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Slow roll of the inflaton field defines the standard dynamics of the inflationary epoch. However, the
inflationary system deviates from slow roll when it encounters an extremely flat region of the inflaton
potential, and enters a phase dubbed ultraslow roll. In this article, we explore the possibility of realizing an
ultraslow-roll phase in a particularly interesting inflationary scenario, called warm inflation. In the warm
inflationary scenario a thermalized, subdominant radiation bath coexists with the inflaton energy density as
an effect of dissipative dynamics. We show in this article that though the background dynamics indicate
ultraslow roll when the potential becomes extremely flat, in warm inflation models, where the dissipation
coefficient is a sole function of the temperature of the radiation bath, the system fails to maintain the
thermal equilibrium as soon as it enters the ultraslow-roll phase. As thermal equilibrium is a key feature of
warm inflation, and as it is not yet known how to deal with warm inflation without thermal equilibrium,
we could not analyze such systems any further in this article. However, we demonstrate that brief periods of
the ultraslow-roll phase, which smoothly ends in a standard slow roll, can be accommodated in warm
inflation (WI) models where the dissipation coefficient is not only a function of the temperature of the
radiation bath but also depends on the amplitude of the inflaton field. We theoretically determine the criteria
of successfully embedding ultraslow roll in WI while the system remains in thermal equilibrium, and also
demonstrate numerically that such short ultraslow-roll phases can indeed be embedded in specific warm
inflation models which comply with the theoretically determined criteria.
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I. INTRODUCTION

Cosmic inflation [1–6], a brief period of near-exponen-
tial expansion of the early Universe, has now become an
integrated part of the standard big bang cosmology that not
only solves the fine-tuning problems of the hot big bang
model but also helps by generating seeds for the large-scale
structures we see today. In the standard scenario, cosmic
inflation is driven by the potential energy of a slow-rolling
scalar field, dubbed inflaton. To maintain the slow-rolling
of the field during inflation, the potential of the inflaton
field needs to be sufficiently flat. However, there are
regimes when the slow-rolling conditions cannot remain
valid. One such situation occurs when the potential
becomes extremely flat, such as around inflection points.
The system then deviates from the standard slow rolling
and enters a phase of so-called “ultraslow roll” [7]. The
term “ultraslow roll” was first coined in [8], and the
dynamics of the system during such a phase were studied.
However, a similar situation was first investigated in [9].

The attractive behavior and stability of an ultraslow-roll
phase were investigated in [10]. Such a departure from slow
roll often turns out to be useful as such a phase allows the
cosmological perturbations to grow sufficiently enough to
generate primordial black holes [11], a viable candidate for
dark matter [12].1

In the standard inflationary scenario, the couplings of the
inflaton field with other particles are considered to be
negligible. Thus, all other energy densities present before
inflation are diluted away exponentially by the time
inflation ends, and, therefore, to onset the standard hot
big bang evolution postinflation, a separate phase of
reheating [19] is called for. This standard inflationary
scenario will be referred to as “cold inflation” (CI) in this
article. However, there is an alternate inflationary scenario,
dubbed “warm inflation” (WI) [20] (for recent reviews
on WI, see, e.g., [21,22]), where those couplings of the

*sandipb20@iitk.ac.in
†kaushikb@iitk.ac.in
‡suratna.das@ashoka.edu.in

1An issue regarding whether or not the large-scale cosmo-
logical perturbations, probed by the Cosmic Microwave Back-
ground, receive large nonperturbative corrections from the
enhanced perturbations on small scales due to ultraslow roll is
being debated in the literature [13–18]. If they do, then such
mechanisms of generating primordial black holes will be ruled
out. The issue is yet to be resolved.
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inflaton field to other particles play a significant role during
the inflationary evolution in dissipating inflaton’s energy
density into a subdominant, yet non-negligible, radiation
bath. As a constant radiation bath is maintained throughout
WI, this helps WI to transit smoothly into a radiation
dominated universe once WI ends. Thus, WI, unlike CI,
does not call for a reheating phase postinflation. Moreover,
despite being subdominant, the produced radiation energy
density, ρr, satisfies the condition ρ

1=4
r > H (whereH is the

Hubble parameter during inflation), which upon assuming
thermalization of the radiation bath yields the condition
T > H (T being the temperature of the thermalized
radiation bath). This thermalization condition is maintained
throughout the evolution of WI, and plays a major role in
determining the cosmological perturbations produced dur-
ing WI [21,22]. The graceful exit of WI, which is a much
more complex process than in CI, has been extensively
studied in [23].
WI has certain attractive features compared with its more

conventional counterpart, CI. First of all, as mentioned
above, WI is not in need of an extra reheating phase—
physics of which is not yet fully understood. Secondly, WI
yields a more enhanced scalar curvature power spectrum
compared to CI [24,25], which lowers the tensor-to-scalar
ratio significantly. This allows WI to accommodate poten-
tials, such as quartic self-coupling potentials (λϕ4), which
are otherwise ruled out in CI for generating way too many
tensor-to-scalar ratios [26]. It has been shown in [27] that
the observed baryon asymmetry in nature can be explained
by the dissipative effects of the WI alone, which is absent in
CI. This also leads to observable baryon isocurvature
perturbations which can help in checking the consistency
of the WI models [28]. Certain WI models can also
generate primordial black holes without invoking any
departure from slow roll [29–32]. Moreover, it has been
shown recently that, while CI fails to comply [33] with
the de Sitter swampland conjecture in string theory pro-
posed in [34,35], one can easily overcome the obstacles in
WI due to its very construction and can successfully
accommodate the criteria of the conjecture within the
framework of WI [36–41]. Therefore, WI is preferred over
CI as an inflationary paradigm in low energy effective field
theories which descend from ultraviolet complete theories
of gravity, such as string theory.
In this article, we investigate what happens to the

dynamics of WI when it encounters an extremely flat
region of a potential, like an inflection point. We discussed
before that, in CI, the system significantly deviates from
slow-rolling and enters a phase of ultraslow roll in a similar
situation. Thus, can we expect a similar behaviour in WI as
well? We found that though the background dynamics does
show signatures of ultraslow roll, the system deviates from
its thermal equilibrium exponentially fast in models of WI
where the dissipative coefficient is a sole function of the
temperature of the radiation bath. As thermal equilibrium of

the system is a key feature of WI, it is not clear what
happens to the dynamics of WI if the thermal equilibrium is
lost during any phase of its evolution. Therefore, we could
not analyze such systems any further in this article.
However, we showed that WI models with dissipative
coefficients depending on the temperature of the thermal
bath as well as on the amplitude of the inflaton field can
successfully realize brief periods of ultraslow roll while
maintaining the overall thermalization of the system.
We have organized the rest of the article as follows. In

Sec. II, we analyze the ultraslow-roll dynamics in standard
CI and define the criteria which distinguish ultraslow roll
from slow roll in terms of Hubble slow-roll parameters. In
Sec. III, we briefly discuss the WI dynamics under slow roll
and show how the thermalization of the system is main-
tained during the slow-roll phase. In Sec. IV we determine
the theoretical criteria which can lead to an ultraslow-roll
phase in WI while maintaining thermal equilibrium of the
system. This is followed by Sec. V, where we analyze
numerically a specific WI model (which can accommodate
an ultraslow-roll phase according to the theoretical criteria
developed in Sec. IV) with two potentials with extremely
flat regions, and show that brief periods of ultraslow-roll
phases can indeed be realized while maintaining the
thermalization of the system. We also show that the system
smoothly enters a standard slow-roll phase after these brief
periods of ultraslow roll. In Sec. VI, we discuss the main
results obtained in this article and then conclude.

II. ULTRASLOW ROLL IN COLD INFLATION

To figure out how WI behaves when the potential
becomes extremely flat, we need to first understand how
the dynamics deviates from slow roll (and enters an
ultraslow-roll phase) in CI in a similar situation. In this
section we will closely follow the arguments given in [7],
and, in the following section, we will generalize the
arguments presented here for the case of WI.
In canonical CI models, a single scalar inflaton field, ϕ,

evolves according to the Klein-Gordon equation given as

ϕ̈þ 3Hϕ̇þ V;ϕ ¼ 0; ð2:1Þ

where the overdot denotes a derivative with respect to the
cosmic time t and V;ϕ¼ dV=dϕ. Following [7], we will
call the three terms in the above equation the acceleration
term, the friction term, and the slope term, respectively. The
Friedmann-Lemaître-Robertson-Walker scale factor, aðtÞ,
evolves according to the Friedmann equations:

3M2
PlH

2 ¼ ϕ̇2

2
þ VðϕÞ; ð2:2Þ

2M2
PlḢ ¼ −ϕ̇2; ð2:3Þ
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where H ≡ ȧ=a is the Hubble parameter and MPl is the
reduced Planck mass. The background evolution is char-
acterized in terms of the Hubble slow-roll parameters
defined by [42]

ϵiþ1 ¼
d ln ϵi
dN

; ð2:4Þ

where N ≡ ln a denotes the number of e-folds. Starting
with ϵ0 ∝ 1=H, the consecutive first slow-roll parameter ϵ1
and the second slow-roll parameter ϵ2 can be expressed as

ϵ1 ≡ −
Ḣ
H2

; ð2:5Þ

ϵ2 ≡ ϵ̇1
ϵ1H

¼ 2ϵ1 þ
Ḧ
HḢ

: ð2:6Þ

Inflation requires ϵ1 < 1, and the validity of slow-roll
approximation is ensured by the general conditions
jϵij ≪ 1. During inflation the potential term dominates
over the kinetic term. Thus, from the Friedmann equations
given in Eqs. (2.2) and (2.3), we see that
ε1 ∼ 3ϕ̇2=ð2VðϕÞÞ, ensuring ϵ1 ≪ 1 during inflation.
And during slow roll, the acceleration term (ϕ̈) is negligible
compared to the friction (Hϕ̇) and the slope (V;ϕ) terms in
the Klein-Gordan equation given in Eq. (2.1), which then
can be approximated as

3Hϕ̇þ V;ϕ ≃ 0: ð2:7Þ

This suggests that

Ḧ
HḢ

¼ 2ϕ̈

Hϕ̇
≃ 2ϵ1 − 2ηV; ð2:8Þ

where ηV is one of the two potential slow-roll parameters:

ϵV ≡M2
Pl

2

�
V;ϕ
V

�
2

; ηV ≡M2
Pl

V;ϕϕ
V

: ð2:9Þ

Both these potential slow-roll parameters quantify the flat-
ness of the inflaton potential during inflation.As the potential
requires to be nearly flat for the slow rolling of the field, the
potential slow-roll parameters require to be much smaller
than unity during slow-roll inflation. Therefore, from
Eq. (2.6) we see that jϵ2j ∼ j4ϵ1 − 2ηV j ≪ 1. Thus, both
ϵ1 and jϵ2j, being much smaller than unity, ensure the slow-
roll dynamics of the inflaton field.
However, when the potential becomes extremely flat, the

slope term in the Klein-Gordan equation becomes negli-
gible, and it becomes

ϕ̈þ 3Hϕ̇ ≃ 0; ð2:10Þ

yielding ϵ2 ∼ −6þ 2ϵ1. We note that ϵ1 remains much
smaller than unity even when the potential becomes
extremely flat, as the potential term dominates over the
kinetic term. Therefore, inflation does not stop when the
potential becomes extremely flat. However, ϵ2 becomes of
the order of unity (ϵ2 ∼ −6). This clearly indicates that the
scalar field dynamics deviates from slow roll when the
potential becomes extremely flat, and enters a new phase of
evolution, dubbed the ultraslow roll.

III. WARM INFLATION: THE
SLOW-ROLL REGIME

During WI, the inflaton field, ϕ, dissipates its energy to a
radiation bath, maintaining a non-negligible radiation
energy density, ρr, throughout. This feature distinguishes
WI from the standard CI scenario. Therefore, the equation
of motion of the inflaton field also differs from the equation
of motion of the inflaton field in the CI scenario. The
equations governing the dynamics of the inflaton field, ϕ,
and the radiation bath, ρr, in WI can be written as

ϕ̈þ 3Hϕ̇þ V;ϕ¼ −ϒðϕ; TÞϕ̇; ð3:1Þ

ρ̇r þ 4Hρr ¼ ϒðϕ; TÞϕ̇2: ð3:2Þ

Here, ϒ is the dissipative term which can depend on the
amplitude of the inflaton field, ϕ, as well as the temperature
of the radiation bath, T. It is assumed that the radiation
bath, generated by the dissipation of the inflaton field, is in
near thermal equilibrium throughout WI, and thus a
temperature T can be defined. Many microphysical models
of warm inflation have been studied over the years, and the
decay rates (under the assumption of thermal equilibrium)
have been calculated. For such studies one can look into
[21,43,44] and for a more recent review. From these
studies, one can see that a general form of the dissipative
coefficient in warm inflation can be written in the form

ϒðϕ; TÞ ¼ CϒTpϕcM1−p−c; ð3:3Þ

where Cϒ is a dimensionless constant carrying the signa-
tures of the microscopic model used to derive the dissipative
coefficient (such as the different coupling constants), andM
is some appropriate mass scale, so that the dimensionality of
the dissipative coefficient is preserved, ½ϒ� ¼[mass] in our
system of units where ℏ ¼ c ¼ 1. The numerical powers of
T and ϕ, which are p and c respectively, can take positive
or negative values; however, we will restrict ourselves to
jpj < 4 due to the stability of the WI models [45,46].
We define the dimensionless parameter Q as

Q≡ ϒ
3H

; ð3:4Þ
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which is the ratio of the two friction terms appearing in the
equation of motion of the inflation field, one due to
dissipation (ϒϕ̇) and the other due to the Hubble expansion
(3Hϕ̇). If the Hubble friction dominates over the friction
due to dissipation, i.e., Q < 1, we call it a weak dissipative
regime of WI. On the other hand, when the friction due to
dissipation dominates the equation of motion of the inflaton
field (Q > 1 in such cases), we call it a strong dissipative
regime of WI.
Apart from the two potential slow-roll parameters

defined in Eq. (2.9), there are two additional slow-roll
parameters in WI [24,44]:

β≡M2
P

ϒ;ϕV;ϕ

ϒV
; δ≡ TV;ϕT

V;ϕ
; ð3:5Þ

which are required to ensure the slow-roll dynamics.
During slow roll ϵV , ηV , β, and δ are all smaller than
1þQ in both the weak and strong dissipative regime.
In the slow-roll regime, i.e., when the acceleration term

in Eq. (3.1) is negligible with respect to all the other terms,
we can approximate this equation as

3Hð1þQÞϕ̇þ V;ϕ ≈ 0: ð3:6Þ

However, as the inflaton potential energy density
always dominates over the kinetic term and the radiation
energy density during WI, the Friedmann equation given in
Eq. (2.2) can be written as

3M2
PlH

2 ≈ VðϕÞ: ð3:7Þ

As during WI a constant radiation bath is maintained by
the dissipation of energy of the inflaton field into the
radiation bath, we can assume ρ̇r ≈ 0, and can approximate
Eq. (3.2) as

4Hρr ≈ϒϕ̇2: ð3:8Þ

Also, as the radiation bath is near equilibrium, we can
define a temperature T of the radiation bath as

ρr ¼
π2

30
g�T4; ð3:9Þ

where g� is the relativistic degrees of freedom of the
radiation bath. We can then determine the evolution of T
with respect to the e-foldings N during slow roll as

d lnT
dN

¼ Ṫ
HT

≃
1

4 − p

�
ϵV

1þQ
−

β

1þQ

�
≪ 1: ð3:10Þ

Here we have used the relation dN ¼ Hdt. The above
equation ensures that during slow roll, the temperature of

the radiation bath evolves very slowly, maintaining the near
equilibrium condition.
With all these conditions of slow-roll WI, we find that

during a slow-roll phase in WI

ϵ1 ¼
ϵV

1þQ
; ð3:11Þ

ϵ2 ¼ −2
ηV

1þQ
þ
�
4þ 3Q
1þQ

−
p

4 − p
Q

1þQ

�
ϵV

1þQ

þ
�

4

4 − p
Q

1þQ

�
β

1þQ
: ð3:12Þ

In deriving these relations we have used the general form of
the dissipative coefficient given in Eq. (3.3). As ϵV , ηV , and
β are all smaller than 1þQ during slow roll we see that ϵ1
and jϵ2j are both smaller than unity during slow roll. In the
next section we will see that this situation will change when
the potential becomes extremely flat, as it happens in CI.

IV. REALIZING ULTRASLOW ROLL
WITHIN WARM INFLATION

We note in Sec. II that in CI, the evolution enters an
ultraslow-roll phase when the potential becomes extremely
flat, and we quantify it by showing that the magnitude of
the second Hubble slow-roll parameter, ϵ2, becomes of the
order of unity, while the first Hubble slow-roll parameter,
ϵ1, remains much smaller than 1. Does a similar situation
arise in WI when the potential becomes extremely flat?
While answering this question, one also needs to keep in
mind that WI maintains a radiation bath in near equilibrium
throughout the slow-roll evolution. Can WI enter an
ultraslow-roll phase while maintaining the thermal equi-
librium of the radiation bath present during the evolution?
To answer these questions, we first determine the

evolution of the temperature T for a phase when the
potential becomes extremely flat. During such an evolution,
as V;ϕ ≈0, we can approximate Eq. (3.1) as

ϕ̈þ 3Hð1þQÞϕ̇ ≈ 0: ð4:1Þ

It is worth noting that an ultraslow-roll phase during an
inflationary epoch, both in CI and WI, must be a transient
phase, i.e., the ultraslow-roll phase must be preceded by a
slow-roll phase and end in another slow-rolling phase. Thus
the initial conditions of the ultraslow-roll phase are set by
the preceding slow-roll phase. In WI, a thermal equilibrium
is assumed in the slow-rolling phase preceding the ultra-
slow-roll phase. Therefore, the thermalization condition
and the form of the dissipative coefficient during the
ultraslow-roll phase are set by the preceding slow-roll
phase. With these initial conditions, we can then let the
system evolve during an ultraslow-roll phase during WI.
Hence, wewill assume that at the onset of such an evolution
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a constant radiation bath is maintained, and that radiation
bath will remain near thermal equilibrium so that a temper-
ature T can be defined. In such a case, both Eqs. (3.8) and
(3.9) would remain valid. From Eqs. (3.8), (3.9), and (4.1) it
is straightforward to show that the temperature T evolves as

d lnT
dN

¼ 1

4 − p

�
c

ϕ̇

Hϕ
þ ϵ1 − 6ð1þQÞ

�
; ð4:2Þ

when the potential becomes extremely flat. We can see here
that the first and the last terms on the right-hand side of the
above equation are not proportional to any slow-roll
parameters and can take large values. Thus, comparing
this equation with Eq. (3.10), which depicts the evolution
of T during slow roll in WI, we see that one cannot
conclude right away that the temperature will evolve slowly
during the evolution through an extremely flat region of the
potential. Can we make the temperature evolve slowly in
such a case so that the system can evolve being near
equilibrium? We will address this question by the end of
this section.
We will now see what happens to the first Hubble slow-

roll parameter, ϵ1, when the potential becomes extremely
flat. We note that, in WI, −2M2

PlḢ ¼ ρϕ þ Pϕ þ ρr þ Pr ¼
ϕ̇2 þ ð3=4Þρr, where ρϕ and Pϕ are the energy density and
the pressure of the inflaton field, and similarly, ρr and Pr
are the radiation energy density and radiation pressure,
respectively. However, using Eq. (3.8), we can write

−2M2
PlḢ ¼ ð1þQÞϕ̇2: ð4:3Þ

Thus, using the above equation and Eq. (3.7), the first
Hubble slow-roll parameter can be expressed as

ϵ1 ∼
3

2

ð1þQÞϕ̇2

VðϕÞ : ð4:4Þ

Now, as during inflation the potential energy density
dominates over kinetic energy density, we can see that
in the weak dissipative regime (Q < 1) ϵ1 can remain much
smaller than unity ensuring inflation continues even when
the potential becomes extremely flat. However, in a strong
dissipation regime, there are models where theQ values can
be as large as Oð103Þ [40,41,47]. In such models, it might
happen that when the potential becomes extremely flat,
Qϕ̇2 ∼ VðϕÞ, yielding ϵ1 ∼ 1, which is an indication of the
end of inflation. But, there are WI models realized in strong
dissipation [48] where Q is of the order of 10 or 100. In
such models, inflation continues to take place even when
the potential becomes extremely flat.
Now, to determine the second Hubble parameter, ϵ2,

during such an evolution, we use Eqs. (4.1)–(4.3) to show
that

Ḧ
ḢH

¼ −6ð1þQÞ þ 4

4 − p

ϒ;ϕϕ̇

3H2ð1þQÞ

þ
�

1

4 − p
ϒ;TT
ϒ

þ 1

�
Q

1þQ
ϵ1 −

6Qp
4 − p

: ð4:5Þ

Using this relation into Eq. (2.6), we see that

ϵ2 ¼ −6
�
1þ 4Q

4 − p

�
þ 4

4 − p

�
c

ϕ̇

Hϕ
þ ϵ1

�
Q

1þQ

þ 2ϵ1; ð4:6Þ

where we have again used the general form of the
dissipative coefficient given in Eq. (3.3). Let us appraise
the situation in two different regimes, strong dissipation
and weak dissipation, separately.
In a strong dissipative regime (Q ≫ 1), Eq. (4.6) can be

approximated as

ϵ2 ∼
4

4 − p

�
−6Qþ c

ϕ̇

Hϕ
þ ϵ1

�
þ 2ϵ1: ð4:7Þ

There are a couple of models where WI can be realized in a
strong dissipative regime: one is presented in [48], and the
other is presented in [47] (this model is dubbed minimal
warm inflation). In the strong dissipative WI model
presented in [48], the dissipative coefficient, despite having
a complex form, varies inversely with the temperature
(ϒ ∝ T−1) during the evolution, and does not depend on the
inflaton amplitude. Therefore, for this kind of model p ¼ −1
and c ¼ 0. This yields ϵ2 ∼ ð−24=5ÞQþ ð14=5Þϵ1. We
have mentioned earlier that in this model, Q can be of the
order of 10 or 100 (yielding ϵ1 ≪ 1), and thus the model
can enter an ultraslow-roll phase while inflating. However,
looking at Eq. (4.2), we note that d lnT=dN ∼ −ð6=5ÞQ,
and therefore, the temperature decreases exponentially
with the e-foldings during the ultraslow-roll phase. It
indicates that the thermal equilibrium of the radiation bath
cannot be maintained during ultraslow roll in such
models, and the system will deviate from the basic WI
picture. In the minimal warm inflation model [47], the
dissipative coefficient varies with the cubic power of
temperature (ϒ ∝ T3) and does not depend on the inflaton
amplitude. Therefore in this model p ¼ 3 and c ¼ 0,
yielding ϵ2 ∼ −24Qþ 6ϵ1. As mentioned earlier, Q can
take very large values (Oð103Þ) in such models. Despite
that, if Qϕ2 ≪ VðϕÞ, then ϵ1 ≪ 1, and we get ϵ2 ∼ −24Q,
indicating an ultraslow-roll phase, even though, like in the
previous case, we note that d lnT=dN ∼ −6Q, and the
temperature will exponentially fall with e-foldings taking
the system away from thermal equilibrium, and deviating
from the standard WI picture.
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In a weak dissipative regime (Q ≪ 1), Eq. (4.6) can be
approximated as

ϵ2 ¼ −6þ 4

4 − p

�
c

ϕ̇

Hϕ
þ ϵ1

�
Qþ 2ϵ1: ð4:8Þ

Wewill deal with two kinds of models where WI is realized
in a weak dissipative regime. The first one is dubbed warm
little inflaton [49], where the dissipative coefficient varies
linearly with the temperature (ϒ ∝ T) and does not depend
on the inflaton amplitude. Therefore, in this case, p ¼ 1
and c ¼ 0, yielding ϵ2 ¼ −6þ ð10=3Þϵ1. As we have seen
before, ϵ1 ≪ 1 when the potential becomes extremely flat
during weak dissipation, and therefore, we conclude that
during such a phase ϵ2 ∼ −6. Though it indicates an onset
of an ultraslow-roll phase, we again note that, as in the
strong dissipative cases discussed above, Eq. (4.2) yields
d lnT=dN ∼ −2, indicating a departure from thermal equi-
librium. So far, we have discussed WI models where the
dissipative coefficient varies solely with T, both in strong
and weak dissipative regimes, and saw that the system veers
away from the thermal equilibrium state when an ultraslow-
roll like phase sets in. As it is not yet known how to treat WI
when the thermal equilibrium of the radiation bath is lost,
we will not further analyze the ultraslow-roll phase in WI
models where the dissipative coefficient solely varies
with the temperature and has no dependence on the field
amplitude.
We will now analyze a WI model where the dissipative

coefficient is a function of both T and ϕ. The model studied
in [43,44,50] has a dissipative coefficient of the form
ϒ ∝ T3=ϕ2, andWI is realized in a weak dissipative regime
in such a model. This model has also been verified with the
Planck data in [51,52]. Being realized in a weak dissipative
regime, we can guarantee that ϵ1 will remain much smaller
than unity even when the potential becomes extremely flat.
Our aim, now, is to keep jd lnT=dNj ≈ 0 while making jϵ2j
larger than unity, so that an ultraslow-roll phase can be
realized while maintaining the thermal equilibrium of the
system. Therefore, with ϵ1 ≪ 1 and Q ≪ 1, Eq. (4.2) can
be approximated as

d lnT
dN

≈
1

4 − p

�
c
d lnϕ
dN

− 6

�
: ð4:9Þ

We note from this equation that, to keep jd lnT=dNj ≈ 0,
d lnϕ=dN should be positive if c is positive and vice versa.
In other words, jcjjd lnϕ=dNj should always remain
positive. Hence, to maintain a thermal equilibrium we
demand that during an ultraslow-roll phase

���� d lnϕdN

���� ∼ 6

jcj : ð4:10Þ

If we impose this condition on ϵ2 given in Eq. (4.8) with
other conditions, like ϵ1 ≪ 1 and Q ≪ 1, we obtain

ϵ2 ≈ −6þ
�

4

4 − p

�
6Q: ð4:11Þ

We can keep jϵ2j > 1 in two ways: keeping ϵ2 > 1 or
demanding ϵ2 < −1. In the first case, when ϵ2 > 1, we get

Q >
7

6

�
4 − p
4

�
: ð4:12Þ

Therefore, to ensure that WI takes place in a weak
dissipative regime we constrain Q as ð7=6Þ½ð4 − pÞ=4� <
Q < 1. For the model discussed above [43,44,50], this
condition leads to ð7=24Þ < Q < 1. However, in the
second case, when ϵ2 < −1, we get

Q <
5

6

�
4 − p
4

�
: ð4:13Þ

This condition ensures that WI will take place in a
weak dissipative regime. For the model discussed above
[43,44,50], this condition leads to Q < 5=24.
However, we note that though the condition given in

Eq. (4.10) allows the onset of ultraslow roll in WI, while
maintaining thermal equilibrium, still Eq. (4.10) differs
from the equation of motion of the inflaton field during
ultraslow roll given in Eq. (4.1). Therefore, as ultraslow roll
proceeds, the dynamics of the inflaton field will take the
system away from the condition in Eq. (4.10), and the
temperature of the system will start to evolve indicating a
departure from thermal equilibrium. Thus, the system needs
to exit from ultraslow roll before the temperature evolves
too much to disrupt thermal equilibrium. We will show in
the next section, by numerically evolving the system, that
such a thermally equilibrated ultraslow-roll phase can be
realized in WI in specific cases.

V. NUMERICAL ANALYSIS OF VIABLE
ULTRASLOW-ROLL PHASE IN WI

In WI, the inflaton field equation of motion and the
evolution of the radiation bath (as well as the evolution of
the temperature) are coupled as the inflaton field dissipates
its energy to the radiation bath throughout WI. The system
thus evolves according to the coupled equations given in
Eqs. (3.1) and (3.2). We will numerically evolve these two
equations in cases where WI can enter an ultraslow-roll
phase, and then appraise its characteristics. We will con-
sider two different potentials, the linear potential [7], and
the cubic potential [10], where it has been shown pre-
viously that the system undergoes ultraslow roll in CI
scenarios. In both these cases, we will make use of the
dissipative coefficient ϒ ¼ CϒT3=ϕ2 and will ensure that
WI takes place in a weak dissipative regime.
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A. Linear potential: VðϕÞ=V0 +M3
0ϕ

This potential has been considered in [7] to analyze the
dynamics of ultraslow roll in CI. In this potential, when
V0 ≫ M3

0ϕ, the potential becomes extremely flat, and the
system can enter an ultraslow-roll phase. We chose the
parameters V0 and M0 accordingly, which we have quoted
in the caption of Fig. 1. We see from Fig. 1 that initially the
acceleration term (ϕ̈) and the friction term (3Hð1þQÞϕ̇)
dominate over the slope term ðV;ϕ Þ [the graph of ϕ̈ and
3Hð1þQÞϕ̇ overlaps for the first few e-folds], indicating
an ultraslow-roll phase. Around 3.5 e-folds the acceleration
term becomes subdominant, and the dynamics is governed
by the friction and the slope terms, indicating an onset of
the usual slow-roll phase.
In Fig. 2, we note that the thermalization condition

during ultraslow roll given in Eq. (4.10) is maintained for
about the first 1.5 e-folds. However, as the condition for

thermalization differs from the equation of the inflaton field
during ultraslow roll [Eq. (4.1)], the thermalization con-
dition cannot be maintained for a long period, and the
system will veer off from thermal equilibrium, as has been
pointed out in the previous section. However, the overall
thermalization condition of WI, T > H, will remain main-
tained throughout the ultraslow-roll phase, as has been
depicted in Fig. 3.
Figure 4 depicts the evolution of the second Hubble

parameter, ϵ2, during this ultraslow-roll evolution. We
note that the ultraslow-roll condition, ϵ2 < −1, is main-
tained until about four e-foldings, and after that jϵ2j
becomes smaller than unity, indicating the onset of
the slow-roll phase. Also, Fig. 5, where the evolution
of Q is shown during ultraslow roll, ensures that WI takes
place in a weak dissipative regime during this ultraslow-
roll phase.
Hence, we can see that in such a setup an ultraslow-roll

phase can be embedded in a weak dissipative WI model
while maintaining thermal equilibrium.
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FIG. 2. Evolution of the thermalization condition given in
Eq. (4.10) during ultraslow roll in the case of linear potential.
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FIG. 3. Evolution of the temperature and the Hubble parameter
during ultraslow roll in the case of linear potential.
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FIG. 1. The figure depicts the numerical evolution of the
acceleration term (ϕ̈), the friction term (3Hð1þQÞϕ̇), and the
slope term (V;ϕ) present in the equation of motion of the inflaton
field through an ultraslow-roll phase in the case of linear potential.
We have chosen the parameters as follows: V0 ¼ ð10−4MPlÞ4,
M0 ¼ 2.5 × 10−8MPl, Cϒ ¼ 10, and g� ¼ 106.75.
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FIG. 4. Evolution of the second Hubble slow-roll parameter, ϵ2,
during ultraslow roll in the case of linear potential.
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B. Cubic potential: VðϕÞ=V0 + ½1 + ð ϕϕ0
Þ3�

The cubic potential was considered in [10] while dis-
cussing the attractor behavior of ultraslow roll in CI. This
potential has an inflection point around ϕ ¼ 0. In WI, if we
start near this inflection point region then the system can
undergo an ultraslow-roll phase. It is worth noting that we
cannot analyze the system at the inflection point (ϕ ¼ 0), as
the dissipative coefficient (ϒ ∝ T3=ϕ2) will be ill-defined
at this point. We can only analyze the system near about the
inflection point.
We first note in Fig. 6, that in this case the system

quickly deviates from the thermalization condition given in
Eq. (4.10) as soon as ultraslow roll begins. This indicates
that the system should not linger in an ultraslow-roll phase
for a long time as that will lead to disruption of thermal
equilibrium of the system. In Fig. 7, we notice that the
coupled equations of the system do not let the ultraslow-roll
phase last for long, and within nearly 1.5 e-folds the system
tends to enter a slow-roll phase. We also note in Fig. 8 that
the overall thermalization condition of WI (T > H) is
maintained throughout the ultraslow-roll phase.

0 1 2 3 4 5

0.000

0.001

0.002

0.003

0.004

N

Q

FIG. 5. Evolution ofQ during ultraslow roll in the case of linear
potential.
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FIG. 6. Evolution of the thermalization condition given in
Eq. (4.10) during ultraslow roll in the case of cubic potential.
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FIG. 8. Evolution of the temperature and the Hubble parameter
during ultraslow roll in the case of cubic potential.
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FIG. 7. The figure depicts the numerical evolution of the
acceleration term (ϕ̈), the friction term (3Hð1þQÞϕ̇), and the
slope term (V;ϕ) present in the equation of motion of the inflaton
field through an ultraslow-roll phase in the case of cubic potential.
We have chosen the parameters as follows: V0 ¼ ð10−4MPlÞ4,
ϕ0 ¼ 2.5 × 10−1MPl, Cϒ ¼ 104, and g� ¼ 106.75.
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FIG. 9. Evolution of the second Hubble slow-roll parameter, ϵ2,
during ultraslow roll in the case of cubic potential.
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In Fig. 9 we see that the second Hubble slow roll, ϵ2, will
remain larger than −1 for about 2.5 e-foldings, and then we
achieve jϵ2j < 1 indicating an onset of an usual slow-roll
phase. Also, Fig. 10 ensures that the whole dynamics takes
place in a weak dissipative regime.
Therefore, in this system, too, an ultraslow-roll phase,

though much shorter than the previous scenario, can be
realized near an inflection point within a weak dissipative
WI model while maintaining the overall thermal equilib-
rium of the system.

VI. DISCUSSION AND CONCLUSION

CI undergoes an ultraslow-roll phase when the potential
becomes extremely flat [7]. In this paper we ask the
question what happens to WI, a variant inflationary
scenario, in a similar situation. As has been pointed out
in the Introduction, a constant, subdominant, nearly ther-
mally equilibrated radiation bath coexists during WI due to
the continuous dissipation of energy of the inflaton field
into this radiation bath. The coexistence of this radiation
bath along with inflaton energy density is the signature of
WI which distinguishes it from the standard CI scenario.
Therefore, one naturally expects the radiation bath, along
with the thermal equilibrium of the system, to be main-
tained in WI even when the system passes through an
extremely flat region of the potential.

However, we found in this article that WI models with
dissipative coefficients solely dependent on the temperature
(ϒ ∝ Tp) fail to maintain thermal equilibrium of the system
when the system traverses through a very flat region of the
potential. It is not yet known what happens to the WI
dynamics when the thermal equilibrium is lost. We, there-
fore, could not further analyze these systems in such
circumstances.
On the other hand, we showed that the overall thermal

equilibrium of the system can be maintained throughout a
phase when the WI system traverses through an extremely
flat region of the potential in cases where the dissipative
coefficients are functions of both the temperature and the
inflaton amplitude. We particularly dealt with the models
with dissipative coefficients of the form ϒ ∝ T3=ϕ2. Such
models have been shown to tally well the observations
when WI takes place in a weak dissipative regime [51,52].
Therefore, we treated such models in the weak dissipative
regime, and considered two potentials (linear and cubic)
with extremely flat regions to demonstrate that an ultra-
slow-roll phase can indeed be realized in WI while
maintaining the overall thermal equilibrium of the system.
Though it seems like a positive note to conclude the

article, we would like to call attention to our incapability of
and discomfort in dealing with WI systems with dissipative
coefficients depending on the temperature alone when such
systems encounter an extremely flat region of the potential.
We have observed that these systems lose thermal equi-
librium, a signature property of WI. We hope that this
article will encourage more research in this field to reveal
the true nature of the WI dynamics in such circumstances.
We also leave the analysis of the cosmological perturba-
tions during the ultraslow-roll phase in WI for a future
project, which is essential to determine the observational
consequences of such a departure from slow roll duringWI.
Recently, a numerical code has been developed [53] to
study the cosmological perturbations in standard slow-roll
WI models. We aim to develop similar codes for an
ultraslow-roll phase in WI in a future project.
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