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Neutrinos in dense environments like core-collapse supernovae (CCSNe) and neutron star mergers
(NSMs) can undergo fast flavor conversions (FFCs) once the angular distribution of neutrino lepton
number crosses zero along a certain direction. Recent advancements have demonstrated the effectiveness of
machine learning (ML) in detecting these crossings. In this study, we enhance prior research in two
significant ways. First, we utilize realistic data from CCSN simulations, where neutrino transport is solved
using the full Boltzmann equation. We evaluate the ML methods’ adaptability in a real-world context,
enhancing their robustness. In particular, we demonstrate that when working with artificial data, simpler
models outperform their more complex counterparts, a noteworthy illustration of the bias-variance tradeoff
in the context of ML. We also explore methods to improve artificial datasets for ML training. In addition,
we extend our ML techniques to detect the crossings in the heavy-leptonic channels, accommodating
scenarios where νx and ν̄x may differ. Our research highlights the extensive versatility and effectiveness of
ML techniques, presenting an unparalleled opportunity to evaluate the occurrence of FFCs in CCSN and
NSM simulations.
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I. INTRODUCTION

Core-collapse supernovae (CCSNe) and neutron star
mergers (NSMs) are cataclysmic stellar events that re-
present the dramatic culmination of massive stars’ life
cycles and the collision and coalescence of incredibly dense
remnants, respectively [1–4]. These events not only mark
the end of massive stars and dense objects, but also unveil
some of the most energetic and enigmatic phenomena in the
universe. In the heart of these cosmic fireworks, one of the
most fascinating processes at play is the neutrino emission,
which are released in vast quantities during CCSNe
and NSMs.
As they journey through the extraordinarily dense and

extreme conditions within these events, neutrinos undergo
an intriguing phenomenon known as collective neutrino
oscillations. This fascinating behavior arises from their
interactions with the dense background neutrino gas, where
coherent forward scatterings play a pivotal role. This
phenomenon occurs in a nonlinear and collective manner,

creating a rich tapestry of flavor transformations [5–11] (for
a recent review see Ref. [12]).
Of particular interest are the so-called fast flavor con-

versions (FFCs), which occur on scales characterized by
∼G−1

F n−1ν (see, e.g., Refs. [13–60]). Here, GF represents the
Fermi coupling constant, and nν denotes the neutrino
number density. These FFCs can take place on timescales
much shorter than what would be expected in the vacuum.
FFCs occur iff the angular distribution of the neutrino

lepton number, defined as,

GðvÞ ¼
ffiffiffi
2

p
GF

Z
∞

0

E2
νdEν

ð2πÞ3 ½ðfνeðpÞ − fνxðpÞÞ

− ðfν̄eðpÞ − fν̄xðpÞÞ�; ð1Þ

crosses zero at some v ¼ vðμ;ϕνÞ, with μ ¼ cos θν [30].
Here, Eν, θν, and ϕν are the neutrino energy, the zenith, and
azimuthal angles of the neutrino velocity, respectively, and
fν’s are the neutrino occupation numbers. When νx and ν̄x
have similar angular distributions, a scenario commonly
observed in state-of-the-art CCSN simulations, this expres-
sion transforms into the conventional νELN (neutrino
electron lepton number).
Exploring νELN crossings necessitates access to the

complete angular distributions of neutrinos. However,
obtaining such detailed angular information poses a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 109, 023033 (2024)

2470-0010=2024=109(2)=023033(11) 023033-1 Published by the American Physical Society

https://orcid.org/0000-0001-8276-997X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.023033&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.1103/PhysRevD.109.023033
https://doi.org/10.1103/PhysRevD.109.023033
https://doi.org/10.1103/PhysRevD.109.023033
https://doi.org/10.1103/PhysRevD.109.023033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


significant challenge in most cutting-edge CCSN and NSM
simulations due to the prohibitive computational demands
involved.
As a practical alternative, many simulations simplify

neutrino transport by relying on a limited set of angular
distribution moments [61–63]. In our specific investigation,
we focus on radial moments, defined as,

In ¼
Z
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−1
dμ μn

Z
∞

0

Z
2π

0

E2
νdEνdϕν

ð2πÞ3 fνðpÞ: ð2Þ

These moments capture the key aspects of the neutrino
angular distribution, at the same time allowing for its more
computationally manageable treatment.
Note that our current emphasis lies on axisymmetric

crossings, directing our attention specifically to radial
moments where the angular distribution integrates over
ϕν. It is important to note that nonaxisymmetric crossings
fall outside the scope of our present study, a matter to be
explored in future works.
Despite the inherent loss of a significant amount of

information when considering only a select few neutrino
angular moments, ingenious methods can still be devised to
harness these limited information for assessing FFCs in
CCSN and NSM simulations. In the initial stages of
research in this field, the primary focus was on analytical
or semianalytical techniques [25,31,64–68]. While these
methods have demonstrated their ability to capture ELN
crossings and have found relative success in the literature,
they are constrained in their performance. This limitation
arises from their either sluggish computational speed or
their inefficiency in identifying ELN crossings which
impacts their ability to efficiently detect FFCs in real-time
simulations. Specifically, the most efficient techniques tend
to be noticeably sluggish, and their development can be
relatively intricate when starting from scratch.1

Recent research has demonstrated the effectiveness of
machine learning (ML) techniques in identifying FFC in

CCSN and NSM simulations [69]. While ML methods are
data-intensive and require an initial training phase with
data, it’s important to note that once trained, they exhibit
exceptional speed and efficiency. This presents a promising
avenue for real-time detection of FFI’s within the context of
CCSN and NSM simulations. Moreover, integrating pre-
trained ML models is a straightforward procedure, signifi-
cantly reducing the requirement for extensive coding work,
even when analyzing the occurrence of FFCs in a post-
processing phase. In fact, ML techniques offer the fastest
and most precise approach to detect FFCs, and their
performance in more complex environments can be further
enhanced as and if one can train them on the data obtained
from those environments.
In this paper, we advance the prior study in two pivotal

directions. First, in earlier work, ML models were trained
using artificial data generated from specific parametric
angular distributions. While these models showed promise,
they were only partially validated against a limited amount
of realistic data from NSM remnant simulations. It is
essential for ML techniques to be trained and tested on
data that closely resembles real-world simulations.2 In our
study, we take a significant step forward by utilizing
authentic data from a CCSN simulation, where neutrino
transport was modeled using the full Boltzmann equation.
This allows us to assess the adaptability of MLmethods in a
real-world context and examine their limitations as well as
their optimal performance range. Furthermore, we
acknowledge that artificial data are more readily available
and can offer broader distributions that are expected in
CCSN and NSM environments. Consequently, we also
investigate methods to enhance artificial datasets for ML
training purposes.
In addition, in our previous study, we assumed that the

distributions of νx and ν̄x were identical. From a ML
perspective, this simplification facilitated the development
of our ML module by requiring a smaller number of
features and a more efficient classification. In this work, we
develop ML techniques to detect the crossings regarding
the neutrino heavy-leptnic channel distribution (νXLN)
addressing scenarios where νx and ν̄x may exhibit
differences, a previously unexplored area in the literature.
While our results may be slightly less accurate than those in
the previous scenario, ML methods still prove remarkably
effective in identifying the occurrence of FFC in this
scenario..
In the upcoming section, we delve into our CCSNmodel,

the source of our data. We then assess the performance of
ML methods in detecting FFCs in our CCSN model,
specifically focusing on the detection of νELN crossings.
Finally and before presenting our conclusions, we analyze

1As discussed in the text, the traditional methodologies can be
broadly categorized into two classes: analytical methods, which
concentrate on the instability of a specific mode, and semi-
analytical models, which focus on identifying descriptive poly-
nomials or fitting functions to angular distributions. While
analytical approaches boast speed and ease of implementation,
their efficiency in the CCSN environment is generally questioned
due to specific conditions required for their usefulness. Con-
versely, semi-analytical methods, while being more efficient in
capturing crossings, pose a significant computational burden. In
contrast, ML, by focusing on simulation-derived moments (it can
only focus on I0 and I1), presents a promising alternative that
mitigates the influence of variations and artefacts introduced by
closure relations. This should be compared with the results, e.g.,
in Ref. [65], that showed using the semianalytical methods could
only capture ≲50% of the ELN crossings (although more angular
information were provided, namely I2 and I3). Therein, it was
also shown that the simple method developed in Ref. [64] could
not capture any ELN crossings.

2Henceforth in this paper, whenever the term realistic or real-
world data is mentioned, it specifically refers to the data acquired
from our axisymmetric CCSN simulation.
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the performance of ML methods in detecting the crossings
in the heavy-leptnic channel.

II. CCSN MODEL

Here, we construct a ML technique to detect νELN- and
XLN angular crossings based on an axisymmetric CCSN
model with full Boltzmann neutrino transport [70]. Before
entering into the detail of our ML, we briefly describe our
CCSN model providing neutrino dataset used for ML
training and its testing.
The numerical simulation was carried out by a

Boltzmann-neutrino-radiation hydrodynamic code [71]
with some special treatments to handle proper motions
of proto-neutron star (PNS) [72,73]. In this model, a table
of multinuclear variational method equation-of-state [74]
was used, and the nuclear abundance in the table was also
used to compute neutrino-matter interactions for the con-
sistent treatment between EOS and weak rates [75]. We
used a 11.2 solar mass progenitor model in Ref. [76].
One of the noticeable features in the CCSN model is that

large-scale asymmetric neutrino emission emerges> 150ms
after bounce, that corresponds to the timing of asymmetric
shock expansion and the onset of PNS proper motion (see
Fig. 1 in Ref. [70]). We note that the asymmetric emission
is clearly anticorrelated between νe and ν̄e, which is
attributed to the distribution of electron fraction (Ye) in
the vicinity of PNS, and ν̄e tends to be more abundant in
low Ye environments. As shown in Ref. [77], the increase
of ν̄e reduces the disparity between νe and ν̄e angular
distributions, leading to enhance the possibility of νELN
crossings. In the region with higher Ye environments, on
the other hand, νe becomes much higher than ν̄e, indicating
that FFI is unlikely to occur.
In the CCSN model, νELN angular crossings are

observed rather stably at > 200 ms (see Fig. 2 in
Ref. [77]); hence, we employ three different time snapshots
for our ML training (200, 250, and 300 ms after bounce), in
which there are both spatial regions with and without νELN
angular crossings. It should also be mentioned that νELN
crossings are also observed in PNS convective layer and in
preshock regions, which are consistent with previous
studies [78–80]. For more detailed discussion about neu-
trino angular distributions associated with arguments of
νELN crossings, we refer readers to Ref. [77].

III. ML ALGORITHMS

ML, at the crossroads of computer science and artificial
intelligence, is transforming how computers learn and
make decisions from data. By unraveling intricate patterns,
ML drives progress across diverse domains, from image
and speech recognition to healthcare, finance, and autono-
mous vehicles.
Recent advancements have demonstrated the effective

utilization of ML algorithms for detecting νELN crossings

in CCSN and NSM simulations [69]. In this context, we
commence with a brief overview of the data preparation
and ML techniques employed in Ref. [69]. Subsequently,
we provide a comprehensive discussion of our research
findings.
To effectively train and evaluate our ML algorithms, it is

imperative to possess a substantial dataset comprising
labeled values for I0 and I1 associated with νe and ν̄e.
These labels are instrumental in discerning the presence or
absence of νELN crossing. It is worth highlighting that our
current emphasis is primarily on the first two moments.
These moments are of particular interest as they are the
ones typically tracked directly in the simulation processes.
In order to train our ML algorithms, we partially employ

two parametric neutrino angular distributions which have
been widely used in the literature [46,67,81], namely, the
maximum entropy distribution defined as,

fmax−ent
ν ðμÞ ¼ exp½ηþ aμ�; ð3Þ

and the Gaussian distribution,

fGaussν ðμÞ ¼ A exp

�
−
ð1 − μÞ2

a

�
; ð4Þ

with,

fνðμÞ ¼
Z

∞

0

Z
2π

0

E2
νdEνdϕν

ð2πÞ3 fνðpÞ: ð5Þ

Here the parameters a, η, and A determines the overall
neutrino number density and the shape of the neutrino
distributions.
In addition, in order to improve the efficiency of our ML

algorithms, we do feature engineering and instead of I0 and
I1 of νe and ν̄e which are the provided information, we use,

α ¼ Iν̄e0 =I
νe
0 ; Fνe ¼ Iνe1 =I

νe
0 ; and Fν̄e ¼ Iν̄e1 =I

ν̄e
0 ;

ð6Þ

as the relevant features to be considered in the ML
algorithms. This is justified by bearing in mind that an
overall normalization factor does not affect the occurrence
of νELN crossings.
To facilitate the training and evaluation of ML algo-

rithms, it is essential to partition the dataset into three
distinct sets: (i) The training set: This subset is employed to
train the ML algorithm, allowing it to learn patterns and
relationships within the data, (ii) The development set: This
set serves as a tool for fine-tuning the algorithm’s hyper-
parameters, ensuring optimal performance, and (iii) The
test set: This portion is dedicated to assessing the
ML method’s performance on previously unseen data,
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providing a reliable measure of its effectiveness. In prac-
tice, one should randomly distribute the data among these
different datasets to avoid any sort of bias. In our analysis,
we have randomly distributed the data given the
0.8∶0.1∶0.1 fraction for the training, development, and
the test sets, respectively.
To comprehensively assess the effectiveness of our ML

algorithm, we go beyond mere accuracy, which can be a
somewhat simplistic measure. Instead, we consider also
more detailed evaluations using precision and recall met-
rics, defined as,

accuracy ¼ Tp þ Tn

Tp þ Tn þ Fp þ Fn

precision ¼ Tp

Tp þ Fp

recall ¼ Tp

Tp þ Fn

F1 ¼ 2 ×
precision × recall
precisionþ recall

; ð7Þ

with TðFÞpðnÞ denoting true (false) positive (negative)
classifications. A discerning reader will notice that the
precision/recall metric informs us about the reliability/
detectability of classifications, while F1 is their harmonic
mean. In this study, we opt for accuracy as the suitable
metric because we aim for equal sensitivity to the presence
or absence of νELN crossings.
In this study we consider the following ML algorithms:

(i) Logistic regression (LR): a statistical classification
algorithm that models the probability of a binary outcome.
LR turns out to be one of the most promising ML algorithm
to be used in detecting νELN crossings [69], (ii) k-nearest
neighbors (KNN): an intuitive learning algorithm that
classifies data points based on the majority class of their
k-nearest neighbors in the feature space, (iii) Support vector
machine (SVM): a powerful algorithm that separates data
into classes by finding the hyperplane that maximizes the
margin between them in a high-dimensional space, and
(iv) Decision tree (DT): a treelike model used for both
classification and regression tasks, where the data is split
into subsets based on feature conditions, ultimately leading
to a decision or prediction.
There are two final aspect of the LR and SVM algorithms

that requires a bit of clarification. While LR incorporates
the nonlinear logistic function, it fundamentally operates as
a linear classifier. Consequently, it cannot be directly
applied to the detection of νELN crossings, which inher-
ently represents a nonlinear problem [69]. To overcome this
limitation, it becomes necessary to undertake a preprocess-
ing step involving nonlinear transformations and the
creation of new features based on the original three features
involved in the problem. The degree of polynomial

transformation, being a hyperparameter of this algorithm,
plays a crucial role in this process.3

Regarding the SVM algorithm, we shouldmention that we
employ the radial basis function (RBF) kernel, defined as,
Kðx; x0Þ ¼ expð−γkx − x0k2Þ. Here γ is a hyper-parameter
which is set to be γ ¼ 100 [69].
In the next part, we present our results. In addition, to

promote transparency and collaboration, we have made our
ML methodologies available on GitHub.

A. ML-based detection of νELN crossings
using the SN data

We initially assess the performance of the pre-trained
ML models of Ref. [69] (using artificial data) on the
realistic dataset obtained from the simulation. The metric
scores for the performance of these pretrained ML algo-
rithms are presented in Table I. It becomes evident that the
performance of ML models, which were initially trained on
artificial data, degrades when applied to realistic data.

TABLE I. A summary of the metric scores of the previously-
trained ML algorithms (using artificial data) tested on the realistic
dataset. This is to be compared with Table I. in Ref. [69].
Alongside each algorithm, one can find its corresponding
accuracy score.

LR (n ¼ 9) (68%)

Precision Recall F1-score

No crossing 72% 82% 77%
Crossing 59% 43% 50%

KNN (n ¼ 3) (77%)

Precision Recall F1-score

No crossing 77% 89% 83%
Crossing 75% 55% 63%

SVM (87%)

Precision Recall F1-score

No crossing 98% 81% 89%
Crossing 75% 98% 85%

Decision tree (71%)

Precision Recall F1-score

No crossing 74% 84% 79%
Crossing 63% 48% 55%

3The polynomial transformation method produces an aug-
mented feature matrix by considering all possible polynomial
combinations of the original features up to a specified degree. To
illustrate, if an input sample has two dimensions denoted as
ða; bÞ, the resulting degree-2 polynomial features would include
ða; b; a2; ab; b2Þ (assuming no bias term is taken into account).
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Notably, the accuracies of LR and SVM are of paramount
concern. Specifically, the LR model (here was considered
with a polynomial degree of 9) exhibits a significant
deviation from its accuracy on artificial data (as indicated
in Table I of Ref. [69]). This indicates poor generalization
of the old LR algorithm with a polynomial degree n ¼ 9, a
known issue referred to as high variance in the context
of ML.
Another enlightening aspect centers on the SVMmodel’s

relatively good performance, consistently achieving high
accuracy even when confronted with previously unseen
data. This serves as yet another compelling example of the
effectiveness of maximizing margins to separate classes,
underscoring its conceptual soundness and its ability to
enhance the model’s overall generalizability in ML.
However and as depicted in Fig. 1, the former LR model

(red-curve) trained on synthetic data, attains its peak
performance around n ≃ 2 achieving an accuracy of
approximately 85%. In simpler terms, the more straightfor-
ward models outperform their counterparts when it comes
to νELN detection on previously unseen data. This serves
as a prime illustration of the bias-variance tradeoff within
the realm of ML. As we see later on, it seems to be a general
observation that when considering LR, opting for nonlinear
transformations with lower polynomial degrees tends to
yield better results, at least as long as a variation between
the training and test sets is expected.
While achieving an accuracy of ∼85% is already

acceptable, it’s important to note that the performance of

models developed using artificial datasets can still be
enhanced. The initial ML models were trained on data
with α values ranging from 0.03 to 2.5, alongside random
selections of Fνe and Fν̄e in the (0, 1) range. However, this
approach, while suitable for an initial step, does not align
with realistic conditions. In realistic simulations of CCSNe,
it is anticipated that Fνe ≲ Fν̄e (note that this could be a bit
distorted in the case of NSM where the radiation fields can
be qualitatively different).
To address this issue, we enhance our ML model by

training it with artificial data while considering Fνe within
the range of ð0.6Fν̄e ; Fν̄eÞ. The performance of such a ML
model on realistic data is illustrated in Fig. 1 (red-dotted
curve), revealing two significant insights. Firstly, high
variance is observed at large polynomial degrees, indicating
poor generalizability of the ML performance at those
polynomial degrees. Second, the ML model, trained on
this improved artificial dataset, achieves notably higher
accuracy compared to the previous version. This reaffirms
the significance of a well-representative training dataset for
accurate testing.
Hence, variations in the distributions between training

and test datasets can impact accuracy. It is essential to
emphasize that this scenario differs entirely from encoun-
tering unexplored regions of the parameter space in the test
set. To better understand this, let us consider an ML
classifier trained on a dataset comprising 500 cat images,
490 horse images, and only 10 dog images, achieving an
overall accuracy of 99%. However, the accuracy drops to
30% when classifying dog images. This discrepancy arises
because most of the training focus was directed toward
enhancing the classification of more abundant cat and horse
images. Now, envision a test set consisting of 500 cat
images and 500 dog images. Despite some dog images
being present in the training set, a subpar performance on
the test set is anticipated due to differing distributions
compared to training set.
While this approach notably improves the ML model’s

performance in CCSN environments, the constrained
parameter space within the training set could also partially
restricts the applicability of the ML model to that specific
parameter range.
In the final step, we enhance our ML model by

incorporating real-world data into the training set. It is
important to highlight that we do not exclusively rely on
real data for training. This approach allows us to maintain
variability in the angular distributions of neutrinos. The
performance of this MLmodel is depicted by the blue curve
in Fig. 1. Notably, it exhibits exceptionally high accuracy
across all polynomial degrees. However, drawing from our
previous experiences, we favor selecting n ¼ 2 due to its
strong potential for effective generalization to unseen data.
Beyond its generalization capabilities, opting for n ¼ 2
also brings the advantage of reduced computational inten-
sity when implementing the LR model in CCSN and NSM

FIG. 1. The accuracy of the LR algorithms evaluated on the
realistic dataset for models trained on various training sets, with a
focus on the impact of polynomial degree of the nonlinear
transformations. It is noteworthy that LR models trained on
the improved artificial training sets can achieve comparable
accuracies to those trained on realistic data at lower polynomial
degrees, implying simpler model structures. The black dashed
line represents the performance of the old LR model trained on
artificial data when tested on its dedicated test set.
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simulations on the fly. In addition, In Fig. 2, we present the
comprehensive set of metric scores obtained from our
improved LR model. It is worth highlighting that all these

scores attain satisfactory values when the polynomial
degree is set to 2.
In Table II, we present the performance results of our

enhanced ML models, which were trained using a combi-
nation of both realistic and artificial datasets. The outcomes
demonstrate that our ML models achieve very high
performance metrics. Notably, these scores surpass those
obtained by the ML model trained exclusively on artificial
data, as shown in Table I of Ref. [69]. This improvement
can be attributed to the fact that the artificial data includes
noisy labels, as discussed in Ref. [69], which was identified
as a primary source of inaccuracies once the ML model is
tested on artificial data.
In all our calculations, we have primarily employed

random data distribution between training and test datasets.
While this is crucial to ensure having a robust ML model,
we conducted also additional calculations where the train-
ing and testing processes were executed on datasets
belonging to distinct time snapshots. We observed that
these variations yielded similar results, confirming the
robustness of our methods.

B. Performance of ML in the neutrino
decoupling region

In the previous section, we assessed the overall perfor-
mance of ML in the SN environment. It is important to note
that FFCs are expected to be most impactful when they
occur closer to the surface of the PNS, well within the SN
post-shock zone. This can be attributed to two primary
reasons. First, when FFCs happen in deeper SN regions, the
νELN crossings can potentially be wider/deeper, which
may result in more pronounced flavor conversions.
Additionally, any flavor conversion occurring above the
SN shock is not expected to have a noticeable impact on the
CCSN dynamics [52], though can still impact the neutrino
signal.
Considering this, in addition to evaluating our ML

methods’ overall performance, we specifically examined
their performance in SN regions located well below the
shock. To do this, we assessed the performance of our ML
algorithms in SN zones where the radial distance is
≲100 km. As illustrated in Table III, our ML models
effectively do a good job in capturing νELN crossings. The
only exception is the recall score of the LR method, which
is relatively low at around 50%, despite its good overall
performance.
Fixing this issue involves lowering the threshold prob-

ability (denoted as pc) for the LR algorithm, as discussed in
Ref. [69]. As depicted in Fig. 3, significant improvement of
the recall score can be achieved by reducing the LR
threshold probability (here to pc ¼ 0.3). However, this
comes at the cost of a reduction in the precision score,
showcasing the traditional precision-recall tradeoff. While
other ML algorithms exhibit very high scores, rendering
them ideal for detecting the post-processing detection of

FIG. 2. The metric scores of the LR algorithm trained on a
combination of the artificial and realistic datasets, as a function of
the polynomial degree of the nonlinear transformations. It is
worth noting that the precision and recall scores typically exhibit
opposing trends, a phenomenon commonly referred to as the
precision-recall tradeoff within the field of ML.

TABLE II. A summary of the metric scores of ML algorithms
trained on the combination of the realistic and artificial datasets,
and then tested with the realistic data. Alongside each algorithm,
one can find its corresponding accuracy score.

LR (n ¼ 2) (94%)

Precision Recall F1-score

No crossing 96% 95% 95%
Crossing 91% 93% 92%

KNN (n ¼ 3) (98%)

Precision Recall F1-score

No crossing 98% 99% 99%
Crossing 98% 97% 98%

SVM (97%)

Precision Recall F1-score

No crossing 98% 98% 98%
Crossing 96% 97% 97%

Decision tree (99%)

Precision Recall F1-score

No crossing 99% 99% 99%
Crossing 98% 98% 98%
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νELN crossings, the LR algorithm remains valuable due to
its ease of implementation in CCSN and NSM simulations.
Therefore, we believe it is still worth considering the LR
method and adjusting its threshold probability, despite the
inherent tradeoff between precision and recall.

C. Detection of νELN-XLN crossings

So far, our discussion has focused exclusively on
detecting νELN crossings. However, in a broader context,
it is important to acknowledge that the angular distributions
of νx and ν̄x can be different in CCSN and NSM
environments. This difference becomes particularly pro-
nounced when we account for the potential creation of
muons at the core of these extreme astrophysical objects
[82–84]. Consequently, to accurately identify the occur-
rence of FFCs under the most realistic conditions, we must
shift our attention toward detecting νELN-XLN crossings
rather than confining ourselves to the νELN ones.
The distinction between the detection of νELN-XLN

crossings and νELN crossings presents several key
differences. One of the most significant distinctions
lies in the increased complexity of required information.
In the context of our ML methods, this translates to an
expansion in the number of essential features. Specifically,
we now necessitate seven features instead of the previous
three, namely ανe, ανx , αν̄x , Fνe , Fν̄e , Fνx , and Fν̄x ,
with ανβ ¼ nνβ=nνe .

The increase of the number of features and the greater
demand for information significantly contribute to an
elevated classification error in this context. Notably, when
νx and ν̄x exhibit disparities, the νELN-XLN profile can
exhibit more intricate characteristics, e.g., it is conceivable
that even multiple crossings occur.
In order to train our ML models, we use artificial

distributions for neutrinos, given the fact that labeled data
regarding the existence of νELN-XLN crossings are not
available. In order to prepare our data, we consider ανe ανxðν̄xÞ
to be in the range of (0., 2.5) and (0., 3.), respectively. Also
we assume an allowed maximum 40% difference between νx

FIG. 3. The performance of the LR algorithm in the neutrino
decoupling region, as a function of the polynomial degree of the
nonlinear transformations. The LR is trained on a combination of
the artificial and realistic datasets. As mentioned previously, it’s
worth noting that the precision and recall scores typically exhibit
opposing trends due to precision-recall tradeoff. As one can see in
the lower panel, one can enhance the recall score significantly by
decreasing the threshold probability of LR, pc, though with the
price of a reduction in the precision score.

TABLE III. A summary of the metric scores of ML algorithms
trained on the combination of the realistic and artificial datasets,
in the SN post-shock region, namely at radii≲100 km. Alongside
each algorithm, one can find its corresponding accuracy score.

LR (n ¼ 2) (96%)

Precision Recall F1-score

No crossing 96% 100% 98%
Crossing 94% 49% 64%

KNN (n ¼ 3) (100%)

Precision Recall F1-score

No crossing 100% 100% 100%
Crossing 100% 99% 99%

SVM (99%)

Precision Recall F1-score

No crossing 99% 99% 99%
Crossing 92% 90% 91%

Decision tree (100%)

Precision Recall F1-score

No crossing 100% 100% 100%
Crossing 99% 99% 99%

DETECTING FAST NEUTRINO FLAVOR CONVERSIONS WITH … PHYS. REV. D 109, 023033 (2024)

023033-7



and ν̄x quantities. This is consistent with the observation that
the difference between νx and ν̄x should be subdominant in
realistic simulations [82]. In addition, we keep in mind what
we learned previously that the data should be enough
representative of the realistic data. Thus, we also respect
the hierarchy Fνe ≲ Fν̄e ≲ Fνxðν̄xÞ.
The performance of our ML models in detecting νELN-

XLN crossings is presented in Table IV. Notably, the
overall performance lags behind that of νELN crossing
detection. This disparity can be attributed to the presence of
intricate patterns governing the crossings and an increase in
label noise.

IV. DISCUSSION AND OUTLOOK

Recent advancements have showcased the remarkable
capabilities of ML in identifying the νELN crossings in the
CCSN and NSM simulations [69]. In this study, we have
propelled prior research in two pivotal and distinctive
directions. Firstly, we have subjected ML models to the
rigorous test of real-world data acquired from CCSN
simulations, where the intricate problem of neutrino trans-
port is addressed through the comprehensive Boltzmann
equation. Secondly, we have expanded our ML techniques
to encompass the detection of νELN-XLN crossings,
accommodating situations where there may exist distinc-
tions between νx and ν̄x.

Using realistic CCSN data, we have demonstrated that
the simpler models consistently outperform their more
complex counterparts in the context of νELN detection
when applied to previously unseen data. This provides a
clear and compelling example of the bias-variance tradeoff
within the domain of ML. Specifically, it was observed that
the LR model performs most effectively when a polynomial
transformation of degree n ¼ 2 is applied, as opposed to the
previously suggested degree of n ¼ 9 which was based on
artificial data. This underscores the importance of consid-
ering the complexity of models and their suitability for real-
world data, highlighting that sometimes, a simpler
approach can yield superior results.
We demonstrate a significant enhancement in model

performance when utilizing artificial datasets by aligning
the parameter space of the synthetic data with the realism
expected in CCSN and NSM simulations. Specifically, we
adhere to the hierarchy Fνe ≲ Fν̄e ≲ Fνxðν̄xÞ, which mirrors
the conditions anticipated in these astrophysical events.
This deliberate consideration in the preparation of artificial
data results in model performance that rivals that of ML
models trained on realistic data, at least within a certain
parameter range.
We have further fortified our ML models by integrating

real-world data into the training set, and this enhancement
has yielded remarkable generic accuracy in out MLmodels.
Based on our observations, we are inclined to assert that the
LR model with a polynomial degree of n ¼ 2 stands out as
the optimal choice for detecting FFCs in CCSN and NSM
simulations. This choice not only exhibits effective gener-
alization capabilities for unseen data but also offers the
distinct advantage of reducing computational overhead
when deploying the LR model in real-time CCSN and
NSM simulations.
We have also developed ML models to identify neutrino

flavor crossings in the νELN-XLN distributions. This is
particularly relevant because the angular distributions of νx
and ν̄x can exhibit variations in CCSN and NSM environ-
ments. Unlike the simpler task of detecting νELN cross-
ings, detecting νELN-XLN crossings introduces a higher
level of complexity due to the need for more information. In
the context of our ML methods, this complexity manifests
as an increase in the number of essential features. This
augmented feature set substantially contribute to an
elevated classification error in this specific context.
In summary, our study significantly expands upon prior

research, allowing for more confident utilization of ML
methods in detecting FFCs. However, there remain crucial
avenues for exploration. Specifically, our current analysis
focuses on crossings occurring in the zenith angle (μ), when
the angular distribution is integrated over ϕν. Nevertheless,
as demonstrated in previous references, a substantial
fraction of νELN crossings may be exclusively in ϕν,
exhibiting nonaxisymmetric behavior [77]. Thus, it is
imperative to develop ML techniques capable of capturing

TABLE IV. A summary of the metric scores of the ML
algorithms for νELN-XLN crossing detection. Alongside each
algorithm, one can find its corresponding accuracy score.

LR (n ¼ 2) (88%)

Precision Recall F1-score

No crossing 87% 89% 88%
Crossing 88% 86% 87%

KNN (n ¼ 3) (88%)

Precision Recall F1-score

No crossing 89% 88% 89%
Crossing 88% 89% 88%

SVM (88%)

Precision Recall F1-score

No crossing 92% 84% 88%
Crossing 85% 93% 89%

Decision tree (87%)

Precision Recall F1-score

No crossing 87% 87% 87%
Crossing 87% 87% 87%
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these nonaxisymmetric crossings. Closely related to this
issue is the exploration of FFCs in rotating CCSN models
[37], as the prominence of nonaxisymmetric features in
such models could influence the performance of ML
algorithms. Given the proven and remarkable versatility
and effectiveness of ML in this context, implementing these
measures will further improve the detection of FFCs in
CCSN and NSM simulations.
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