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A cosmological model based on holographic scenarios is formulated in a flat Friedmann-Robertson-
Walker universe. To formulate this model, the cosmological horizon is assumed to have a general entropy
and a general temperature (including Bekenstein-Hawking entropy and Gibbons-Hawking temperature,
respectively). In addition, a holographiclike connection [N. Komatsu, Eur. Phys. J. C 83, 690 (2023)]
and Padmanabhan’s holographic equipartition law are assumed for the entropy and temperature, and the
Friedmann and acceleration equations are derived from these. The derived Friedmann and acceleration
equations include both the entropy and the temperature and are slightly complicated, but can be combined
into a single simple equation, corresponding to a similar equation that describes the background evolution
of the universe in time-varying ΛðtÞ cosmologies. The simple equation depends on the entropy but not on
the temperature because the temperatures in the Friedmann and acceleration equations cancel each other.
These results imply that the holographiclike connection should be consistent with Padmanabhan’s
holographic equipartition law through the present model and that the entropy plays a more important role.
When the Gibbons-Hawking temperature is used as the temperature, the Friedmann and acceleration
equations are found to be equivalent to those for aΛðtÞmodel. A particular case of the present model is also
examined, applying a power-law corrected entropy.

DOI: 10.1103/PhysRevD.109.023505

I. INTRODUCTION

Many cosmological observations have implied an accel-
erated expansion of the late universe [1–3]. To explain the
accelerated expansion, astrophysicists have proposed vari-
ous cosmological models [4], e.g., lambda cold dark matter
(ΛCDM) models, time-varying ΛðtÞ cosmology [5–8],
bulk viscous models [9–12], creation of CDM (CCDM)
models [13–16], and thermodynamic cosmological sce-
narios [17–26]. The famous ΛCDM model assumes an
additional energy component called “dark energy” in a
Friedmann-Robertson-Walker (FRW) universe or, equiv-
alently, a cosmological constant Λ, corresponding to an
extra driving term, added to the Friedmann and acceler-
ation equations.
In contrast, thermodynamic cosmological scenarios are

generally based on the “holographic principle,” in which
information for the bulk is assumed to be stored on the
horizon [27]. (Here it is considered that the concept of black
hole thermodynamics [28,29] is applied to the cosmological
horizon [30–46].) In those scenarios, Padmanabhan’s holo-
graphic equipartition law [47] has been examined from
various viewpoints [48–60]. Based on this law, the accel-
eration equation can be derived from the expansion of

cosmic space due to the difference between the degrees of
freedom on the surface and in the bulk in a region of
space [47].
In addition, a holographiclike connection has recently

been examined in standard cosmology [55]. The hologra-
phiclike connection indicates that the Helmholtz free energy
on the cosmological horizon is equivalent to the effective
energy based on the energy density calculated from the
Friedmann equation. The connection is considered to be a
bridge between horizon thermodynamics and cosmologi-
cal equations [55]. (Padmanabhan has derived a similar
energy-balance relation, which is essentially equivalent to
the holographiclike connection [61].) By using the holo-
graphiclike connection, the Friedmann equation should
be able to be derived from the free energy on the horizon.
Of course, when the continuity equation is assumed, the
Friedmann equation can be derived from the acceleration
equation and the continuity equation because two of the
three equations are independent [62]. Also, the Friedmann
equation can be derived from thermodynamics such as the
first law of thermodynamics (see, e.g., Refs. [19–22] and
recent works [35,63]). Moreover, the acceleration equation
can be derived by applying the first law of thermodynam-
ics to an apparent horizon (see, e.g., Ref. [20]). The
holographiclike connection is thus considered to be a
derivation method based on holographic scenarios.*komatsu@se.kanazawa-u.ac.jp
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In standard cosmology, the holographiclike connection
is consistent with Padmanabhan’s holographic equiparti-
tion law [55]. Similarly, in modified FRW cosmologies,
the holographiclike connection and the holographic equi-
partition law are expected to be consistent with each other.
That is, the Friedmann equation from the connection
should be consistent with the acceleration equation from
the law, even in the modified FRW cosmology. We expect
that such a consistent cosmological model can be for-
mulated using the Friedmann and acceleration equations
based on the holographic scenario, namely the hologra-
phiclike connection and the holographic equipartition law.
However, from this viewpoint, cosmological models have
not yet been extensively examined, though several works
have been reported [64,65]. This model should provide
new insights into discussions of holographic cosmology
and horizon thermodynamics.
In this context, we phenomenologically formulate a

cosmological model based on a holographiclike connec-
tion and Padmanabhan’s holographic equipartition law.
In the present study, we do not select a particular entropy
and a particular temperature, such as the Bekenstein-
Hawking entropy [28] and the Gibbons-Hawking temper-
ature [29], because various forms of entropy [66–72] and
temperature [73–75] have been proposed. Instead, we
consider a general entropy and a general temperature on
the cosmological horizon. Using the general entropy and
temperature, we formulate a cosmological model based
on the holographic scenario. Accordingly, various forms
of the entropy and temperature should be applied to the
formulated model. (This paper focuses on background
evolution of the universe.)
The remainder of the present article is organized as

follows. In Sec. II, horizon thermodynamics is described. In
Sec. II A, the Bekenstein-Hawking entropy and Gibbons-
Hawking temperature are reviewed and a general entropy
and general temperature are introduced. In Sec. II B,
the energy and Helmholtz free energy on the horizon
are reviewed. In Sec. III, cosmological equations are
reviewed and a holographiclike connection is introduced.
In Sec. IV, a cosmological model based on holographic
scenarios is formulated. In Sec. IVA, a modified Fried-
mann equation is derived from the holographiclike con-
nection. In Sec. IV B, a modified acceleration equation is
derived from Padmanabhan’s holographic equipartition
law. Based on the Friedmann and acceleration equations, a
cosmological model is formulated in Sec. IV C. In Sec. V,
a particular case of the present model is examined,
applying a power-law corrected entropy. Finally, in
Sec. VI, the conclusions of the study are presented.
The holographiclike connection has not yet been

established, as discussed later. However, the holographic-
like connection is considered to be a viable scenario
and, therefore, detailed studies are needed from various

viewpoints. It should be worthwhile to examine cosmo-
logical models based on the holographiclike connection.

II. HORIZON THERMODYNAMICS

The horizon thermodynamics is closely related to the
holographic principle [27], which assumes that the horizon
of the universe has an associated entropy and an approxi-
mate temperature [17]. The entropy and temperature are
introduced in Sec. II A, and the energy and the Helmholtz
free energy on the horizon are reviewed in Sec. II B.
For generality, a general entropy SH and general temper-

ature TH on the horizon are considered so that various
forms of the entropy and temperature can be applied to a
formulated cosmological model. In this study, we assume a
homogeneous, isotropic, and spatially flat universe, namely
a flat FRW universe. Accordingly, the Hubble horizon is
equivalent to an apparent horizon. An expanding universe
is also assumed.

A. Entropy SH and temperature TH on the horizon

In this subsection, an entropy and a temperature on the
Hubble horizon are introduced, according to previous
works [35–51].
First, we review a form of the Bekenstein-Hawking

entropy as an associated entropy on the cosmological
horizon because it is the most standard. In general, the
cosmological horizon is examined by replacing the event
horizon of a black hole by the cosmological horizon [45].
This replacement method has been widely accepted, and we
use it in this paper. Based on the form of the Bekenstein-
Hawking entropy, the entropy SBH is written as [28]

SBH ¼ kBc3

ℏG
AH

4
; ð1Þ

where kB, c, G, and ℏ are the Boltzmann constant, speed of
light, gravitational constant, and reduced Planck constant,
respectively. The reduced Planck constant is defined by
ℏ≡ h=ð2πÞ, where h is the Planck constant [42–46,53–55].
AH is the surface area of the sphere with Hubble horizon
(radius) rH given by

rH ¼ c
H
; ð2Þ

where the Hubble parameter H is defined by

H ≡ da=dt
aðtÞ ¼ ȧðtÞ

aðtÞ ; ð3Þ

and aðtÞ is the scale factor at time t. Substituting
AH ¼ 4πr2H into Eq. (1) and applying Eq. (2) yields
[42–46]
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SBH ¼ kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð4Þ

where K is a positive constant given by

K ¼ πkBc5

ℏG
¼ πkBc2

L2
P

; ð5Þ

and LP is the Planck length, written as

LP ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
: ð6Þ

Next, we review the Gibbons-Hawking temperature as
an approximate temperature on the horizon. The Gibbons-
Hawking temperature TGH is given by [29]

TGH ¼ ℏH
2πkB

: ð7Þ

The above equation indicates that TGH is proportional
to H and is constant during the evolution of de Sitter
universes [45,46]. In this sense, the horizon of the de Sitter
universe is considered to be static.
Equations (4) and (7) are widely used for the entropy and

temperature on the horizon, respectively [35–51]. In this
study, for generality, we consider a general entropy SH and
general temperature TH, written as

SH ¼ SBH

�
SH
SBH

�
and TH ¼ TGH

�
TH

TGH

�
; ð8Þ

where SH and TH include ðSH=SBHÞ and ðTH=TGHÞ,
respectively. We use the above notation because it is
suitable for formulating a cosmological model, as exam-
ined later.

B. Energy EH and free energy FH on the horizon

In this subsection, we review the energy EH and
Helmholtz free energy FH on the horizon, based on a
previous work [55]. Hereafter, we refer to FH as the free
energy (on the horizon).
We have assumed that information for the bulk is stored

on the horizon based on the holographic principle. We now
assume the equipartition law of energy on the horizon,
according to Refs. [37,41]. Consequently, an energy on the
Hubble horizon, EH, can be written as

EH ¼ Nsur ×
1

2
kBTH; ð9Þ

where Nsur is the number of degrees of freedom on a
spherical surface of Hubble radius rH and is written as [42]

Nsur ¼
4SH
kB

: ð10Þ

Substituting Eq. (10) into Eq. (9) yields

EH ¼
�
4SH
kB

�
1

2
kBTH ¼ 2SHTH: ð11Þ

This thermodynamic relation, namely EH ¼ 2SHTH, was
proposed by Padmanabhan [37,40]. (In Ref. [55], the same
relation was discussed, using dEH ¼ THdSH.)
Based on thermodynamics, the free energy FH on the

horizon can be defined as

FH ¼ EH − THSH: ð12Þ

Substituting THSH ¼ EH=2 given by Eq. (11) into Eq. (12)
yields

FH ¼ EH − THSH ¼ EH −
1

2
EH ¼ 1

2
EH: ð13Þ

The free energy FH is half of EH [55].
When both SH ¼ SBH and TH ¼ TGH are considered, the

free energy FH is written as [55]

FH ¼ 1

2
EH ¼ SHTH ¼ SBHTGH ¼ 1

2

c5

G

�
1

H

�
; ð14Þ

where Eqs. (4) and (7) have been used. The obtained free
energy is related to an effective energy in the Hubble
volume [55]. This relation, namely a holographiclike
connection, has not yet been established and is discussed
in the next section.

III. COSMOLOGICAL EQUATIONS
AND A HOLOGRAPHICLIKE CONNECTION

We consider a flat FRW universe. In Sec. III A, cosmo-
logical equations for a ΛðtÞ model similar to time-varying
ΛðtÞ cosmologies are reviewed. In Sec. III B, a holographic-
like connection in standard cosmology is introduced.

A. General formulation for a ΛðtÞ model

A cosmological model based on holographic scenarios
examined in the present study is expected to be related to
a ΛðtÞ model. (This is discussed in Sec. IV C.) Therefore,
in this subsection, we introduce a general formulation for
cosmological equations for the ΛðtÞ model, according to
previous works [42–44]. The general Friedmann and
acceleration equations are written as

HðtÞ2 ¼ 8πG
3

ρðtÞ þ fΛðtÞ; ð15Þ
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äðtÞ
aðtÞ ¼ Ḣ þH2 ¼ −

4πG
3

ð1þ 3wÞρðtÞ þ fΛðtÞ; ð16Þ

where ρðtÞ and pðtÞ are the mass density of cosmological
fluids and the pressure of cosmological fluids, respectively.
w represents the equation-of-state parameter for a generic
component of matter, which is given as [42–44]

w ¼ pðtÞ
ρðtÞc2 : ð17Þ

For a Λ-dominated universe, matter-dominated universe,
and radiation-dominated universe, w is −1, 0, and 1=3,
respectively. An extra driving term, fΛðtÞ, is phenomeno-
logically assumed. (The continuity equation is discussed in
the Appendix.)
From the Friedmann and acceleration equations, we can

obtain a simple equation that describes the background
evolution of the universe. Combining Eq. (15) with Eq. (16)
yields [42]

Ḣ ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞfΛðtÞ

¼ −
3

2
ð1þ wÞH2

�
1 −

fΛðtÞ
H2

�
: ð18Þ

By solving this equation, we can examine the background
evolution of the universe for a ΛðtÞ model. In Secs. IV
and V, we compare Eq. (18) and an equation obtained from
a cosmological model based on holographic scenarios.

B. A holographiclike connection

In this subsection, we introduce a holographiclike con-
nection in standard cosmology, according to Ref. [55].
For standard cosmology, we set fΛðtÞ ¼ 0. Consequently,
Eqs. (15) and (16) can be written as

H2 ¼ 8πG
3

ρ; ð19Þ

ä
a
¼ Ḣ þH2 ¼ −

4πG
3

ð1þ 3wÞρ: ð20Þ

We now introduce a holographiclike connection between
thermostatistical quantities on a cosmological horizon and
in the bulk [55]. To this end, we determine the effective
energy based on the energy density calculated from the
Friedmann equation. Using the Friedmann equation given
by Eq. (19), the energy density ρc2 is written as [55]

ρc2 ¼ 3c2

8πG
H2: ð21Þ

The energy density ρc2 is generally defined by

ρc2 ¼ Eeff

V
; ð22Þ

where Eeff is the effective energy and V is the volume of a
sphere with the Hubble horizon (radius) [55], given by

V ¼ 4π

3
r3H ¼ 4π

3

�
c
H

�
3

: ð23Þ

Solving Eq. (22) with respect to Eeff and substituting
Eqs. (21) and (23) into the resultant equation yields [55]

Eeff ¼ ρc2V ¼ 3c2

8πG
H2

4

3
π

�
c
H

�
3

¼ 1

2

c5

G

�
1

H

�
: ð24Þ

The above equation is equivalent to Eq. (14). Therefore, the
free energy FH on the Hubble horizon is equivalent to the
effective energy Eeff in the Hubble volume [55]:

FH ¼ Eeff ; ð25Þ

where SH ¼ SBH and TH ¼ TGH are considered. This
consistency is a “holographiclike connection” in standard
cosmology. The holographiclike connection, namely
FH ¼ Eeff , is expected to be a bridge between horizon
thermodynamics and cosmological equations [55]. A similar
energy-balance relation ρc2V ¼ TGHSBH was derived by
Padmanabhan [61] and was described in, e.g., Refs. [64,65].
The energy-balance relation is essentially equivalent to the
holographiclike connection. However, the free energy and
the holographiclike connection FH ¼ Eeff were not dis-
cussed in those works.
The holographiclike connection is considered to be a

viable scenario. Of course, in the above discussion, a
standard FRW cosmology is assumed and, in addition, the
Bekenstein-Hawking entropy and the Gibbons-Hawking
temperature are selected as an associated entropy and an
approximate temperature on the horizon, respectively. In
fact, the selected forms of the entropy and temperature are
expected to lead to modified FRW cosmologies, as exam-
ined in Ref. [63]. That is, extended forms of the entropy and
temperature should be suitable for discussions of the
holographiclike connection in the modified FRW cosmol-
ogy. Therefore, we consider a general entropy SH and a
general temperature TH and assume that the holographic-
like connection can be applied to SH and TH. In the next
section, we derive a modified Friedmann equation from the
holographiclike connection and formulate a cosmologi-
cal model.
Before proceeding further, we explain the holographic-

like connection again. The holographiclike connection
implies that the free energy on the horizon (which is
obtained from the equipartition law of energy) is consid-
ered to be equal to the effective energy, namely the bulk
energy [55]. However, the holographiclike connection has
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not yet been established. In fact, the energy in the
equipartition law has been discussed from different view-
points. For example, Verlinde argued that the energy in the
equipartition law should be related to the total enclosed
mass, to derive Newton’s law of gravitation [38]. Also,
Padmanabhan argued that the equipartition energy on the
horizon should be related to active gravitational mass [37]
and that the bulk energy should be the Komar energy [47].
On the other hand, Padmanabhan derived an energy-balance
relation [61], essentially equivalent to the holographiclike
connection. Accordingly, the holographiclike connection
may be related to a realistic holographic connection.
Detailed studies are needed from various viewpoints. In
the present paper, we accept the holographiclike connection
and examine cosmological models based on the connection.

IV. MODIFIED COSMOLOGICAL EQUATIONS
AND THE PRESENT MODEL

In this section, we consider a general entropy SH and
general temperature TH and formulate a cosmological
model based on both a holographiclike connection and
Padmanabhan’s holographic equipartition law. In Sec. IVA,
a modified Friedmann equation is derived from the holo-
graphiclike connection. In Sec. IV B, a modified acceler-
ation equation is derived from the holographic equipartition
law. In Sec. IV C, a cosmological model is formulated based
on the derived Friedmann and acceleration equations. (A
modified continuity equation is discussed in the Appendix.)
The holographiclike connection, Padmanabhan’s holo-

graphic equipartition law, and several assumptions used for
the present model have not yet been established but are
considered to be viable scenarios and accepted as such in
this work. (For example, we assume that the connection and
the law can be applied to SH and TH.)

A. Modified Friedmann equation from
a holographiclike connection

In this subsection, we derive a modified Friedmann
equation from a holographiclike connection. From Eq. (25),
the holographiclike connection is written as

FH ¼ Eeff : ð26Þ

Originally, SBH and TGH are considered. In the present
study, the holographiclike connection FH ¼ Eeff is
extended as if it is a basic principle. That is, we assume
that the holographiclike connection can be applied to a
general entropy SH and general temperature TH. Based on
this assumption, we derive the Friedmann equation from
FH ¼ Eeff given by Eq. (26).
We first calculate the left-hand side of Eq. (26), namely,

FH. From Eqs. (11) and (13), the free energy FH on the
horizon is given by

FH ¼ 1

2
EH ¼ SHTH: ð27Þ

Substituting Eq. (8) into this equation yields

FH ¼ SHTH ¼ SBH

�
SH
SBH

�
TGH

�
TH

TGH

�
: ð28Þ

In addition, substituting Eqs. (4) and (7) into Eq. (28) yields

FH ¼ SBH

�
SH
SBH

�
TGH

�
TH

TGH

�

¼
�
πkBc5

ℏG

�
1

H2

�
SH
SBH

�
ℏH
2πkB

�
TH

TGH

�

¼
�
c5

2G
1

H

��
SH
SBH

��
TH

TGH

�
: ð29Þ

The factors ðSH=SBHÞ and ðTH=TGHÞ are retained, to allow
a comparison between a derived Friedmann equation and
the Friedmann equation in standard cosmology.
We next calculate the right-hand side of Eq. (26), namely

Eeff . For this, we use Eeff ¼ ρc2V given by Eq. (22). From
Eqs. (22) and (23), Eeff is given by

Eeff ¼ ρc2V ¼ ρc2
4π

3
r3H ¼ ρc2

4π

3

�
c
H

�
3

: ð30Þ

We now calculate Eq. (26). Substituting Eqs. (29)
and (30) into Eq. (26) yields

�
c5

2G
1

H

��
SH
SBH

��
TH

TGH

�
¼ ρc2

4π

3

�
c
H

�
3

: ð31Þ

The above equation can be written as

H2

�
SH
SBH

��
TH

TGH

�
¼ 8πG

3
ρ ð32Þ

or equivalently

H2 ¼ 8πG
3

ρþH2

�
1 −

�
SH
SBH

��
TH

TGH

��
: ð33Þ

These are the modified Friedmann equation derived from
the holographiclike connection. Equations (32) and (33)
indicate that both the normalized entropy SH=SBH and
normalized temperature TH=TGH affect the Friedmann
equation. When both SH ¼ SBH and TH ¼ TGH are con-
sidered, Eqs. (32) and (33) reduce to Eq. (19), namely the
Friedmann equation in standard cosmology. Equation (33)
includes the second term on the right-hand side, corre-
sponding to an extra driving term. We can interpret that this
driving term is implicitly included in Eq. (32), because
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Eq. (32) is equivalent to Eq. (33). In the present study,
Eq. (33) is typically used, instead of Eq. (32).
In this subsection, we have derived the modified

Friedmann equation from the holographiclike connection.
In the next subsection, a modified acceleration equation is
derived from Padmanabhan’s holographic equipartition law.

B. Modified acceleration equation from
Padmanabhan’s holographic equipartition law

Based on Padmanabhan’s holographic equipartition law,
the acceleration equation can be derived from the expan-
sion of cosmic space due to the difference between the
degrees of freedom (DOF) on the surface and in the bulk in
a region of space [47]. The law is reviewed in previous
works [35,48,52–55]. In this subsection, based on those
works, we introduce Padmanabhan’s holographic equipar-
tition law and derive a modified acceleration equation
from it.
In an infinitesimal interval dt of cosmic time, the

increase dV in the Hubble volume can be expressed as [47]

dV
dt

¼ L2
pðNsur − ϵNbulkÞ × c; ð34Þ

where Nsur is the number of DOF on a spherical surface of
Hubble radius rH and Nbulk is the number of DOF in the
bulk. Lp is the Planck length given by Eq. (6), and ϵ is a
parameter defined as [47]

ϵ≡
�þ1 ðρc2þ3p< 0∶ an accelerating universeÞ;
−1 ðρc2þ3p> 0∶ a decelerating universeÞ: ð35Þ

We refer to Eq. (34) as Padmanabhan’s holographic
equipartition law. From this equation, the acceleration
equation can be derived based on previous reports [52–55].
In this study, a general temperature TH is considered, by
extending the derivation in those reports.
To derive the acceleration equation, we first calculate the

left-hand side of Eq. (34), namely dV=dt. Differentiating
Eq. (23) with respect to t yields [52–55]

dV
dt

¼ d
dt

�
4π

3

�
c
H

�
3
�

¼ −4πc3
�
Ḣ
H4

�
; ð36Þ

where r is set to rH ¼ c=H before the time derivative is
calculated [47]. Next, to calculate the right-hand side of
Eq. (34), the number of DOF in the bulkNbulk is assumed to
obey the equipartition law of energy [47]:

Nbulk ¼
jEbulkj
1
2
kBTH

; ð37Þ

where TH is the general temperature on the horizon. The
Komar energy jEbulkj contained inside the Hubble volume
V is assumed to be given by [47]

jEbulkj ¼ jðρc2 þ 3pÞjV ¼ −ϵðρc2 þ 3pÞV: ð38Þ

In addition, Eq. (37) can be written as

Nbulk ¼
jEbulkj
1
2
kBTH

¼ jEbulkj
1
2
kBTGHð TH

TGH
Þ ; ð39Þ

where TGH is the Gibbons-Hawking temperature given by
Eq. (7). Also, from Eq. (10), the number of DOF on the
spherical surface Nsur is given by

Nsur ¼
4SH
kB

: ð40Þ

We now derive a modified acceleration equation from
the holographic equipartition law. According to Ref. [47],
ρc2 þ 3p < 0 is selected and, therefore, ϵ ¼ þ1 from
Eq. (35). This selection does not affect the following
result. We first calculate Nbulk on the right-hand side of
Eq. (34). Substituting Eqs. (7) and (38) into Eq. (39) and
using Eqs. (17) and (23) and ϵ ¼ þ1 yields [52–55]

Nbulk ¼
jEbulkj

1
2
kBTGH

�
TH
TGH

	

¼ −
ð4πÞ2c5

3ℏ
ð1þ 3wÞρ 1

H4

�
TGH

TH

�
; ð41Þ

where ðTGH=THÞ is retained, to allow a comparison between
a derived acceleration equation and the acceleration equation
examined in Refs. [52–55]. Substituting ϵ ¼ þ1 and
Eqs. (6), (36), (40), and (41) into Eq. (34) and solving
the resultant equation with respect to Ḣ yields [52–55]

Ḣ ¼ −
4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
−
SHH4

K
; ð42Þ

where K is given by Eq. (5). In addition, substituting
Eq. (42) into ä=a ¼ Ḣ þH2 and using SBH ¼ K=H2 given
by Eq. (4) yields [52–55]

ä
a
¼ Ḣ þH2

¼ −
4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
−
SHH4

K
þH2

¼ −
4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
þH2

�
1 −

SH
SBH

�
: ð43Þ

This is the modified acceleration equation derived from
Padmanabhan’s holographic equipartition law. The first
and second terms on the right-hand side include TGH=TH
and SH=SBH, respectively. Except for TGH=TH, Eq. (43)
is the same as the acceleration equation examined in

NOBUYOSHI KOMATSU PHYS. REV. D 109, 023505 (2024)

023505-6



Refs. [52–55]. We note that TGH=TH is written as
ðTH=TGHÞ−1, using the normalized temperature TH=TGH.
When SH ≠ SBH, the second term H2ð1 − SH=SBHÞ on

the right-hand side of Eq. (43) is nonzero. In contrast,
when SH ¼ SBH, the second term is zero. In addition, when
both SH ¼ SBH and TH ¼ TGH, Eq. (43) reduces to
Eq. (20), namely the acceleration equation in standard
cosmology.
In this subsection, we have derived the modified

acceleration equation from Padmanabhan’s holographic
equipartition law. In the next subsection, we formulate a
cosmological model using the derived Friedmann and
acceleration equations.

C. The present model

We have derived the modified Friedmann and acceler-
ation equations from the holographiclike connection and
Padmanabhan’s holographic equipartition law, respectively.
In this subsection, we phenomenologically formulate a
cosmological model based on the derived Friedmann and
acceleration equations. For this, we assume that the holo-
graphiclike connection and the holographic equipartition
law are consistent with each other, through the holographic
scenario. This consistency is discussed later. (A similar
model was examined in the works of Tu et al. [64,65], using
the Bekenstein-Hawking entropy.)
First, the Friedmann and acceleration equations for the

present model are summarized. (The continuity equation
derived from the Friedmann and acceleration equations is
discussed in the Appendix.) From Eq. (33), the Friedmann
equation is written as

H2 ¼ 8πG
3

ρþH2

�
1 −

�
SH
SBH

��
TH

TGH

��
: ð44Þ

From Eq. (43), the acceleration equation is written as

ä
a
¼ Ḣ þH2

¼ −
4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
þH2

�
1 −

SH
SBH

�
: ð45Þ

When both SH ¼ SBH and TH ¼ TGH are considered, the
Friedmann and acceleration equations reduce to Eqs. (19)
and (20), respectively. Of course, in general, the Friedmann
and acceleration equations should be slightly complicated
because of coefficients related to the entropy and the
temperature. However, we can obtain a simple equation
from these two equations as follows.
Using Eq. (44), ρ is given by

ρ ¼ 3H2

8πG

�
SH
SBH

��
TH

TGH

�
: ð46Þ

Substituting Eq. (46) into Eq. (45) yields

Ḣ þH2 ¼ −
4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
þH2

�
1 −

SH
SBH

�

¼ −
4πG
3

ð1þ 3wÞ
�
3H2

8πG

�
SH
SBH

��
TH

TGH

���
TGH

TH

�

þH2

�
1 −

SH
SBH

�

¼ −
1

2
ð1þ 3wÞH2

�
SH
SBH

�
þH2

�
1 −

SH
SBH

�

¼ −
3

2
ð1þ wÞH2

�
SH
SBH

�
þH2: ð47Þ

The temperature is canceled in this calculation. From the
above equation, a simple equation can be obtained:

Ḣ ¼ −
3

2
ð1þ wÞH2

�
SH
SBH

�
: ð48Þ

This equation is derived from the Friedmann and accel-
eration equations for the present model. By solving
Eq. (48), we can examine the background evolution of
the universe. That is, Eq. (48) corresponds to Eq. (18) for a
ΛðtÞ model. These results imply that the holographiclike
connection should be consistent with Padmanabhan’s holo-
graphic equipartition law. This consistency may be inter-
preted as a kind of holographic duality.
Interestingly, Eq. (48) depends on SH and does not

depend on TH, although the Friedmann and acceleration
equations include both SH and TH. This is because TH
included in these two equations cancel each other.
Equation (48) indicates that the background evolution of
the universe for the present model depends on SH but does
not depend on TH. Accordingly, the entropy probably plays
a more important role in the present model. Based on the
present model, we can observe the evolution of a temper-
ature that is different from the selected TH, as examined in
the next section.
In this section, we consider two fundamental cases:

SH ¼ SBH and TH ¼ TGH, where SBH is the Bekenstein-
Hawking entropy and TGH is the Gibbons-Hawking
temperature.

1. SH = SBH (Bekenstein-Hawking entropy)

When SH ¼ SBH, Eqs. (44) and (45) reduce to

H2 ¼ 8πG
3

ρþH2

�
1 −

TH

TGH

�
ð49Þ

and
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ä
a
¼ −

4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
: ð50Þ

Equations (49) and (50) are different from the formulation
of a ΛðtÞ model. Note that when SH ¼ SBH, Eq. (48)
reduces to Ḣ ¼ − 3

2
ð1þ wÞH2, which is equivalent to

Eq. (18) for fΛðtÞ ¼ 0 in a ΛðtÞ model, corresponding
to standard cosmology.

2. TH =TGH (Gibbons-Hawking temperature)

When TH ¼ TGH, Eqs. (44) and (45) reduce to

H2 ¼ 8πG
3

ρþH2

�
1 −

SH
SBH

�
ð51Þ

and

ä
a
¼ −

4πG
3

ð1þ 3wÞρþH2

�
1 −

SH
SBH

�
: ð52Þ

Equations (51) and (52) indicate that when TH ¼ TGH, the
present model is equivalent to the formulation of a ΛðtÞ
model. Here the extra driving term fΛðtÞ is given by
H2ð1 − SH=SBHÞ. In the present model, the extra driving
term for the Friedmann equation is naturally equivalent to
that for the acceleration equation. Consequently, when
TH ¼ TGH, both the background evolution of the universe
and the density perturbations agree with those for the ΛðtÞ
model, although the theoretical backgrounds of the two
models are different. In general, a ΛðtÞ model similar
to ΛCDM models is favored [44], and, therefore, the
present model for TH ¼ TGH is also favored under similar
conditions.
In this section, we have formulated a cosmological

model based on the holographic scenario, where a general
entropy and general temperature are considered. A par-
ticular case of the present model is discussed in the next
section, applying a power-law corrected entropy.

V. PRESENT MODEL WITH A POWER-LAW
CORRECTED ENTROPY Spl

In the previous section, we formulated a cosmological
model based on the holographic scenario, where a general
entropy and general temperature are considered, with a
consequence of the model being that the background
evolution of the universe depends on the entropy but not
on the temperature. Accordingly, in this section, we
introduce a particular entropy and apply it to the present
model as a particular case. (The temperature is discussed
in Sec. VA.)
Various black hole entropies have, in fact, been pro-

posed, such as a power-law corrected entropy [66,67],
logarithmic corrections from loop quantum gravity [68],
Tsallis-Cirto entropy [69], Tsallis-Rényi entropy [70],

Barrow entropy [71], and a generalized six-parameter
entropy [72]. These entropies are considered to be
extended versions of the Bekenstein-Hawking entropy.
In this section, as an interesting example, we use the
power-law corrected entropy Spl, because this entropy
gives an extra driving term corresponding to a power-
law term.
The power-law corrected entropy is written as [66,67]

Spl ¼ SBH

�
1 −Ψα

�
H0

H

�
2−α

�
; ð53Þ

where H0 represents the Hubble parameter at the present
time and α and Ψα are dimensionless constants whose
values are real numbers. In previous works [42,43], α and
Ψα were considered to be independent free parameters, that
is, Ψα is a kind of density parameter for the effective dark
energy. (The power-law corrected entropy is based on the
entanglement of quantum fields between inside and outside
the horizon [66]. The formula is summarized in Ref. [67].)
We now apply the power-law corrected entropy Spl to the

present model. Setting SH ¼ Spl and substituting Eq. (53)
into Eq. (48) yields the simple equation

Ḣ ¼ −
3

2
ð1þ wÞH2

�
SH
SBH

�

¼ −
3

2
ð1þ wÞH2

�
1 − Ψα

�
H0

H

�
2−α

�

¼ −
3

2
ð1þ wÞH2

�
1 −

ΨαH2
0ðHH0

Þα
H2

�

¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞΨαH2

0

�
H
H0

�
α

: ð54Þ

The above equation is derived from the present model with
Spl. In fact, this equation is equivalent to an equation for a
ΛðtÞ model with a power-law term examined in previous
works [42,46,53,54]. We can confirm that substituting a
power-law term fΛðtÞ ¼ ΨαH2

0ðH=H0Þα into Eq. (18) gives
Eq. (54). The power-law term fΛðtÞ for the ΛðtÞ model has
been examined in those previous works. [A similar power
series of H for the ΛðtÞ model was examined in, e.g.,
Ref. [7]. A power-law term for other models such as
CCDM models was examined in, e.g., Ref. [15].]
Of course, the Friedmann and acceleration equations for

the present model with Spl are generally different from those
for the ΛðtÞ model with the power-law term, because of the
normalized temperature, except for a special case. (The
special case, namely TH ¼ TGH, is discussed in Sec. VA.)
However, the background evolution of the universe
described by Eq. (54) is always equivalent to that for the
ΛðtÞ model with the power-law term. Therefore, we use
solutions examined in Refs. [42,53] to discuss the back-
ground evolution of the universe.
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The solution of Eq. (54) for α ≠ 2 is written as [42]

�
H
H0

�
2−α

¼ ð1 −ΨαÞ
�
a
a0

�
−3ð1þwÞð2−αÞ

2 þ Ψα; ð55Þ

where a0 is the scale factor at the present time. This
equation reduces to the solution for α ¼ 2 when α → 2 is
applied to Eq. (55). Also, ΛCDM models in a flat FRW
universe are obtained from Eq. (55), neglecting the influ-
ence of radiation. Substituting α ¼ 0 and w ¼ 0 into
Eq. (55) and replacing Ψα by ΩΛ yields [42]

�
H
H0

�
2

¼ ð1 −ΩΛÞ
�
a
a0

�
−3

þΩΛ; ð56Þ

where ΩΛ is the density parameter for Λ and is given by
Λ=ð3H2

0Þ. In this way, the background evolution of the
universe for the present model with Spl is equivalent to that
for the ΛðtÞ model with the power-law term.
In the next subsection, a temperature on the horizon is

discussed, using the present model with the power-law
corrected entropy Spl.

A. Present model with Spl for TH =TGH

When TH ¼ TGH, the cosmological equations for the
present model are equivalent to those for a ΛðtÞ model, as
shown in Eqs. (51) and (52). Accordingly, in this sub-
section, we consider the present model with the power-law
corrected entropy Spl for TH ¼ TGH.
Substituting Eq. (53) into Eq. (51) yields the Friedmann

equation, written as

H2 ¼ 8πG
3

ρþ ΨαH2
0

�
H
H0

�
α

; ð57Þ

where SH ¼ Spl is used. A calculation of H2ðSH=SBHÞ has
been performed in Eq. (54). The second term on the right-
hand side of Eq. (57) is an extra driving term. Similarly,
substituting Eq. (53) into Eq. (52) yields the acceleration
equation, written as

ä
a
¼ −

4πG
3

ð1þ 3wÞρþ ΨαH2
0

�
H
H0

�
α

; ð58Þ

where SH ¼ Spl is used. The second term on the right-hand
side of Eq. (58) is an extra driving term.
We can confirm that the driving term for the Friedmann

equation is equivalent to that for the acceleration equation.
Consequently, the Friedmann and acceleration equations,
namely Eqs. (57) and (58), are equivalent to those for a
ΛðtÞ model with a power-law term, which is given by
fΛðtÞ ¼ ΨαH2

0ðH=H0Þα [42,44,46,53,54]. The properties

of the ΛðtÞ model with the power-law term have been
examined in those works. For example, the background
evolution of the universe and density perturbations have
been discussed in a ðΨα; αÞ plane [44]. Those previous
results can be applied to the present model with the power-
law corrected entropy Spl, although the theoretical back-
grounds are different.

1. Evolution of the Kodama-Hayward temperature TKH

Horizons of universes (including our Universe) are
generally considered to be dynamic, unlike for de Sitter
universes [46]. In this sense, a dynamical temperature
should be appropriate for discussions of thermodynamics
on the dynamic horizon. As a matter of fact, based on the
present model, we can discuss thermodynamics on the
dynamic horizon, e.g., by observing a dynamical temper-
ature (different from the selected TH ¼ TGH). To this end,
we introduce a dynamical Kodama-Hayward temperature
TKH, according to a previous work [46]. Note that the
Gibbons-Hawking temperature TGH is considered to be a
physical temperature used for the present model although
interesting evolutions of TKH are observed here.
The Kodama-Hayward temperature on the cosmological

horizon of an FRW universe has been proposed [75], based
on the works of Hayward et al. [73,74]. The Kodama-
Hayward temperature TKH for a flat FRW universe can be
written as [64,65]

TKH ¼ ℏH
2πkB

�
1þ Ḣ

2H2

�
: ð59Þ

Here 1þ Ḣ
2H2 > 0 is assumed for a positive temperature in

an expanding universe. For de Sitter universes, TKH reduces
to TGH because of Ḣ ¼ 0, and, therefore, TKH is interpreted
as an extended version of TGH. The Kodama-Hayward
temperature has recently been examined, using a ΛðtÞ
model with a power-law term [46] (which is equivalent to
the present model with Spl for TH ¼ TGH). As examined in
Ref. [46], the Kodama-Hayward temperature TKH is con-
stant when the following equation is satisfied:

Ḣ ¼ −2H2 þ 2ψH0H; ð60Þ

where ψ represents a dimensionless constant. We can
confirm that substituting Eq. (60) into Eq. (59) gives a
constant temperature given by TKH ¼ ℏψH0=ð2πkBÞ. This
universe at a constant dynamical temperature should
contribute to the study of horizon thermodynamics in
modified FRW cosmologies, because systems at constant
temperature play important roles in thermodynamics and
statistical physics [46].
Therefore, we examine such a universe at constant

dynamical temperature. In fact, Eq. (54) is equivalent to
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Eq. (60), under a specific condition: α ¼ 1 and w ¼ 1=3
[46]. We can confirm that substituting α ¼ 1 and w ¼ 1=3
into Eq. (54) reduces to Eq. (60), where Ψα ¼ ψ is also
considered. That is, the universe described by Eq. (54)
satisfies a constant dynamical temperature when both
α ¼ 1 and w ¼ 1=3. [The model considered here is one
viable scenario, in that other models [46] can also
satisfy Eq. (60).]
We now observe the evolution of the normalized Hubble

parameter and the normalized Kodama-Hayward temper-
ature. Similar forms of evolution have been examined in
Ref. [46]. In Fig. 1, to examine typical results, Ψα is set to
0.685, which is equivalent to ΩΛ for the ΛCDM model
from the Planck 2018 results [2]. Therefore, the plots for
[α ¼ 0, w ¼ 0] are equivalent to those for the ΛCDM
model. The plots for [α ¼ 1, w ¼ 1=3] correspond to a
universe at constant dynamical temperature. The evolution
of the normalized Hubble parameter is obtained from
Eq. (55). Also, using Eq. (59), the normalized Kodama-
Hayward temperature can be written as [46]

TKH

TGH;0
¼ H

H0

�
1þ Ḣ

2H2

�
; ð61Þ

where TGH;0 represents the Gibbons-Hawking temperature
at the present time, given by TGH;0 ¼ ℏH0=ð2πkBÞ. The
normalized TKH for the present model with Spl is calculated
as follows. Substituting Eq. (54) into Eq. (61) and sub-
stituting Eq. (55) into the resultant equation and performing
several calculations yields [46]

TKH

TGH;0
¼ ð1 − 3wÞð1 −ΨαÞða=a0Þ−γ þ 4Ψα

4½ð1 − ΨαÞða=a0Þ−γ þ Ψα�1−α2−α
; ð62Þ

where γ represents 3ð1þ wÞð2 − αÞ=2 and α ≠ 2 is con-
sidered. For details of the calculations, see Ref. [46]. When
both α ¼ 1 and w ¼ 1=3, this equation reduces to a
constant value given by TKH=TGH;0 ¼ Ψα. In this figure,
H=H0 ¼ 1 and TKH=TGH;0 ¼ 1 for a de Sitter universe are
also plotted, where H is set to H0 for simplicity.
As shown in Fig. 1, the normalized H for [α ¼ 1,

w ¼ 1=3] and [α ¼ 0, w ¼ 0] decreases with a=a0, unlike
for the de Sitter universe. However, the normalized TKH for
[α ¼ 1, w ¼ 1=3] is constant during the evolution of the
universe, as for the de Sitter universe. In this way, we can
confirm that the dynamical temperature for [α ¼ 1,
w ¼ 1=3] is constant, although the Hubble parameter varies
with time as for the ΛCDM model.
Of course, our Universe should be different from a

universe at constant dynamical temperature. However, this
universe is expected to be a good model for studying
relaxation processes of the universe and horizon thermo-
dynamics [46]. Based on the present model, we can
examine not only the evolution of the universe but also
the thermodynamics on dynamic horizons of modified
FRW universes. By extending this model, we may exam-
ine the relationship between holographic entanglement
entropy [76–78] and thermodynamic entropy on the
dynamic horizon [46].
In this section, we have only discussed a particular case

of the present model. Various forms of the entropy and
temperature should also be applied to the present model.
Those tasks are left for future research.

VI. CONCLUSIONS

We phenomenologically formulated a cosmological
model based on holographic scenarios in a flat FRW
universe, whose horizon is assumed to have a general
entropy SH and general temperature TH. To formulate the
model, we also assumed that a holographiclike connection
and Padmanabhan’s holographic equipartition law can be
applied to SH and TH. Based on these assumptions, we
derived the Friedmann and acceleration equations from the
holographiclike connection and holographic equipartition

0 1 2 3 4

H
/H

0

0

1

2

3

4

a/a0

0

1

2

(�CDM)� = 0, w = 0

T
K

H
/T

G
H

,0

� = 1, w = 1/3

� = 1, w = 1/3

Observed data points

(�CDM)� = 0, w = 0

(b)

(a)

de Sitter universe

de Sitter universe

FIG. 1. Evolution of the universe for the present model with
Spl for TH ¼ TGH for Ψα ¼ 0.685. (a) Normalized Hubble
parameter H=H0. (b) Normalized Kodama-Hayward temper-
ature TKH=TGH;0. In (a), the open circles with error bars are
observed data points taken from Ref. [3]. To normalize the data
points, H0 is set to 67.4 km=s=Mpc from Ref. [2], as examined
in Refs. [42–46]. In (b), TKH is normalized by TGH;0, namely
the Gibbons-Hawking temperature at the present time [46]. The
plots for [α ¼ 0, w ¼ 0] and [α ¼ 1, w ¼ 1=3] correspond to the
ΛCDM model and a universe at constant dynamical temper-
ature, respectively. See the text.

NOBUYOSHI KOMATSU PHYS. REV. D 109, 023505 (2024)

023505-10



law, respectively. The derived Friedmann and acceleration
equations are slightly complicated because these two equa-
tions include both the normalized SH and normalized TH.
Using the Friedmann and acceleration equations, we

formulated a cosmological model based on the holographic
scenario. It is found that these two equations lead to a
simple equation, corresponding to a similar equation that
describes the background evolution of the universe in time-
varying ΛðtÞ cosmologies. The simple equation does not
depend on TH, because TH included in the two equations
cancel each other. That is, the background evolution of the
universe for the present model depends on the selection
of SH but does not depend on the selection of TH. These
results imply that the holographiclike connection should be
consistent with Padmanabhan’s holographic equipartition
law through the present model and that the entropy plays a
more important role. When the Gibbons-Hawking temper-
ature TGH is selected as TH, the cosmological equations
(namely, the Friedmann and acceleration equations) are
found to be equivalent to those for a ΛðtÞ model, although
the theoretical backgrounds are different.
Finally, we examined a particular case of the present

model, applying a power-law corrected entropy. The back-
ground evolution of the universe agrees with that for a ΛðtÞ
model with a power-law term. (When TH ¼ TGH, the
cosmological equations for these two models are the same
and, therefore, density perturbations are also the same.)
Under a specific condition, the present model with the
power-law corrected entropy can describe a universe at
constant dynamical temperature.
The holographiclike connection, Padmanabhan’s holo-

graphic equipartition law, and several assumptions used
here have not yet been established. Therefore, detailed
studies are needed. However, those scenarios are likely
consistent with each other through the present model, as if
they are one scenario. Based on the present model, we
should be able to examine the evolution of modified FRW
universes and the thermodynamics on dynamic horizons in
holographic cosmology.

APPENDIX: CONTINUITY EQUATION
FOR THE PRESENT MODEL

In this appendix, a modified continuity equation for the
present model is examined. For this, we introduce a general
formulation for cosmological equations, according to pre-
vious works [23,44]. The general Friedmann, and accel-
eration, and continuity equations for a flat FRW universe
can be written as

H2 ¼ 8πG
3

ρþ fðtÞ; ðA1Þ

ä
a
¼ −

4πG
3

ð1þ 3wÞρþ gðtÞ; ðA2Þ

ρ̇þ 3Hð1þ wÞρ ¼ 3

4πG
H

�
−fðtÞ − ḟðtÞ

2H
þ gðtÞ

�
; ðA3Þ

where fðtÞ and gðtÞ represent extra driving terms for the
Friedmann and acceleration equations, respectively [23,44].
The continuity equation can be derived from the Friedmann
and acceleration equations because two of the three equa-
tions are independent. When fðtÞ ¼ gðtÞ ¼ fΛðtÞ, the three
equations reduce to cosmological equations for a ΛðtÞ
model. Accordingly, the general Friedmann and acceler-
ation equations reduce to Eqs. (15) and (16), respectively.
Also, the continuity equation for the ΛðtÞ model is given by

ρ̇þ 3Hð1þ wÞρ ¼ −
3

8πG
ḟΛðtÞ: ðA4Þ

This equation has a nonzero right-hand side, as for Eq. (A3).
The nonzero right-hand side is discussed later.
We now examine the continuity equation for the present

model. From Eqs. (44) and (45), the Friedmann and
acceleration equations are written as

H2 ¼ 8πG
3

ρþH2

�
1 −

�
SH
SBH

��
TH

TGH

��
; ðA5Þ

ä
a
¼ −

4πG
3

ð1þ 3wÞρ
�
TGH

TH

�
þH2

�
1 −

SH
SBH

�
: ðA6Þ

For simplicity, the extra driving terms for the Friedmann
and acceleration equations are replaced by f̃ðtÞ and g̃ðtÞ,
respectively, which are given as

f̃ðtÞ ¼ H2

�
1 −

�
SH
SBH

��
TH

TGH

��
; ðA7Þ

g̃ðtÞ ¼ H2

�
1 −

SH
SBH

�
: ðA8Þ

Using Eqs. (A5) and (A6), applying H ¼ ȧ=a, and per-
forming several calculations yields

ρ̇þ 3Hð1þ w̃Þρ ¼ 3

4πG
H

�
−f̃ðtÞ −

˙̃fðtÞ
2H

þ g̃ðtÞ
�
; ðA9Þ

where w̃ represents a modified equation-of-state parameter,
which is given by

w̃ ¼ w −
ð1þ 3wÞ

�
1 − TGH

TH

	
3

: ðA10Þ

Equation (A9) is the continuity equation for the present
model. This equation is equivalent to the formulation of
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Eq. (A3) and has a similar nonzero right-hand side. Note
that w̃ is a modified equation-of-state parameter and, when
TH ¼ TGH, w̃ reduces to w.
In this way, the continuity equation for the present model

has a nonzero right-hand side. A similar nonzero term is
included in the continuity equation for other cosmological
models, such as bulk viscous cosmology [9–12] and energy
exchange cosmology [79–81], as discussed in Ref. [23]. In
bulk viscous cosmology, an effective continuity (conserva-
tion) equation can be obtained from an effective description
of the equation of state, using a single fluid. The effective
continuity (conservation) equation can be written as [23]

ρ̇þ 3Hð1þ weÞρ ¼ 0; ðA11Þ

where we is an effective equation-of-state parameter which
includes the non-zero right-hand term of the original
continuity equation. In contrast, energy exchange cosmol-
ogy assumes the transfer of energy between two fluids
[79], e.g., the interaction between dark matter and dark
energy [80] and the interaction between matter and
dynamical vacuum energy [81]. [Energy exchange cos-
mology is equivalent to the formulation of a ΛðtÞ model.]
In energy exchange cosmology, the continuity equation
for each fluid has a similar nonzero term on the right-hand
side. For example, using a dynamical vacuum (dark)

energy term ΛðtÞ=3, the continuity equations for matter
“m” and vacuum (dark) energy “Λ” can be written as [81]

ρ̇m þ 3Hð1þ wmÞρm ¼ −
1

8πG
Λ̇; ðA12Þ

ρ̇Λ þ 3Hð1þ wΛÞρΛ ¼ 1

8πG
Λ̇: ðA13Þ

The two nonzero right-hand sides are totally canceled
because the total energy of the two fluids is conserved. In
this study, fΛðtÞ for a ΛðtÞ model corresponds to ΛðtÞ=3.
As examined above, when TH ¼ TGH is considered,

the present model is equivalent to the formulation of a
ΛðtÞ model. Therefore, the continuity equation, namely
Eq. (A9), reduces to Eq. (A4), where fΛðtÞ is given by
H2ð1 − SH=SBHÞ. In this case, the nonzero right-hand side
of the continuity equation should imply the interaction
between matter and dynamical vacuum (dark) energy.
Alternatively, the nonzero right-hand side may be inter-
preted as the interchange of energy between a cosmological
horizon and the bulk. However, when TH ≠ TGH, not only
such the interactions but also an effective description used
for bulk viscous cosmology should be considered. These
results may imply that the present model for TH ¼ TGH is
favored from a viewpoint of simplicity. Further studies are
needed and those tasks are left for future research.

[1] S. Perlmutter et al., Nature (London) 391, 51 (1998); A. G.
Riess et al., Astron. J. 116, 1009 (1998).

[2] N. Aghanim et al., Astron. Astrophys. 641, A6 (2020).
[3] O. Farooq, F. R. Madiyar, S. Crandall, and B. Ratra,

Astrophys. J. 835, 26 (2017).
[4] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov,

Astrophys. Space Sci. 342, 155 (2012); S. Nojiri, S. D.
Odintsov, and V. K. Oikonomou, Phys. Rep. 692, 1 (2017);
N. Frusciante and L. Perenon, Phys. Rep. 857, 1 (2020).

[5] K. Freese, F. C. Adams, J. A. Frieman, and E. Mottola,
Nucl. Phys. B287, 797 (1987); J. M. Overduin and F. I.
Cooperstock, Phys. Rev. D 58, 043506 (1998).

[6] S. Nojiri and S. D. Odintsov, Phys. Lett. B 639, 144 (2006);
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