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Understanding the emergence of classical behavior from a quantum theory is vital to establishing the
quantum origin for the temperature fluctuations observed in the cosmic microwave background. We show
that a real-space approach can comprehensively address the quantum-to-classical transition problem in the
leading order of curvature perturbations. To this end, we test spatial bipartitions of quadratic systems for
the interplay between three different signatures of classical behavior: (i) decoherence; (ii) peaking of the
Wigner function about classical trajectories; and (iii) relative suppression of noncommutativity in
observables. We extract these signatures from the covariance matrix of a multimode Gaussian state
and address them primarily in terms of entanglement entropy and log-classicality. Through a phase-space
stability analysis of spatial subregions via their reduced Wigner function, we ascertain that the underlying
cause for the dominance of classicality signatures is the occurrence of gapped inverted mode instabilities.
While the choice of conjugate variables enhances some of these signatures, decoherence studied via
entanglement entropy is the stronger and more reliable condition for classicality to emerge. We demonstrate
the absence of decoherence, which preempts a quantum-to-classical transition of scalar fluctuations in an
expanding background in (1þ 1) dimensions using two examples: (i) a Tanh-like expansion; and (ii) a
de Sitter expansion. We provide connection between log classicality and particle number by studying the
evolution of each normal mode at late times. We then extend the analysis to leading order fluctuations in
(3þ 1) dimensions to show that a quantum-to-classical transition occurs in the de Sitter expansion and
discuss the relevance of our analysis in distinguishing cosmological models.
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I. INTRODUCTION

The emergence of classical behavior of the Universe
from its predominantly quantum mechanical early stage is
one of the most intriguing phenomena in cosmology [1,2].
This fascinating process is believed to be rooted in the
dynamics shared by generic quantum systems when they
interact with their environments. A crucial effect in this
context is the loss of quantum coherence induced by the
environment. Quantum coherence is a fundamental prop-
erty of quantum mechanics that results from the super-
position of orthogonal states with regard to a reference
basis [3]. Specifically, it refers to the ability of a quantum
system to maintain a well-defined quantum state over
time, unaffected by external disturbances or interactions.
Quantum coherence is necessary for both entanglement [4]
and other measures of quantum correlations (such as
discord, negativity and circuit complexity). It is also vital
for quantum computing because quantum algorithms

depend on the ability to manipulate and preserve super-
position and entanglement.
Due to the nature of closed quantum evolution, quantum

coherence can never vanish permanently from a closed
quantum system. However, realistic physical systems are
embedded in an inaccessible or partially accessible environ-
ment. A quantum system will typically become entangled
with many environmental degrees of freedom when interact-
ing with the environment. This entanglement can in turn
nontrivially affect local measurements made in the system.
Quantum systems progressively lose coherence to the
environment due to interactions with the external environ-
ment and can be treated as classical [5,6]. As a closed system,
the origin of the classical world requires explanation.
Returning to the cosmological scenario, the cosmic

microwave background (CMB) [7,8] provides essential
proof of temperature variations in a relatively homogeneous
distribution of matter, radiation, and (potentially) dark
energy. These inhomogeneities can be traced all the way
back to the early-Universe, and are understood to be seeded
by vacuum quantum fluctuations stretched to cosmological
scales during a rapidly expanding inflationary phase
[9–13]. Interestingly, such inhomogeneities, when treated
as classical stochastic fluctuations seeded in the CMB after
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the end of inflation, provide a compelling explanation for
the evolution of large-scale structures in the Universe as
observed at late-times [14–18]. Then the questions of how
vacuum fluctuations evolved to resemble classical fluctua-
tions, and how nontrivial signatures of such a transition can
be observed, become pertinent towards establishing the
quantum origin of CMB fluctuations [19–22].
While there is no single, unified criterion for the

emergence of classicality within a quantum field theoretical
framework, it is largely addressed via a collection of
phenomenological signatures associated with different
facets of classical behavior. For instance, as a result of
the mixing of the super-Hubble (system) and sub-Hubble
(environment) momentum-modes of fluctuations due to
nonlinear curvature perturbations, the super-Hubble modes
are found to decohere. A continuously evolving quantum
information toolbox comprising of quantum entanglement
[23–29], quantum discord [18,30,31], open-effective field
theory (EFT) approaches [32–34], in the momentum space
has lately proved decisive in making robust predictions for
the (extremely rapid) decoherence rate and the (highly
suppressed) quantum corrections to the power spectrum
resulting from this. However, these signatures are report-
edly too small to be captured by current observations.
Furthermore, the absence of decoherence in the leading
(linear) order of curvature perturbations due to mode-
decoupling, and various pitfalls associated with the emer-
gence of classical behavior in squeezed quantum states
have been critically addressed in recent works [35–37].
A real-space approach towards understanding quantum-

classical transition is much less explored in this context, in
spite of providing a more intuitive picture of field entan-
glement [4,38–42] and its underlying connection with the
thermodynamic properties of the background space-time
[43–46]. While this may have much to do with real-space
field-entanglement being plagued by UV-divergences,
recent works have proposed ways in which the sensitivity
to UV-cutoff can be mitigated through field-smearing in
disjoint spatial regions [47–49] or scaling symmetry argu-
ments [50]. However, as we will show in this work,
the biggest advantage of the real-space picture is that
it captures phenomenological signatures of quantum-
classical transition even up to the linear order of curvature
perturbations. Therefore, the resulting quantum corrections
are expected to be significantly less suppressed than in the
momentum-space picture.
To identify quantum-classical transition in the real space,

we test spatial bipartitions of leading order fluctuations for
three different signatures of classical behavior—(i) loss of
quantum coherence, which allows the system to be well
described by a classical statistical ensemble, (ii) peaking
of the phase-space distribution of the quantum state
about classical trajectories, and (iii) relative suppression of
noncommutativity. While these signatures may jointly
manifest in the momentum-space picture for (higher-order)

fluctuations propagating in a (near) de Sitter background,
they are in general inequivalent for the broader class of
quantum systems [22]. Therefore, the exact interplay
between these concepts in real space will be relevant not
only for early-Universe fluctuations but also for any quantum
systemwith entangled spatial degrees of freedom. In turn, its
applications potentially extend to laboratory simulators for
time-dependent backgrounds [51–53] as well as table-top
experiments being proposed for detecting “quantumness” of
gravity in the coming years [54–57].
The paper is organized as follows: In Sec. II, we develop

the tools to extract and measure the aforementioned signa-
tures of classicality in time-dependent quadratic systems, in
particular, the coupled harmonic oscillator (CHO) system, in
detail. Through a phase-space stability analysis of Gaussian
states, we identify the presence of gapped invertedmodes (in
the momentum space) of the entire system as the primary
trigger for the quantum-to-classical transition of subsystems
(in the real space). In Sec. III, we demonstrate the absence of
quantum-to-classical transition of scalar fluctuations in an
expanding background in (1þ 1) dimensions using two
examples: (i) a Tanh-like expansion and (ii) a de Sitter
expansion. Section IV extends the analysis to (3þ 1)
dimensions to show that the quantum-to-classical transition
occurs in the de Sitter expansion but not in the Tanh
expansion. In Sec, V, we discuss the physical interpretation
of our results and future directions. Throughout thiswork,we
use metric signature ðþ;−;−;−Þ and set ℏ ¼ c ¼ 1 unless
otherwise specified.

II. QUANTUM-TO-CLASSICAL TRANSITION
IN TIME-DEPENDENT OSCILLATORS

In this section, we analyse the signatures of quantum-
classical transition in the phase-space representation of
quantum states. We begin our analysis with the CHO
system, which serves as a fundamental building block for
the lattice-regularized approach to field theory that will be
extensively studied in the later sections. The Hamiltonian
for such a system is characterized by a frequency ωðtÞ and a
coupling parameter χðtÞ, both of which are arbitrary
(smooth, bounded) functions of time,

H ðtÞ ¼ p2
1

2
þ p2

2

2
þ 1

2
ω2ðtÞðx21 þ x22Þ þ

1

2
χ2ðtÞðx1 − x2Þ2:

ð1Þ

Under the transformations x� ¼ ðx1 � x2Þ=
ffiffiffi
2

p
, the above

Hamiltonian reduces to

H ðtÞ ¼ p2þ
2

þ p2
−

2
þ 1

2
ω2þðtÞx2þ þ 1

2
ω2
−ðtÞx2−; ð2Þ

where the time-dependent normal modes are

CHANDRAN, RAJEEV, and SHANKARANARAYANAN PHYS. REV. D 109, 023503 (2024)

023503-2



ω−ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ðtÞ þ 2χ2ðtÞ

q
; ωþðtÞ ¼ ωðtÞ: ð3Þ

We consider the form-invariant Gaussian state (GS), which takes the form [58],

ΨGSðxþ; x−; tÞ ¼
Y

j¼fþ;−g

�
ωjðt0Þ
πb2jðtÞ

�
1=4

exp

�
−
�
ωjðt0Þ
b2jðtÞ

− i
ḃjðtÞ
bjðtÞ

�
x2j
2
−
i
2
ωjðt0ÞτjðtÞ

�
; ð4Þ

where τj ¼
R
b−2j ðtÞdt. The scaling parameters bj are

solutions of the nonlinear Ermakov-Pinney equation
[58–61],

b̈jðtÞ þ ω2
jðtÞbjðtÞ ¼

ω2
jðt0Þ
b3jðtÞ

: ð5Þ

The scaling parameters bjðtÞ drive the evolution of the
Gaussian state as well as its deviation from the initial
vacuum state defined at t ¼ t0. While the system evolves
to an excited state in the corresponding instantaneous

eigenbasis at later time slices [62,63], its state remains
pure ½Trρ2 ¼ 1� over the course of the evolution. The
dynamics of the constituent subsystems (x1; x2), on the
other hand, may exhibit interesting properties by virtue of
the entanglement between them. Notably, one subsystem
may act as an external environment to the other, causing the
latter to “decohere”, or lose some of its quantum features.
To illustrate this in the case of CHO, we describe one
constituent oscillator (say, x2) with the help of its reduced
density matrix (RDM), obtained by tracing out the other
oscillator (viz., x1) from the full density matrix of the CHO,

ρ2ðx2; x02Þ ¼
Z

dx1Ψ�
GSðx1; x02ÞΨGSðx1; x2Þ

¼
�

KþK−

2πReðAÞ
�

1=2
exp

�
−
Γ1

2
ðx22 þ x022 Þ þ Γ2x2x02 þ i

Γ3

2
ðx22 − x022 Þ

�
; ð6Þ

where

Γ1¼2AR−
�
B2
R−B2

I

AR

�
; Γ2¼

jBj2
AR

; Γ3¼2AI−
2BRBI

AR
;

A¼1

4
½ðKþþK−Þ− iðLþþL−Þ�¼ARþ iAI;

B¼1

4
½−ðKþ−K−Þþ iðLþ−L−Þ�¼BRþ iBI;

K�¼ω�ðt0Þ
b2�ðtÞ

; L�¼ ḃ�ðtÞ
b�ðtÞ

: ð7Þ

To identify possible signatures of a quantum-classical
transition, it is useful to shift to a phase-space representa-
tion of the above reduced density matrix.

A. Classicality criteria from phase-space representation

A phase-space picture is possible within the framework
of quantum mechanics with the help of Wigner-Weyl
transform [64–66], which maps operators to phase-space
functions,

W ½Ô� → Oðx; pÞ: ð8Þ

The Wigner-Weyl transform of the density matrix ρðx; x0Þ,
also known as the Wigner function, therefore provides a
phase-space distribution pertaining to a quantum state,

Wðxc;pÞ¼W ½ρ̂�¼ 1

2π

Z
∞

−∞
dxΔρ

�
xc−

xΔ
2
;xcþ

xΔ
2

�
e−ipxΔ ;

ð9Þ

where

xc ¼
xþ x0

2
; xΔ ¼ x − x0: ð10Þ

For Gaussian states, the Wigner function takes the follow-
ing form [62,67]:

Wðx; pÞ ¼ α

2πγ
exp

�
−
ðp − βxÞ2

4γ2
− α2x2

�
: ð11Þ

In particular, the parameters characterizing the (reduced)
Wigner function for the reduced density matrix given in (6),
which shall be our focus in this section, are equated as
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α2 ¼ Γ1 − Γ2; γ2 ¼ Γ1 þ Γ2

4
; β ¼ Γ3; ð12Þ

where Γ1, Γ2, and Γ3 are as defined in (7).
The Wigner function is a distribution in the phase space

that exactly captures the probabilistic nature and nontrivial
effects (e.g., interference, entanglement) of quantum states
in a system, in contrast to well-defined trajectories pertain-
ing to its classical counterpart. The expectation values for
observables can be calculated using averages weighted by
the Wigner distribution,

hÔi ¼
Z

dx
Z

dpWðx; p; tÞW ½Ô�: ð13Þ

For Gaussian states, the following averages (two-point
correlators), computed in the above manner, encode all
information about the system,

hfx̂; x̂gi ¼ 1

α2
; hfp̂; p̂gi ¼ β2

α2
þ 4γ2; hfx̂; p̂gi ¼ β

α2
:

ð14Þ

To better visualize the phase-space features of a Gaussian
state, it is convenient to introduce the dimensionless
quadratures P ¼ pffiffiffiffiffiffi

2αγ
p and X ¼ ffiffiffiffiffiffiffiffi

2αγ
p

x, in terms of which

the Wigner function takes the general form,

WðX;PÞ ¼ δQD

π
exp

�
−δQD

��
P −

1

δCC
X

�
2

þ X2

��
;

0 ≤ W ≤
δQD

π
; ð15Þ

where δQD is referred to as the degree of quantum
decoherence and δCC is referred to as the degree of classical
correlations. The Wigner function is therefore fully char-
acterized by these two dimensionless parameters that
capture distinct properties of the quantum state, as outlined
below [67]:

(i) Degree of quantum decoherence δQD—This mea-
sure coincides with the purity of the reduced density
matrix ρ2 given in (6):

δQD ≡ α

2γ
¼ Trρ22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KþK−

ðKþ þ K−Þ2 þ ðLþ − L−Þ2
s

:

ð16Þ

Consequently, δQD ∈ ½0; 1�. The upper extreme is
saturated by the pure states, for which δQD ¼ 1. On
the other hand, when the effects of an external
environment are significant, the state may undergo
decoherence, i.e., the nondiagonal entries drop to
zero and the reduced density matrix resembles a

classical statistical ensemble. This case corresponds
to the limit δQD → 0.

(ii) Degree of classical correlations δCC—This measure
is associated with the sharpness of squeezing of the
Wigner function,

δCC≡
				2αγβ

				
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KþK−½ðKþþK−Þ2þðLþ−L−Þ2�

p
KþL−þK−Lþ

¼ 2KþK−

KþL−þK−Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðKþþK−Þ2þðLþ−L−Þ2�

4KþK−

s

¼ 1

δQD

�
2KþK−

KþL−þK−Lþ

�
: ð17Þ

For the CHO, δCC is also directly related to the
classicality parameter (C ) proposed in [62]. Therein,
C was introduced as a more intuitive measure for
quantifying classicality, viz., in terms of the width of
the Wigner function around the classical phase-space
trajectory. Hence,

C ≡ hxpiWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2iWhx2iW

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2CC

p : ð18Þ

It follows that the classicality parameterC ∈ ½0; 1� [or
δCC ∈ ½0;∞Þ]. The lower bound corresponds to the
“quantum” limit (δCC → ∞) wherein the Wigner
function becomes separable in position and momen-
tum. This follows from the uncertainty principle
wherein fixing the value of x can amplify the error
in p and vice versa, resulting in probability distribu-
tions along x andp that are uncorrelated. On the other
hand, the upper bound corresponds to the classical
limit (δCC → 0) wherein the Wigner function is no
longer separable in x and p, and its peak coincides
with well-defined classical phase-space trajectories.

As we remarked earlier, there is a convenient geometrical
picture that captures the manner in which the above param-
eters fully characterize a Gaussian state. To visualize this,
consider a particular ‘slice’ of the Wigner function that
corresponds to an ellipse in the phase space, referred to as a
Wigner ellipse, described in terms of rotated coordinates X̃
and P̃ as

X̃2

a2
þ P̃2

b2
¼ 1

δQD
log

δQD

πW
;

�
X̃

P̃

�
¼
�
cosθ sinθ

− sinθ cosθ

��
X

P

�
;

a2 ¼ 1

b2
¼ 1þ 1

2δ2CC
f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4δ2CC

q
g;

θ ¼ sin−1
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

�
1þ 1

1þ 4δ2CC

�s #
; ð19Þ
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where a and b are the lengths of semimajor/minor axes of the
rotated ellipse and θ is the squeezing angle. The squeezing
parameter [15,31], which is a popular measure used to
characterize squeezed states, can be obtained from the above
ellipse as r ¼ log jaj. A useful slice of theWigner function to
look at is at the half of its peak, wherein the corresponding
ellipse serves as a 2D generalization of the FWHM (full
width at half maxima) for Gaussian/normal distributions.
The equation for the corresponding Wigner ellipse would
then take the form,

X̃2

a2
þ P̃2

b2
¼ log 2

δQD
: ð20Þ

When δCC → ∞ (or C → 0), we see that the Wigner ellipse
reduces to a circle (a ¼ b ¼ 1, θ ¼ π=4) corresponding to a
state that is time independent or at the beginning of its
evolution t ¼ t0. This limit also corresponds to zero squeez-
ing (r → 0).
The phase-space picture of the quantum state can there-

fore be outlined as follows: (i) Wigner function for the
Gaussian state is fully characterized by dimensionless
parameters δQD and δCC (or C ); (ii) State purity δQD
determines the amplitude features of the Wigner function.
For instance, its peak (maxima) and spread (area of the
Wigner ellipse at half-maxima) are given by δQD=π and

π log 2=δQD respectively; (iii) Classicality parameter C
determines the extent of squeezing (r ¼ log jaj) and
squeezing angle (θ) of the distribution. From here onwards,
we stick to classicality parameter C as the characteristic
measure for squeezing, since it is a fundamental feature of
the covariance matrix as we will see in the next subsection,
and has a natural extension for large subsystem sizes.
In the phase-space picture, we may now analyze the

conditions that must be simultaneously satisfied for clas-
sicality to emerge in a Gaussian state [15,67]:

(i) C → 1: In this limit, the Wigner function undergoes
a runaway squeezing about the classical phase-space
trajectory of the system.

(ii) δQD → 0: In this limit, the subsystem experiences a
runaway decoherence due to its interaction with the
environment (here, the other oscillator), causing the
amplitude of the Wigner function to fall and spread
out over the entire phase space.

To see how the these limits manifest, we perform a phase-
space stability analysis in Appendix C, wherein the k-mode
stability at late times is ultimately decided by the sign of
u2k ≡ limt→∞ ω2

k. The results are summarized in Fig. 1 and
Table I, where we observe that for the CHO, the only case
that satisfies the classicality criteria at late times is when
the modes are inverted (u2� < 0) and gapped (uþ ≠ u−).
Interestingly, we see that this is also the only regime where

FIG. 1. Evolution of Wigner function (Row 1) and Wigner ellipse at half-maximum (Row 2) for the CHO when ω2ðtÞ evolves as (54)
with Q ¼ 1 and a0 ¼ 1 with constant coupling χðtÞ ¼ 1 [except for (c)]. (a) a1 ¼ 0.5 results in stable modes showing little
deviation from the initial “highly quantum” vacuum state, (b) a1 ¼ 0 results in a zero mode that decoheres the subsystem but limits
the squeezing, (c) a1 ¼ −0.5 with χ2ðtÞ ¼ e−ðt−tiÞ results in ungapped inverted modes that squeeze the state but limit the decoherence,
and (d) a1 ¼ −2.5 results in gapped inverted modes that both squeeze and decohere the state, signifying a quantum-classical
transition.
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entanglement entropy (Appendix B) mimics its classical
counterpart, the Kolmogorov-Sinai entropy [50,68],

SðtÞ≡−TrρredðtÞ logρredðtÞ∼hKSt; hKS ¼
X
i

λi; ð21Þ

where growth rate hKS is the sum of all positive Lyapunov
exponents. Therefore, we argue that this is indeed the regime
where an asymptotic quantum-classical transition occurs in
the case of a CHO.While such a criteria has been explored for
the CHO to varying extents in previous works [15,69,70], our
approach further reconciles it with the phase-space stability
analysis of the quantum state, in a way that is also scalable to
larger subsystem sizes, as we will see in Sec. II B.
It is to be noted that this notion of “classicality”

fundamentally differs from taking the formal limit ℏ → 0
[36]. To illustrate this, let us briefly put back in the Planck’s
constant which was set to ℏ ¼ 1 and consider the Wigner
function as well as the marginal probability distributions
along X and P coordinates separately:

WðX;PÞ ¼ δQD

πℏ
exp

�
−
δQD

ℏ

�
X̃2

a2
þ P̃2

b2

��
;

�
X̃

P̃

�
¼

�
cos θ sin θ

− sin θ cos θ

��
X

P

�
;

fðXÞ ¼
Z

dPWðX;PÞ ¼ 1ffiffiffiffiffiffi
2π

p
σX

exp

�
−

X2

2σ2X

�
; σX ¼

ffiffiffiffiffiffiffiffiffiffiffi
ℏ

2δQD

s
;

gðPÞ ¼
Z

dXWðX;PÞ ¼ 1ffiffiffiffiffiffi
2π

p
σP

exp

�
−

P2

2σ2P

�
; σP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2δQDð1 − C 2Þ

s
: ð22Þ

It is interesting to note here that while purity δQD affects the
variance for distributions in both X and P, classicality
parameter C only affects the variance in P. The measure-
ment error in the ðx; pÞ-coordinates is therefore

σxσp ¼ σXσP ¼ ℏ

2δQD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C 2

p ≥
ℏ
2
: ð23Þ

We see that the uncertainty principle is saturated when
δQD ¼ 1 andC ¼ 0, corresponding to a pure state at t ¼ t0.
The classical limit ℏ → 0, as seen from above, corresponds
to the case where the uncertainty (as well as the commu-
tator of conjugate variables) vanishes, and the phase-space
distributions are highly localized (δ functions) [15,71],

W → δ

�
X̃
a

�
δ

�
P̃
b

�
; f → δðXÞ; g → δðPÞ: ð24Þ

Morikawa’s classicality criteria on the other hand points to
a divergent uncertainty in both x and p measurements,
wherein the phase-space distributions are less and less
localized (Fig. 1). Despite this contrast, Morikawa’s criteria
leads to a notion of “quasiclassicality” [15] within the
framework of quantum mechanics in the following sense:
(i) decoherence essentially leads to a (reduced) density
matrix that resembles a classical statistical ensemble: and
(ii) squeezing further aligns the peaks of (reduced) Wigner

function along classical phase-space trajectories. The over-
all implication is that the features that make a state
distinctly quantum are greatly suppressed. For instance,
let us look at the Wigner-Weyl transform of the following
observables whose expectation values are to be calculated
via (13):

W ½x̂ p̂þp̂ x̂� ¼ W ½2Sðx̂ p̂Þ� ¼ 2xp;

W ½x̂2p̂2 þ p̂2x̂2� ¼ W ½2Sðx̂2p̂2Þ þ ½x̂; p̂�2� ¼ 2x2p2 − ℏ2;

W ½fðx̂; p̂Þ� ¼ W ½Sðfðx̂; p̂ÞÞ þ gð½x̂; p̂�Þ�
¼ fðx; pÞ þ g̃ðℏÞ; ð25Þ

where S is a symmetrizer for combinations of x̂ and p̂
operators, and satisfies W ½Sðx̂np̂mÞ� ¼ xnpm [72,73]. The
Weyl-transform of a Hermitian, polynomial combination
fðx̂; p̂Þ of conjugate variables is therefore real-valued
phase-space functions that can be split into a “classical”
contribution (from the symmetrizer) and a “quantum”
contribution (from the commutator) [66]. Since all
higher-order correlators are polynomial functions of two-
point correlators for a Gaussian state, it is sufficient to
perform a comparison using expectation values of the
commutator and the anticommutator (i.e., symmetrizer at
second order),

TABLE I. Testing classicality criteria for various stability
regimes in CHO.

Asymptotics δQD → 0 δQD→0

C→1 Stable modes (u2�>0) Zero mode (u2þ→0)
½Rðx;pÞ → 0� ½Rðx;pÞ→0�

C →1 Inverted modes (u2�<0) Inverted modes (u2�<0)
Case 1: vþ→v− Case 2: vþ≠v−

½Rðx;pÞ→0� ½Rðx;pÞ→0�
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Rðx;pÞ≡
				 h½x̂; p̂�ihfx̂; p̂gi

				 ¼ δQDδCC ¼ δQD

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C 2

p
; ð26Þ

The above ratio compares the strength of quantum and
classical contributions over the course of state evolution
[22]. We see that Morikawa’s classicality criteria
(δQD → 0 and C → 1) leads to an extremely rapid sup-
pression of noncommutativity, in favor of the aforemen-
tioned notion of quasiclassicality. This further implies that
even if we are able to somehow measure observables that
directly capture quantum signatures as in (25), these
signatures will be tremendously suppressed by squeezing
and/or decoherence, leaving little room to distinguish
between a quantum and classical origin for observations.
It is also to be noted that the classicality criteria places
stronger conditions than Rðx;pÞ → 0, requiring simultane-
ous decoherence (δQD → 0) and squeezing (C → 1). We
again set ℏ ¼ 1 for the rest of the paper, and in the next
subsection we will see how the classicality criteria can be
extended to a general multimode Gaussian state.

B. Classicality criteria for N oscillators

The key to reformulating the classicality criteria for large
subsystem sizes lies in the covariance matrix of the reduced
system. This is because for Gaussian states, all information
about correlations are captured in the covariance matrix,
which can be effectively used to measure both decoherence
as well as squeezing even for large system sizes. In order to
see this, let us first write down the Wigner function for a
general Gaussian state describing an m-oscillator subsys-
tem [74,75],

WðΞÞ ¼ 1

πm
ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp ½−ΞTΣ−1Ξ�;

Ξ≡ fx1;…; xm; p1;…; pmg; ð27Þ

where the covariance matrix Σ is defined as follows [4]:

Σ ¼
�
σXX σXP

σTXP σPP

�
; ðσXXÞij ¼ hfxi; xjgi;

ðσXPÞij ¼ hfxi; pjgi; ðσPPÞij ¼ hfpi; pjgi: ð28Þ

The commutation relations for conjugate variables can be
represented as follows:

½Ξi;Ξj� ¼ iΩij; Ω ¼
�
O I

−I O

�
: ð29Þ

These relations are always preserved via symplectic trans-
formations M that satisfy MΩMT ¼ Ω. The covariance
matrix Σ can be brought to the Williamson normal form
with such a transformation [76],

Σ̃ ¼ MΣMT ¼
�
diagðγkÞ O

O diagðγkÞ

�
: ð30Þ

The symplectic spectrum fγkg can be obtained from the
eigenvalues f�γkg of the matrix iΩΣ, and are related to the
individual purities as follows [77]:

γk ¼
1

δðkÞQD

; det Σ̃ ¼
Ym
k¼1

γ2k ≡ 1

Δ2
QD

: ð31Þ

While the overall purity ΔQD ¼ Q
k δ

ðkÞ
QD of the reduced

state appears to be a natural m-oscillator extension of the
measure δQD in CHO, the entanglement entropy of the
subsystem is a richer measure of decoherence for larger
subsystem sizes [74]. The entanglement entropy for
the subsystem from the symplectic eigenvalues as follows:

S¼
Xm
k¼1

Sk;

Sk¼
�
γkþ1

2

�
log

�
γkþ1

2

�
−
�
γk−1

2

�
log

�
γk−1

2

�
: ð32Þ

On the other hand, in order to generalize the classicality
parameter (measure of classical phase-space correlations)
for large subsystem sizes, let us first look at the determinant
of the matrix iΩΣ,

detiΩΣ¼ð−1ÞN
Y

γ2k¼ð−1ÞN det
�
σTXP σPP

−σXX −σXP

�
: ð33Þ

Upon resolving the above equation with the help of Schur’s
complement, we get

Q≡ I − σ−1XXσXPσ
−1
PPσ

T
XP; detQ ¼ detΣ

det½σXXσPP�
: ð34Þ

We now propose that the classicality parameter for a
multimode Gaussian state corresponding to m-oscillators
can be generalized as follows:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − detQ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

detΣ
det½σXXσPP�

s
: ð35Þ

For the CHO, using (14) and (16), the above equation
exactly reduces to (18),

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4hx2ihp2iδ2QD

s
¼ hxpiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx2ihp2i
p : ð36Þ

The classicality parameter that we have proposed serves as
a powerful tool towards quantifying classical correlations in
a multimode Gaussian state. It effectively captures the
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relative contribution of the off-diagonal block σXP with
respect to the diagonal blocks σXX and σPP in the
covariance matrix, i.e., it measures how sharply the
multi-variate reduced Wigner function squeezes about
classical trajectories. For pure states, it also captures
information about particle production due to instabilities
(Appendix D). For the case of CHO, the above result
reduces to (18). However, for a larger subsystem size, we
obtain this measure from the determinant of matrix Q. In
order to have a better comparison with entanglement
entropy of the same subsystem, we further rewrite it in
terms of what we refer from here on out as “log classicality”
LCðtÞ,

LC≡ − log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C 2

p
¼ −

1

2
log ðdetQÞ: ð37Þ

The above measure is well-behaved, and is a characteristic
feature of a multimode covariance matrix. Entanglement
entropy and log classicality are therefore insightful single-
valued measures that extract the extent of decoherence and
squeezing directly from the covariance matrix associated
with a given (multimode) quantum state. The criteria for
asymptotic quantum-classical transition can hence be
reformulated for large subsystem sizes as follows:

lim
t→∞

S → ∞; lim
t→∞

LC → ∞: ð38Þ

In the above limit, a multimode generalization for the ratio
defined in (26) is also expected to vanish. However, since it
is a weaker requirement for classicality than (38), we do not
address such a generalization in this work.
Continuing the phase-space stability analysis for CHO in

Appendix C, we see that the inverted modes (u� ¼ iv�)
lead to the following leading-order behavior at late times,
with only the gapped (vþ > v−) case satisfying the clas-
sicality criteria,

lim
t→∞

S ∼
� ðvþ þ v−Þt vþ > v−
const: vþ → v−

;

lim
t→∞

LC ∼
� ðvþ − v−Þt vþ > v−
2v�t vþ → v−

: ð39Þ

Having successfully generalized the classicality criteria for
multimode Gaussian states, we may now utilize this to
identify quantum-classical transition in physical scenarios
modeled by dynamically evolving harmonic lattices. The
criteria, however, may have a possible caveat. In general, a
scalar field propagating in a background space-time may be
quantized in different coordinate settings. The respective
conjugate variables are related via canonical transforma-
tions, and ideally we require a classicality criteria that is
independent of the choice of these variables. While a lot of
progress has been made in identifying this transition

particularly in the two-mode squeezed-state representation
in the momentum space [15,30,31], the choice of conjugate
variables is found to play a crucial role, i.e., a system
identified as “classical” can be made “quantum” with a
simple canonical transformation [78]. While We address
this in much detail in Appendix E, where we show that
entanglement entropy, being a symplectic invariant, is
unaffected by canonical transformations, as opposed to
log classicality. Therefore, we strengthen the classicality
condition in (38) by requiring them to be simultaneously
satisfied with respect to two sets of canonical conjugate
variables chosen by different lapse functions, failing which
an asymptotic quantum-classical transition may be ruled
out. Upon improving the classicality criteria this way, we
will now proceed to analyze early-Universe fluctuations in
the following sections.

III. EARLY UNIVERSE FLUCTUATIONS
IN (1 + 1) DIMENSIONS

In this section, we apply the classicality criteria devel-
oped in Sec. II for fluctuations propagating in an expanding
universe in (1þ 1) dimensions. Although this does not
reflect the physical situation that concerns us, the extensive
analytic control we have compared to (3þ 1) dimensions
can provide us with valuable insight on how an expanding
background affects the “quantumness” of such fluctuations.
The unperturbed Friedmann-Lemaître-Robertson-Walker
metric in comoving coordinates clocked by cosmic time
(t̃) and conformal time (η̃) are respectively given below:

ds2¼dt̃2−a2ðt̃Þdx̃2¼a2ðη̃Þ½dη̃2−dx̃2�; dt̃¼aðη̃Þdη̃:
ð40Þ

The action for a massive test scalar field in an arbitrary
space-time background is given as

S ¼ 1

2

Z
dx̃μ

ffiffiffiffiffiffi
−g

p ½gμν∂μΦ̃∂νΦ̃ − m̃2
fΦ̃

2�: ð41Þ

In (1þ 1) dimensions, the above action reduces to [79]

S¼
Z

dt̃L; L¼1

2

Z
dx̃½Φ̃02−ð∂x̃Φ̃Þ2−m̃2

fΦ̃
2�: ð42Þ

Upon defining the canonical momentum as Π̃ ¼ ∂Φ̃0L, and
discretizing the system as x̃ ¼ jd̃, we get

H ½η̃� ¼ 1

2d̃

X
j

½Π̃2
j þ fΦ̃j − Φ̃jþ1g2 þ d̃2m̃2

fa
2ðη̃ÞΦ̃2

j �

¼ H ðIÞ

d̃
: ð43Þ

We now absorb the UV cutoff d̃ via appropriate canonical
transformations [50],
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H ðIÞ½η� ¼ 1

2

X
j

½Π2
j þ fΦj −Φjþ1g2 þ Λa2ðηÞΦ2

j �;

η ¼ η̃

d̃
; Λ ¼ d̃2m̃2

f; ð44Þ

where we have now shifted to a Hamiltonian that is fully
described by dimensionless conformal time η and dimen-
sionless field mass Λ. When we follow a similar procedure
to obtain the Hamiltonian in (dimensionless) cosmic time,
we obtain:

H ðIIÞ½t� ¼ 1

2aðtÞ
X
j

½Π2
j þ fΦj −Φjþ1g2 þ Λa2ðtÞΦ2

j �;

t ¼ t̃

d̃
; Λ ¼ d̃2m̃2

f: ð45Þ

We see that the two Hamiltonians are connected the same
way as worked out in (E3),

H ðIIÞ½t� ¼ H ðIÞ½ηðtÞ�
aðηðtÞÞ : ð46Þ

Following the same procedure as in Appendix E, we
finally get

H ðIIÞ½t� ¼ 1

2

X
j

�
π2j þ

ðφj − φjþ1Þ2
a2ðtÞ þ Ω2ðtÞφ2

j

�
;

Ω2ðtÞ ¼ Λþ 1

4

�
ȧ
a

�
2

−
ä
2a

: ð47Þ

It should be noted that on going from conformal-time to
cosmic-time Hamiltonian, the regularization that places field
amplitudes along the comoving lattice x̃ ¼ jd̃ is preserved.
Canonical transformations meanwhile act on the regularized
field amplitudes, keeping the lattice structure intact.
Therefore any bipartition in the real space also carries over
fromH ðIÞðηÞ toH ðIIÞðtÞ, and the spatial entanglement can
be directly compared for both representations.
The normal modes spectrum for H ðIIÞðtÞ is given as

[50,80,81]

ω2
jðtÞ ¼Ω2ðtÞþ 4

a2
f2j ; fj ¼

8<
:
sin

h
jπ

2ðNþ1Þ
i

Dirichlet

sin
h
ðj−1Þπ
2N

i
Neumann:

ð48Þ

In the massless limit Λ → 0, and in terms of dimensionless
Hubble paramater H, the normal modes become

ω2
jðtÞ¼

4

a2
f2j −

1

4
ðH2þ2ḢÞ; H¼ ȧðtÞ

aðtÞ¼ H̃ d̃: ð49Þ

In the thermodynamic limit N → ∞, we may further
rewrite the normal mode equation in terms of (dimension-
less) co-moving momentum kj as follows:

4a2ω2
j ∼ k2j − a2H2 − 2a2Ḣ; kj ¼

2πj
N

¼ k̃jd̃; ð50Þ

where we see that the normal mode spectrum maps to
Fourier modes (for a lattice this spectrum is just the
discrete fourier transform [82]). Shifting from comoving
to physical normal modes (ω̄j ¼ aωj) and physical
momenta (k̄j ¼ kj=a), we get

4ω̄2
j ∼ k̄2j −H2 − 2Ḣ: ð51Þ

The normal mode ω̄j therefore corresponds to a momentum-
mode k̄j that is either sub-Hubble (kj > H) or super-Hubble
(kj < H), whereas its stability depends further on Ḣ. We
see that the inversion/squeezing of super-Hubble modes in
general are amplified by an accelerated expansion (Ḣ > 0)
and suppressed by a decelerated expansion (Ḣ < 0). On the
other hand, the stability of sub-Hubble modes is enhanced
by a decelerated expansion (Ḣ < 0) and worsened by an
accelerated expansion (Ḣ > 0).
In the case of (1þ 1) dimensions, we may easily resolve

the problem of quantum-classical transition via the con-
nection formulas developed in Appendix E. In the massless
limit Λ → 0, we observe that the Hamiltonian HðIÞ is time
(η)-independent. As a result of this, the conformal-time
scaling parameters are trivially fixed,

BjðηÞ ¼ 1; B0
jðηÞ ¼ 0: ð52Þ

Using (E16), we see that

ωðt0Þ
b2ðtÞ ¼

Ωðη0Þ
aðtÞ ;

ḃðtÞ
bðtÞ ¼

ȧðtÞ
2aðtÞ : ð53Þ

Since the entanglement entropy is a symplectic invariant,
cosmic-time Hamiltonian must also result in constant
entropies. However, log classicality depends on the choice
of conjugate variables, i.e., in this case, the time coordinate
employed. In any case, however, since entanglement
entropy remains a constant throughout, massless fluctua-
tions never undergo a quantum-classical transition in
(1þ 1) dimensions, regardless of squeezing or the choice
of conjugate variables. We confirm this through numerical
simulations of the cosmic-time Hamiltonian, which is
explicitly time dependent even in the massless case. For
this demonstrative exercise, we consider two types of time-
dependent background: (i) aðtÞ ∝ 1þ A tanhðQtÞ, where A
and Q are constants. This describes a universe that
smoothly expands by a finite factor over its entire evolution
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from asymptotic past to future, and (ii) aðtÞ ∝ eHt, which
corresponds to a de Sitter universe.

A. Tanh expansion

We first consider a simple evolution used for studying
particle production in an expanding background, with an
asymptotic past and future where the in- and out- vacua are
well-defined [83],

aðtÞ¼ 1

2
½fa1þa0gþfa1−a0g tanhðQtÞ� ¼ a0þa1e2Qt

1þe2Qt ;

ð54Þ
where a0 and a1 are the respective initial and final values of
the evolving scale factor andQ−1 is the time-scale of quench.
Upon evolving from t0 → −∞, the scaling parameter for all
the modes can be obtained from (E16) as follows:

bjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a1

a0
e2Qt

1þ e2Qt

s
: ð55Þ

From Fig. 2, we see that some of the modes undergo a
brief inversion during the expansion, signified by the period
in which ω2

kðtÞ < 0. While it has no effect on entanglement
entropy (symplectic invariance ensures that it stays constant
regardless of the choice of conjugate variables), it translates
to a brief squeezing of the reduced Wigner function and
eventual stabilization, clearly captured by the log classi-
cality plot (LC vs t) in Fig. 3. This short-lived squeezing is
a byproduct of choosing conjugate variables in the cosmic-
time Hamiltonian, whereas the same is completely absent
(LC ¼ 0) upon considering conformal-time conjugate var-
iables. Both choices, therefore, fail to satisfy the two-fold
classicality criteria.

B. De Sitter expansion

The scale factor during de-Sitter expansion takes the
following form:

aðtÞ ¼ a0eHðt−t0Þ; ð56Þ

FIG. 2. Evolution of (a) scale factor aðtÞ and the corresponding (b) normal mode spectrum in (1þ 1) dimensions. It can be seen that
some normal modes are briefly inverted during the expansion. Here, N ¼ 15, a0 ¼ 1, a1 ¼ 2, and Q ¼ 2.

FIG. 3. Evolution of (a) entanglement entropy SðtÞ and (b) log classicality LCðtÞ for a Tanh-quench (54) in (1þ 1) dimensions. Here,
N ¼ 15 and H ¼ 0.5.
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where a0 is the initial value of the scale factor at t ¼ t0, and
H is the Hubble constant. Substituting this into (45), we
obtain a Hamiltonian that describes a chain of Caldirola-
Kanai oscillators [84,85] with nearest-neighbor coupling,
and therefore the results we outline here are in turn relevant
to understanding dissipative systems. The classical solution
for each mode in this case can be obtained by solving

y00j ðtÞ þ ω2
jðtÞyjðtÞ ¼ 0; ð57Þ

where the normal-mode spectrum is given by

ω2
jðtÞ ¼ −

H2

4
þ 4

a20
f2je

−2Hðt−t0Þ: ð58Þ

We obtain the independent solutions to be yjðtÞ and y�jðtÞ,
where

yjðtÞ¼ exp

�
1

2
Htþ i

2fj
a0H

e−Hðt−t0Þ
�
; W½yj;y�j �¼4ifj:

ð59Þ

Using (E10), we obtain the scaling parameters as follows:

b2jðtÞ ¼ eHðt−t0Þ
�
1 −

a0H
4fj

sin

�
4fjð1 − e−Hðt−t0ÞÞ

a0H

��
: ð60Þ

It should be noted that the above solution for each j-mode
is only valid if a0H < 4fj, which along with (58) tells us
that no mode can be inverted at the beginning of the
evolution t ¼ t0. In the long-time limit, the scaling param-
eter takes a similar form as (C5)

bj ∼ cje
Hðt−t0Þ

2 ; cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a0H
4fj

sin

�
4fj
a0H

�s
: ð61Þ

Thekey thing to note here is that all thek-modes that cross the
horizon will have the exact same exponential growth factor
(∼H=2) for their respective scaling parameters bjðtÞ. This
eventually results in the saturation of entropy growth
(Appendix A), the timescale (tsat) for which is given by
the inversion time for the mode with the largest index, i.e.,
j ¼ N. For largeN, this timescale can be obtained from (58)

tsat ∼ t0 þ
1

H
log

4

a0H
: ð62Þ

However, if we consider the beginning of the evolution
to be at t0 ¼ −∞, the connections and the conditions in
(53) are satisfied, thereby matching the vacua in both
cosmic-time and conformal-time and greatly simplifying
the problem. The entanglement entropy therefore saturates
instantly (tsat → −∞) and it remains time independent
throughout the evolution, consistent with the results for
the time-independent form conformal-time Hamiltonian.
However, the classicality parameter picks up a nontrivial
behavior upon choosing cosmic-time conjugate variables.
FromFig. 4,we see that all the normalmodes for a deSitter

expansion in cosmic-time conjugate variables eventually get
inverted, and furthermore, they converge asymptotically to
the same value, i.e., it exhibits an ungapped inverted mode
spectrum as t → ∞. In Fig. 5, the runaway squeezing of the
reduced Wigner function translates to a linear growth of log
classicality once the first mode becomes inverted (i.e., it has
crossed the horizon), and its slope is found to saturate once all
the modes have become inverted. The entanglement entropy,
despite mode inversion, stays constant. The overall behavior
for any subsystem size in cosmic-time conjugate variables
can be summarized as

SðtÞ ¼ const; lim
t→∞

LCðtÞ ∝ Ht: ð63Þ

While the Tanh and de Sitter models have proved useful
in understanding the effects of mode inversion and

FIG. 4. Evolution of (a) scale factor aðtÞ and (b) Normal mode spectrum for de Sitter expansion (56) in (1þ 1) dimensions. Here,
N ¼ 15 and H ¼ 0.5.
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squeezing of the Wigner function for large subsystem sizes,
the time-independent behavior of entanglement entropy
effectively rules out any occurrence of quantum-classical
transition in (1þ 1)-dimensions. This is also a perfect
example of how squeezing by itself does not imply
classicality, echoing the ungapped inverted mode scenario
in the CHO (Table I) and how inverted mode instabilities do
not always generate a linear growth in entanglement
entropy, in contrast with recent works [50,68]. We now
turn our attention to (3þ 1) dimensions in the next section,
and apply the classicality criteria for fluctuations propa-
gating in an expanding background.

IV. EARLY-UNIVERSE FLUCTUATIONS
IN (3 + 1) DIMENSIONS

In this section, we apply the classicality criteria for
fluctuations propagating in (3þ 1) dimensions. The unper-
turbed expanding background in (3þ 1) dimensions in
comoving coordinates (r̃,θ,ϕ) clocked by cosmic time (t̃) or
conformal time (η̃) is described by

ds2 ¼ dt̃2−a2ðt̃Þðdr̃2þ r̃2dΩ2Þ
¼ a2ðη̃Þ½dη̃2− ðdr̃2þ r̃2dΩ2Þ�; dt̃¼ aðη̃Þdη̃; ð64Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. In terms of the conformal-time, the Lagrangian for a massive test scalar field in an
expanding background is given by

L ¼ a2ðη̃Þ
2

Z
dr̃dθdϕr̃2 sin θ

�
Φ̃02 − ð∂r̃Φ̃Þ2 − 1

r̃2
ð∂θΦ̃Þ2 − 1

r̃2sin2θ
ð∂ϕΦ̃Þ2 − a2ðη̃Þm̃2

fΦ̃
2

�
: ð65Þ

In the massless limit, the above system equivalently describes the leading (linear) order scalar perturbations of the
background metric. We may employ spherical decomposition to reduce the system to an effective (1þ 1)-dimensional
system [39,46],

Π̃ ¼ 1

r̃

X
lm

Π̃lmðr̃ÞZlmðθ;ϕÞ; Φ̃ ¼ 1

r̃

X
lm

Φ̃lmðr̃ÞZlmðθ;ϕÞ: ð66Þ

Upon further obtaining the canonical momentum Π̃lm ¼ ∂Φ̃0
lm
L, and discretizing the system as r̃ ¼ jd̃, we get

H ½η̃� ¼ 1

2d̃

X
lmj

� Π̃2
lmj

a2ðηÞ þ a2ðηÞ
�
jþ 1

2

�
2
�
Φ̃lmj

j
−
Φ̃lm;jþ1

jþ 1

�2

þ d̃2m̃2
fa

4ðη̃ÞΦ̃2
lmj

�
¼

X
lm

H
ðIÞ
lm

d̃
: ð67Þ

The UV cutoff d̃ can be absorbed and the Hamiltonian can be rewritten in terms of dimensionless parameters as
follows [46]:

FIG. 5. Evolution of (a) entanglement entropy SðtÞ and (b) Log classicality LCðtÞ for de Sitter expansion (56) in (1þ 1) dimensions.
Here, N ¼ 15, a0 ¼ 1 and H ¼ 0.5.
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H
ðIÞ
lm ½η� ¼

1

2

X
lmj

�
Π2

lmj þ
�
jþ 1

2

�
2
�
Φlmj

j
−
Φlm;jþ1

jþ 1

�
2

þ
�
Λa2ðη̃Þ − a00ðηÞ

aðηÞ þ lðlþ 1Þ
j2

�
Φ2

lmj

�
; ð68Þ

where we have defined dimensionless conformal time η ¼
d̃−1η̃ and dimensionless field mass Λ ¼ d̃2m̃2

f. Unlike the
(1þ 1)-dimensional case, we see that the massless con-
formal-timeHamiltonian has an explicit time(η)-dependence
in (3þ 1)-dimensional case, thereby leading to nontrivial
dynamics in entanglement entropy and log classicality. Note
that each lmode is independent and hence their contributions
to the entanglement entropy can be summed [39,46] When

we follow a similar procedure to obtain the Hamiltonian in
cosmic time, we see that the following relation holds as laid
out in Section E:

H
ðIIÞ
lm ½t� ¼ H

ðIÞ
lm ½η�

aðηðtÞÞ : ð69Þ

We therefore obtain the following Hamiltonian in terms of
(dimensionless) cosmic time:

H
ðIIÞ
lm ½t� ¼ 1

2

X
j

�
Π2

lmj þ
1

a2ðtÞ
�
jþ 1

2

�
2
�
Φlmj

j
−
Φlm;jþ1

jþ 1

�
2

þ Ω2
lmjðtÞΦ2

lmj

�
; t ¼ t̃

d̃
; ð70Þ

where

Ω2
lmjðtÞ ¼ Λþ lðlþ 1Þ

j2a2ðtÞ −
3

4

�
ȧðtÞ
aðtÞ

�
2

−
3äðtÞ
2aðtÞ : ð71Þ

Unlike in (1þ 1)-dimensions, the coupling matrix in
(3þ 1) dimensions is not a Toeplitz matrix, as a result
of which an exact analytic expression for the normal mode
spectrum cannot be obtained [46]. However, we can greatly
simplify the problem by splitting the coupling matrix K as
follows:

K ¼
�
Λ −

3

4

�
ȧðtÞ
aðtÞ

�
2

−
3äðtÞ
2aðtÞ

�
I þ 1

a2ðtÞ K̃; ð72Þ

where the nonzero elements of K̃ are given as

K̃jj ¼
lðlþ 1Þ þ 1

2

j2
þ 2; K̃j;jþ1 ¼ K̃jþ1;j ¼ −

ðjþ 1
2
Þ2

jðjþ 1Þ :

ð73Þ

It is easy to see that the matrix that diagonalizes the time-
independent, l-dependent K̃-matrix also diagonalizes the
time-dependent coupling matrix K. The normal modes can
therefore be written as follows:

ω2
j;lðtÞ ¼ Λ −

3

4

�
ȧðtÞ
aðtÞ

�
2

−
3äðtÞ
2aðtÞ þ

F2
jðlÞ

a2ðtÞ ; ð74Þ

where F2
j are the eigenvalues of K̃, and are therefore also

time independent. While the exact analytical expression for

F2
jðlÞ cannot be easily calculated, it can be treated as a

constant parameter in solving the time evolution of the
scaling parameters bðtÞ for all modes.
Similar to what was observed in (1þ 1) dimensions (51),

we can infer that mode inversion is facilitated in cases of
accelerated expansion, i.e., ä > 0. The extra input that we
get in (3þ 1) is that the l-dependent term a−2F2

j , whose
contribution is maximum in the early stages, counters mode
inversion. Since F2

j increases monotonically with l, the
low-l modes are the first to get inverted, whereas large-l
modes follow suit at later times. Since the angular
momentum modes are independent, we sum their individ-
ual contributions, which are expected to converge as l → ∞
for (3þ 1) dimensions [39], as follows:

SðtÞ ¼
X
l

ð2lþ 1ÞSlðtÞ; LCðtÞ ¼
X
l

ð2lþ 1ÞLClðtÞ:

ð75Þ

For the rest of this section, we rely on numerics to see how
various expansion models fare in the classicality test
developed in Sec. II.

A. Tanh evolution

For the same quench function used in (54), we see from
Fig. 6 that both entanglement entropy and log classicality
relax to a stable oscillatory behavior at late times after an
initial surge when the expansion kicks in. Furthermore,
unlike the behavior observed in (1þ 1) dimensions, the
entanglement entropy is no longer time independent, and
log classicality does not revert back to zero at late times.
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The latter further indicates particle production at late-times
resulting from the expansion (Appendix D), in contrast
with the results from (1þ 1) dimensions.
The above results arise from the fact that during a Tanh

expansion in (3þ 1) dimensions, themomentummodes (74)
of discretized linear fluctuations briefly become inverted
when they cross the Hubble radius, and stabilize when they
reenter. Such an evolution causes spatial bipartitions of
fluctuations in the comoving frame to decohere (S increases)
and develop classical correlations (sharp peak in LC) during
this brief inversion. Upon reentering, although further
classicalization is averted, there is an irreversible loss of
quantum coherence along with gain in classical correlations
resulting from theexpansion. This also implies thatRðx;pÞ, the
relative strength (26) of quantum to classical contributions in
observables, is also irreversibly suppressed to some extent,
depending on the parameters of the expansion. Therefore,
for Tanh expansion, an asymptotic quantum-to-classical

transition of fluctuations is avoided in both (1þ 1) and
(3þ 1) dimensions.

B. de-Sitter expansion

For the de-Sitter expansion in (3þ 1) dimensions, the
normal modes (74) will the following form:

ω2
j;lðtÞ ¼

−9H2

4
þ F2

jðlÞ
a2ðtÞ ; aðtÞ ¼ a0eHðt−t0Þ: ð76Þ

During a de Sitter expansion (56) in (3þ 1) dimensions, we
see from Fig. 7 that both the entanglement entropy and log
classicality of all subsystem sizes exhibit unbounded
growth in time, thereby fulfilling the classicality criteria
at late-times. This is in stark contrast with the behavior
observed in (1þ 1) dimensions, where the entanglement
entropy remained constant, thereby failing the classicality

FIG. 6. Evolution of (a) entanglement entropy SðtÞ and (b) log classicality LCðtÞ for Tanh expansion (54) in (3þ 1) dimensions. Here,
a0 ¼ 1, a1 ¼ 2, Q ¼ 2, N ¼ 10 and we count up to l ¼ 3000.

FIG. 7. Evolution of (a) entanglement entropy SðtÞ and (b) Log classicality LCðtÞ for de-Sitter expansion (56) in (3þ 1) dimensions.
Here, N ¼ 10, a0 ¼ 1, H ¼ 0.5 and we count up to l ¼ 200.
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criteria at late times. The fluctuations therefore undergo a
quantum-classical transition in a de Sitter background in
(3þ 1) dimensions, but not in (1þ 1) dimensions.
Physically, this implies that during a de Sitter expansion

in (3þ 1) dimensions, the momentum modes of discretized
linear fluctuations become inverted as they cross the
Hubble radius. This inversion in turn causes spatial
bipartitions of fluctuations in the comoving frame to both
quickly decohere (S → ∞) and also exhibit a high degree of
classical correlations (LC → ∞). The Gaussian nature of
fluctuations further enables Hermitian observables of the
form in (25) to be fully described in terms of two-point
functions. However, nontrivial quantum signatures in such
observables are rapidly suppressed in the classicality limit
as discussed in (26). As a result, at late times, real-space
bipartitions of fluctuations in the comoving frame are
essentially described by classical statistical ensembles,
with their phase-space distribution sharply peaking about
classical trajectories. This also implies that at late-times, it
is nearly impossible to distinguish whether these fluctua-
tions were of quantum or classical origin without high-
precision observations. However, the de Sitter expansion is
expected to have occurred only for a finite time (N ∼ 60
e-folds) before it transitioned to a power-law expansion in
the radiation-dominated epoch. In the next subsection, we
will see how this transition impacts the classicality criteria.

C. Transition from de Sitter to radiation-dominated era

In order to model the exit of inflation to radiation
dominated era in the early Universe, we study the asymp-
totic results for two different types of transition; a hard
transition that gives us some analytic control, and a smooth
transition that can only be probed numerically.

1. Hard transition

Let us consider the following scale factor of expansion
where the exit of inflation occurs at t ¼ te:

aðtÞ ¼
�
aeeH0ðt−teÞ t≤ te

ae
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H0ðt− teÞ

p
t≥ te

; ae ¼ a0eH0ðt0−teÞ;

ð77Þ
where a0 and ae are the scale-factor values at initial time t0
and transition time te respectively, and H0 is the Hubble
constant during the de Sitter expansion. For the above scale
factor, the Hubble parameter (H ¼ ȧ=a) is continuous at te,
whereas the double derivative ä=a is not,

lim
t→t−e

HðtÞ ¼ H0 ¼ lim
t→tþe

HðtÞ;

lim
t→t−e

äðtÞ
aðtÞ ¼ −H2

0 ≠ H2
0 ¼ lim

t→tþe

äðtÞ
aðtÞ : ð78Þ

Therefore, the normal modes (74) are also discontinuous at
t ¼ te,

ω2
j;lðtÞ ¼

8>><
>>:

− 9H2
0

4
þ F2

j ðlÞe−2H0ðt−teÞ

a2e
t ≤ te

3H2
0

4ð1þ2H0ðt−teÞÞ2 þ
F2
j ðlÞ

a2eðaþ2H0ðt−teÞÞ t > te

: ð79Þ

Upon imposing the continuity of the wave function at
t ¼ te through b and ḃ as proposed in [86], we obtain the
following late-time behavior for scaling parameters using
(74) and (E9):

b2j;lðt≫ teÞ∼
aðtÞ
a0

�
a2eH2

0

F2
jðlÞ

��
cos ½ζðtÞt�−2aeH0

FjðlÞ
sin ½ζðtÞt�

�
2

;

ζðtÞ¼ FjðlÞ
aeH0t

�
aðtÞ
ae

−1

�
: ð80Þ

The above form for the scaling parameter indicates an
oscillatory behavior with decreasing frequency (ζ ∼ t−1=2)
and increasing amplitude (b ∝ t1=4) as the expansion
proceeds. Similarly, the scale factor at exit (ae) increases
exponentially with the number of e-folds of inflation
(ae ¼ a0eN ), which in turn increases the amplitude of
the oscillations (b ∝ a2e) while damping the frequency
(ζ ∝ a−1e ). Since this expression holds at late times, we
expect these properties to be carried over even when
considering a more realistic scenario of a smooth transition
from de Sitter to power-law (radiation-dominated) expan-
sion. In the next subsection, we will therefore see how these
features of scaling parameters bðtÞ can dictate entangle-
ment evolution even for a smooth transition.

2. Smooth transition

To model a smooth transition from inflation to radiation
dominated era of expansion, we look at the following
functional form of Hubble parameter motivated in [87]:

H ¼ H0

1þ a2ðtÞ
a2e

; ae ¼ a0eH0ðte−t0Þ; ð81Þ

where H0 is the Hubble parameter during inflation and te
denotes the end of inflation. The number of e-folds of
inflation is given by N ¼ log ae

a0
¼ H0ðte − t0Þ. On inte-

grating the above equation, we get the corresponding scale-
factor for the overall evolution,

aðtÞ ¼ ae

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0½e2H0ðt−teÞ�

q
∼
�
aeeH0ðt−teÞ t ≪ te

ae
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H0ðt − teÞ

p
t ≫ te

;

ð82Þ

where W0 is the principal branch of Lambert W function.
The above form of aðtÞ makes it difficult to solve the
Ermakov equation exactly. However, at late times, we
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expect the scaling parameters to have a similar behavior as
obtained in (80) for the hard transition.
For this model, we test the classicality criteria for

different e-fold values of inflation considered in Fig. 8.
From Fig. 9, we observe that the runaway growth in
entanglement entropy and log classicality is cut off as
inflation ends, transitioning to an oscillatory behavior in the
radiation-dominated era. We also observe that the entan-
glement entropy and log classicality growths are highly
sensitive to the number of e-folds N , whereas the oscil-
lation frequency decays with N , matching the features of
scaling parameters in (80). It can also be seen that, just as in
(80), the oscillation frequency decreases as the expansion
proceeds in the radiation-dominated era. We may therefore
infer that there is a runaway classicalization during the
inflationary phase (marked by an irreversible loss in
quantum coherence) after which the spatial subregions
proceed to retain remnant quantum signatures.

While it may be computationally demanding to simulate
N ∼ 60 e-folds of inflation using larger system sizes
(N ≫ 1), we expect the classicalization of spatial subre-
gions to be further exacerbated upon scaling up these
parameters. The leading-order classical behavior arising
from longer e-folds of inflation is therefore expected to
continue into the radiation-dominated era as well, and can
in principle facilitate an equivalent description via stochas-
tic fluctuations.

V. CONCLUSIONS AND DISCUSSIONS

In this work, our primary focus is to understand the
quantum-to-classical transition of entangled quadratic sys-
tems with spatial degrees of freedom. Our investigation
involved three distinct signatures of classical behavior:
(i) decoherence as a measure of how well the system can
be described by a classical statistical ensemble; (ii) runaway
squeezing of theWigner function about classical phase-space
trajectories; and (iii) rapid suppression of noncommutativity
in observables.We developed the necessary tools in Sec. II to
extract and measure these signatures in terms of entangle-
ment entropy SðtÞ, log classicality LCðtÞ, and relative
strength Rðx;pÞ from a multimode Gaussian state.
We obtained a simple geometric picture of the interplay

between these signatures through the stability analysis of
the reducedWigner function of the subsystem, as illustrated
in Fig. 1. The results, summarized in Table I, reveals that
the presence of instabilities arising from a gapped inverted
mode spectrum in the system leads to the emergence of all
three classicality signatures in the CHO (quadratic system).
On the other hand, other stability regimes exhibited only
partial or no indications of classical behavior.
In Sec. III, we analyzed linear fluctuations of an

expanding background in (1þ 1) dimensions. We found
that a quantum-to-classical transition did not occur as the
dynamics preempted decoherence. This was demonstrated

FIG. 8. Evolution of Hubble radius H−1ðtÞ for a smooth
transition from de Sitter expansion to radiation-dominated
epoch (82), for various e-fold values (N ¼ H0ðte − t0Þ). Here
H0 ¼ 0.5, t0 ¼ −12 and the vertical lines mark the corresponding
values of te (82).

FIG. 9. Evolution of (a) entanglement entropy in log-scale, and (b) log-classicality for a smooth transition from inflation to radiation
dominated epoch (82) for various e-fold values (N ) considered in Fig. 8. Here, n ¼ 1, N ¼ 5, t0 ¼ −12, a0 ¼ e−6, H0 ¼ 0.5 and we
count up to l ¼ 100.
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by considering two different scale factors of expansion:
(i) a Tanh expansion with fixed values at asymptotic past
and future; (ii) an exponentially growing scale factor
corresponding to a de Sitter expansion. In Sec. IV, we
extended the analysis to (3þ 1) dimensions and showed
that for Tanh expansion the fluctuations failed to classic-
alize, whereas for a de Sitter expansion the fluctuations
underwent a quantum-to-classical transition. We further
showed that this transition is cut off when inflation ends
and the background proceeds to power-law (radiation
dominated) expansion. However, the leading-order
classical behavior of the fluctuations arising from the
inflationary epoch appeared to be irreversible at late times.
Throughout, we discovered that the inversion of normal

modes in momentum space acted as a common trigger for
the emergence of classical behavior. While this inversion
had limited impact on the momentum space of quadratic
systems, it significantly affected the entangled degrees of
freedom in real-space. For a flat background in (1þ 1)
dimensions, recent studies have revealed that: (i) the entan-
glement entropy “classicalizes” i.e., it mimics the statistical
entropy of classically chaotic systems via a linear growth,
wherein the growth rate is given by the sum of all positive
Lyapunov exponents [50,68,88,89]; (ii) the leading order
behavior of entanglement entropy asymptotically converges
with other correlation measures, such as fidelity, Loschmidt
echo, and circuit complexity of the entire system [50]; and
(iii) entanglement entropy asymptotically transitions from an
area law to a volume law with subsystem size, thereby
mimicking thermodynamic entropy [50,86,90,91]. In addi-
tion to our analysis, these effects further signal the emergence
of both classical and possible thermodynamic behavior in the
real space from quantum foundations. However, the exact
generalization of these properties to higher dimensions is
subject of future work andwill be addressed elsewhere using
the tools developed here.
The computational limitations in managing exponen-

tially growing scaling parameters due to mode inversion are
much more pronounced when simulating large-system
sizes. While boundary effects are a cause for concern
when studying small-system sizes, earlier works have
shown that the IR cutoff (Nd̃) dependence of entanglement
entropy is typically suppressed in the energy scales of
interest [81,92]. We therefore do not expect it to play a
major role in the quantum-to-classical transition problem.
However, the IR terms in entanglement entropy and log
classicality need to be rigorously investigated for more
insight into the matter, which we hope to address in the
future.
Since the temperature fluctuations in the CMB are

predominantly Gaussian as per current observations, the
Gaussian state we have considered here is sufficient for
addressing the quantum-to-classical transition of early-
Universe fluctuations. However, it is not currently under-
stood whether the presence of non-Gaussianities would

accelerate or slow down classicalization, and therefore
requires further investigation. Resolving this can filter
out the spatial effects exclusively arising from non-
Gaussianity in the context of the quantum-to-classical
transition problem while also laying out potential new
ways of obtaining direct observational evidence for the
quantum origin of CMB fluctuations.
Our analysis further provides the tools necessary to

distinguish between cosmological models, such as those
with similar observable power spectra, as has been the
subject of recent investigations [93]. Of particular interest is
using these measures to distinguish inflation from bounce,
which is currently under investigation. Lastly, a generali-
zation of our real-space approach to account for higher-
order curvature perturbations is an outstanding problem we
hope to address in future works.
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APPENDIX A: CONDITIONS
FOR PURITY SATURATION

The purity of CHO has the following form:

δQDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4KþK−

ðKþ þK−Þ2 þ ðLþ −L−Þ2
s

; K� ¼ ω�ðt0Þ
b2�

;

L� ¼ ḃ�
b�

: ðA1Þ

Let us now rewrite b−ðtÞ ¼ fðtÞbþðtÞ as

δQDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ωþðt0Þω−ðt0Þ
ðfωþðt0Þ þ f−1ω−ðt0ÞÞ2 þ ḟb4þ

s

⇒
ḟ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ωþðt0Þω−ðt0Þ

p
fωþðt0Þ þ f−1ω−ðt0Þ

; ðA2Þ

where we see that the evolution of purity, and in turn,
entanglement entropy (B3) saturates in regimes where the
Ermakov solutions b�ðtÞ have the same time evolution
(ḟ ¼ 0) up to a proportionality constant (f).
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APPENDIX B: ENTANGLEMENT ENTROPY OF CHO

Like in the case of time-independent CHO [39,94], to evaluate the entanglement entropy, we must first calculate the
eigenvalues of the RDM of the system [39,95] by solving the following integral equation [39,94]:

Z
dx02ρ2ðx2; x02Þfnðx02Þ ¼ pnfnðx2Þ: ðB1Þ

The solution for the above integral equation is [95]

fnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
ϵ

π

�
1=4

Hnð
ffiffiffi
ϵ

p
xÞ exp

�
−ðϵþ iδÞ x

2

2

�
;

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
1 − Γ2

2

q
;

pn ¼ ð1 − ξðtÞÞξnðtÞ;

ξðtÞ ¼ Γ2

Γ1 þ ϵ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωþðt0Þ
b2þðtÞ þ

ω−ðt0Þ
b2−ðtÞ

�
2

þ
�

ḃþðtÞ
bþðtÞ −

ḃ−ðtÞ
b−ðtÞ

�
2

s
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþðt0Þω−ðt0Þ
bþðtÞb−ðtÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ωþðt0Þ
b2þðtÞ þ

ω−ðt0Þ
b2−ðtÞ

�
2

þ
�

ḃþðtÞ
bþðtÞ −

ḃ−ðtÞ
b−ðtÞ

�
2

s
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþðt0Þω−ðt0Þ
bþðtÞb−ðtÞ

q : ðB2Þ

The entanglement entropy is calculated as follows:

SðtÞ ¼ −
X
n

pn logpn ¼ − log ½1 − ξðtÞ� − ξðtÞ
1 − ξðtÞ log ξðtÞ: ðB3Þ

APPENDIX C: PHASE-SPACE STABILITY
ANALYSIS OF CHO

The vacuum states are typically well-defined when
the Hamiltonian becomes time-independent. Hence,
in the case of CHO we consider an evolution in ωðtÞ
and χðtÞ that are asymptotically constant. In Ref. [50],
the authors showed that the asymptotic values of the
normal modes decided the late-time stability of the
system, the signatures of which were obtained from
various correlation measures. Similarly, we may consider
the stability analysis of the quantum state in the phase
space via the Wigner function. Let us set the values of the
two normal modes—ω2þðtÞ ¼ ω2ðtÞ and ω2

−ðtÞ ¼ ω2ðtÞ þ
2χ2ðtÞ—to constant values u2þ and u2− (u2þ ≤ u2−), respec-
tively at late times. In the asymptotic future (t → ∞),
the Ermakov equation, therefore, takes the following
form:

b̈jðtÞ þ u2jbjðtÞ ∼
ω2
jðt0Þ
b3jðtÞ

; j ¼ þ;−: ðC1Þ

Since the coefficient in the second term of the above
equation is time independent, we can obtain the following
solutions [95]:

bjðtÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ω2
jðt0Þ
u2j

− 1

�
sin2ujt

s
;

ḃjðtÞ ∼ ðω2
jðt0Þ − u2jÞ

sin 2ujt

2ujbjðtÞ
: ðC2Þ

We now look at various stability regimes of these
solutions below and track its features in the phase-space
picture (see Fig. 1):

(i) Stable modes u2j > 0: Scaling parameters fbjg are
oscillatory and bounded.

(ii) Zero modes u2j ¼ 0:

bjðtÞ ∼ ωjðt0Þt; ḃjðtÞ ∼ ωjðt0Þ: ðC3Þ

Suppose ωþ is a zero mode and ω− is a stable mode.
At late times, we have
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δQD∼
2

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K−

ðK2
−þL2

−Þωþðt0Þ

s
; C ∼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

−þL2
−

K−ωþðt0Þ
q :

ðC4Þ
We see that the purity falls to zero as t → ∞,
whereas classicality parameter retains its oscillatory
behavior about a value between 0 and 1, i.e., there is
no runaway squeezing.

(iii) Inverted modes u2j < 0: At late times, the solutions
(C2) further reduce to

bjðtÞ∼cjevjt; ḃjðtÞ∼cjvjevjt; cj¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2

jðt0Þ
v2j

s

ðC5Þ
wherewe have defined uj¼ivj. When bothmodes are
inverted, we see that vþ≥v− in general, and as a result:

lim
t→∞

δQD ∼

8>><
>>:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþðt0Þω−ðt0Þ

p
cþc−ðvþ−v−Þ e−ðvþþv−Þt vþ > v−

2cþc−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþðt0Þω−ðt0Þ

p
c2þω−ðt0Þþc2−ωþðt0Þ vþ → v−

ðC6Þ

The result gives us two distinct cases. If vþ > v−
(gapped), the long-time limit will always result
in a purity that exponentially decays to zero,
thereby exhibiting rapid decoherence. On the other
hand, if the inverted modes converge asymptoti-
cally (i.e., ungapped), the subsystem is protected
from further decoherence (this conditions for purity
saturation is much more general, as worked out in
Appendix A). The degree of classical correlation
δCC, on the other hand, has the following late-time
behavior:

lim
t→∞

C 2 ∼

8<
:

1− ωþðt0Þc2−
ω−ðt0Þc2þ



1− v−

vþ

�
2
e−2ðvþ−v−Þt vþ > v−

1− ωþðt0Þω−ðt0Þ
c2þc

2
−v2

e−4vt vþ → v− ∼ v:
ðC7Þ

We see that at late times C → 1, with the squeezing being
much faster in the ungapped case than in the gapped case.
Therefore, we see that the only case that simultaneously
results in both rapid decoherence and runaway squeezing,
thereby satisfying the classicality criteria, is when the system
develops gapped inverted modes.

APPENDIX D: PARTICLE PRODUCTION AT
LATE TIMES DUE TO INSTABILITIES

In order to quantify particle production due to such
instabilities, it is essential to specify the ‘in’-states and

‘out’-states with respect to which ladder operators for each
k-mode are defined,

N k ¼ hinja†ðoutÞk aðoutÞk jini ¼ jβj2;
aðoutÞk ¼ αaðinÞk þ βa†ðinÞk ; ðD1Þ

where the ladder operators are related via a Bogoliubov
transformation. Invoking the mode-evolution in (4), we
may consider the vacuum state at time t0 as the ‘in’-state,
and the evolution to a later time t as the ‘out’-state. The
ladder operators for the ‘out’-state can then be described as
follows [58]:

aðoutÞk jouti ¼ 0; aðoutÞk ¼ eiωðt0Þτffiffiffi
2

p
�� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωkðt0Þ
p

bk
−

iḃkffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðt0Þ

p �
xþ ibkffiffiffiffiffiffiffiffiffiffiffiffiffi

ωkðt0Þ
p p

�
: ðD2Þ

The coefficients satisfying the transformation are obtained as

α ¼ eiωkðt0Þτ

2

�
1

bk
þ bk −

iḃk
ωkðt0Þ

�
;

β ¼ eiωkðt0Þτ

2

�
1

bk
− bk −

iḃk
ωkðt0Þ

�
: ðD3Þ

The particle number expectation for the k-mode can then be
obtained as follows:

N k ¼
1

4

��
1

bk
− bk

�
2

þ ḃ2k
ω2
kðt0Þ

�
: ðD4Þ

Let us now perform a stability analysis of the k-mode at
late times as done in Appendix C, and see how it affects
particle production:

(i) If the mode evolves to a zero mode at late times, we
have bk ∼ ωkðt0Þt,

N k ∼
ω2
kðt0Þt2
4

: ðD5Þ
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(ii) If the mode is inverted at late times (limt→∞ ωk →
ivk), we have bk ∝ evkt,

N k ∼
�

vk
ωkðt0Þ

þ ωkðt0Þ
vk

�
2 e2vkt

16
: ðD6Þ

In both the above cases, we see that particle production
with respect to the vacuum (‘in’-state) becomes unbounded
due to instabilities persisting at late times.

1. Covariance matrix and particle number

The covariance matrix for each k-mode will take the
following form:

hfx̂k; x̂kgi ¼
b2k

ωkðt0Þ
; hfp̂k; p̂kgi ¼

ωkðt0Þ
b2k

þ ḃ2k
ωkðt0Þ

;

hfx̂k; p̂kgi ¼
bkḃk
ωkðt0Þ

: ðD7Þ

Since the k-mode is in a pure state, the entanglement
entropy calculated from the covariance matrix is trivially
zero. However, the log classicality takes the following
form:

LC ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2kḃ

2
k

ω2
kðt0Þ

s
: ðD8Þ

The stability analysis of log classicality leads to the
following relation at late times:

LC ∼
� 1

2
logN k Zeromode

logN k Invertedmode
: ðD9Þ

We see that for each k-mode, the extent of particle
production, despite being a purely quantum phenomenon,
is reflected in the log classicality measure that captures the
build-up of classical phase-space correlations from Wigner
function. While obtaining a similar expression for spatial
subsystems is beyond the scope of this work, we expect
the final relation to also include entanglement entropy. A
similar result involving particle number, squeezing param-
eter, and purity for a subsystem interacting with environ-
mental degrees of freedom was obtained in [30].

APPENDIX E: CLASSICALITY CRITERIA
AND CANONICAL TRANSFORMATIONS

In Sec. II wewere able to successfully extendMorikawa’s
classicality criteria to multi-mode Gaussian states. In this
section, we show that it is however not completely indepen-
dent of the choice of conjugate variables.

1. Time-dependent harmonic oscillator

To investigate the effects of canonical transformations,
let us consider the Hamiltonian of a time-dependent
oscillator as follows:

H ðIÞðηÞ ¼ P2

2
þ ω2

I ðηÞX2

2
¼ P2

2
þ a2ðηÞΩ2ðηÞX2

2
; ðE1Þ

where we now use η as the time coordinate for comparison.
The wave function that describes the system is a solution to
the time-dependent Schrödinger equation, and unitarily
evolves from an initial state defined at η ¼ η0 as follows
[60,96]:

ΨðηÞ ¼ exp
�
−i

Z
η

η0

H ðIÞðη0Þdη0
�
Ψðη0Þ: ðE2Þ

Let us now transform the HamiltonianH ðIÞðηÞ → H ðIIÞðηÞ
as follows:

H ðIIÞðtÞ ¼ H ðIÞðηðtÞÞ
aðηðtÞÞ ¼ P2

2aðηðtÞÞ þ
aðηðtÞÞΩ2ðηðtÞÞX2

2
:

ðE3Þ

With the above rescaling, the time evolution of a particular
state can be preserved by also rescaling the time coordinate
appropriately,Z

η

η0

H ðIÞðηÞdη¼
Z

t

t0

H ðIIÞðtÞdt; t¼
Z

aðηÞdη: ðE4Þ

Now, we employ the following canonical transformations
with respect to H ðIIÞ [97],

X ¼ xffiffiffiffiffiffiffiffi
aðtÞp ; P ¼

ffiffiffiffiffiffiffiffi
aðtÞ

p
p −

ȧðtÞ
2

ffiffiffiffiffiffiffiffi
aðtÞp x: ðE5Þ

The resultant Hamiltonian is

H ðIIÞðtÞ ¼ p2

2
þ ω2

IIðtÞx2
2

;

ω2
IIðtÞ ¼

ω2
I ðηðtÞÞ
a2ðtÞ þ 1

4

�
ȧðtÞ
aðtÞ

�
2

−
äðtÞ
2aðtÞ : ðE6Þ

We now look at how the scaling parameters corresponding to
H ðIÞ andH ðIIÞ, namely BðηÞ and bðtÞ are related. For this,
we look at the nonlinear Ermakov equation,

B00ðηÞ þ ω2
I ðηÞBðηÞ ¼

ω2
I ðη0Þ
B3ðηÞ : ðE7Þ

To arrive at a solution for the Ermakov equation, we first
consider solutions to the classical time-dependent oscillator,

CHANDRAN, RAJEEV, and SHANKARANARAYANAN PHYS. REV. D 109, 023503 (2024)

023503-20



Y 00ðηÞ þ ω2
I ðηÞYðηÞ ¼ 0: ðE8Þ

From a set of independent solutions Y1ðηÞ and Y2ðηÞ of the above equation, the scaling parameter BðηÞ can be obtained as
follows:

B2ðηÞ ¼ B2ðη0Þ
W2

Y

�
Y1ðηÞY 0

2ðη0Þ − Y 0
1ðη0ÞY2ðηÞ þ

B0ðη0Þ
Bðη0Þ

ðY1ðηÞY2ðη0Þ − Y2ðηÞY1ðη0ÞÞ
�

2

þ ω2
I ðη0Þ

W2
YB

2ðη0Þ
fY1ðηÞY2ðη0Þ − Y2ðηÞY1ðη0Þg2; ðE9Þ

whereWY is theWronskian for solutionsY1ðηÞ andY2ðηÞ. On imposing the initial conditionsBðη0Þ ¼ 1 andB0ðη0Þ ¼ 0, we get

B2ðηÞ ¼ 1

W2
Y
½fY1ðηÞY 0

2ðη0Þ − Y 0
1ðη0ÞY2ðηÞg2 þ ω2

I ðη0ÞfY1ðηÞY2ðη0Þ − Y2ðηÞY1ðη0Þg2�: ðE10Þ

Similarly, for Hamiltonian H ðIIÞ, we write down the classical equation of motion and Ermakov equations respectively as
follows:

ÿðtÞ þ ω2
IIðtÞyðtÞ ¼ 0; b̈ðtÞ þ ω2

IIðtÞbðtÞ ¼
ω2
IIðt0Þ
b3ðtÞ : ðE11Þ

Suppose the independent solutions are y1ðtÞ and y2ðtÞ, the scaling parameter bðtÞ are obtained as follows:

b2ðtÞ ¼ 1

W2
y
½fy1ðtÞẏ2ðt0Þ − ẏ1ðt0Þy2ðtÞg2 þ ω2

IIðt0Þfy1ðtÞy2ðt0Þ − y2ðtÞy1ðt0Þg2�; ðE12Þ

where Wy is the Wronskian for solutions y1ðtÞ and y2ðtÞ. The above solution automatically satisfies the initial conditions
bðt0Þ ¼ 1 and ḃðt0Þ ¼ 0. Using the equation connecting frequenciesω2

I ðtÞ andω2
IIðηÞ in (E6), we obtain the following relations

connecting yðtÞ and YðηÞ:

yðtÞ ¼
ffiffiffiffiffiffiffiffi
aðtÞ

p
YðηðtÞÞ; ẏðtÞ ¼ 1ffiffiffiffiffiffiffiffi

aðtÞp �
Y 0ðηðtÞÞ þ ȧðtÞ

2
YðηðtÞÞ

�
; Wy ¼ WY: ðE13Þ

Substituting this back into the solution bðtÞ, we obtain the following relation:

b2ðtÞ ¼ aðtÞ
aðt0Þ

B2ðηÞ þ aðtÞaðt0Þ
2W2

Y

�
ȧ2ðt0Þ
a2ðt0Þ

−
äðt0Þ
aðt0Þ

�
½Y1ðηÞY2ðη0Þ − Y1ðη0ÞY2ðηÞ�2

þ aðtÞȧðt0Þ
W2

Yaðt0Þ
½Y1ðηÞY 0

2ðη0Þ − Y 0
1ðη0ÞY2ðηÞ�½Y1ðηÞY2ðη0Þ − Y1ðη0ÞY2ðηÞ�: ðE14Þ

The above expression relates the time evolution from the
respective vacuum states corresponding to H ðIÞ andH ðIIÞ.
Alternatively, onemay be interested in studying the evolution
of, say, the η-vacuum in the t representation (see, for instance,
[63]). This leads to a simplified relation between the corre-
sponding scaling parameters. To see this, notice that thewave
functions, in the two different representations, of a given state
of the system are related via

ΨIIðx; tÞ ¼
1

a1=4ðtÞΨI½XðxÞ; ηðtÞ� exp i
ȧðtÞ
4aðtÞ x

2: ðE15Þ

For the special case of a Gaussian state, the above relation
translates to the following relation between the corresponding
scaling parameters:

ωIIðt0Þ
b2ðtÞ ¼ ωIðη0Þ

aðtÞB2ðηÞ ;
ḃðtÞ
bðtÞ ¼

1

aðtÞ
�
B0ðηðtÞÞ
BðηðtÞÞ þ

ȧðtÞ
2

�
:

ðE16Þ

Consequently, the above relation is also valid if one can
further specialize to the vacuum state of one of the repre-
sentations. The relevance of this relation is that its direct
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extension to the case of harmonic lattices can be used to study
the consequences of canonical transformations. Note that in
the limit

ȧðt0Þ → 0 and äðt0Þaðt0Þ → 0 ðE17Þ

weobtain (E16) from (E14). This limit, therefore, translates to
the casewhen the instantaneous vacua of both representations
coincide at t ¼ t0.

2. Time-dependent CHO

In order to observe the effects of canonical transforma-
tions on the classicality criteria, we now look at the CHO,

H ðIÞðηÞ ¼ P2
1

2
þ P2

2

2
þ 1

2
ω2
I ðηÞðX2

1 þ X2
2Þ

þ 1

2
χ2I ðηÞðX1 − X2Þ2;

H ðIIÞ ¼ H ðIÞ½ηðtÞ�
a½ηðtÞ� : ðE18Þ

The canonical transformations in (E5) result in the follow-
ing Hamiltonian:

H ðIIÞðtÞ¼p2
1

2
þp2

2

2
þ1

2
ω2
IIðtÞðx21þx22Þþ

1

2
χ2IIðtÞðx21−x22Þ;

ðE19Þ

ω2
IIðtÞ ¼

ω2
I ½ηðtÞ�
a2ðtÞ þ 1

4

�
ȧðtÞ
aðtÞ

�
2

−
äðtÞ
2aðtÞ ; ðE20Þ

χ2IIðtÞ ¼
χ2I ½ηðtÞ�
a2ðtÞ : ðE21Þ

In terms of K� and L� defined with respect to
Hamiltonians H ðIÞ and H ðIIÞ as given in (7), we get

KðIIÞ
� ðtÞ¼KðIÞ

� ½ηðtÞ�
aðtÞ ; LðIIÞ

� ðtÞ¼ 1

aðtÞ
�
LðIÞ
� ½ηðtÞ�þ ȧðtÞ

2

�
:

ðE22Þ

We now look at how the characteristic parameters of the
Wigner function are affected upon going from H ðIÞ

described in terms of time η to H ðIIÞ described in terms
of time t:

(i) Degree of quantum decoherence δQD:

δðIIÞQDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4KðIIÞ
þ ðtÞKðIIÞ

− ðtÞ
ðKðIIÞ

þ ðtÞ þ KðIIÞ
− ðtÞÞ2 þ ðLðIIÞ

þ ðtÞ − LðIIÞ
− ðtÞÞ2

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4KðIÞ
þ ½ηðtÞ�KðIÞ

− ½ηðtÞ�
ðKðIÞ

þ ½ηðtÞ� þ KðIÞ
− ½ηðtÞ�Þ2 þ ðLðIÞ

þ ½ηðtÞ� − LðIÞ
− ½ηðtÞ�Þ2

vuut ¼ δðIÞQD½ηðtÞ�: ðE23Þ

(ii) Degree of classical correlation δCC:

1

δðIIÞCC ðtÞ
¼ KðIIÞ

þ ðtÞLðIIÞ
− ðtÞ þ KðIIÞ

− ðtÞLðIIÞ
þ ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðIIÞ
þ ðtÞKðIIÞ

− ðtÞ½ðKðIIÞ
þ ðtÞ þ KðIIÞ

− ðtÞÞ2 þ ðLðIIÞ
þ ðtÞ − LðIIÞ

− ðtÞÞ2�
q

¼ 1

δðIÞCCðηÞ

"
1þ

�
ȧðtÞ
2

�
KðIÞ

þ ½ηðtÞ� þ KðIÞ
− ½ηðtÞ�

KðIÞ
þ ½ηðtÞ�LðIÞ

− ½ηðtÞ� þ KðIÞ
− ½ηðtÞ�LðIÞ

þ ½ηðtÞ�

#
: ðE24Þ

Upon plugging the above expressions into (17) and (32), we see that entanglement entropy (being a symplectic invariant
[74]) stays invariant under the canonical transformation in (E5), whereas log classicality does not,

SðIIÞðtÞ ¼ SðIÞðηðtÞÞ; LCðIIÞðtÞ ≠ LCðIÞðηðtÞÞ; t ¼
Z

aðηÞdη: ðE25Þ

For the special case where aðtÞ ¼ a0 (constant), however, we see that they are both invariant [50],

SðIIÞðtÞ ¼ SðIÞða−10 tÞ; LCðIIÞðtÞ ¼ LCðIÞða−10 tÞ; t ¼ a0η: ðE26Þ

CHANDRAN, RAJEEV, and SHANKARANARAYANAN PHYS. REV. D 109, 023503 (2024)

023503-22



The classicality criteria therefore has an ambiguity; the
condition on classicality parameter C is subject to change
under a canonical transformation, even for the same time-
evolved state, and the same subsystem division. Therefore,
in order to manage this ambiguity, we make the second
condition stronger by claiming that both representations

H ðIÞ and H ðIIÞ must satisfy the classicality criteria
in (38),

lim
t→∞

S → ∞; lim
t→∞

LC → ∞;

failing which an asymptotic quantum-classical transition
may be ruled out.
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