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We derive an effective field theory (EFT) for cosmological Lyman alpha forest fluctuations valid for the
power spectrum at the one-loop order. The “bottom-up” EFTexpansion at the level of the transmitted flux is
identical to the line-of-sight dependent bias model first derived by Desjacques et al.We confirm this result
by a “top-down” derivation based on the exponential map of the optical depth field. Specifically, we show
that the combination of the exponential map and conditions of renormalizability generates the same EFT
expansion as the “bottom-up” approach. In passing, we point out inconsistencies of the tree-level
perturbative expansion of the exponential map without counterterms. To facilitate practical applications, we
generalize the FFTLog method for efficient calculations of one-loop integrals from new line-of-sight
dependent operators. Finally, we compare the one-loop EFT model against data from the Sherwood
hydrodynamic simulation. The theory fits the data with subpercent accuracy up to k ¼ 3 hMpc−1 at
z ¼ 2.8 for both 3D and 1D correlations. Our model can be readily used for cosmological full-shape
analyses of Lyman alpha forest data.
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I. INTRODUCTION

The Lyman alpha forest is the key source of information
on the matter power spectrum at small scales (∼Mpc and
smaller) and high redshifts, 2≲ z≲ 5 [1–6]. It has been
extensively used to constrain the ΛCDM model [7–15],
as well as neutrino masses [12,16–19], primordial black
hole dark matter [20], dark-matter baryon interactions [21],
and other nonminimal cosmological models [22–24]. The
forest is also a unique probe of warm dark matter [25–34]
and fuzzy dark matter models [35–37] that is not affec-
ted by ambiguities of the galaxy formation physics.
In addition, the large-scale Lyman alpha forest is a valu-
able source of high-redshift baryon acoustic oscillation
(BAO) information, see e.g. [38–41]. In addition to the
BAO, the broadband shape of the large-scale 3D Lyman
alpha power spectrum may also be a powerful probe of
cosmology [42–45].
The Lyman alpha forest has been one of the key targets

for past and ongoing large-scale structure surveys such as
BOSS [15,46], eBOSS [41], XQ-100 [14], MIKE/HIRES
[28], and DESI [45,47,48]. Entering the regime of high-
precision Lyman alpha cosmology with DESI requires a
robust theoretical understanding of the forest. The standard
approach to the forest modeling has been hydrodynamical
simulations, see e.g. [49–56]. In this work we explore an
alternative method and study towhat extent the Lyman alpha
fluctuations can be modeled perturbatively [19,22,57–60].

On the one hand, perturbative approaches break down at
short scales, where the power spectrum is fully nonlinear,
which ultimately limits their utility. On the other hand,
they provide a high level of accuracy and flexibility on
mildly nonlinear scales. Indeed, as long as the EFT
formally applies,1 it gives a systematic program of
consecutive approximations that can be executed to
arbitrary accuracy. The high flexibility of the EFT is
especially important for the efficient exploration of
beyond-ΛCDM models. For example, it is currently
unfeasible to run a full simulation-based Monte Carlo
analysis of a large grid of ΛCDM extensions similar to
the analysis by the Planck Collaboration [61].2 Such an
analysis, is, however, perfectly possible with perturbation
theory-based pipelines analogous to the ones recently
applied to galaxy clustering data, see e.g. [67–78]. In
addition, perturbative descriptions are based on different
assumptions than simulations. In principle, they provide
alternative first-principle models that are agnostic about
the physics of intergalactic medium.3 Therefore, they
represent a valuable addition to the Lyman alpha cosmol-
ogy toolbox.

*ivanov99@mit.edu

1The conditions of the applicability of the EFT will be
specified shortly.

2Although recently there has been significant progress in
cosmological analyses of Lyman alpha forest beyond ΛCDM
based on approximating, interpolating [17,62,63] and emulating
[64–66] a grid of simulations.

3See [79,80] for relationship between the underlying physics
of the Lyman alpha forest and perturbation theory parameters.
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The aim of this work is to develop an effective field
theory (EFT) description for the Lyman alpha forest,
analogous to that of other large-scale structure tracers
[81–85]. The main philosophy of the EFT is to des-
cribe dynamics on large scales using only relevant
symmetries. These ideas have been explored before both
in the context of the Lyman alpha forest [22,58,59] and
for general line-of-sight dependent bias tracers [86]. In
particular, our work is a direct extension of Refs. [59,86].
Desjacques et al. [86] derived a general perturbative
model for a tracer of matter that depends on the line-of-
sight selection effects. Although this description has been
developed primarily in the context of galaxies [87], one
can argue that it applies, practically without modifica-
tions, to the Lyman alpha forest. This is quite natural, as
the EFT bias expansion [83] is based on symmetries,
and the galaxies in the presence of selection effects enjoy
the same key symmetries as the Lyman alpha forest;
the SOð2Þ rotations around the line of sight and the
equivalence principle.
Chen et al. [59] pursued an alternative route and built

a perturbative expansion for the Lyman alpha forest flux
F starting from the exponential map of the effective
optical depth field τ, F ¼ expð−τÞ. This field is often
assumed to be a selection-independent tracer of dark
matter, whose density is conserved during transforma-
tions from real to redshift space, see e.g. [79,80]. Chen
et al. then showed how the combination of dynamics and
the exponential map produces terms in the anisotropic
bias expansion for the Lyman alpha forest derived in
[83]. In this regard, the main theoretical goal of this work
is to establish a direct connection between the two
approaches. We will explicitly show that the combination
of the exponential map and the EFT renormalizability
principle explicitly reproduces the complete set of EFT
operators. In order to emphasize the role of renormaliza-
tion, we also carry out an alternative derivation in which
we ignore counterterms, i.e. treat the perturbative expan-
sion à la standard perturbation theory (SPT) [88]. In that
case the exponential map produces an incomplete set of
line-of-sight dependent bias operators at the tree level,
with strong constraints on their bias coefficients. We call
this naive SPT-like expansion “the tree-level Tau model.”
We show explicitly that this model is mathematically
inconsistent. Once the model is properly renormalized, its
tree-level constraints get violated by loops. We argue that
within this particular derivation the loops should also
generate the rest of the EFT operators allowed by sym-
metries. Our calculations thus suggest that the “renor-
malized” SPT-like approach is equivalent to the full EFT4

once the loop corrections are taken into account.
It is also important to note that Refs. [53,89,90] found

that the optical depth is actually a selection-dependent

tracer, i.e. in contrast to idealized galaxies5 its fluctuations
trace the line-of-sight velocity gradients. This further
strengthens the motivation for a bottom-up approach such
as the EFT.
On a more practical side, we extend a fast logarithmic

Fourier transform (FFTLog) algorithm of Refs. [93,94] to
quickly compute the full EFT one-loop power spectrum of
the 3D Lyman alpha forest. Having done this calculation,
we compare our EFT power spectrum model to the Lyman
alpha forest data from the Sherwood simulations [52].
We find this model to be subpercent level accurate up
to kmax ¼ 3 hMpc−1 for z ¼ 2.8, and up to kmax ¼
5 hMpc−1 for z ¼ 3.2. We have also detected strong
deviations from the predictions of the tree-level Tau model.
This may be considered an “experimental” evidence in
favor of the full EFT expansion and validity of the
renormalization program. Finally, we show how the EFT
approach works out at the level of the one-dimensional flux
power spectrum. The methods that we have presented are
ready to be applied to data. This paves the way for
systematic and efficient EFT-based cosmological analyses
of the Lyman alpha forest.
Our paper is structured as follows. In Sec. II we recap

the Lyman alpha forest physics and discuss its aspects
relevant for the EFT; scales and power counting. Section III
outlines the EFT model first derived by [83] and discusses
its features relevant for the Lyman alpha. There we also
discuss the FFTLog implementation of our one-loop
calculation. Section IVestablishes the relationship between
the EFT model and the exponential map. There we also
introduce the tree-level Tau model, which we use as a case
study to underline the importance of loop corrections and
renormalization. In Sec. V we compare the full one-loop
EFT model with Sherwood simulations. Section VI is
devoted to the one-dimensional flux power spectrum
modeling. Finally, we outline our main results and draw
conclusions in Sec. VII. Some technical material is col-
lected in Appendixes.

II. PRELIMINARIES

A. Basics of Lyman alpha forest

Our Universe is filled with optically thin neutral hydro-
gen (HI) clouds at redshifts 2≲ z≲ 5. Background quasars
emit UV radiation that propagates towards us through these
clouds along given lines of sight. The atoms in the cloud
absorb the background radiation if the radiation’s rest-
frame frequency happens to match that of a transition
between hydrogen levels. Notably, if the relevant wave-
length is 121.6 nm, a hydrogen atom undergoes a Lyman
alpha transition. Since the quasar spectrum is continuous in

4At least at the level of the one-loop power spectrum.

5From now on when discussing galaxies, we will always
assume an idealized situation when the line-of-sight selection
effects [86,87] are negligible, although this assumption may not
always be warranted, see e.g. [91,92].
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a wide frequency range, and there are many clouds along
the line of sight at different redshifts, the observed quasar
spectrum features a dense “comb” of absorption lines,
called the Lyman alpha forest. The fraction of transmitted
flux for each quasar spectrum is not homogeneous, and its
fluctuations trace cosmological mass fluctuations along
the line of sight. Specifically, under the assumption of
photoionization-recombination equilibrium, the optical
depth of neutral hydrogen clouds is proportional the
Lyman alpha absorption cross section and the neutral hydro-
gen density nHI along the line of sight. The latter scales with
the fractional overdensity of gas (baryons) δb, gas temper-
ature T, and the ionizing background amplitude J as

nHI ∝
ð1þ δbÞ2
T0.7J

: ð2:1Þ

Assumptions of the adiabatic expansion and the photo-
ionization equilibrium lead to the tight relation between
temperature and density, T ¼ T0ð1þ δbÞγ−1, where
γ ≃ 1.6. Assuming that T0, J and γ are constants (i.e. do
not have spatial fluctuations), we arrive at the well-known
conclusion (see e.g. [35,95,96]) that the fluctuations of nHI
observed through the forest trace the underlying fluctua-
tions of gas density, which in turn, must reflect the matter
over-density δ.6 In this simplified model, known as the
fluctuating Gunn-Peterson approximation [4,99], the opti-
cal depth τ is proportional to nHI, while the transmitted flux
we measure is simply given by F ¼ expð−τÞ.
One way to study the Lyman alpha fluctuations is to

model the optical depth field. In our work, however, we
employ a different approach. Since we are interested in
fluctuations of the flux, we focus directly on this observ-
able. Instead of modeling explicitly underlying physics that
affects the flux, we will build a perturbative (gradient)
expansion that is based on symmetries of the problem and a
minimal set of additional assumptions. In particular, we
will not explicitly employ relations such as Eq. (2.1), but
simply assume that the large-scale flux contrast is a certain
unknown function of only a few variables (degrees of
freedom); the tidal field, velocity gradients, and stochastic
noise. This function is then represented as a general Taylor
expansion that contains all possible dependencies allowed
by symmetries. This approach in general is known as the
EFT of large-scale structure [81,82,84,85].
In the EFT of large-scale structure one builds a pertur-

bative expansion of relevant observables in terms of the
matter over field, which is linear on large scales. This linear
field δð1Þ is the seed function of all perturbative EFT
calculations. Its statistical properties are fully fixed in
terms of the linear matter power spectrum,

hδð1ÞðkÞδð1Þðk0Þi ¼ ð2πÞ3δð3ÞD ðkþ k0ÞPlinðk; zÞ: ð2:2Þ

In what follows we will often drop the explicit redshift
dependence and assume that all quantities are evaluated at a
given redshift of the Lyman alpha forest, which we take to
be z ¼ 2.8 to match the simulation data that we use here.
This redshift is similar to the redshifts of Lyman alpha
forest data from BOSS [15], eBOSS [100], and DESI [47].

B. Relevant scales

The EFT is a gradient expansion based on the
assumption of scale separation. Let us discuss how well
this assumption is satisfied by the Lyman alpha forest
fluctuations.
The first relevant scale in the Lyman alpha forest physics

is the nonlinear scale where the density field becomes fully
nonlinear. In momentum space, it can be estimated as a
wave number for which the amplitude of the dimensionless
linear matter power spectrum becomes unity,

k3NL
2π2

PlinðkNL; zÞ ¼ 1; ⇒ kNL ≃ 5 hMpc−1; for z≃ 3:

ð2:3Þ
A perturbative description of the Lyman alpha forest is
possible only if k ≪ kNL. The second relevant parameter is
the smoothing scale. The forest is smoothed by two
effects7; gas pressure (3D effect) [101] and thermal broad-
ening (1D effect) [8,102,103]. These smoothing effects
are naturally incorporated within the EFT as part of the
gradient expansion. The gas perturbations are smoothed by
pressure on the Jeans scale kJ ∼ 18 hMpc−1 [19,101].
The absorption lines are also subject to thermal broadening,
whose characteristic scale kS ∼ 11 hMpc−1 in the 1D
flux power spectrum is comparable to that of the Jeans
smoothing [19].8 Both smoothing length scales are typi-
cally shorter than the nonlinear scale at the lower end of
redshifts relevant for the forest, z ≃ 3. This gives us the
following hierarchy of scales in the EFT for Lyman alpha:

k ≪ kNL ≲ kJ; ks: ð2:4Þ
High redshift Lyman alpha forest is affected by

potentially significant spatial fluctuations of the ionizing
background, and temperature fluctuations due to inhomo-
geneous (patchy) reionization.9 The first effect modulates

6Recall that in standard linear cosmological perturbation
theory δb ¼ δ sufficiently deep into the matter domination
regime. Note that this condition is not always correct beyond
ΛCDM, see e.g. [97,98].

7It is worth mentioning that the actual data features certain
observational effects that effectively act as an additional source of
smoothing, e.g. an imperfect resolution [17]. These effects can
also be absorbed, to some extent, into the EFT expansion.

8We stress that both scales are not known exactly. The values
quoted in [19] are benchmark values that are sufficient for our
order-of-magnitude estimates.

9In our notation this can be thought of a spatial variation of T0

in Eq. (2.1).
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the power spectrum shape on a broad range of scales, up to
100 h−1 Mpc [104,105]. These modulations are, however,
quite smooth, which suggest that they can be captured
perturbatively with an appropriately modified bias expan-
sion. As far as the patchy reionization is concerned,
Ref. [106] suggests that the gas temperature fluctuates
on a scale of ∼25 h−1 Mpc at z ∼ 5. These results are
consistent with simulations of Ref. [107], which addition-
ally imply that patchy reionization may impact the 3D
Lyman alpha power spectrum on wave number as large as
0.2 hMpc−1 at a few percent level at low redshifts. This
suggests that the typical scales associated with UV back-
ground and temperature fluctuations are significantly
longer than the nonlinear scale, and hence their systematic
description within a gradient expansion approach, such as
EFT, may present a theoretical challenge.10 In this work we
build the EFT for Lyman alpha forest starting with an
idealized scenario where the photoionization and temper-
ature fluctuations are absent. We stress though that our
description is still realistic at low redshifts (z ∼ 3) and small
scales (k≳ 0.1 hMpc−1), where the effects in question are
suppressed [105,107].
Within our approximation, the most relevant scale for the

EFT expansion is the nonlinear scale, just like in the usual
EFT of LSS. In what follows we will construct a perturba-
tive expansion of the Lyman alpha forest fluctuations
around linear theory, which will be implicitly controlled
by a small parameter k=kNL. Let us sketch the structure of
this expansion.

C. Estimates of perturbative terms
in the scaling Universe

Let us estimate the size of various terms in perturbation
theory. It is convenient to approximate the actual ΛCDM
power spectrum with a power-law Plin ∝ kn. For the
range of scales relevant for our analysis, and for z ≈ 3,

k ≈ 3 hMpc−1, the linear matter power spectrum can be
well-approximated as

PlinðkÞ ¼ 2π2
kn

knþ3
NL

; with n≈−2.5; kNL≈ 5.3 hMpc−1;

ð2:5Þ
see Fig. 1, where the scaling Universe curve is normalized
to the linear power spectrum at k ¼ 3 hMpc−1. From the
dimensional analysis, the Lth-loop correction to this power
spectrum must scale as [88,109]

k3

2π2
PL−loopðkÞ ¼

αLð2π2Þ
k3NL

�
k
kNL

�ðnþ3ÞðLþ1Þ
; ð2:6Þ

where αL is an order one number. These terms will be
refereed to as “mode-coupling corrections” in what follows.
The higher-derivative (counterterm) corrections scale as
k2Plin ∝ knþ2. Thus, the total power spectrum in the EFT
reads, schematically

PNLðkÞ ¼ 2π2
kn

knþ3
NL

0
B@ 1|{z}

linear

þ α1

�
k
kNL

�
nþ3

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1−loop

þ α2

�
k
kNL

�
2ðnþ3Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2−loop

þ αk2

�
k
kNL

�
2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
higher deriv

þ � � �

1
CA

¼ 2π2
k−2.5

k0.5NL

0
B@ 1|{z}

linear

þ α1

�
k
kNL

�
0.5

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1−loop

þ α2

�
k
kNL

�
1

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2−loop

þ αk2

�
k
kNL

�
2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
higher deriv

þ � � �

1
CA; ð2:7Þ

where we used n ¼ −2.5 from Eq. (2.5) in the second line. Note that we explicitly included only the mode coupling and k2

corrections above. We see that in our toy model scaling Universe the one-loop corrections due to mode coupling are the
leading contributions in the regime k ≪ kNL. The k2 corrections become important only at the three-loop order.11

FIG. 1. The dimensionless linear matter power spectrum in
ΛCDM and a scaling Universe from Eq. (2.5). Here we assume
z ¼ 2.8, a redshift of the Sherwood simulation snapshot that we
use in this work.

10See however Ref. [108] for an approach to resumm the large gradients due to the radiation transfer effects.
11See [110,111] for the three-loop order matter calculations.

MIKHAIL M. IVANOV PHYS. REV. D 109, 023507 (2024)

023507-4



Our discussion so far has considered nonlinearity in
the context of the matter density field. In the EFT,
additional nonlinearities appear due to biasing and red-
shift-space distortions. These effects are conceptually
similar to the dark matter nonlinearities, and hence our
scaling Universe estimates are expected to apply to the
more realistic case without significant modifications.12

One aspect worth mentioning is the presence of constant
stochastic shot noise contribution, which is, however,
negligibly small in the scaling Universe where it scales
as Pshot ∼ k−3NL.
From Eq. (2.7) we see that in contrast to galaxies

(see e.g. [114,115]), the leading order corrections to
linear theory in the Lyman alpha forest case come from
the one-loop mode coupling effects.13 Recall that for the
scales relevant to galaxy clustering the effective power
law is less steep, n ≈ −1.5, so that the k2-type higher-
derivative terms become important already at the one-
loop level. Our ΛCDM Universe is, of course, more
complicated than the toy model we consider here.
Nevertheless, the scaling Universe model gives us a
good sense of the importance of various terms in the
perturbation expansion.

III. EFFECTIVE FIELD THEORY FOR LYMAN
ALPHA FLUCTUATIONS

A. Overview of galaxies in redshift space

It is instructive to start our discussion of the bias
model for the Lyman alpha with a recap of the bias
model for galaxies. In real space, and on large scales,
the galaxy overdensity field δg can be expressed through
a perturbative expansion over the velocity gradients and
tidal fields [83,116–119]. This expansion is, in general,
nonlocal in time, but at the cubic in density order,
relevant for the one-loop power spectrum calculation, it
can be expressed through local in time operators [83].
Specifically, at this order, we have the following
expression for the deterministic part of the galaxy bias
relation,

δgðxÞ ¼ bg1δðxÞ þ
bg2
2
ðδðxÞ2 − hδðxÞ2iÞ þ bgG2

G2ðxÞ
þ bgΓ3

Γ3ðxÞ þ bg∇2δ
R2�∇2δ; ð3:1Þ

where δ is the (nonlinear) matter overdensity field, and
we also defined

G2ðxÞ ¼ ð∂i∂jΦÞ2 − ð∂2ΦÞ2;
Γ3ðxÞ ¼ G2½Φ� − G2½Φv�; ð3:2Þ

where we introduced velocity and density potentials Φ and
Φv, respectively, which satisfy

∂
2Φ ¼ δ; ∂iΦv ¼ vi; ð3:3Þ

where vi is the peculiar velocity field. The bias coef-
ficients bg1; b

g
2; b

g
G2
; bgΓ3

; bg∇2δ
are free parameters that

characterize a given galaxy selection; R� is the typical
length scale associated with galaxies, which we inserted
to make bg∇2δ

dimensionless. Typically, this scale is
assumed to be of the order of the Lagrangian radius
of the host halos [83,120], but it can be as large as
100 hMpc−1 if the radiation transfer effects are included,
see e.g. [108,121].
There are several aspects of the galaxy bias model in

Eq. (3.1) that are worth emphasizing. It is the most general
local in time perturbative expansion in the matter density
in real space, modulo terms that do not contribute at
the level of the one-loop galaxy power spectrum, e.g. δ3.
This expansion involves all possible operators allowed by
symmetries of the problem, the spherical symmetry and
the equivalence principle. In our context this means the
relevant operators are scalars under SOð3Þ rotations, and
there is no velocity bias on large scales, i.e. galaxies
undergo the same acceleration as dark matter. Using the
general symmetry-motivated expansions like (3.1) is the
key principle of effective field theory. In this philosophy,
the distribution of galaxies on large scales is expressed in
terms of underlying basic long-wavelength degrees of
freedom, which in our context are matter density, velocity
gradients, and tidal fields, plus stochastic terms that will be
discussed later. The tree-level bias coefficients that appear
in (3.1) are, strictly speaking, not well-defined since they
receive formally infinite-loop corrections. In the EFT
jargon these are called “bare” parameters, or Wilson
coefficients. Only their finite “renormalized” parts make
physical sense and can be matched to the data that describes
physical observables.
Since the galaxies are observed in redshift space,

one needs to transform the galaxy bias expansion (3.1)
using the following velocity-dependent mapping (see
e.g. [88]),14

δðsÞg ðkÞ ¼ δgðkÞ þ
Z

d3x e−ikxðe−ikzvgzðxÞ=ðaHÞ − 1Þ

× ð1þ δgðxÞÞ; ð3:4Þ
12It is important to note that the velocity field is more nonlinear

than the density one, see e.g. [112,113], i.e. the wave number
associated with the velocity nonlinear scale is smaller.

13Here we distinguish between the one-loop mode-coupling
integrals and higher-derivative counterterms, both of which are
parts of the one-loop power spectrum.

14Using this expansion, we assume a flat-sky approximation
that is accurate for small scales relevant for our work.

LYMAN ALPHA FOREST POWER SPECTRUM IN EFFECTIVE … PHYS. REV. D 109, 023507 (2024)

023507-5



where we have switched to the Fourier-space representa-
tion, and used a andH to denote the metric scale factor and
the Hubble parameter, respectively, H ¼ aH is the con-
formal Hubble parameter, whilst the subscript z stands for
the projection onto the line of sight, which we will describe
with the unit vector ẑ. vg above is the tracer’s velocity,
which is equal to the matter peculiar velocity v at the zeroth
order in the derivative expansion due to the equivalence
principle.
In what follows it will be convenient to use the following

notation for the normalized velocity gradient of matter
along the line of sight,

η≡ ∂zvz
aH

: ð3:5Þ

Note that in linear theory in Fourier space we have

η ≈ −fμ2δð1Þk ; μ ¼ ðẑ · kÞ
k

; ð3:6Þ

where we introduced f ≡ d lnDþ=d ln a (Dþ is the growth
factor).

Assuming that the velocity field is perturbative, one
Taylor expands the exponent in (3.4) and finds, at linear
order,

δðsÞg ¼ bg1δ − η: ð3:7Þ

Crucially, the second term, which depends on the line of
sight, does not have any free parameter in front of it. This
embodies the absence of selection effects, and follows from
the conservation of the galaxy number density under the
coordinate transformation from the galaxy rest frame to
observed redshift space.
Going to higher order in the Taylor expansion of (3.4),

one obtains corrections to the observed galaxy overdensity
due to redshift-space distortions (RSD). Note that this
expansion generates extra UV sensitivity, which must be
removed by appropriate counterterms [122,123], which
start at order k2δ. Apart from these higher-derivative
contributions, RSD mapping (3.4) does not generate new
free parameters for the deterministic part of the galaxy
power spectrum in redshift space. The redshift space galaxy
overdensity reads15

δðsÞg ðkÞ ¼ Z1ðkÞδð1Þk þ
Z
q1

Z
q2

ð2πÞ3δDðk − q12ÞZ2ðq1;q2Þδð1Þq1 δ
ð1Þ
q2

þ
Z
q1

Z
q2

Z
q3

ð2πÞ3δDðk − q123ÞZ3ðq1;q2;q3Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3 þ � � � ; ð3:8Þ

where the dots denote higher-loop corrections and higher-derivative counterterms, δð1Þk is the linear matter density field,
while the redshift-space kernels Z1;2;3 are given by

Z1ðkÞ ¼ bg1 þ fμ2; ð3:9aÞ

Z2ðk1;k2Þ ¼
bg2
2
þ bgG2

�ðk1 · k2Þ2
k21k

2
2

− 1

�
þ bg1F2ðk1;k2Þ þ fμ2G2ðk1;k2Þ

þ fμk
2

�
μ1
k1

ðbg1 þ fμ22Þ þ
μ2
k2

ðbg1 þ fμ21Þ
�
; ð3:9bÞ

Z3ðk1;k2;k3Þ ¼ 2bgΓ3

�ðk1 · ðk2 þ k3ÞÞ2
k21ðk2 þ k3Þ2

− 1

�
½F2ðk2;k3Þ −G2ðk2;k3Þ�

þ bg1F3ðk1;k2;k3Þ þ fμ2G3ðk1;k2;k3Þ þ
ðfμkÞ2

2
ðbg1 þ fμ21Þ

μ2
k2

μ3
k3

þ fμk
μ3
k3

½bg1F2ðk1;k2Þ þ fμ212G2ðk1;k2Þ� þ fμkðbg1 þ fμ21Þ
μ23
k23

G2ðk2;k3Þ

þ bg2F2ðk1;k2Þ þ 2bG2

�ðk1 · ðk2 þ k3ÞÞ2
k21ðk2 þ k3Þ2

− 1

�
F2ðk2;k3Þ þ

bg2fμk
2

μ1
k1

þ bgG2
fμk

μ1
k1

�ðk2 · k3Þ2
k22k

2
3

− 1

�
; ð3:9cÞ

15We use the notation
R
q ≡

R d3q
ð2πÞ3.
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where the density and velocity SPT kernels Fn and Gn can
be found, e.g. in [88]. Note that Z3 must be symmetrized
over its arguments. We also introduced cosines between the
line of sight and momentum vectors,

μi ≡ ðẑ · kiÞ
ki

; ð3:10Þ

and use k to denote the sum of all arguments, i.e. for Z3 we
have k≡ k1 þ k2 þ k3.
Note that the density field variance hδðxÞ2i is used in the

Eq. (3.1) in order to enforce the vanishing of the over-
density vacuum expectation value, hδi ¼ 0, which a prop-
erly defined fluctuating field must satisfy. The k ¼ 0
correction to (3.9) produced by the density variance is
not explicitly shown above, but it is needed to ensure that
the line-of-sight dependent bias operators are not generated
by loop corrections for galaxies.

B. General bias expansion for the Lyman alpha forest

The Lyman alpha forest is different from galaxies in
several important aspects. First, unlike galaxies, the forest
has a preferred direction—the line of sight. Indeed, in
contrast to galaxies, the flux fluctuations intrinsically exist
only in redshift space. This means that new operators are
allowed in the Lyman alpha forest bias expansion.
Physically, this happens because the absorption probability
for the Lyman-α line depends on the tidal field along the
line of sight. Mathematically, this property may traced to
the nonlinear mapping between flux and the optical depth,
F ¼ exp ð−τÞ. If one assumes that the τ field is a matter
tracer whose number density is conserved, just like for
galaxies, there would be no selection effects, and the bias
expansion would take the form (3.7) at the lowest order.
The nonlinear mapping, however, breaks the conservation
of tracer number density [79] and forces us to introduce line
of sight selection effects. At linear order, and in the rest
frame of a neutral hydrogen cloud, we should write

F − F̄
F̄

≡ δF ¼ b1δþ bηẑiẑj∂i∂jΦ; ð3:11Þ

where F̄≡ hFi is the mean transmitted flux. In linear
theory the tidal field is related to the velocity gradient η
defined in Eq. (3.5), so that one can rewrite the above
expression as

δF ¼ b1δþ bηη; ð3:12Þ
The new selection-dependent parameterbηwill be referred to
as “velocity gradient bias” in what follows [80]. The linear
model (3.12) produces the well-known tree-level result

Ptreeðk; μÞ ¼ ðb1 − bηfμ2Þ2PlinðkÞ; ð3:13Þ
which is a simple generalization of the Kaiser formula for
galaxies [124]. We stress that Eq. (3.11) is not the most
general expression. As in the context of galaxies, a consistent

bias expansion should depend on the history of the rel-
evant operators along their fluid trajectories xflðx; τÞ (x is the
last point of the trajectory) [83,85,116,118,125],16

δFðx; τÞ ⊃
Z

τ
Tðτ; τ0ÞOðτ0;xflðx; τ0ÞÞ; ð3:14Þ

where τ is conformal time. Using the matter equations of
motion, thedependence on the fluid trajectory and time can be
Taylor expanded and summed up into a finite number of
linearly independent terms, which eventually reproduce the
local-in-time bias expansion similar to Eq. (3.12). All in all, it
is important to keep in mind that the bias expansion is
intrinsically nonlocal in time, but for the purposes of the one-
loop power spectrum calculation this nonlocality is irrelevant,
so we will proceed with the local in time expansion.
It is straightforward to generalize the bias model (3.12)

to operators that are higher order in the linear density field.
Specifically, Ref. [86] showed that a general selection-
dependent biased tracer has the following deterministic bias
model up to cubic order:

δF ¼ b1δþ
b2
2
δ2 þ bG2

G2 þ bΓ3
Γ3 þ bηη

þ bðKKÞkKijKjlẑiẑl þ bδηηδþ bη2η
2 þ bΠ½2�

k
Π½2�

ij ẑ
iẑj

þ b
δΠ½2�

k
δΠ½2�

ij ẑ
iẑj þ b

ηΠ½2�
k
ηΠ½2�

ij ẑ
iẑj þ bðKΠ½2�ÞkKijΠ

½2�
jl ẑ

iẑl

þ bΠ½3�
k
Π½3�

ij ẑ
iẑj; ð3:15Þ

where we kept only the terms that contribute nontrivially
to the one-loop power spectrum, and introduced the new
operators

Kij ¼
∂i∂jδ

Δ
−
1

3
δijδ

Π½1�
ij ¼ ∂i∂jΦ ¼ ∂i∂jδ

Δ
;

Π½n�
ij ¼ 1

ðn − 1Þ!
�
ðaHfÞ−1 D

Dτ
Π½n−1�

ij − Π½n−1�
ij

�
; n > 1;

ð3:16Þ

where we used the convective derivative D
Dτ ¼ ∂τ þ vi∂i.

The explicit expressions for the tensors Π½2�
ij and Π½3�

ij in
perturbation theory can be found in Ref. [86]. In total, we
have nine new selection-bias coefficients in addition to the
four selection-free ones.17

16In analogy with the smoothing scale of the Lyman alpha
fluctuations [101], one may say that the Lyman alpha bias
parameters in general are expected to depend on the whole
reionization history of the Universe.

17Our discussion so far does not include higher-derivative
counterterms and stochastic-bias contributions, which will gen-
erate additional free parameters.
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The expression (3.15) is written in the rest-frame of the
tracer. In order to describe the actual observations, this has
to be transferred to the observer’s frame using the standard
RSD mapping (3.4) [83,86]. Note that the physical mean-
ing of the RSD mapping here is somewhat different from
that in the galaxies’ case. Neglecting selection effects, the
mapping simply acts on the real-space bias expansion
that captures the actual number density in tracer’s rest
frame. If the probability to detect a galaxy depends on
line-of-sight properties [87,92], the line-of-sight selection
effects should be treated as part of the bias expansion that
describes the apparent number density of the tracer in its
rest frame. The apparent density can be defined as the
observed galaxy distribution formally inversely trans-
formed from redshift space to real space. Obviously, it is
different from the actual, rest-frame (real-space) galaxy
number density, which, in principle, can be reconstructed
with better selection criteria or better measurements [87].
Contrasting the actual number density and the observed one
in redshift space, we may say that the RSD mapping does
not conserve the galaxy number density in the presence of
selection effects. In the Lyman alpha case, the line-of-sight

dependent bias expansion also captures the apparent
number density. This number density is by definition
subject to the RSD mapping that conserves it. The con-
ceptual difference with galaxies is that the Lyman alpha
fluctuations intrinsically live along lines of sight, so that a
notion of the actual rest-frame density does not make sense
in this case. From the technical point of view, however, the
treatment of the mapping is similar: on has to apply the
RSD mapping (3.4) to the selection-dependent bias expan-
sion (3.15).
When expanded, the RSD mapping will produce addi-

tional velocity-dependent contributions into (3.15), most of
which will be degenerate with the selection terms that are
already present. This will lead to an unobservable redefi-
nition of the selection bias coefficients. There will be,
however, a few extra operators that are not present in (3.15).
These terms correspond to pure projection effects, i.e. they
explicitly depend on locally unobservable tracer’s velocity.
The coefficients in front of these terms are protected by
the equivalence principle and do not get renormalized by
nonlinear effects. With these terms included, we have the
net expression [86]:

δðsÞF ¼ δF þ vz
aH

ẑi∂i½b1δþ bηηþ bΠ½2�
k
Π½2�

kl ẑ
kẑl�: ð3:17Þ

The final mode-coupling three-dimensional one-loop power spectrum that comes from the expansion (3.17) is given by

ΔP1−loopðk; μÞ≡ 2

Z
q
K2

2ðq;k − qÞPlinðjk − qjÞPlinðqÞ

þ 6K1ðkÞPlinðkÞ
Z
q
K3ðk;−q;qÞPlinðqÞ; ð3:18Þ

where we introduced the new selection-dependent redshift space kernels,

K1ðkÞ ¼ b1 − bηfμ2;

K2ðk1;k2Þ ¼
b2
2
þ bG2

�ðk1 · k2Þ2
k21k

2
2

− 1

�
þ b1F2ðk1;k2Þ − bηfμ2G2ðk1;k2Þ

− fbδη
μ22 þ μ21

2
þ bη2f

2μ21μ
2
2 þ b1f

μ1μ2
2

�
k2
k1

þ k1
k2

�
− bηf2

μ1μ2
2

�
k2
k1

μ22 þ
k1
k2

μ21

�

þ bðKKÞk

�
μ1μ2

ðk1 · k2Þ
k1k2

−
μ21 þ μ22

3
þ 1

9

�

þ bΠð2Þ
k

�
μ1μ2

ðk1 · k2Þ
k1k2

þ 5

7
μ2
�
1 −

ðk1 · k2Þ2
k21k

2
2

��
; ð3:19Þ

Z
q
K3ðk;q;−qÞPlinðqÞ ¼ b1

Z
q
F3ðk;q;−qÞPlinðqÞ − fbημ2

Z
q
G3ðq;−q;kÞPlinðqÞ þ

Z
q
½1 − ðk̂ · q̂Þ2�PlinðqÞ

×

�
4

21
ð5bG2

þ 2bΓ3
Þ
��ðk − qÞ · q

jk − qjq
�

2

− 1

�
−

2

21
fbδη

�
3ðkk − qkÞ2
jk − qj2 þ

5q2k
q2

�
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þ 4

7
f2bη2

q2k
q2

ðkk − qkÞ2
jk − qj2 þ 20

21
bðKKÞk

�ðk · q − q2Þðkk − qkÞqk
jk − qj2q2 −

1

3

ðkk − qkÞ2
jk − qj2 −

1

3

q2k
q2

þ 1

9

�

þ 10

21
bΠ½2�

k

ðk · q − q2Þ
jk − qj2

ðkk − qkÞ2
q2

þ 10

21

�
b
δΠ½2�

k
−
1

3
bðKΠ½2�Þk − fb

ηΠ½2�
k

q2k
q2

� ðkk − qkÞ2
jk − qj2

þ 10

21
bðKΠ½2�Þk

ðq · k − q2Þ
qjk − qj

qkðkk − qkÞ
qjk − qj þ 10

21
fbΠ½2�

k

qkðkk − qkÞ3
q2jk − qj2

þ ðbΠ½3�
k
þ 2bΠ½2�

k
Þ
�
13

21

k · q − q2

jk − qj2
qkðkk − qkÞ

q2
−
5μ2

9

��ðk − qÞ · q
jk − qjq

�
2

−
1

3

��

þ 2

21
fb1

�
5
qkðkk − qkÞ

q2
þ 3

qkðkk − qkÞ
jk − qj2

�
−
2

7
f2bη

qkðkk − qkÞ
q2jk − qj2 ½ðkk − qkÞ2 þ q2k�

�
: ð3:20Þ

Note that for convenience, we presented the K3 integrand
instead of the kernel, as in this case the expression greatly
simplifies.

C. Higher-derivative counterterms
and stochastic contributions

The line-of-sight dependent higher-derivative and sto-
chastic contributions relevant for the one-loop power
spectrum of a generic selection-dependent tracer are also
known [86],

δðsÞF jstochþh:d: ¼ ϵþ bg∇2δ
R2�∇2δþ bηR2�∇2ðβ∇2v∇2η

þ β
∂
2
jjv
∇2ηÞ; ð3:21Þ

where ϵ is the stochastic field uncorrelated with δ. Note
that we do not explicitly add the redshift-space EFT
counterterms ∼k2μ2nδ [122] in Eq. (3.21) as they are fully
degenerate with the higher-derivative operators that we
already have. On the one hand, our scaling Universe
analysis suggests that the higher-derivative contributions
scale as three-loop order contributions, and hence may be
ignored at the one-loop order we are interested in. On the
other hand, the precision of the Sherwood simulation
data is sufficient to nominally detect these terms even
when their Wilson coefficients are very small, of the
order 10−3½h−1Mpc�2. The inclusion of these corrections
noticeably improves the fit at k ∼ 3 hMpc−1, which is
why we prefer to keep them. The theoretical rationale
behind this choice is that these corrections can be treated
as a proxy for higher-loop contributions, which can be
partially absorbed into the counterterms (3.21). Thus,
their inclusion may indeed improve the fit even if two-
loop and three-loop contributions are not explicitly
included.
As far as the stochastic corrections are concerned, their

expression up to ðk=kNLÞ2 order is given by [86,126]

hϵðkÞϵðk0Þi ¼ ð2πÞ3δð3ÞD ðkþ k0Þ

×

�
Pshot þ a0

k2

k2NL
þ a2

k2μ2

k2NL

�
; ð3:22Þ

where Pshot, a0;2 are dimensionful stochastic counterterms.
The shot noise corrections can be ignored for the 3D
correlators, but are important for the 1D power spectrum,
see Sec. VI for more detail.

D. IR resummation

Baryon acoustic oscillations are affected by large IR
effects, which may be resummed along the lines of
Refs. [127–133]. These effects are fully controlled by
the displacement and velocity fields, which are both locally
unobservable. In the context of the Eulerian fluid descrip-
tion, the structure of these IR-sensitive terms is dictated
by the equivalence principle, which demands that the
IR-enhanced contributions cancel in the formal limit
fqig → 0, where fqig denote a set of loop momenta.
The cancellation is inexact if some qi’s are greater than the
BAO scale rBAO ∼ 110 hMpc−1. In that case (IR) resum-
mation is needed. Since IR resummation is controlled by
the IR-divergent terms whose form is completely fixed by
the equivalence principle, it would be unaffected by the
line-of-sight selection bias operators, which are finite in the
IR limit by construction. This implies that IR resummation
for a generic line-of-sight dependent tracer would be
identical to that of redshift space galaxies [132], as was
first pointed out in [86]. Indeed, one can explicitly check
that the new line-of-sight dependent operators do not
produce any new IR singularities in the soft limit, see
e.g. (3.20).
Even though IR resummation can be straightforwardly

included, we defer its explicit implementation for future
work. First, the main goal of this paper is to study the
performance of the EFT on small scales, k ∼ 3 hMpc−1,
where the BAO feature is completely washed out. Second,
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the hydrodynamical simulations that we use here do
not have enough large-scale resolution for a significant
detection of the BAO in the data. Given these reasons, we
believe that the nonlinear effects on the BAO deserve a
separate dedicated analysis that goes beyond the scope of
this paper.

E. Calculation of loop integrals with FFTLog

The one-loop expression (3.18) can be transformed to the
form suitable for the evaluation with the FFTLog method
[93] (see also [134,135]). The basic idea of this method is to
represent the linear matter power spectrum, which is an
input in all loop calculations, as a sum of the power-law
functions. Then the loop integrals for each power law can
be done analytically, and a loop calculation reduces to a
matrix multiplication problem.
In redshift space, following Ref. [94] (see also [136]),

one has to expand the loop integrands over a basis of master
operators involving contractions of the line of sight vector ẑ
and loop momenta. One technical difficulty with respect to
the case of galaxies is that one needs such master
expression up to eight momenta instead of four in the
galaxy case. This is quite straightforward albeit the
expressions are rather lengthy. The eventual expressions
for the relevant master integrals after taking all the
necessary contractions of the basis operators are given by
Z
q

ðẑ ·qÞ5
q2ν1 jq−kj2ν2 ¼ k3−2ν12 ·k5μðA5þμ2B5þμ4C5Þ;

Z
q

ðẑ ·qÞ6
q2ν1 jq−kj2ν2 ¼ k3−2ν12 ·k6ðA6þμ2B6þμ4C6þμ6D6Þ;

Z
q

ðẑ ·qÞ7
q2ν1 jq−kj2ν2 ¼ k3−2ν12 ·k7μðA7þμ2B7þμ4C7þμ6D7Þ;

Z
q

ðẑ ·qÞ8
q2ν1 jq−kj2ν2 ¼ k3−2ν12 ·k8ðA8þμ2B8þμ4C8

þμ6D8þμ8E8Þ; ð3:23Þ
where ν12 ≡ ν1 þ ν2 and the master functions An, Bn, Cn,
Dn, En for n ¼ 5, 6, 7, 8 are given in Appendix A. The rest
of the master integrals are presented in Appendix A of [94].
With the help of master integrals like (3.23), the total mode-
coupling power spectrum may be written as

ΔP1−loop ¼
X4
n¼0

μ2nPð22Þ
n þ ðb1 − bηfμ2Þ

X2
n¼0

μ2nPð13Þ
n ;

ð3:24Þ

where Pð22Þ
n and Pð13Þ

n depend on the biases that appear
in Eq. (3.17).
An important aspect of the FFTLog method is the choice

of the so-called FFTLog bias parameter ν which appears in
the FFTLog power law approximation as Plin ∝ kν, and

hence it controls the convergence of the loop integrals.
Most of the 22-type integrals that we encounter converge
for −1 < ν < 1=2. The lower end of this range corresponds
to spurious IR contributions that cancel in the power
spectrum due to the equivalence principle [130,137]. If
this IR contribution is taken into account, one can choose
an FFTLog bias in the range −3 < ν < −1. Certain bias
integrals, like the ones proportional to b22, converge only for
−3 < ν < −3=2. For ν > −3=2 they have formally UV-
divergent constant parts that behave as [93,117]

Iδ2δ2ð0Þ≡ 1

2

Z
q
P2
linðqÞ: ð3:25Þ

In the case of galaxies the standard practice is to subtract
these terms from the final answer as they simply renorm-
alize the constant shot-noise contribution. For the Lyman
alpha, however, the intrinsic shot-noise contribution pro-
duced by tracer discreteness is negligibly small, while the
constant piece (3.25) is quite large for the physical ΛCDM
power spectrum,

Iδ2δ2ð0Þjz¼2.8 ≈ 28 ½h−1Mpc�3: ð3:26Þ

Note that this integral is saturated in the IR, so it would
have the same value even if we cut it off at Λ ∼ kNL. Hence,
Eq. (3.26) represents a calculable, physical constant power
spectrum contribution that is deterministic by origin, and
must be present in the model. Let us estimate its magnitude.
When discussing the Tau model below, we will get a natural
estimate b2 ∼ 0.3, so that

Pshot ∼
b22
2

Z
q;jqj≤kNL

P2
linðqÞ≈ b22 × Iδ2δ2ð0Þ≈ 2.5 ½h−1Mpc�3:

ð3:27Þ
This estimate is two orders of magnitude larger than
the naive scaling Universe result Pshot ∼ k−3NL ∼
10−2 ½h−1Mpc�3, and also many orders of magnitudes
larger than the actual discreteness shot noise.
The constant terms like (3.27) are fully calculable. They

are produced mostly by perturbative modes and they do not
require introducing new parameters as counterterms, as
their UV sensitivity is very mild for ΛCDM. The deter-
ministic constant pieces like (3.27) should be contrasted
with the stochastic constant shot-noise contributions due to
discreteness effects. The latter are extremely small for the
Lyman alpha forest due to high-column densities, and
hence can be neglected for the precision we are interested
in. Note that unlike the stochastic constant pieces, the
deterministic constant pieces do not require free parameters
—their contributions are fully fixed in terms of nontrivial
bias operators that survive in the limit K2ðq;−qÞ, like b2.
In order to retain these terms, we choose the FFTLog bias
for P22-type integrals to be ν ¼ −1.7.
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As far as the 13-type corrections are concerned, there is
no single choice of ν that would make them converge both
in the IR and UV. Following the discussion above, we use
ν ¼ −1.7 that leads to the convergence in the UV, but
misses the spurious IR-sensitive contributions. Together
with our choice ν ¼ −1.7 for the P22-type integrals, all
spurious IR corrections are consistently absent in our loop
integrals.
The convergent UV contributions of one-loop integrals

are proportional to the displacement variance,

σ2v ¼
1

3

Z
q

PlinðqÞ
q2

jΛCDM;z¼2.8 ¼ 4.0 ½h−1Mpc�2: ð3:28Þ

With our choice of the FFTLog bias, this correction is
computed over the entire range of scales. The physical
calculable part, however, should only involve modes with
k≲ kNL. This means that our choice of the FFTLog bias
will introduce an error of

1

6π2

Z
∞

kNL

dq q2
PlinðqÞ
q2

≈ 4 × 10−3 ½h−1Mpc�2: ð3:29Þ

Even if this error is very small in absolute terms, we will
find that the Sherwood data is actually sensitive to these
corrections. This is another reason to keep the higher-
derivative counterterms in the fit; they compensate for
errors in loop calculations.

IV. TOP-DOWN DERIVATION
FROM THE EXPONENTIAL MAP

The symmetry-based EFT expansions (3.15) and (3.17)
are complete and general. It is interesting to see directly
how these expressions arise from the nonlinear trans-
formation of the optical depth field. The optical depth
itself is assumed to be a selection-free biased tracer of the
underlying matter density, just like the galaxies. In that case
all selection-dependent contributions in the flux bias model
should stem from the exponential map. The main objective
of this section is to show how this happens. Since we aim
here at reproducing the known results (3.17), the content of
this section would be somewhat academic in nature. We
will argue that it still important to the general understanding
of the perturbative Lyman alpha modeling.
The question of how the exponential map generates

selection-dependent bias contributions was previously
studied by Ref. [59]. Specifically, this work showed how
the exponential map and the SPT kernels generate certain
terms in the EFT expansion. In this chapter we build on
results of [59] and study the relationship between the
exponential map and the EFT bias expansion in more
detail. The main novelty of our work is that we show
explicitly that the mapping and the requirement of renorm-
alization generate a full set of the line-of-sight dependent

EFT operators (3.17). If we formally drop the requirement
of renormalization, the exponential map will produce only
a particular incomplete set of EFT operators with fixed
Wilson coefficients, at the tree level. We call the corre-
sponding perturbative model “the tree-level Tau model.”
Naively, this model is extremely predictive, as it requires
only one extra parameter (velocity gradient bias, or the
mean optical depth) in addition to the standard set of
selection-free bias parameters. We show, however, that this
model receives infinitely large-loop contributions, which
renders it inconsistent. Once the loop corrections are
appropriately renormalized, their finite pieces generate
order one corrections to all bias parameters, which will
break the tree-level constraints imposed by the exponential
map. All in all, this means that even if we ignore counter-
terms in the perturbative expansion of the Lyman alpha
forest flux at the beginning, the loop corrections will
generate them and make the exponential map expansion
equivalent to the full EFT.

A. Renormalized exponential map expansion

We start with a top down derivation involving the
renormalization of the flux contrast field. It is a nonlinear
transformation of the optical depth field τ, which we
assume to be a selection-independent tracer of matter.
The exponential map reads

F ¼ e−τ0ð1þϵδτÞ; ð4:1Þ

where τ0 is the mean optical depth. In this spirit of EFT, this
is a “bare” parameter that has to be properly renormalized.
We will address this issue soon. ϵ is our order counting
parameter that keeps track of the order of our perturbative
solution. It is to be set to 1 in the final result. Note that τ is a
function of the redshift space space coordinate [5], i.e. the
full RSD mapping (3.4) has already been applied to it.
Taylor expanding Eq. (3.4) up to cubic order we obtain,18

δðsÞτ ðkÞ ¼ δðrÞτ ðkÞ − ikzvτ;zðkÞ
H

− ϵ
ikz
H

½δðrÞτ vτ;z�k

þ ϵ
i2k2z
2H2

½v2τ;z�k þ ϵ2
i2k2z
2H2

½v2τ;zδðrÞτ �k

− ϵ2
i3k3z
6H3

½v2τ;z�k; ð4:2Þ

where δðrÞτ is the optical depth fluctuation field in real space,
and we have used our bookkeeping parameter ϵ to trace
perturbative order. In what follows we will drop the (s)
superscript and use δτ for the optical depth contrast in
redshift space. As a next step, we Taylor expand the
expression (4.1),

18We use the notation ½g�k ¼ R
d3x e−ikxgðxÞ for an arbitrary

function gðxÞ.
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F¼ e−τ0
�
1− ϵτ0δτþ

ðϵτ0δτÞ2
2

−
ðϵτ0δτÞ3

6
þOðϵ4Þ

�
; ð4:3Þ

We are interested in one-loop order so the series goes up to
Oðϵ4Þ. At this order, assuming hδτi ¼ 0, the mean flux is
given by

hFi ¼ e−τ0
�
1þ ϵ2

τ20
2
hδ2τi þ � � �

�
: ð4:4Þ

The mean flux is a function of the “bare coupling” τ0 that
receives corrections order by order in perturbation theory.
These corrections are unobservable since they are absorbed
into τ0 in order to produce the physically observable mean
flux hFi after renormalization. The situation here is similar
to the renormalization of the “bare” mean number density
of galaxies in the context of the perturbative bias expansion
[83]. The flux fluctuations are given by

δF ¼ −τ0ϵδτ þ
τ20
2
ϵ2ðδ2τ − hδ2τiÞ −

ðϵτ0δτÞ3
6

þOðϵ4Þ: ð4:5Þ

Setting ϵ ¼ 1, and going into Fourier space we get,

δFðkÞ ¼ −τ0δτðkÞ þ
τ20
2
½δ2τ �k −

ðτ0Þ3
6

½δ3τ �k; ð4:6Þ

where δτ is given in Eq. (4.2). Note that so far we have not

used the selection-independent bias model for δðrÞτ . Similar
to Eq. (4.2), the Taylor expansion above produces operators
evaluated at the same point in space that are highly UV
sensitive. In the EFT approach, we need to make sure that
δF receives contributions only from modes up to kNL that
are under perturbative control. That means all functions in
the rhs of Eq. (4.3), e.g. δτ as well as the composite local
operators [δ2τ ] and ½δ3τ � need to be renormalzied.
Let us start with the linear term ½δτ�, see Eq. (4.2). First,

one can plug the perturbative bias model for the real space
δτ, which, according to our assumptions, does not have
line-of-sight selection effects, see Eq. (3.1). This model is
closed under renormalization so we do not need to add new
counterterms. The velocity terms in Eq. (4.2) are renor-
malized in the standard way, see Ref. [122]. Hence, this
term also does not require additional counterterms. Let us
move to the operators [δ2τ ] and ½δ3τ �. Their renormalized
versions must include all possible counterterms built out of
the long-wavelength fields and allowed by symmetries. In
our case these are the equivalence principle and SOð2Þ
rotations around the line of sight. The equivalence principle
means the counterterms can only be functions of ∂i∂jΦ and
∂ivj and time derivatives along the flow. Up to cubic order,
these operators have already been introduced in Eq. (3.15).
Thus, we write

½δ2τ �kjren ¼ ½δ2τ �k þ b01δþ b0ηẑiẑj∂i∂jΦþ
X

b0OO;

½δ3τ �kjren ¼ ½δ3τ �k þ b001δþ b00η ẑiẑj∂i∂jΦþ
X

b00OO; ð4:7Þ

where
P

b0;00O O stand for the quadratic and cubic operators in
Eq. (3.15). This way we generate all the terms in the
expansion that we already had before in the “bottom-up”
case. The bias coefficients b0O and b00O, along with the biases
present in ½δnτ �k, will sum up into the bias coefficients of
Eq. (3.15). Note that velocity-dependent contributions dic-
tated by the equivalence principle are contained inside the
expressions δ2τ and δ3τ . They are unaffected by the counter-
terms, as the EFT cannot generate terms that depend on the
velocity itself, only on its gradients. All in all, this way we
have arrived at the sameEFTexpansion as Eq. (3.15).We see
that even if we start directly from the exponential map, the
smoothing and renormalization will generate all the neces-
sary selection-dependent bias operators.
To sum up, the renormalization procedure requires that

coarse-grained composite operators stemming from the
exponential map contain all possible line-of-sight depen-
dent bias operators as counterterms,

½δnτ �kjren ¼ ½δnτ �k þ counterterms: ð4:8Þ
This is similar to usual renormalization conditions for local
operators in quantum field theory. If we were to ignore
the counterterms, the perturbative expansion generated by
the exponential map would only involve simple contrac-
tions of δnτ whose bias coefficients would be completely
fixed by the mapping. It is instructive to study the structure
of this expansion and contrast it with the full EFT. Since
the counterterms are typically considered along the loop
corrections, with some abuse of language we call such an
expansion “the tree-level Tau model.” The goal of this
discussion is to give a pedagogical example of how the
counterterms in Eq. (4.8) will reappear from loops even if
we ignore them to begin with.

B. Tree-level Tau model

Let us study in more detail the “unrenormalized” part of
the exponential map expansion. A similar derivation
was recently done by [59]. We reproduce parts of this
derivation here and extend the results of [59] to nonlinear
selection-dependent bias terms. It is interesting to re-derive
them again in the context of the standard perturbation
theory (SPT) without renormalization [88]. Our starting
point would be the exponential map (4.1) that we will
Taylor expand and arrive at Eq. (4.5) for the fluctuations.
The difference now is that we assume that fluctuations of τ
are perturbative in the matter density, and they satisfy the
standard bias expansion similar to (3.1),19

19In the SPT context this assumption is wrong because it is
precisely coarse-graining and renormalization that guarantee the
adequacy of the perturbative regime.

MIKHAIL M. IVANOV PHYS. REV. D 109, 023507 (2024)

023507-12



δτ ¼ δð1Þτ þ ϵδð2Þτ þ ϵ2δð3Þτ ;

where δðnÞτ ∼ Zn½δð1Þ�n. Plugging this into (4.5) we get,

δF ¼ −τ0ϵδ
ð1Þ
τ − τ0ϵ

2δð2Þτ − τ0ϵ
3δð3Þτ þ τ20ϵ

2

2
ððδð1Þτ Þ2 þ 2ϵδð2Þτ δð1Þτ − hδ2τiÞ −

ðϵτ0δð1Þτ Þ3
6

þOðϵ4Þ: ð4:9Þ

Using the explicit expression for the standard redshift-space kernels (3.8), the expansion above can be rewritten in Fourier
space in the standard perturbation theory form as

δðsÞg ðkÞ ¼ K̃1ðkÞδð1Þk þ
Z
q1

Z
q2

ð2πÞ3δDðk − q12ÞK̃2ðq1;q2Þδð1Þq1 δ
ð1Þ
q2

þ
Z
q1

Z
q2

Z
q3

ð2πÞ3δDðk − q123ÞK̃3ðq1;q2;q3Þδð1Þq1 δ
ð1Þ
q2
δð1Þq3 þ � � � ; ð4:10Þ

where

K̃1ðkÞ ¼ ð−τ0bτ1Þ þ ð−τ0Þfμ2;

K̃2ðk1;k2Þ ¼
ð−τ0bτ2Þ

2
þ ð−τ0bτG2

Þ
�ðk1 · k2Þ2

k21k
2
2

− 1

�
þ ð−τ0bτ1ÞF2ðk1;k2Þ − τ0fμ2G2ðk1;k2Þ

− τ0
fμk
2

�
μ1
k1

ðbτ1 þ fμ22Þ þ
μ2
k2

ðbτ1 þ fμ21Þ
�
þ τ20

2
ððbτ1Þ2 þ bτ1fðμ21 þ μ22Þ þ f2μ21μ

2
2Þ;

K̃3ðk1;k2;k3Þ ¼ −τ0Z3ðq1;q2;q3Þ þ τ20½Z2ðq1;q2ÞZ1ðq3Þ�symm −
τ30
3!
Z1ðq1ÞZ1ðq2ÞZ1ðq3Þ: ð4:11Þ

Comparing the linear kernel K̃1 with the EFT expression (3.19) we identify

b1 ¼ −τ0bτ1;

bη ¼ τ0: ð4:12Þ
As anticipated, the exponential map generates the velocity gradient bias already at the linear level [79]. Let us focus now on
the quadratic kernel K̃2. Rewriting an expression in second line of the K̃2 expansion above as

− τ0
fμk
2

�
μ1
k1

ðbτ1 þ fμ22Þ þ
μ2
k2

ðbτ1 þ fμ21Þ
�
þ τ20

2
ðbτ1fðμ21 þ μ22Þ þ f2μ21μ

2
2Þ

¼ −fðτ0bτ1 − τ20b
τ
1Þ
μ22 þ μ21

2
þ
�
−τ0 þ

τ20
2

�
f2μ21μ

2
2

þ ð−τ0bτ1Þf
μ1μ2
2

�
k2
k1

þ k1
k2

�
− τ0f2

μ1μ2
2

�
k2
k1

μ22 þ
k1
k2

μ21

�
; ð4:13Þ

and matching the entire kernel with (3.19) we obtain:

b2 ¼ −τ0bτ2 þ τ20ðbτ1Þ2; bG2
¼ −τ0bτG2

; bδη ¼ τ0bτ1 − τ20b
τ
1;

bη2 ¼ −τ0 þ
τ20
2
; bðKKÞk ¼ 0; bΠ½2�

k
¼ 0: ð4:14Þ

Assuming that the bias parameters of the optical depth field
are order-one numbers, just like those of galaxies,
bτ1 ∼ bτ2 ∼ 1, we get an estimate b1 ∼ b2 ∼ τ0 ≈ 0.3 [53].
As far as the K̃3 are concerned, we see that in addition

to the standard term ∼Z3, there are new contributions
proportional to Z3

1 and Z2Z1 kernels, which are generated

by the exponential map. However, one can easily check
that only the Z2Z1 term contributes nontrivially to the one-
loop power spectrum. More specifically, only the term
containing G2 has a finite contribution that consistency
reproduces the cubic order terms that must stem from the
nontrivial δη, η2 and η operators. The rest of the additional
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contributions are proportional to the UV-diverging mass
variance

σ2Λ ¼
Z

Λ

0

dq
2π2

q2PlinðqÞ; ð4:15Þ

where Λ is a UV cutoff. We will discuss the renormaliza-
tion of these 13-type terms shortly. At the kinematic
configurations relevant for the one-loop power spectrum
we thus have

Z
q
K̃3ðk;q;−qÞPlinðqÞ ¼ −τ0bτ1

Z
q
F3ðk;q;−qÞPlinðqÞ − fτ0μ2

Z
q
G3ðq;−q;kÞPlinðqÞ þ

Z
q
½1 − ðk̂ · q̂Þ2�PlinðqÞ

×

�
4

21
ð5bG2

þ 2bΓ3
Þ
��ðk − qÞ · q

jk − qjq
�

2

− 1

�
−

2

21
f

�
−τ0 þ

τ20
2

��
3ðkk − qkÞ2
jk − qj2 þ

5q2k
q2

�

þ 4

7
f2ðτ0bτ1 − bτ1τ

2
0Þ
q2k
q2

ðkk − qkÞ2
jk − qj2 þ 2

21
fð−τ0bτ1Þ

�
5
qkðkk − qkÞ

q2
þ 3

qkðkk − qkÞ
jk − qj2

�

−
2

7
f2τ0

qkðkk − qkÞ
q2jk − qj2 ½ðkk − qkÞ2 þ q2k�

�
: ð4:16Þ

Comparing this with the full EFT expression, we observe
that the Tau model predicts that all EFT cubic biases are
zero except bΓ3

¼ −τ0bτΓ3
.

We call Eq. (4.11) the tree-level Tau model. This model
involves only one extra parameter, τ0. It also suggests that
most of the one-loop selection-dependent EFT operators
vanish,

bðKKÞk ¼ bΠ½2�
k
¼ bΠ½3�

k
¼ b

δΠ½2�
k
¼ b

ηΠ½2�
k
¼ bðKΠ½2�Þk ¼ 0;

ð4:17Þ
and that all nontrivial quadratic selection-dependent biases
in the EFT expansion can be expressed through linear
biases as

bδη ¼ −b1ð1 − bηÞ; bη2 ¼ −bη þ
b2η
2
: ð4:18Þ

Our discussion so far has not included the loop corrections,
which we discuss in detail now.

C. The effect of loop corrections

The inconsistencies of the tree-level Tau model become
apparent once we take loops into account. In particular,
they will generate formally infinite corrections to the tree-
level bias parameters of the linear density and projected
velocity-gradient fields. These biases get renormalized by
the following P13-type contribution:

δP13 ¼ ðb1 − bηfμ2ÞPlinðkÞ
Z
q
PlinðqÞ½ð−τ0Þ3ðbτ1

þ fμ2ÞZ2
1ðqÞ þ 4τ20Z2ðk;qÞZ1ðqÞ�; ð4:19Þ

which produces the leading order in k UV contributions.
The above integral can be done exactly, except for the term
that contains ∼G2 in the rightmost term. The exact part of

this expression is simply proportional to the short-scale
mass variance (4.15), see Appendix B. The nontrivial part
of the Z2Z1 contribution has the same UV limit, propor-
tional to σ2Λ. Thus, for the purposes of complete renorm-
alization of the UV behavior, we need to add this part. This
way we obtain

δP13jUV ¼ 2ðb1 − bηfμ2ÞPlinðkÞðA0 − A2fμ2Þσ2Λ; ð4:20Þ

where the order-one constants A0 and A2 can be found in
Appendix B. Note that b1 also receives contributions from
the usual bias operators, but they can be treated in the
standard way [117], and we will ignore these terms in our
discussion for clarity.
It is convenient now to recover our bookkeeping per-

turbation theory parameter ϵ. Adding the linear result, we
obtain the following expression for the tree level plus the
UV part of the one-loop power spectrum in the Tau model,

PtreeðkÞ þ P1−loopðkÞjUV
¼ ðb1 − bηfμ2Þ2PlinðkÞ þ 2ðb1 − bηfμ2Þ
× PlinðA0 − A2fμ2Þϵ2σ2Λ

¼ PlinðkÞðb1 þ A0σ
2
Λϵ

2 − ðτ0 þ A2ϵ
2σ2ΛÞfμ2Þ2 þOðϵ4Þ;

ð4:21Þ

where Oðϵ4Þ are formally two-loop corrections that can
be ignored at the precision level we are interested in. We
have seen that the leading-order loop corrections in the
Tau model produce infinite contributions to the linear
bias parameters, including the velocity gradient bias.
This merely implies that the SPT expansion for the
Lyman alpha forest is inconsistent, and one has to use
the full EFT model that includes all operators allowed by
symmetries.
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In the EFTapproach one must treat b1 and bη as formally
infinite “bare” parameters that absorb the leading order UV
behavior from the loops. Then their finite, physically
observable, renormalized values of b1 and bη are given
by the sum of the “bare” parameters and the UV-sensitive
loop contribution,

brenη ¼ τ0 þ A2σ
2
Λ; bren1 ¼ −τ0bτ1 þ A0σ

2
Λϵ

2: ð4:22Þ

Let us estimate the finite part of brenη now. To that end we
can use Λ ∼ kNL, so that σ2NL ∼ 1 by definition. In the
absence of fine tuning, it should be of the order of

brenη ∼ A2σ
2
NL ∼ 1; bren1 ∼ A0σ

2
NL ∼ 1: ð4:23Þ

Hence, even if we take the tree-level Tau model at face
value, the loops would generate an order-one breaking20 of
the relationship between the EFT operators following from
the tree-level Tau model. Specifically, Eq. (4.23) implies
that brenη and bren1 are order one different from −τ0bτ1 and τ0,
and hence the tree-level exponential mapping constraints
(4.18) do not hold once the loops are taken into account.
This also suggests that the other constraint (4.17), i.e. the
vanishing of specific selection-dependent EFT operators,
would not hold true as well because of the loops. This is
quite natural to expect, as there is no symmetry that would
guarantee the vanishing of these operators in the presence

of loops. In the EFT jargon one says that operators like Π½2�
k

are generated by loops even if they are not present in the
exponential mapping at the tree level.

V. COMPARISON WITH SIMULATIONS

A. Fitting details

In this section we compare the one-loop EFT power
spectrum model for the Lyman alpha-flux power spectrum
against simulation data. To that end we use the state-of-
the-art suite of Sherwood simulations [52]. These are
large-scale, high-resolution hydrodynamic simulations that
reproduce the evolution of intergalactic medium with a
large number of particles (up to 1.7 × 1010). The fiducial
cosmology of these simulations is a flat ΛCDM with
massless neutrinos and Ωm ¼ 0.308, Ωb ¼ 0.0482,
σ8 ¼ 0.829, ns ¼ 0.961, h ¼ 0.678. The details of the
Sherwood simulations can be found in Refs. [52,60].
In this work, we fit the 3D Lyman alpha power spectrum

at z ¼ 2.8, extracted from the simulation box
L160_N2048, which followed 20483 gas and cold dark
matter particles in a cub with side length L ¼ 160 h−1Mpc.
The simulations use a homogeneous ionizing background

model, and assume that the gas is in ionization equilibrium
and optically thin [52]. The final 3D power spectrum
measurements are publicly available.21 They are pre-
sented as functions of the Fourier mode wavenumber k
and the cosine μ of the angle between the corresponding
Fourier vector and the line of sight. In practice, the μ space
is sampled by 16 bins, while the k space is log-sampled
in the range [kF; kNy], where kF ¼ 0.039 hMpc−1 is the
fundamental mode, and kNy ¼ 20 hMpc−1 is the Nyquist
frequency.
Following [60], we fit the power spectrum by

Monte Carlo Markov chain (MCMC) sampling the follow-
ing pseudo-χ2 function,

χ2 ¼
X
i

½Pdata
i − Pmodelðki; μiÞ�2

2ðPdata
i Þ2=Ni

; ð5:1Þ

where Pdata
i are measurement power spectrum bins, and Ni

is the number of modes in the bin. Note that in Eq. (5.1) we
have explicitly assumed a Gaussian diagonal covariance for
the power spectrum. While this assumption is definitely
correct on large scales, it has not been systematically vali-
dated on small scales, relevant for our analysis. Studies of
the galaxy power spectrum covariance in Refs. [138–140]
showed that the Gaussian approximation is very accurate
on mildly nonlinear scales because in this regime the effec-
tive covariance is dominated by the theoretical error due to
the marginalization over nuisance parameters [141–143]. In
what follows we assume that the same argument is true for
the Lyman alpha power spectrum, and we proceed with the
Gaussian diagonal covariance. We warn, however, that the
interpretation of our results is, strictly speaking, contingent
upon our covariance matrix assumptions.
Note that unlike [60], we do no add the ad hoc noise

floor correction to the covariance, as our goal here is to fit
the data given its actual precision. This allows us to
illustrate the main advantage of the EFT over phenomeno-
logical approaches; its high precision on the scales where
the EFT is applicable.
The model vector Pmodelðki; μiÞ is a one-loop EFT model

that includes the necessary stochastic contributions and
counterterms,

P1−loopðk; μÞ ¼ ðb1 − bηfμ2Þ2PlinðkÞ

þ 2

Z
q
K2

2ðq;k − qÞPlinðjk − qjÞPlinðqÞ

þ 6K1ðkÞPlinðkÞ
Z
q
K3ðk;−q;qÞPlinðqÞ

− 2ðc0 þ c2μ2 þ c4μ4Þk2PlinðkÞ: ð5:2Þ
The k2Plin corrections are added here as proxy for the two-
loop contributions. For the purposes of the data analysis,

20From the structure of the renormalization condition
Eq. (4.22) one can expect certain suppressions of the loop
corrections due to the smallness of the mean optical depth
τ0 ≈ 0.3. We will not entertain this possibility in what follows. 21https://github.com/andreufont/sherwood_p3d.
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we switched to a simplified version of the higher-derivative
contribution that is motivated by the EFT-based galaxy
power spectrum analyses, e.g. [70]. We have checked that
adding an extra parameter ∝ k2μ6PlinðkÞ has no impact on
the fit. In addition, we found that the effect of the stochastic
counterterms [see Eq. (3.22)] is negligible for our data, and
hence we set them to zero. This is consistent with our
theoretical arguments.

At face value, the one-loop EFT model depends on 16
free parameters; two linear biases, 11 nonlinear biases, and
three higher-derivative operators. We found, however, that
the quality of our data does not allow us to break the known
degeneracy between bG2

and bΓ3
that exists at the power

spectrum level [67,72,78,144]. We thus set bΓ3
¼ 0 follow-

ing [67,145]. For the remaining parameters, we use the
following priors:

b1 ∈ ½−2; 2�; bη ∈ ½−2; 2�; b2 ∼N ð0; 22Þ; bG2
∼N ð0; 22Þ;

bðKKÞk ∼N ð0; 22Þ; bΠ½2�
k
∼N ð0; 22Þ; bΠ½3�

k
∼N ð0; 22Þ;

bδη ∼N ð0; 22Þ; bη2 ∼N ð0; 22Þ; c0;2;4
½h−1Mpc�2 ∼N ð0; 0.12Þ;

bðKΠ½2�Þk ∼N ð0; 22Þ; b
δΠ½2�

k
∼N ð0; 22Þ; b

ηΠ½2�
k
∼N ð0; 22Þ; ð5:3Þ

where N ðμ; σ2Þ stands for a Gaussian distribution with
mean μ and root mean square σ. Let us discuss in detail the
motivation for this choice of priors. First, the priors for b1
and bη are chosen to be flat and uninformative. Second, for
all the quadratic and cubic selection-dependent bias param-
eters we choose large uninformative Gaussian priors with
zeromean and variance square roots of 2. In general, the EFT
naturalness arguments dictate that they should be Oð1Þ
numbers, i.e. we expect them to roughly be in the range
½1; 10�. We note, however, that some additional suppression
may come from themapping, i.e. the flux bias parameters are
Oð1Þ bias parameters of the τ field that have got multiplied
by τ0 ≃ 0.3. Given this reason, we reduced the root mean
square of our prior to 2 instead, e.g. a conservative choice of
10 that could be made without any a priori knowledge.
As far as the counterterms are concerned, as we

discussed earlier, we include them mainly in order to
absorb some two-loop corrections that are not explicitly
computed. Indeed, we have found that they actually
improve the fit, which justifies their presence a posteriori.
The typical size of these corrections expected in the EFT is
k−2NL ∼ 0.05 ½h−1Mpc�2. We additionally multiply this by 2
in order to be conservative. Indeed, one might expect the
velocity field to be more nonlinear than the density one, and
hence the k2 contributions may be enhanced, as it is the
case for galaxies [67,146]. Jumping ahead, let us note that
we will actually find the higher-derivative corrections
whose values are consistent with k−2NL, with errorbars that
are much tighter than the priors.
Only the 15 nuisance parameters (5.3) are assumed to

vary in our MCMC chains. We leave the fitting of
cosmological parameters for future work. We sample the
likelihood analytically marginalized over all parameters
that enter the likelihood quadratically, i.e.

fPshot; c0; c2; c4; bΠ½3�
k
; bðKΠ½2�Þk ; bδΠ½2�

k
; b

ηΠ½2�
k
g;

as in Refs. [140,143]. The approximate posterior distribu-
tions and best-fit values for these parameters are later
recovered from the MCMC chains for the marginalized
likelihood. The rest of the EFT parameters in Eq. (5.3) are
explicitly varied in our MCMC chains.
The MCMC chains are run with the Monte Python sampler

[147,148] and analyzed with GetDist [149].

B. Results

In Fig. 2 we present 1d and 2d marginalized posterior
distributions for the bias parameters of the one-loop EFT
model that were directly sampled in our chains. We show
results for four choices of kmax ¼ 2, 3, 4, and 5 hMpc−1.
We see that the posteriors for kmax ¼ 2 hMpc−1 and
kmax ¼ 3 hMpc−1 are fully consistent with each other.
The contour for the kmax ¼ 4 hMpc−1 case is, however,
significantly shifted w.r.t. the 2 and 3 hMpc−1 posteriors.
Although the kmax ¼ 5 hMpc−1 contour shifts back inside
the kmax ¼ 2 hMpc−1 posterior, it is still inconsistent with
the kmax ¼ 3 hMpc−1 contour. These dramatic shifts and
reduction of the posterior volume suggest that the fit is
biased for kmax ¼ 4 hMpc−1 and kmax ¼ 5 hMpc−1 due to
two-loop corrections that are not included in our model. As
a frequentist confirmation of our scale cuts, we also see a
significant deterioration of the best-fit χ2 statistic for
kmax > 3 hMpc−1. This suggests to choose the kmax ¼
3 hMpc−1 case as a baseline. Note that a similar behavior
of the posteriors when sliding kmax was previously
observed in the case of redshift-space galaxy mocks
[145], where the same criterion of the “stability” and
consistency of posteriors with respect to variations of
kmax was applied.
The best-fit values, 68% and 95% confidence limits for

the fit parameters at kmax ¼ 3 hMpc−1 are presented in
Table I. First, we see that the linear bias parameters b1 and
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bη are measured to ∼5% precision. The second important
observation is that many Lyman-alpha bias parameters are
detected at high significance; bδη; bΠ½2�

k
, bΠ½3�

k
, bðKΠ½2�Þk ,bδΠ½2�

k
,

b
ηΠ½2�

k
. Detections of these operators in the data clearly

indicate an inconsistency of the tree-level Tau model, and
the power of the EFT approach. The best-fit value of bδη is
4σ away from the prediction of the tree-level Tau model
b̃δη ¼ −b1ð1 − bηÞ ≈ 0.15, evaluated with Eq. (4.18) using

the best-fit value of bη. The apparent tension between the
tree-level Tau model and the data is an “experimental”
proof of the inconsistency of the tree-level calculations for
the Lyman alpha forest. As far as higher-derivative counter-
terms are concerned, we have a significant detection of c0,
and c2.
The best-fit models for four angular bins are shown

against the data in Fig. 3. The nominal χ2 statistics across
the 161 data points is 188, which indicates a satisfactory fit

FIG. 2. Triangle plot and marginalized projections for bias parameters of the EFT model for the Lyman alpha flux power spectrum of
the Sherwood simulations at z ¼ 2.8. We show results for four choices of kmax: 2, 3, 4, and 5 hMpc−1 (gray, green, blue, red,
respectively).
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for 15 free parameters. It is important to keep in mind,
however, that our EFT parameters are quite degenerate and
hence the counting of degrees of freedom is not straightfor-
ward in our case. In addition, our Gaussian covariance
assumptions are likely not very accurate at the scales of
interest. This is important to keep in mind when interpret-
ing the χ2 statistics.
In order to illustrate the robustness of our fit, we

extrapolate the kmax ¼ 3 hMpc−1 best fit model up to
k ¼ 5 hMpc−1 in Fig. 4. Remarkably, the model calibrated
at kmax ¼ 3 hMpc−1 describes the data quite well, within
10%, even at k ¼ 3.5 hMpc−1, beyond the regime of the
validity of the original fit. This can be interpreted as

evidence of absence of overfitting. We note, however,
that the 10% residuals between the theory and the data
are greater than the nominal errobars, which is why the
fit at kmax ¼ 4 hMpc−1 was found earlier to be biased.
The model breaks down gradually, reaching 20% at
k ¼ 5 hMpc−1, which is consistent with the effect of the
higher-order corrections.
An important consistency check is that the one-loop

corrections are smaller than the tree-level result. To verify
that this is the case, in Fig. 5 we plot the one-loop
contributions divided by the tree-level model (3.13). We
see that the magnitude of the perturbative corrections does
not exceed the linear theory power spectrum except for the

TABLE I. One-dimensional marginalized constraints on nuisance parameters of the one-loop EFT model fit to the
Lyman alpha forest flux power spectrum of the Sherwood simulation at z ¼ 2.8. The upper group of parameters
were directly sampled in our MCMC chains. The lower parameters are analytically marginalized over in the
likelihood. Their posteriors are recovered from the chains a posteriori.

Parameters Best-fit Mean� σ 95% lower 95% upper

b1 −0.2168 −0.2167þ0.0093
−0.0096 −0.2356 −0.1976

bη 0.324 0.325þ0.023
−0.024 0.278 0.373

b2 −0.35 −0.24þ0.24
−0.28 −0.72 0.27

bG2
−0.14 −0.087þ0.18

−0.21 −0.46 0.30
bη2 0.041 0.072þ0.1

−0.19 −0.28 0.45
bδη −0.85 −0.74þ0.16

−0.26 −1.13 −0.29
bðKKÞk 0.56 0.48þ0.6

−0.6 −0.63 1.63
bΠ½2�

k
−0.41 −0.41þ0.16

−0.16 −0.72 −0.08

103c0=½h−1 Mpc�2 4.90 4.90þ1.0
−1.0 2.80 7.00

103c2=½h−1 Mpc�2 1.31 1.31þ0.62
−0.62 0.07 2.54

103c4=½h−1 Mpc�2 −3.71 −3.71þ0.75
−0.75 −5.21 −2.21

bΠ½3�
k

0.99 0.99þ0.05
−0.05 0.89 1.08

b
δΠ½2�

k
−1.03 −1.03þ0.05

−0.05 −1.13 −0.93

bðKΠ½2�Þk −2.53 −2.53þ0.09
−0.09 −2.69 −2.35

b
ηΠ½2�

k
1.67 1.67þ0.1

−0.1 1.47 1.87

FIG. 3. Best-fit EFT models against the simulated power spectra (left panel), and the residuals between the model and the data
(right panel).
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μ ≃ 0 bin. The size of the one-loop corrections is compa-
rable to the tree-level result for k ≃ 3 hMpc−1, which
suggests that higher-loop corrections may not be negligible.
Given that no biases are observed at the level of the
parameter estimation, it is likely that the effect of the two-
loop corrections was partly absorbed by the one-loop
nuisance parameters and counterterms. A separate dedi-
cated analysis is needed in order to quantify the effect of the
two-loop corrections more accurately. We note however,
that even if two-loop corrections are not negligible at
k ¼ 3 hMpc−1 in the strict sense, the EFT can still be
applied on these scales as a phenomenological model that is
capable of fitting the data with sub-percent accuracy.
Finally, the right panel of Fig. 5 illustrates that for the

transverse (μ ≈ 0) modes the EFT provides a good fit even
for kmax ¼ 4 hMpc−1. This suggests that the breakdown of
the one-loop model happens because of the velocity field
that dominates the signal along the line of sight. Indeed, in
general, the velocity field is more nonlinear than the density
field for dark matter and galaxies [73,112,143,146,150].
Figure 5 shows, however, that the modes along the line of
sight and transverse to the line of sight are roughly equally
nonlinear for the Lyman alpha forest at z ¼ 2.8. Overall,
the quality of the z ¼ 2.8 data does not allow us to make a

definitive conclusion about the role of the velocity non-
linearities. More insight may be obtained from the analysis
of the z ¼ 3.2 data, which we discuss below.
We present the analysis of the Lyman alpha forest

power spectrum at z ¼ 3.2 in Appendix C. At this redshift,
the nonlinear wave number becomes significantly large,
kNL ¼ 10 hMpc−1, suggesting that the EFT expansion
should converge better and one can push the one-loop fit
to smaller scales where the errorbars are smaller. We
found that this is indeed the case. The EFT provides a
good fit to the data up to kmax ¼ 5 hMpc−1. The optimal
values of the Lyman alpha bias parameters are larger at
z ¼ 3.2, and they are detected with higher significance,
which is consistent with the expectations that tracers
become more biased with redshift for uniform selection
criteria. In particular, we have a significant detection of
the RSD counterterms, whose impact increases towards
μ ¼ 1, e.g. the c4 counterterm is detected at almost 20σ.
This supports the above argument that the velocity field is
primarily responsible for the breakdown of perturbation
theory at small scales. On the practical side, this suggests
that a more optimal strategy for parameter inference
would be to use a μ-dependent kmax cutoff. We will
explore this option in future work.

FIG. 4. Best-fit EFT models fit from kmax ¼ 3 hMpc−1 against the simulated power spectra up to k ¼ 5 hMpc−1 (left panel), and the
residuals between them (right panel).

FIG. 5. Left panel: the magnitude of one-loop corrections relative to the linear theory answer. Right panel: the fit for the transverse
modes.
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VI. ONE-DIMENSIONAL POWER SPECTRUM

We have seen that the EFT can accurately describe the
full 3D power spectrum of the Lyman alpha forest. Let us
show now how the EFT technique can be used to calculate
the one-dimensional (1D) power spectrum of the Lyman
alpha forests. Imagine that the flux fluctuations have an
underlying power spectrum P3Dðk; kkÞ in 3D, where kk is
the wave vector projection along the line of sight. Then the
power spectrum of these fluctuations seen only along the
line of sight is given by [151]

P1DðkkÞ ¼
1

2π

Z
∞

kk
dk kP3Dðk; kkÞ: ð6:1Þ

A conceptual difficulty of this observable is that the 1D
power spectrum is an integral over the 3D power spectrum
that involves UV modes that are not under robust analytic

control. This is precisely the issue that the EFT is aimed to
resolve. In fact, Eq. (6.1) has the form of a loop integral, so
we can treat this UV sensitivity along the lines of the one-
loop EFT renormalization for the matter power spectrum
[85]. To that end we assume that the integral in Eq. (6.1) is
cut off at a scale Λ≲ kNL. A first relevant observation is
that in perturbation theory P3Dðk; kkÞ has a simple poly-
nomial dependence on kk ¼ k · μ. For instance, at one-loop
order we have

P3Dðk; kkÞ ¼
X4
n¼0

�
kk
k

�
2n
P2nðkÞ: ð6:2Þ

A calculation of P3Dðk; kkÞ at a given order in perturbation
theory is valid only up to a certain scale that we call ktrust.
Then Eq. (6.1) can be equivalently recast as

P1DðkkÞ ¼
1

2π

Z
ktrust

kk
dk kP3Dðk; kkÞ þ

1

2π

Z
Λ

ktrust

dk kP3Dðk; kkÞ: ð6:3Þ

The rightmost integral is given by simple polynomials of kk times some function of the cutoff,

1

2π

Z
Λ

ktrust

dk kP3Dðk; kkÞ ¼
X4
n¼0

k2nk cΛn ; cΛn ≡ 1

2π

Z
Λ

ktrust

dk k1−2nP2nðkÞ: ð6:4Þ

These UV-sensitive contributions are naturally absorbed into the EFT stochastic counterterms, which have the scale
dependence that exactly matches Eq. (6.4). Indeed, Eq. (3.22) implies that

Pstoch
3D ðk; kkÞ ¼ Pshot þ a0

k2

k2NL
þ a2

k2k
k2NL

þ � � � ; ð6:5Þ

where “� � �” stand for terms higher order in k=kNL. Pshot; a0; a2 above are Λ-dependent Wilson coefficients that cancel the
UV sensitivity from the integrals (6.4). Plugging Eq. (6.5) into Eq. (6.3) we get

1

2π

Z
ktrust

kk
dk kPstoch

3D ðk; kkÞ ¼ Pshot

k2trust − k2k
4π

þ a0
k4trust − k4k
8πk2NL

þ a2k2k
k2trust − k2k
4πk2NL

¼ 2Pshotk2trust þ a0k4trust=k2NL
8π

þ k2k

�
a2

k2trust
4πk2NL

−
Pshot

4π

�
þ

k4k
4πk2NL

�
−
a0
2
− a2

�
;

≡ C0
0 þ k2kC

0
1 þ k4kC

0
2: ð6:6Þ

Adding this to (6.4) we obtain a finite cutoff-independent expression,

1

2π

Z
ktrust

kk
dk kPshoch

3D þ 1

2π

Z
Λ

ktrust

dk kP3D ¼ ðCΛ
0 þ C0

0Þ þ k2kðCΛ
1 þ C0

1Þ þ k4kðCΛ
2 þ C0

2Þ þ � � �

¼ Cfinite
0 þ Cfinite

1 k2k þ Cfinite
2 k4k þ � � � ; ð6:7Þ

where cfiniten are finite parts of the EFT coefficients that have to be matched to data. To sum up, in the EFT the 1D power
spectrum calculation amounts to doing the integral over the deterministic part of the 3D spectrum up to ktrust, which is
natural to identify with kmax from our 3D fits, and supplementing it with simple power-law functions of k2k whose free

parameters cfiniten need to be fit from the data,
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PEFT
1D ðkkÞ ¼

1

2π

Z
kmax

kk
dk k½P3D − Pstoch� þ Cfinite

0 þ Cfinite
1 k2k þ Cfinite

2 k4k: ð6:8Þ

The part that contains “−Pstoch” can be reabsorbed into cfinite0 , yielding

PEFT
1D ðkkÞ ¼

1

2π

Z
kmax

kk
dk kP3Dðk; kkÞ þ C0 þ C1k2k þ C2k4k: ð6:9Þ

Note that counterterms similar to Cn were first discussed in the context of regularization of the 1D Lyman alpha power
spectrum integrals in [22]. In particular, our C0 matches the counterterm Ī0 from [22].
Let us estimate calculable parts of the counter terms Cn in our Universe for z ¼ 2.8. To that end we can approximate them

assuming P3D from linear theory up to kmax ¼ 3 hMpc−1 and kNL ¼ 5 hMpc−1,

Cn ≃

8>>><
>>>:

R kNL
kmax

dk
2π kb21PlinðkÞ ¼ 0.02 ½h−1Mpc�; n ¼ 0;R kNL

kmax

dk
2π k−1ð−2b1bηÞPlinðkÞ ¼ 4 × 10−3 ½h−1 Mpc�3; n ¼ 1;R kNL

kmax

dk
2π k−3b2ηPlinðkÞ ¼ 3 × 10−4 ½h−1Mpc�5; n ¼ 2;

ð6:10Þ

where we used the best-fit values for b1 and bη from Table I. We see that the power law contributions in the rhs of Eq. (6.9)
are suppressed for small kk, so they represent a convergent gradient expansion, which justifies dropping higher-order terms
in Eq. (6.9). In a power law Universe these terms naturally scale as powers of kk=kNL. Using Eq. (2.5) we get the following
order-of-magnitude estimates for the 1D power spectrum

kk
2π

P1DðkkÞ ∼ kk

Z
kNL

kk
dk

�
knþ1

knþ3
NL|ffl{zffl}

linear

þ k2nþ4

k2nþ6
NL|ffl{zffl}

1−loop

þ k
k3NL

þ k3

k5NL
þ kkk2

k5NL|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
stochastic

�

¼ kk
kNL

−
knþ3
k
knþ3
NL|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

linear

þ kk
kNL

−
k2nþ6
k
k2nþ6
NL|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1−loop

þ kk
kNL

−
k3k
k3NL

þ kk3

k3NL
−
kk5

k5NL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
stochastic

: ð6:11Þ

First, we see that each term in this expansion, even the
deterministic ones, produce stochastic-type contributions ∝
kk=kNL from the upper limit of the integration. They
contribute to the calculable part of the constant shot-noise
contribution in 1D. The calculable parts of the higher-
derivative stochastic contributions in 3D scale as ðkk=kNLÞ3
and ðkk=kNLÞ5, and hence are clearly suppressed in the limit
kk=kNL → 0. The deterministic parts of the linear and one-
loop corrections dominate over the stochastic contributions,
but not so strongly as they did in 3D. In particular, the
proper one-loop part scales as ðkk=kNLÞ1, the same way as
the shot noise ðkk=kNLÞ terms, in contrast with ðkk=kNLÞ
against ðkk=kNLÞ3 in the 3D case, see Eq. (2.7). This
explains why the stochastic counterterms Pshot, a0 and a2
were not needed in the 3D fits, but appeared important for
the 1D correlations.
To illustrate how does the EFT model for the 1D power

spectrum Eq. (6.9) work in practice, it is natural to evaluate
this expression for the best-fit model to the 3D power
spectrum from the previous section at kmax ¼ 3 hMpc−1.

The 3D power spectrum was actually fit only up to kmax ≈
2.5 hMpc−1 since there were no data points in the range
2.5 < k=ðhMpc−1Þ < 3. Extrapolating our 3D best-fit into
this range leads to an additional error, which affects the 1D
modes with kk ≃ ktrust. We found, however, that this error
can be largely canceled by introducing a higher-order
counterterm C6kk6. Thus, in addition to the usual 3D
EFT counterterms, we need to introduce four free param-
eters in order to describe the 1D power spectrum at the
percent precision. We fit all these extra counterterms C0;2;4;6
to the 1D power spectrum data extracted from the same
simulation box. The best-fit counterterm piece is given by

Pstoch
1D

h−1 Mpc
¼ 0.085þ 1.8 × 10−3 ½h−1 Mpc�2k2k
þ 3.1 × 10−4 ½h−1 Mpc�4k4k
− 4.2 × 10−5 ½h−1Mpc�6k6k: ð6:12Þ

Note that these best-fit values are in perfect agreement
with our estimates (6.10). The results are shown in Fig. 6.
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We observe a perfect match between the theory and the
data within the percent statistical scatter characteristic to the
1D power spectra of the Sherwood simulations, cf. Fig. 10
of [60]. Note however, that this good fit is obtained at the
price of four extra parameters (6.12). Given that one can
probe only line-of-sight modes, a large number of nuisance
parameters may represent a problem in the context of actual
cosmological analyses of the 1D Lyman-α flux power
spectrum. We believe that the best way to proceed is to
determine these parameters from high-fidelity Ly-α simu-
lations and use thesemeasurements as priors when analyzing
the actual data. Similar ideas have been recently discussed in
the context of galaxy clustering, see e.g. [114,152–154]. We
leave this line of research for future work.

VII. DISCUSSION AND CONCLUSIONS

We have developed a one-loop EFT model for the 3D
and 1D power spectra of the Lyman alpha forest. As we
discussed in Sec. III, this model is identical to that
presented by Desjacques et al. [86] in the context of
line-of-sight dependent selection effects in galaxy bias.
We showed that the relevant loop integrals can be used to
efficiently evaluated with the FFTLog method, which
allows for an opportunity to carry out global full-shape
analyses of the Lyman alpha data that include variations of
cosmological parameters. This will enable one to explore
the information content of the Lyman alpha forest along the
lines of the recent EFT-based full-shape analyses of the
galaxy power spectra [67,68]. This extension of our work is
currently underway.
From the theoretical point of view, it is not immediately

obvious that the line-of-sight dependent selection effect
bias model of Desjacques et al. [86] would exactly match a
perturbative expansion of the exponential map of the
optical depth field in the context of the Lyman alpha forest
transmission. The fact that the two should be in direct
relationship was first pointed out by Chen et al. [59]. We
have carried out an explicit deviations that shows how
the full EFT model emerges from the exponential map of

the optical depth. From the technical point of view, the EFT
expansion gets generated by the renormalization of the
contact operators that stem down from the exponential map.
To underline the importance of renormalization, we also
carried out a naive expansion of the exponential map as one
does in SPT. In that case an incomplete set of line-of-sight
dependent operators is generated. Their bias coefficients
are fixed by the optical depth contrast biases and the
background optical depth value. We call this expansion the
tree-level Tau model. We explicitly show this model is
inconsistent as the loop corrections break constraints
between the bias coefficients. Our calculation suggests
that even if we ignored the counterterms to start with, the
loop corrections would generate all line-of-sight dependent
operators that are missing in the tree-level Tau model.22

On the data-related side, we have carried out a precision
comparison of the one-loop EFT model and the highly
accurate 3D Lyman alpha power spectra extracted from the
Sherwood hydrodynamical simulations. We have found
that the EFT model can successfully describe the broad-
band shape of 3D and 1D power spectra, with ≲1%

residuals at kmax ¼ 3 hMpc−1 for z ¼ 2.8. Note that at
face value, these residuals are smaller than the ones of the
phenomenological models used to fit the same the data in
Ref. [60]. The results of this work, however, cannot be
directly compared to ours, as in contrast to us, Ref. [60]
assumed an additional 5% noise floor in their covariance.
As far as the measured values of the Lyman alpha biases

are concerned, we have found strong deviations from the
naive tree-level Tau model. First, we have observed a
breakdown of the tight relationships between quadratic
and linear bias parameters. In addition, we have detected
quadratic and cubic line-of-sight operators missing in
the tree-level Tau model. We warn, however, that our

FIG. 6. Left panel: dimensionless 1D flux power spectrum of the Sherwood simulations against the best-fit theory model from
Eq. (6.9), where all the EFT parameters except Cn’s are kept fixed to their 3D best-fit values. Right panel: residuals between the theory
and the data.

22Although this exercise is of purely academic interest, the
cleanest way to explicitly check this would be a calculation of the
one-loop bispectrum of the Lyman alpha forest, which can be
done along the lines of the recent one-loop redshift space galaxy
bispectrum calculations [155,156].
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measurements could be affected by degeneracies between
the EFT nuisance parameters, covariance matrix assump-
tions, and simulations’ systematics. It would be interesting
to carry out a more detailed search for line-of-sight-
dependent biases, especially at the bispectrum level. This
line of research is also motivated by measurements of the
Lyman alpha 3-point correlations in simulations [157] and
the real data [7,158]. We leave this for future work.
Finally, we have also described how to consistently

extend the EFT framework to the 1D power spectrum.
Thus, our calculations can be applied to the one dimen-
sional flux power spectrum data from BOSS [15].
Going forward, it would be important to explicitly

implement IR resummation and use it to quantify the
systematics of the BAO measurements. In addition, it
would be interesting to study cross-correlations of galaxies
and quasars with the Lyman alpha forest, similar to
Refs. [60,159]. Another important line of work is to convert
our formalism into configuration space, either using the
FFTLog technique similar to [67], or developing the
Lagrangian space EFT, along the lines of [136,160–164].
Eventually, we will have to account for realistic effects
present in the actual data, such as the photoionization

fluctuations and patchy reionization. We leave all these
research directions for future exploration.
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APPENDIX A: MASTER INTEGRALS

In this appendix we present master integrals that are
necessary to compute the selection-dependent one-loop
corrections. We will use the notation that (ν12 ≡ ν1 þ ν2)

J½ν1; ν2�≡ 1

8π3=2
Γð3

2
− ν1ÞΓð32 − ν2ÞΓðν12 − 3

2
Þ

Γðν1ÞΓðν2ÞΓð3 − ν12Þ
: ðA1Þ

We have

A5 ¼
15

256
ðJ½−5þ ν1; ν2� − 5J½−4þ ν1;−1þ ν2� − 3J½−4þ ν1; ν2�

þ 10J½−3þ ν1;−2þ ν2� þ 4J½−3þ ν1;−1þ ν2� þ 2J½−3þ ν1; ν2�
− 10J½−2þ ν1;−3þ ν2� þ 6J½−2þ ν1;−2þ ν2�
þ 2J½−2þ ν1;−1þ ν2� þ 2J½−2þ ν1; ν2� þ 5J½−1þ ν1;−4þ ν2�
− 12J½−1þ ν1;−3þ ν2� þ 6J½−1þ ν1;−2þ ν2� þ 4J½−1þ ν1;−1þ ν2�
− 3J½−1þ ν1; ν2� − J½ν1;−5þ ν2� þ 5J½ν1;−4þ ν2� − 10J½ν1;−3þ ν2�
þ 10J½ν1;−2þ ν2� − 5J½ν1;−1þ ν2� þ J½ν1; ν2�Þ;

B5 ¼ −
35

128
J½−5þ ν1; ν2� þ

175

128
J½−4þ ν1;−1þ ν2� þ

25

128
J½−4þ ν1; ν2�

−
175

64
J½−3þ ν1;−2þ ν2� þ

25

32
J½−3þ ν1;−1þ ν2� þ

5

64
J½−3þ ν1; ν2�

þ 175

64
J½−2þ ν1;−3þ ν2� −

225

64
J½−2þ ν1;−2þ ν2� þ

45

64
J½−2þ ν1;−1þ ν2�

þ 5

64
J½−2þ ν1; ν2� −

175

128
J½−1þ ν1;−4þ ν2� þ

125

32
J½−1þ ν1;−3þ ν2�

−
225

64
J½−1þ ν1;−2þ ν2� þ

25

32
J½−1þ ν1;−1þ ν2� þ

25

128
J½−1þ ν1; ν2�

þ 35

128
J½ν1;−5þ ν2� −

175

128
J½ν1;−4þ ν2� þ

175

64
J½ν1;−3þ ν2�

−
175

64
J½ν1;−2þ ν2� þ

175

128
J½ν1;−1þ ν2� −

35

128
J½ν1; ν2�;
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C5 ¼
63

256
J½−5þ ν1; ν2� −

315

256
J½−4þ ν1;−1þ ν2� þ

35

256
J½−4þ ν1; ν2�

þ 315

128
J½−3þ ν1;−2þ ν2� −

105

64
J½−3þ ν1;−1þ ν2� þ

15

128
J½−3þ ν1; ν2�

−
315

128
J½−2þ ν1;−3þ ν2� þ

525

128
J½−2þ ν1;−2þ ν2� −

225

128
J½−2þ ν1;−1þ ν2�

þ 15

128
J½−2þ ν1; ν2� þ

315

256
J½−1þ ν1;−4þ ν2� −

245

64
J½−1þ ν1;−3þ ν2�

þ 525

128
J½−1þ ν1;−2þ ν2� −

105

64
J½−1þ ν1;−1þ ν2� þ

35

256
J½−1þ ν1; ν2�

−
63

256
J½ν1;−5þ ν2� þ

315

256
J½ν1;−4þ ν2� −

315

128
J½ν1;−3þ ν2�

þ 315

128
J½ν1;−2þ ν2� −

315

256
J½ν1;−1þ ν2� þ

63

256
J½ν1; ν2�;

A6 ¼ −
1

1024
× 5ðJ½−6þ ν1; ν2� − 6J½−5þ ν1;−1þ ν2� − 6J½−5þ ν1; ν2�

þ 15J½−4þ ν1;−2þ ν2� þ 18J½−4þ ν1;−1þ ν2� þ 15J½−4þ ν1; ν2�
− 20J½−3þ ν1;−3þ ν2� − 12J½−3þ ν1;−2þ ν2� − 12J½−3þ ν1;−1þ ν2�
− 20J½−3þ ν1; ν2� þ 15J½−2þ ν1;−4þ ν2� − 12J½−2þ ν1;−3þ ν2�
− 6J½−2þ ν1;−2þ ν2� − 12J½−2þ ν1;−1þ ν2� þ 15J½−2þ ν1; ν2�
− 6J½−1þ ν1;−5þ ν2� þ 18J½−1þ ν1;−4þ ν2� − 12J½−1þ ν1;−3þ ν2�
− 12J½−1þ ν1;−2þ ν2� þ 18J½−1þ ν1;−1þ ν2� − 6J½−1þ ν1; ν2�
þ J½ν1;−6þ ν2� − 6J½ν1;−5þ ν2� þ 15J½ν1;−4þ ν2�
− 20J½ν1;−3þ ν2� þ 15J½ν1;−2þ ν2� − 6J½ν1;−1þ ν2� þ J½ν1; ν2�Þ;

B6 ¼
105J½−6þ ν1; ν2�

1024
−
315

512
J½−5þ ν1;−1þ ν2� −

135

512
J½−5þ ν1; ν2�

þ 1575J½−4þ ν1;−2þ ν2�
1024

þ 225

512
J½−4þ ν1;−1þ ν2� þ

135J½−4þ ν1; ν2�
1024

−
525

256
J½−3þ ν1;−3þ ν2� þ

225

256
J½−3þ ν1;−2þ ν2� þ

45

256
J½−3þ ν1;−1þ ν2�

þ 15

256
J½−3þ ν1; ν2� þ

1575J½−2þ ν1;−4þ ν2�
1024

−
675

256
J½−2þ ν1;−3þ ν2�

þ 405

512
J½−2þ ν1;−2þ ν2� þ

45

256
J½−2þ ν1;−1þ ν2� þ

135J½−2þ ν1; ν2�
1024

−
315

512
J½−1þ ν1;−5þ ν2� −

675

512
J½−1þ ν1;−4þ ν2� þ

405

512
J½−1þ ν1;−3þ ν2�

þ 225

512
J½−1þ ν1;−2þ ν2� −

135

512
J½−1þ ν1;−1þ ν2� þ

105J½−1þ ν1; ν2�
1024

þ 105J½ν1;−6þ ν2�
1024

−
315

512
J½ν1;−5þ ν2� þ

225

512
J½ν1;−4þ ν2�

−
675

512
J½ν1;−3þ ν2� þ

1575J½ν1;−2þ ν2�
1024

−
315

512
J½ν1;−1þ ν2� þ

105J½ν1; ν2�
1024

;
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C6 ¼ −
315J½−6þ ν1; ν2�

1024
þ 945

512
J½−5þ ν1;−1þ ν2� þ

105

512
J½−5þ ν1; ν2�

−
4725J½−4þ ν1;−2þ ν2�

1024
þ 525

512
J½−4þ ν1;−1þ ν2� þ

75J½−4þ ν1; ν2�
1024

þ 1575

256
J½−3þ ν1;−3þ ν2� −

1575

256
J½−3þ ν1;−2þ ν2� þ

225

256
J½−3þ ν1;−1þ ν2�

þ 15

256
J½−3þ ν1; ν2� −

4725J½−2þ ν1;−4þ ν2�
1024

þ 2625

256
J½−2þ ν1;−3þ ν2�

−
3375

512
J½−2þ ν1;−2þ ν2� þ

225

256
J½−2þ ν1;−1þ ν2� þ

75J½−2þ ν1; ν2�
1024

þ 945

512
J½−1þ ν1;−5þ ν2� −

3675

512
J½−1þ ν1;−4þ ν2� þ

2625

256
J½−1þ ν1;−3þ ν2�

−
1575

256
J½−1þ ν1;−2þ ν2� þ

525

512
J½−1þ ν1;−1þ ν2� þ

105

512
J½−1þ ν1; ν2�

−
315J½ν1;−6þ ν2�

1024
þ 945

512
J½ν1;−5þ ν2� −

4725J½ν1;−4þ ν2�
1024

þ 1575

256
J½ν1;−3þ ν2� −

4725J½ν1;−2þ ν2�
1024

þ 945

512
J½ν1;−1þ ν2� −

315J½ν1; ν2�
1024

;

D6 ¼
231J½−6þ ν1; ν2�

1024
−
693

512
J½−5þ ν1;−1þ ν2� þ

63

512
J½−5þ ν1; ν2�

þ 3465J½−4þ ν1;−2þ ν2�
1024

−
945

512
J½−4þ ν1;−1þ ν2� þ

105J½−4þ ν1; ν2�
1024

−
1155

256
J½−3þ ν1;−3þ ν2� þ

1575

256
J½−3þ ν1;−2þ ν2� −

525

256
J½−3þ ν1;−1þ ν2�

þ 25

256
J½−3þ ν1; ν2� þ

3465J½−2þ ν1;−4þ ν2�
1024

−
2205

256
J½−2þ ν1;−3þ ν2�

þ 3675

512
J½−2þ ν1;−2þ ν2� −

525

256
J½−2þ ν1;−1þ ν2� þ

105J½−2þ ν1; ν2�
1024

−
693

512
J½−1þ ν1;−5þ ν2� þ

2835

512
J½−1þ ν1;−4þ ν2� −

2205

256
J½−1þ ν1;−3þ ν2�

þ 1575

256
J½−1þ ν1;−2þ ν2� −

945

512
J½−1þ ν1;−1þ ν2� þ

63

512
J½−1þ ν1; ν2�

þ 231J½ν1;−6þ ν2�
1024

−
693

512
J½ν1;−5þ ν2� þ

3465J½ν1;−4þ ν2�
1024

−
1155

256
J½ν1;−3þ ν2� þ

3465J½ν1;−2þ ν2�
1024

−
693

512
J½ν1;−1þ ν2� þ

231J½ν1; ν2�
1024

;

A7 ¼ −
1

2048
ð35J½−7þ ν1; ν2� − 7J½−6þ ν1;−1þ ν2� − 5J½−6þ ν1; ν2�

þ 21J½−5þ ν1;−2þ ν2� þ 18J½−5þ ν1;−1þ ν2� þ 9J½−5þ ν1; ν2�
− 35J½−4þ ν1;−3þ ν2� − 15J½−4þ ν1;−2þ ν2� − 9J½−4þ ν1;−1þ ν2�
− 5J½−4þ ν1; ν2� þ 35J½−3þ ν1;−4þ ν2� − 20J½−3þ ν1;−3þ ν2�
− 6J½−3þ ν1;−2þ ν2� − 4J½−3þ ν1;−1þ ν2� − 5J½−3þ ν1; ν2�
− 21J½−2þ ν1;−5þ ν2� þ 45J½−2þ ν1;−4þ ν2� − 18J½−2þ ν1;−3þ ν2�
− 6J½−2þ ν1;−2þ ν2� − 9J½−2þ ν1;−1þ ν2� þ 9J½−2þ ν1; ν2�
þ 7J½−1þ ν1;−6þ ν2� − 30J½−1þ ν1;−5þ ν2� þ 45J½−1þ ν1;−4þ ν2�
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− 20J½−1þ ν1;−3þ ν2� − 15J½−1þ ν1;−2þ ν2� þ 18J½−1þ ν1;−1þ ν2�
− 5J½−1þ ν1; ν2� − J½ν1;−7þ ν2� þ 7J½ν1;−6þ ν2�
− 21J½ν1;−5þ ν2� þ 35J½ν1;−4þ ν2� − 35J½ν1;−3þ ν2�
þ 21J½ν1;−2þ ν2� − 7J½ν1;−1þ ν2� þ J½ν1; ν2�Þ;

B7 ¼
1

2048
ð105ð3J½−7þ ν1; ν2� − 21J½−6þ ν1;−1þ ν2� − 7J½−6þ ν1; ν2�

þ 63J½−5þ ν1;−2þ ν2� þ 14J½−5þ ν1;−1þ ν2� þ 3J½−5þ ν1; ν2�
− 105J½−4þ ν1;−3þ ν2� þ 35J½−4þ ν1;−2þ ν2� þ 5J½−4þ ν1;−1þ ν2�
þ J½−4þ ν1; ν2� þ 105J½−3þ ν1;−4þ ν2� − 140J½−3þ ν1;−3þ ν2�
þ 30J½−3þ ν1;−2þ ν2� þ 4J½−3þ ν1;−1þ ν2� þ J½−3þ ν1; ν2�
− 63J½−2þ ν1;−5þ ν2� þ 175J½−2þ ν1;−4þ ν2� − 150J½−2þ ν1;−3þ ν2�
þ 30J½−2þ ν1;−2þ ν2� þ 5J½−2þ ν1;−1þ ν2� þ 3J½−2þ ν1; ν2�
þ 21J½−1þ ν1;−6þ ν2� − 98J½−1þ ν1;−5þ ν2� þ 175J½−1þ ν1;−4þ ν2�
− 140J½−1þ ν1;−3þ ν2� þ 35J½−1þ ν1;−2þ ν2� þ 14J½−1þ ν1;−1þ ν2�
− 7J½−1þ ν1; ν2� − 3J½ν1;−7þ ν2� þ 21J½ν1;−6þ ν2�
− 63J½ν1;−5þ ν2� þ 105J½ν1;−4þ ν2� − 105J½ν1;−3þ ν2�
þ 63J½ν1;−2þ ν2� − 21J½ν1;−1þ ν2� þ 3J½ν1; ν2�Þ;

C7½ν1; ν2� ¼
1

2048
ð21ð33J½−7þ ν1; ν2� − 231J½−6þ ν1;−1þ ν2� − 21J½−6þ ν1; ν2�

þ 693J½−5þ ν1;−2þ ν2� − 126J½−5þ ν1;−1þ ν2� − 7J½−5þ ν1; ν2�
− 1155J½−4þ ν1;−3þ ν2� þ 945J½−4þ ν1;−2þ ν2� − 105J½−4þ ν1;−1þ ν2�
− 5J½−4þ ν1; ν2� þ 1155J½−3þ ν1;−4þ ν2� − 2100J½−3þ ν1;−3þ ν2�
þ 1050J½−3þ ν1;−2þ ν2� − 100J½−3þ ν1;−1þ ν2� − 5J½−3þ ν1; ν2�
− 693J½−2þ ν1;−5þ ν2� þ 2205J½−2þ ν1;−4þ ν2� − 2450J½−2þ ν1;−3þ ν2�
þ 1050J½−2þ ν1;−2þ ν2� − 105J½−2þ ν1;−1þ ν2� − 7J½−2þ ν1; ν2�
þ 231J½−1þ ν1;−6þ ν2� − 1134J½−1þ ν1;−5þ ν2� þ 2205J½−1þ ν1;−4þ ν2�
− 2100J½−1þ ν1;−3þ ν2� þ 945J½−1þ ν1;−2þ ν2� − 126J½−1þ ν1;−1þ ν2�
− 21J½−1þ ν1; ν2� − 33J½ν1;−7þ ν2� þ 231J½ν1;−6þ ν2�
− 693J½ν1;−5þ ν2� þ 1155J½ν1;−4þ ν2� − 1155J½ν1;−3þ ν2�
þ 693J½ν1;−2þ ν2� − 231J½ν1;−1þ ν2� þ 33J½ν1; ν2�Þ;

D7 ¼
1

2048
ð429J½−7þ ν1; ν2� − 3003J½−6þ ν1;−1þ ν2� þ 231J½−6þ ν1; ν2�

þ 9009J½−5þ ν1;−2þ ν2� − 4158J½−5þ ν1;−1þ ν2� þ 189J½−5þ ν1; ν2�
− 15015J½−4þ ν1;−3þ ν2� þ 17325J½−4þ ν1;−2þ ν2� − 4725J½−4þ ν1;−1þ ν2�
þ 175J½−4þ ν1; ν2� þ 15015J½−3þ ν1;−4þ ν2� − 32340J½−3þ ν1;−3þ ν2�
þ 22050J½−3þ ν1;−2þ ν2� − 4900J½−3þ ν1;−1þ ν2� þ 175J½−3þ ν1; ν2�
− 9009J½−2þ ν1;−5þ ν2� þ 31185J½−2þ ν1;−4þ ν2� − 39690J½−2þ ν1;−3þ ν2�
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þ 22050J½−2þ ν1;−2þ ν2� − 4725J½−2þ ν1;−1þ ν2� þ 189J½−2þ ν1; ν2�
þ 3003J½−1þ ν1;−6þ ν2� − 15246J½−1þ ν1;−5þ ν2� þ 31185J½−1þ ν1;−4þ ν2�
− 32340J½−1þ ν1;−3þ ν2� þ 17325J½−1þ ν1;−2þ ν2� − 4158J½−1þ ν1;−1þ ν2�
þ 231J½−1þ ν1; ν2� − 429J½ν1;−7þ ν2� þ 3003J½ν1;−6þ ν2�
− 9009J½ν1;−5þ ν2� þ 15015J½ν1;−4þ ν2� − 15015J½ν1;−3þ ν2�
þ 9009J½ν1;−2þ ν2� − 3003J½ν1;−1þ ν2� þ 429J½ν1; ν2�Þ;

A8 ¼
1

32768
ð35J½−8þ ν1; ν2� − 8J½−7þ ν1;−1þ ν2� − 8J½−7þ ν1; ν2�

þ 28J½−6þ ν1;−2þ ν2� þ 40J½−6þ ν1;−1þ ν2� þ 28J½−6þ ν1; ν2�
− 56J½−5þ ν1;−3þ ν2� − 72J½−5þ ν1;−2þ ν2� − 72J½−5þ ν1;−1þ ν2�
− 56J½−5þ ν1; ν2� þ 70J½−4þ ν1;−4þ ν2� þ 40J½−4þ ν1;−3þ ν2�
þ 36J½−4þ ν1;−2þ ν2� þ 40J½−4þ ν1;−1þ ν2� þ 70J½−4þ ν1; ν2�
− 56J½−3þ ν1;−5þ ν2� þ 40J½−3þ ν1;−4þ ν2� þ 16J½−3þ ν1;−3þ ν2�
þ 16J½−3þ ν1;−2þ ν2� þ 40J½−3þ ν1;−1þ ν2� − 56J½−3þ ν1; ν2�
þ 28J½−2þ ν1;−6þ ν2� − 72J½−2þ ν1;−5þ ν2� þ 36J½−2þ ν1;−4þ ν2�
þ 16J½−2þ ν1;−3þ ν2� þ 36J½−2þ ν1;−2þ ν2� − 72J½−2þ ν1;−1þ ν2�
þ 28J½−2þ ν1; ν2� − 8J½−1þ ν1;−7þ ν2� þ 40J½−1þ ν1;−6þ ν2�
− 72J½−1þ ν1;−5þ ν2� þ 40J½−1þ ν1;−4þ ν2� þ 40J½−1þ ν1;−3þ ν2�
− 72J½−1þ ν1;−2þ ν2� þ 40J½−1þ ν1;−1þ ν2� − 8J½−1þ ν1; ν2�
þ J½ν1;−8þ ν2� − 8J½ν1;−7þ ν2� þ 28J½ν1;−6þ ν2�
− 56J½ν1;−5þ ν2� þ 70J½ν1;−4þ ν2� − 56J½ν1;−3þ ν2�
þ 28J½ν1;−2þ ν2� − 8J½ν1;−1þ ν2� þ J½ν1; ν2�Þ;

B8½ν1; ν2� ¼ −
1

8192
ð35 · 9J½−8þ ν1; ν2� − 72J½−7þ ν1;−1þ ν2� − 40J½−7þ ν1; ν2�

þ 252J½−6þ ν1;−2þ ν2� þ 168J½−6þ ν1;−1þ ν2� þ 60J½−6þ ν1; ν2�
− 504J½−5þ ν1;−3þ ν2� − 168J½−5þ ν1;−2þ ν2� − 72J½−5þ ν1;−1þ ν2�
− 24J½−5þ ν1; ν2� þ 630J½−4þ ν1;−4þ ν2� − 280J½−4þ ν1;−3þ ν2�
− 60J½−4þ ν1;−2þ ν2� − 24J½−4þ ν1;−1þ ν2� − 10J½−4þ ν1; ν2�
− 504J½−3þ ν1;−5þ ν2� þ 840J½−3þ ν1;−4þ ν2� − 240J½−3þ ν1;−3þ ν2�
− 48J½−3þ ν1;−2þ ν2� − 24J½−3þ ν1;−1þ ν2� − 24J½−3þ ν1; ν2�
þ 252J½−2þ ν1;−6þ ν2� − 840J½−2þ ν1;−5þ ν2� þ 900J½−2þ ν1;−4þ ν2�
− 240J½−2þ ν1;−3þ ν2� − 60J½−2þ ν1;−2þ ν2� − 72J½−2þ ν1;−1þ ν2�
þ 60J½−2þ ν1; ν2� − 72J½−1þ ν1;−7þ ν2� þ 392J½−1þ ν1;−6þ ν2�
− 840J½−1þ ν1;−5þ ν2� þ 840J½−1þ ν1;−4þ ν2� − 280J½−1þ ν1;−3þ ν2�
− 168J½−1þ ν1;−2þ ν2� þ 168J½−1þ ν1;−1þ ν2� − 40J½−1þ ν1; ν2� þ 9J½ν1;−8þ ν2�
− 72J½ν1;−7þ ν2� þ 252J½ν1;−6þ ν2� − 504J½ν1;−5þ ν2� þ 630J½ν1;−4þ ν2� − 504J½ν1;−3þ ν2�
þ 252J½ν1;−2þ ν2� − 72J½ν1;−1þ ν2� þ 9J½ν1; ν2�Þ;
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C8 ¼
1

16384
ð105 · 33J½−8þ ν1; ν2� − 264J½−7þ ν1;−1þ ν2� − 72J½−7þ ν1; ν2�

þ 924J½−6þ ν1;−2þ ν2� þ 168J½−6þ ν1;−1þ ν2� þ 28J½−6þ ν1; ν2�
− 1848J½−5þ ν1;−3þ ν2� þ 504J½−5þ ν1;−2þ ν2� þ 56J½−5þ ν1;−1þ ν2�
þ 8J½−5þ ν1; ν2� þ 2310J½−4þ ν1;−4þ ν2� − 2520J½−4þ ν1;−3þ ν2�
þ 420J½−4þ ν1;−2þ ν2� þ 40J½−4þ ν1;−1þ ν2� þ 6J½−4þ ν1; ν2�
− 1848J½−3þ ν1;−5þ ν2� þ 4200J½−3þ ν1;−4þ ν2� − 2800J½−3þ ν1;−3þ ν2�
þ 400J½−3þ ν1;−2þ ν2� þ 40J½−3þ ν1;−1þ ν2� þ 8J½−3þ ν1; ν2�
þ 924J½−2þ ν1;−6þ ν2� − 3528J½−2þ ν1;−5þ ν2� þ 4900J½−2þ ν1;−4þ ν2�
− 2800J½−2þ ν1;−3þ ν2� þ 420J½−2þ ν1;−2þ ν2� þ 56J½−2þ ν1;−1þ ν2�
þ 28J½−2þ ν1; ν2� − 264J½−1þ ν1;−7þ ν2� þ 1512J½−1þ ν1;−6þ ν2�
− 3528J½−1þ ν1;−5þ ν2� þ 4200J½−1þ ν1;−4þ ν2� − 2520J½−1þ ν1;−3þ ν2�
þ 504J½−1þ ν1;−2þ ν2� þ 168J½−1þ ν1;−1þ ν2� − 72J½−1þ ν1; ν2�
þ 33J½ν1;−8þ ν2� − 264J½ν1;−7þ ν2� þ 924J½ν1;−6þ ν2�
− 1848J½ν1;−5þ ν2� þ 2310J½ν1;−4þ ν2� − 1848J½ν1;−3þ ν2�
þ 924J½ν1;−2þ ν2� − 264J½ν1;−1þ ν2� þ 33J½ν1; ν2�Þ;

D8 ¼ −
1

8192
ð7 · 429J½−8þ ν1; ν2� − 3432J½−7þ ν1;−1þ ν2� − 264J½−7þ ν1; ν2�

þ 12012J½−6þ ν1;−2þ ν2� − 1848J½−6þ ν1;−1þ ν2� − 84J½−6þ ν1; ν2�
− 24024J½−5þ ν1;−3þ ν2� þ 16632J½−5þ ν1;−2þ ν2� − 1512J½−5þ ν1;−1þ ν2�
− 56J½−5þ ν1; ν2� þ 30030J½−4þ ν1;−4þ ν2� − 46200J½−4þ ν1;−3þ ν2�
þ 18900J½−4þ ν1;−2þ ν2� − 1400J½−4þ ν1;−1þ ν2� − 50J½−4þ ν1; ν2�
− 24024J½−3þ ν1;−5þ ν2� þ 64680J½−3þ ν1;−4þ ν2� − 58800J½−3þ ν1;−3þ ν2�
þ 19600J½−3þ ν1;−2þ ν2� − 1400J½−3þ ν1;−1þ ν2� − 56J½−3þ ν1; ν2�
þ 12012J½−2þ ν1;−6þ ν2� − 49896J½−2þ ν1;−5þ ν2� þ 79380J½−2þ ν1;−4þ ν2�
− 58800J½−2þ ν1;−3þ ν2� þ 18900J½−2þ ν1;−2þ ν2� − 1512J½−2þ ν1;−1þ ν2�
− 84J½−2þ ν1; ν2� − 3432J½−1þ ν1;−7þ ν2� þ 20328J½−1þ ν1;−6þ ν2�
− 49896J½−1þ ν1;−5þ ν2� þ 64680J½−1þ ν1;−4þ ν2� − 46200J½−1þ ν1;−3þ ν2�
þ 16632J½−1þ ν1;−2þ ν2� − 1848J½−1þ ν1;−1þ ν2� − 264J½−1þ ν1; ν2�
þ 429J½ν1;−8þ ν2� − 3432J½ν1;−7þ ν2� þ 12012J½ν1;−6þ ν2�
− 24024J½ν1;−5þ ν2� þ 30030J½ν1;−4þ ν2� − 24024J½ν1;−3þ ν2�
þ 12012J½ν1;−2þ ν2� − 3432J½ν1;−1þ ν2� þ 429J½ν1; ν2�Þ;

E8 ¼
1

32768
ð6435J½−8þ ν1; ν2� − 51480J½−7þ ν1;−1þ ν2�

þ 3432J½−7þ ν1; ν2� þ 180180J½−6þ ν1;−2þ ν2� − 72072J½−6þ ν1;−1þ ν2�
þ 2772J½−6þ ν1; ν2� − 360360J½−5þ ν1;−3þ ν2� þ 360360J½−5þ ν1;−2þ ν2�
− 83160J½−5þ ν1;−1þ ν2� þ 2520J½−5þ ν1; ν2� þ 450450J½−4þ ν1;−4þ ν2�
− 840840J½−4þ ν1;−3þ ν2� þ 485100J½−4þ ν1;−2þ ν2� − 88200J½−4þ ν1;−1þ ν2�
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þ 2450J½−4þ ν1; ν2� − 360360J½−3þ ν1;−5þ ν2� þ 1081080J½−3þ ν1;−4þ ν2�
− 1164240J½−3þ ν1;−3þ ν2� þ 529200J½−3þ ν1;−2þ ν2� − 88200J½−3þ ν1;−1þ ν2�
þ 2520J½−3þ ν1; ν2� þ 180180J½−2þ ν1;−6þ ν2� − 792792J½−2þ ν1;−5þ ν2�
þ 1372140J½−2þ ν1;−4þ ν2� − 1164240J½−2þ ν1;−3þ ν2� þ 485100J½−2þ ν1;−2þ ν2�
− 83160J½−2þ ν1;−1þ ν2� þ 2772J½−2þ ν1; ν2� − 51480J½−1þ ν1;−7þ ν2�
þ 312312J½−1þ ν1;−6þ ν2� − 792792J½−1þ ν1;−5þ ν2� þ 1081080J½−1þ ν1;−4þ ν2�
− 840840J½−1þ ν1;−3þ ν2� þ 360360J½−1þ ν1;−2þ ν2� − 72072J½−1þ ν1;−1þ ν2�
þ 3432J½−1þ ν1; ν2� þ 6435J½ν1;−8þ ν2� − 51480J½ν1;−7þ ν2�
þ 180180J½ν1;−6þ ν2� − 360360J½ν1;−5þ ν2� þ 450450J½ν1;−4þ ν2�
− 360360J½ν1;−3þ ν2� þ 180180J½ν1;−2þ ν2� − 51480J½ν1;−1þ ν2�
þ 6435J½ν1; ν2�Þ:

APPENDIX B: CALCULATION OF 13 CONTRIBUTIONS IN THE TAU MODEL

The 13-type loop correction due to contact operators from the exponential map is given by

δP13 ¼ ðb1 − bηfμ2ÞPlinðkÞ
Z
q
PlinðqÞ½ð−τ0Þ3ðbτ1 þ fμ2ÞZ2

1ðqÞ þ 4τ20Z2ðk;qÞZ1ðqÞ�: ðB1Þ

The first integral ∝ τ30 can be easily evaluated,

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2Þ2 ¼

�
ðbτ1Þ2 þ

2bτ1f
3

þ f2

5

�Z
Λ

0

dq q2PlinðqÞ: ðB2Þ

The rightmost term in Eq. (B1) has the following full expression:

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2Þ

�
bτ2
2
þ bτG2

�ðq · kÞ2
k2q2

− 1

�
þ bτ1F2ðq;kÞ

þ f
ðẑ · ðqþ kÞÞ2

jqþ kj2 G2ðq;kÞ þ
fðẑ · ðqþ kÞÞ

2

�
μ

k
ðbτ1 þ fðẑ · q̂Þ2Þ þ ðẑ · q̂Þ

q
ðbτ1 þ fμ2Þ

��
:

Let us compute these terms one by one,

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2Þ b

τ
2

2
¼ bτ2

2

�
bτ1 þ

f
3

�
σ2Λ; ðB3Þ

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2ÞbτG2

�ðq · kÞ2
k2q2

− 1

�
¼

�
bτG2

�
−bτ1

2

3
−
4f
15

þ 2μ2f
15

��
σ2Λ; ðB4Þ

bτ1

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2Þ

�
5

7
þ 2

7
ðk̂ · q̂Þ2

�
¼

�
ðbτ1Þ2

17

21
þ 9fbτ1

35
þ 4fbτ1μ

2

105

�
σ2Λ; ðB5Þ

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2Þ fðẑ · ðqþ kÞÞ

2

�
μ

k
ðbτ1 þ fðẑ · q̂Þ2Þ þ ðẑ · q̂Þ

q
ðbτ1 þ fμ2Þ

�

¼
�
μ2
�ðbτ1Þ2f

2
þ bτ1f

2

2
þ f3

5

�
þ ðbτ1Þ2f

6
þ bτ1f

2

10

�
σ2Λ: ðB6Þ
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So far our analysis has been exact. In order to compute the UV contribution from the G2 terms we need to use the high-q
expansion,

Z
q
PlinðqÞðbτ1 þ fðẑ · q̂Þ2Þfðẑ · qÞ2

�
3

7
þ 4

7
ðk̂ · q̂Þ2

�

¼
�

1

735
fð133bτ1 þ 75fÞ þ 8

735
fμ2ð7bτ1 þ 6fÞ

�
σ2Λ: ðB7Þ

Combining these terms together we find

δP13 ¼ ðb1 − bηfμ2ÞPlinðkÞ½A0 þ μ2A2�σ2Λ; ðB8Þ

where

A0 ¼ −
1

735
τ20ð−2380ðbτ1Þ2 − 1470bτ1b

τ
2 þ 1960bτ1b

τ
G2
− 1288bτ1f − 490bτ2f þ 784bτG2

f

− 300f2 þ 147bτ1f
2ð2 − τ0Þ þ 490ðbτ1Þ2fð1 − τ0Þ þ 735ðbτ1Þ3τ0Þ;

A2 ¼ −
1

735
ð−336bτ1f − 392bτG2

f þ 3f2ð−64þ 49fð−4þ τ0ÞÞ
þ 490bτ1f

2ð−3þ τ0Þ þ 735ðbτ1Þ2fð−2þ τ0ÞÞτ20: ðB9Þ

APPENDIX C: FITS TO THE SIMULATIONS
FOR z = 3.2

In this section we present results for the Sherwood
simulation data analysis at z ¼ 3.2. This redshift is some-
what higher than z ¼ 2.8 used in the main text, so one may
expect that the nonlinear corrections would be suppressed
and the fit would be better down to smaller kmax. This is
indeed the case. In Fig. 7 we show the results for four
choices of kmax; 3, 4, 5, and 6 hMpc−1. We see that the
posteriors for kmax ¼ 3; 4; 5 hMpc−1 are fully consistent
with each other. The posteriors for kmax ¼ 3, 4 are highly
non-Gaussian, and even feature a multi-island structure for

certain parameters. This is likely due to a large number of
parameters in the fit, which the data at a given kmax cannot
constrain.
The kmax ¼ 5 hMpc−1 posterior has significant over-

lap with those of the kmax ¼ 3, 4 cases. In contrast, the
kmax ¼ 5 hMpc−1 and kmax ¼ 6 hMpc−1 posteriors are in
noticeable tension with each other in the bδη − bη plane.
This suggests that the kmax ¼ 6 hMpc−1 results are
biased. Thus, we select kmax ¼ 5 hMpc−1 as a baseline
for z ¼ 3.2. As anticipates, this is larger than our baseline
choice kmax ¼ 3 hMpc−1 for z ¼ 2.8. The 1d marginalized
posteriors for this case are shown in Table II.
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FIG. 7. Triangle plot and marginalized projections for bias parameters of the EFT model for the Lyman alpha flux power spectrum of
the Sherwood simulations at z ¼ 3.2. We show results for four choices of kmax; 3, 4, 5 and 6 hMpc−1 (gray, green, blue, red,
respectively).
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