼ 0.664þ0.031

−0.042 with BASE data, ztr ¼ 0.665þ0.031
−0.037 with

þCC data, and ztr ¼ 0.626þ0.028
−0.037 with þfσ8 data. The

datasets BASE, þCC, and þfσ8 yield the present decel-
eration parameter q0 as −0.533þ0.025

−0.020 , −0.535
þ0.023
−0.020 , and

−0.516þ0.022
−0.017 , respectively (cf. Table II). The present values

of ztr and q0 are very close and, thus, are in good agreement
to ΛCDM as presented in Table I.
The evolutions of the Hubble parameter HðzÞ of viscous

ΛðtÞ model with respect to the redshift are shown in
Figs. 10–12. Throughout the expansion, viscous ΛðtÞ is

FIG. 4. Two-dimensional confidence contours of the H0 − ΩΛ and one-dimensional posterior distributions of H0 and ΩΛ for the
ΛCDM and viscous ΛðtÞ models using “BASE” data. The green and black dot on the contour represent the best-fit value of ΛCDM and
viscous ΛðtÞ models, respectively.

TABLE I. Constraints on parameters of ΛCDM for different set
of observation data. Here, BASE denotes “SNe Iaþ BAO.”

ΛCDM

Parameter BASE þCC +fσ8

H0 68.987þ0.263
−0.276 69.001þ0.238

−0.223 68.793þ0.193
−0.221

ΩΛ 0.701þ0.013
−0.020 0.699þ0.016

−0.015 0.684þ0.015
−0.014

σ8 0.794þ0.014
−0.015

S8 0.811þ0.022
−0.022

ztr 0.670þ0.038
−0.038 0.674þ0.035

−0.035 0.625þ0.041
−0.041

q0 −0.549þ0.020
−0.023 −0.551þ0.020

−0.020 −0.523þ0.025
−0.025

w0 −0.699þ0.013
−0.015 −0.701þ0.013

−0.013 −0.682þ0.017
−0.017

t0 (Gyr) 13.73þ0.017
−0.017 13.69þ0.015

−0.015 13.54þ0.013
−0.013

TABLE II. Constraints on parameters of the viscousΛðtÞmodel
using different sets of observation data.

Viscous ΛðtÞ
Parameter BASE þCC þfσ8

H0 68.843þ0.274
−0.238 68.913þ0.262

−0.261 68.684þ0.259
−0.241

ΩΛ 0.680þ0.018
−0.020 0.684þ0.013

−0.020 0.674þ0.012
−0.016

ζ1 0.006þ0.007
−0.004 0.006þ0.008

−0.004 0.003þ0.005
−0.002

ν 0.004þ0.003
−0.003 0.003þ0.004

−0.002 0.003þ0.004
−0.002

σ8 0.790þ0.008
−0.010

S8 0.822þ0.019
−0.019

ztr 0.664þ0.031
−0.042 0.665þ0.031

−0.037 0.626þ0.028
−0.038

q0 −0.533þ0.025
−0.020 −0.535þ0.023

−0.020 −0.516þ0.022
−0.017

w0 −0.689þ0.017
−0.013 −0.690þ0.015

−0.013 −0.677þ0.014
−0.011

t0 (Gyr) 13.52þ0.019
−0.019 13.48þ0.017

−0.017 13.47þ0.013
−0.015
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coinciding with the ΛCDM model and the model paths
cover the majority of the dataset with the error bar of
Hubble parameter, indicating that the viscous ΛðtÞ agrees
well with the ΛCDM model for all three combinations
of datasets. In the considered cosmological scenario, the
present age of the Universe is found to be t0 ≈ 13.52 Gyr,
t0 ≈ 13.48 Gyr, and t0 ≈ 13.47 Gyr, respectively, as pre-
sented in Table II. The ages thus obtained are very much
compatible with that obtained from the ΛCDM model with
the same datasets (cf. Table I).
Using the best-fit values of parameters in Eq. (43), the

evolutions of the effective EOS parameter weff are shown
in Figs. 13–15. We conclude that, for large redshifts, weff

has small negative value weff > −1=3, and in the future
the model asymptotically approaches to weff ¼ −1. The

trajectory of weff for BASE and þCC datasets coincides
with the evolution of the ΛCDM model. However, it
slightly varies with the best-fit values obtained through
þfσ8ðzÞ data points. It can be observed that the viscous
ΛðtÞ model behaves like a quintessence in early time and
cosmological constant in late time. The present values
of weff are found to be −0.689þ0.017

−0.013 , −0.690
þ0.015
−0.013 , and

−0.677þ0.014
−0.011 with BASE, þCC, and þfσ8 datasets,

respectively, which are very close to the current value of
the ΛCDM model as presented in Table I.
From Tables I and II, let us discuss the present value

H0 of Hubble parameter in the case of viscous ΛðtÞ and
ΛCDM models. The viscous ΛðtÞ model gives H0 ¼
68.843þ0.274

−0.238 km=s=Mpc with BASE data, the þCC data
give H0 ¼ 68.913þ0.262

−0.261 km=s=Mpc, and, finally, the þfσ8

FIG. 6. Two-dimensional confidence contours of H0 − ΩΛ, ΩΛ − S8, and H0 − S8 and one-dimensional posterior distributions of H0,
ΩΛ, and S8 for the ΛCDM and viscous ΛðtÞ models using “þfσ8” data. The green and black dot on the contour represent the best-fit
value of ΛCDM and viscous ΛðtÞ models, respectively.

FIG. 5. Two-dimensional confidence contours of the H0 − ΩΛ and one-dimensional posterior distributions of H0 and ΩΛ for the
ΛCDM and viscous ΛðtÞ models using “þCC” data. The green and black dot on the contour represent the best-fit value of ΛCDM and
viscous ΛðtÞ models, respectively.
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renders the present value: H0 ¼ 68.684þ0.259
−0.241 km=s=Mpc.

Recently, the local measurement H0 ¼ 73.04� 1.04
km=s=Mpc from Riess et al. [122] exhibits a strong
tension with the Planck 2018 release H0 ¼ 67.4�
0.5 km=s=Mpc [7] at the 4.89σ confidence level. The
residual tensions of our fitting results with respect to the

latest local measurement H0 ¼ 73.04� 1.04 km=s=Mpc
[122] are 3.92σ, 3.85σ, and 4.07σ, respectively.
Let us focus on σ8 and S8, which play a very relevant role

in structure formation. The best-fit values of these param-
eters for ΛCDM and viscous ΛðtÞ models using BASEþ
CCþ fσ8 data are reported in Tables I and II, respectively.
We can read off σ8 ¼ 0.794þ0.014

−0.015 for the ΛCDM model
(cf. Table I), whereas the viscous ΛðtÞ model prediction is
σ8 ¼ 0.790þ0.008

−0.010 (cf. Table II). This is a very good result,
which can be rephrased in terms of the fitting value of the

FIG. 7. The redshift evolution of the deceleration parameter for
viscous ΛðtÞ using BASE dataset. The evolution of deceleration
parameter in the standard ΛCDM model is also shown as the
dashed curve. A dot denotes the current value of q (hence q0).

FIG. 8. The redshift evolution of the deceleration parameter
for viscous ΛðtÞ using þCC dataset. The evolution of deceler-
ation parameter in the standard ΛCDM model is also shown as
the dashed curve. A dot denotes the current value of q (hence q0).

FIG. 9. The redshift evolution of the deceleration parameter for
viscous ΛðtÞ using þfσ8 dataset. The evolution of deceleration
parameter in the standard ΛCDM model is also shown as the
dashed curve. A dot denotes the current value of q (hence q0).

FIG. 10. Best fits using BASE dataset over HðzÞ data for
viscous ΛðtÞ (green dot-dashed line) and ΛCDM (black solid
line) are shown. The gray points with uncertainty bars correspond
to the 32 CC sample.
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related LSS observable S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −ΩΛÞ=0.3

p
quoted

in Tables I and II: S8 ¼ 0.811� 0.022 for ΛCDM and
S8 ¼ 0.822� 0.019 for the viscous ΛðtÞmodel. The values
of σ8 and S8 for the viscous ΛðtÞ model are compatible for
1σ confidence level with ΛCDM. Our result predicts that
the tensions in σ8 and S8 are reduced to 0.23σ and −0.38σ,
respectively. The behavior of fðzÞσ8ðzÞ as a function of
redshift is plotted in Fig. 17. We can see that the evolution
of fσ8 for both viscous ΛðtÞ and ΛCDM models is
consistent with the observational data points.
Table III presents the χ2 and reduced χ2 of ΛCDM

and viscous ΛðtÞ models, respectively, for the used data-
sets. To compute reduced χ2, denoted as χ2red, we use

χ2red ¼ χ2min=ðN − dÞ, where N is the total number of data
points and d is the total number of fitted parameters, which
differs for the various models. It should be noted that, when
a model is fitted to data, a value of χ2red < 1 is regarded as
the best fit, whereas a value of χ2red > 1 is regarded as a poor

FIG. 11. Best fits usingþCC dataset overHðzÞ data for viscous
ΛðtÞ (blue dot-dashed line) and ΛCDM (black solid line) are
shown. The gray points with uncertainty bars correspond to the
32 CC sample.

FIG. 12. Best fits using þfσ8 dataset over HðzÞ data for
viscous ΛðtÞ (red dot-dashed line) and ΛCDM (black solid line)
are shown. The gray points with uncertainty bars correspond to
the 32 CC sample.

ef
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z

FIG. 13. Effective EOS parameter as a function of redshift z
for viscous ΛðtÞ using BASE dataset. The evolution of EOS
parameter in the standard ΛCDMmodel is also represented as the
dashed curve. A dot denotes the present value of the EOS
parameter.
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FIG. 14. Effective EOS parameter as a function of redshift z for
viscous ΛðtÞ usingþCC dataset. The evolution of EOS parameter
in the standard ΛCDM model is also represented as the dashed
curve. A dot denotes the present value of the EOS parameter.
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fit. In our observations, we have usedN ¼ 1054 data points
for BASE (SNe Ia and BAO), N ¼ 1086 data points
for BASEþ CC, and N ¼ 1104 data points for BASEþ
CCþ fσ8. The number of free parameters of viscous ΛðtÞ
is d ¼ 4, whereas for ΛCDM it is d ¼ 2. Using this
information, the χ2red for both the models are given in
Table III. It can be observed that the value of χ2red is less than
unity with every dataset for both the models, which shows
that both models are in a very good fit with these
observational datasets and the observed data are consistent
with the considered models.
Using the three combination of datasets, we are also

interested in investigating the cosmographical aspects of
the models, such as the jerk parameter, which is defined as

j ¼ aðtÞ
…

aH3
¼ qð2qþ 1Þ þ ð1þ zÞ dq

dz
: ð59Þ

The jerk parameter, which is a dimensionless third
derivative of the scale factor, can provide us the simplest
approach to search for departures from the ΛCDM model.
It is noted that, for the ΛCDMmodel, j ¼ 1ðconstÞ always.
Thus, any deviation from j ¼ 1 would favor a non-ΛCDM
model. In contrast to a deceleration parameter which has
negative values indicating an accelerating Universe, the
positive values of the jerk parameter show an accelerating
rate of expansion. In Fig. 16, the evolutions of jerk
parameter are shown for ΛCDM and viscous ΛðtÞ models
using the best-fit values of parameters obtained from three

ef
f

z

FIG. 15. Effective EOS parameter as a function of redshift z for
viscous ΛðtÞ using þfσ8 dataset. The evolution of EOS param-
eter in the standard ΛCDM model is also represented as the
dashed curve. A dot denotes the present value of the EOS
parameter.

TABLE III. Values of Chi-squared, reduced Chi-squared, AIC and BIC of ΛCDM, and viscous ΛðtÞ models. The
ΛCDM model is considered as a reference model to calculate the ΔAIC and ΔBIC.

Values

BASE þCC þfσ8

ΛCDM Viscous ΛðtÞ ΛCDM Viscous ΛðtÞ ΛCDM Viscous ΛðtÞ
χ2 518.017 515.074 525.457 522.390 842.630 831.112
d 2 4 2 4 2 4
N 1054 1054 1086 1086 1104 1104
χ2red 0.492 0.498 0.484 0.481 0.764 0.755
AIC 522.028 523.055 529.468 530.427 846.641 839.112
BIC 531.938 542.915 539.438 550.351 856.643 859.139
ΔAIC 1.026 0.959 −7.492
ΔBIC 10.977 10.913 2.496

FIG. 16. Jerk parameter jðzÞwith redshift z using best-fit values
of parameters for the viscous ΛðtÞ model. The horizontal line
represents the ΛCDM model.
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combination of datasets. It is obvious from the figure that
this parameter remains positive and less than unity in the
past and eventually tends to unity in late time. Thus, the
jerk parameter deviates in early time, but it attains the same
value as ΛCDM in late time.
Using the best-fit values of parameters from Table II in

Eq. (46), we plot the matter energy density as a function of
redshift for different combinations of datasets in Fig. 18.
It is observed that the matter density was too large at the
beginning of the cosmic evolution. As z → −1, the matter
energy density tends to a finite value for all combinations
of datasets.

VIII. SELECTION CRITERION

There are two widely used selection criterion, namely,
AIC and BIC, to measure the goodness of the fitted models
compared to a base model. AIC is an essentially selection
criteria based on the information theory, whereas the BIC is
based on the Bayesian evidence valid for a large sample size.
In cosmology, AIC and BIC are used to discriminate
cosmological models based on the penalization associated
with the number of free parameters of the considered models.
The AIC parameter is defined through the relation [123]

AIC ¼ χ2min þ
2dN

N − d − 1
; ð60Þ

where d is the free parameters in a model, N the observa-
tional data points, and χ2min the minimum value of the χ2

function. AIC penalizes according to the number of free
parameters of that model. To discriminate the proposed
model m1 with the reference model m2, we calculate
ΔAICm1m2

¼ AICm1
− AICm2

, which can be explained as
“evidence in favor” of model m1 as compared to model m2.
In this paper, we consider ΛCDM model as a reference
model (m2).
The value 0 ≤ ΔAICm1m2

< 2 refers to strong evidence
in favor of the model m1; for 2 ≤ ΔAICm1m2

≤ 4, there is
average strong evidence in favor of the model m1; for
4 < ΔAICm1m2

≤ 7, there is little evidence in favor of the
model m1; and for ΔAICm1m2

> 8, there is no evidence in
favor of the model m1.
On the other hand, the BIC can be defined as [124]

BIC ¼ χ2min þ d lnN: ð61Þ

Similar to ΔAIC, ΔBICm1m2
¼ BICm1

− BICm2
gives

evidence against the model m1 with reference to model m2.
For 0 ≤ ΔBICm1m2

< 2 gives not enough evidence of
the model m1; for 2 ≤ ΔBICm1m2

< 6, we have evidence
against the model m1; and for 6 ≤ ΔBICm1m2

< 10, there
is strong evidence against the model m1. Finally, if
ΔBIC > 10, then there is strong evidence against the
model, and it is probably not the best model.
The values of ΔAIC andΔBIC with respect to ΛCDM as

the referring model are shown in Table III. According to our
results, ΔAICðΔBICÞ ¼ 1.026ð10.977Þ with respect to the
BASE dataset, ΔAICðΔBICÞ ¼ 0.959ð10.913Þ with þCC
dataset, and for þfσ8 dataset, we have ΔAICðΔBICÞ ¼
−7.492ð2.416Þ. Thus, under AIC there is strong evidence
in favor of the viscous ΛðtÞ model, whereas under BIC
there is strong evidence against the viscous ΛðtÞ model
with BASE and þCC datasets and positive evidence
against the model with the þfσ8 dataset.

FIG. 17. Theoretical curves for the fðzÞσ8ðzÞ corresponding to
ΛCDM and viscous ΛðtÞ model along with some of the data
points employed in our analysis. To generate this plot we have
used the best-fit values of the cosmological parameters listed in
Tables I and II for þfσ8 data.

FIG. 18. The matter energy density as a function of redshift for
decaying vacuum with viscous term ζ ¼ ζ1H using the best-fit
values obtained from different combinations of datasets.
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IX. CONCLUSION

In this work, we have studied the analytical and
observational consequences of cosmology inspired by
dissipative phenomena in fluids according to Eckart theory
with varying VED scenarios for spatially flat homogeneous
and isotropic FLRW geometry. We have assumed the
interaction of two components: viscous dark matter and
vacuum energy density satisfying the conservation equa-
tion (8). We have solved the field equations by assuming
the most general form of bulk viscous coefficient, viz.,
ζ ¼ ζ0 þ ζ1H þ ζ2ðä=aHÞ. We have also explored three
particular cases of bulk viscosity—namely, (i) ζ ¼ ζ0;
(ii) ζ ¼ ζ1H; and (iii) ζ ¼ ζ0 þ ζ1H—to observe the effect
of viscosity with varying VED. These viscous models
have different theoretical motivations, but not all of them
are able to constrain observationally. We have constrained
only the viscous model ζ ¼ ζ1H with varying VED. The
motivation of the present work is to study the dynamics
and evolutions of a wide class of viscous models with
time-varying vacuum energy density in the light of the
most recent observational data. Current observations do
not rule out the possibility of varying DE. It has been
observed that the dynamical Λ could be useful to solve the
coincidence problem. Although the functional form of
ΛðtÞ is still unknown, a QFT approach has been proposed
within the context of the RG. Thus, we have used the
varying VED of the functional form ρΛ ¼ c0 þ 3νH2 in all
of the viscous models presented in this paper. The
motivation for this functional form stems from the general
covariance of the effective action in QFT in curved
geometry. It has been shown that the ΛðtÞ provides either
a particle production processes or increasing the mass of
the viscous dark matter particles. In what follows, we
summarize the main results of the four different viscous
ΛðtÞ models.
In case of the viscous ΛðtÞ models with ζ ¼ ζ0,

ζ ¼ ζ0 þ ζ1H, and ζ ¼ ζ0 þ ζ1H þ ζ2ðä=aHÞ, we have
found the analytical solutions of the various cosmological
parameters, like HðtÞ, aðtÞ, ρmðtÞ, qðtÞ, and weffðtÞ. It has
been observed that all these three viscous ΛðtÞ models
expand exponentially with cosmic time t. The models show
the transition from decelerated phase to accelerated phase
in late time. The matter energy density ρmðtÞ approaches
to a finite value in late time evolution of the Universe.
This happens due to the presence of bulk viscosity. The
deceleration parameter qðtÞ tends to −1 as t → ∞. It is
important to note that it is HðzÞ that is actually the
observable quantity in cosmology which can be examined
with current observations. However, assuming a suitable
choice of model parameters, we have discussed numerically
the evolutions and dynamics of these models. In the case of
viscous ΛðtÞ model with ζ ¼ ζ1H, we have obtained the
various cosmological parameters. We have performed a
joint likelihood analysis in order to put the constrain on
the main parameters by using the three different

combinations of observational data: BASE, þCC, and
þfσ8. To discriminate our model with the concordance
ΛCDM model, we have also performed the statistical
analysis for ΛCDM by using the same observational data-
sets. Our finding shows that this viscous ΛðtÞ model can
accommodate a late time accelerated expansion. It has been
observed that we can improve significantly the performance
of the model by using BASEþ CCþ fσ8.
From observational consistency points of view, we have

examined the evolution of the viscous ΛðtÞ model on
Hubble parameter, deceleration parameter, and equation of
state parameter by using the best-fit values of parameters.
It has been observed that the model depicts transition from
an early decelerated phase to late-time accelerated phase,
and the transition takes place at ztr ¼ 0.664þ0.031

−0.042 with
BASE data, ztr ¼ 0.665þ0.031

−0.037 with þCC data, and ztr ¼
0.626þ0.028

−0.037 with þfσ8 data. The present viscous ΛðtÞ
model has q0 ¼ −0.533þ0.025

−0.020 , q0 ¼ −0.535þ0.023
−0.020 , and

q0 ¼ −0.516þ0.022
−0.017 , respectively. Thus, both ztr and q0

values are in good agreement with that of the ΛCDM
model. The ages of the Universe obtained for this model
with each dataset are very much compatible with the
ΛCDM model. The proposed model has a small negative
value of EOS parameter for large redshifts and asymptoti-
cally approaches to cosmological constant for small red-
shifts. Thus, the viscous ΛðtÞ model behaves like
quintessence in early time and cosmological constant in
late time. The residual tensions of our fitting results with
respect to the latest local measurement H0 ¼ 73.04�
1.04 km=s=Mpc [122] are 3.92σ, 3.85σ, and 4.07σ, respec-
tively. In Ref. [125], the authors found H0 ¼ 69.13�
2.34 km=s=Mpc assuming the ΛCDM. Such a result
almost coincides with H0 that we obtained in Tables I
and II for ΛCDM and viscous ΛðtÞ models. We have
explored the σ8 and S8 parameters using the combined
datasets of BASEþ CCþ fσ8. The constraints on σ8 and
S8 from this combined analysis are σ8 ¼ 0.790þ0.008

−0.010 and
S8 ¼ 0.822þ0.019

−0.019 , respectively, which are very close to the
values of ΛCDM. The tension of our fitting results in σ8
and S8 for the viscousΛðtÞmodel with respect to respective
σ8 and S8 of ΛCDM is 0.23σ and −0.38σ, respectively. The
evolution of fσ8 as displayed in Fig. 17 shows that the
behavior of fσ8 is consistent with the observational data
points. It has been noticed that the best-fit results are
consistent in the vicinity of Planck data [7].
It has been observed that the value of χ2red is less than

unity with every dataset, which shows that the model is in a
very good fit with these observational datasets and the
observed data are consistent with the considered model.
The jerk parameter remains positive and less than unity in
past and eventually tends to unity in late time. Thus, the
jerk parameter deviates in early time, but it attains the same
value as ΛCDM in late time. To discriminate the viscous
ΛðtÞ with the ΛCDM, we have examined the selection
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criterion, namely, AIC and BIC. According to the selection
criteriaΔAIC, we have found that the viscousΛðtÞmodel is
positively favored over the ΛCDMmodel for BASE,þCC,
and þfσ8 datasets. Similarly, with respect to ΔBIC our
model has a very strong evidence against the model for
BASE and þCC datasets, whereas, when we add þfσ8
dataset, there is no significant evidence against the model.
As a concluding remark, we must point out that the viscous
models with decaying VED may be preferred as potential
models to examine the dark energy models beyond the
concordance cosmological constant. The viscous effects

with decaying VED can drive an accelerated expansion of
the Universe. Thus, a viable cosmology can be constructed
with viscous fluids and decaying VED. With new and more
accurate observations and with more detailed analyses, it
would be possible to conclusively answer the compatibility
of viscous model with dynamical vacuum energy.
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[39] J. Solà and A. Gomez-Valent, Int. J. Mod. Phys. D 24,

1541003 (2015).
[40] E. A. Novikov, Mod. Phys. Lett. A 31, 1650092 (2016).
[41] A. P. Jayadevan, M. Mukesh, A. Shaima, and T. K.

Mathew, Astrophys. Space Sci. 364, 67 (2019).
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