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The shear and interface modes excited inside the neutron star due to the presence of elasticity depend on
the properties of both the crust and core region. To examine how such eigenfrequencies depend on the
neutron star properties, we solve the eigenvalue problem by adopting the relativistic Cowling approxi-
mation. Then, we confirm that the number of the interface modes excited in the star is generally equivalent
to the number of the interface where the shear modulus discontinuously becomes zero, but we also find that
the number of interface modes becomes smaller than that of the interface for the stellar model with lower or
higher value of the slope parameter L. Furthermore, we derive the empirical relations for expressing the
shear modes and one of the interface modes, which is the mode whose amplitude becomes dominant at the
interface between the crust and envelopes and at the interface between the phases of slablike and cylindrical
nuclei. At the end, we also show the possibility of identifying the higher quasiperiodic oscillation
frequencies observed in GRB 200415A with the shear oscillations, as an alternative possibility instead of
the torsional oscillations.
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I. INTRODUCTION

Neutron stars are one of the most suitable environments
for probing physics under extreme states. In fact, the
density inside the neutron star easily exceeds the nuclear
saturation density [1]. Through the observation of neutron
stars, one might touch the aspect in such a high-density
region, which is quite difficult to realize on Earth due to the
nature of nuclear saturation properties. For example, the
discoveries of massive neutron stars, whose masses are
around 2M⊙ [2–6], have excluded soft equations of state
(EOSs), with which the expected maximum mass of
neutron stars is less than the observations. The gravitational
waves from binary neutron star merger, GW170817 [7], tell
us the tidal deformability of neutron stars, which leads to
the constraint on the 1.4M⊙ neutron star radius [8].
Moreover, since the light radiating from a neutron star’s
surface bends due to a strong gravitational field induced by
the neutron star as a relativistic effect, one could predomi-
nantly constrain the stellar compactness, which is the ratio
of the mass to the radius, through careful observations of
the pulsar light curve (e.g., [9–14]). In practice, the Neutron
star Interior Composition Explorer (NICER) operating on
an International Space Station could constrain the neutron
star mass and radius for PSR J0030þ 0451 [15,16] and for
PSR J0740þ 6620 [17,18]. In addition to the astronomical
observations, using the terrestrial experiments, one may

constrain the EOS for neutron star matter in a relatively
lower density region (e.g., Refs. [19–21]).
The frequencies from a neutron star, if observed, are

another important piece of information to extract the
neutron star properties. Since the specific oscillation modes
excited in the objects strongly depend on their interior
properties, one could extract the properties through the
observation of the corresponding frequencies as an inverse
problem. This technique is known as asteroseismology,
which is similar to seismology on Earth or helioseismology
on Sun. In practice, by identifying the quasiperiodic
oscillations (QPOs) observed in the magnetar giant flares
with the crustal torsional oscillations, one could constrain
the stellar properties (e.g., Refs. [22–27]). In a similar way,
once the gravitational waves from an (old) neutron star
would be observed, one may extract the stellar radius, mass,
and EOS (e.g., [28–38]).
Several eigenmodes can be excited simultaneously on

neutron stars due to various physical processes, among
which we particularly focus on the shear (s-) and interface
(i-) modes in this study. Both modes are excited due to the
presence of elasticity inside the star [35,39–42]. In this
study, we assume that the core region (and envelope) of the
neutron star behaves as a fluid, while the elasticity is
present only inside the crust region. From an observational
point of view, elastic oscillations may become important to
explain the precursors and QPOs in precursors observed
just before the main flare activity of gamma ray burst from
a binary neutron star merger [43,44], which are considered*sotani@yukawa.kyoto-u.ac.jp
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as a result of resonant shattering of neutron star crusts
induced by the binary orbital motion [45,46]. In previous
our study, we have shown that the i-mode frequencies, fi,
multiplied with stellar mass, M, and s-mode frequencies,
fs, multiplied with stellar radius, R, are well-expressed as a
function of stellar compactness independently of the stiff-
ness of the core region, which may enable us to extract the
crustal information, once one would observe the i- or
s-mode frequencies. However, we adopted only two
equations of state (EOSs) in the previous study and could
not discuss the dependence of the frequencies on the
nuclear saturation parameters. Thus, in this study, we adopt
several EOSs with different saturation parameters and will
discuss how the frequencies can be characterized by the
nuclear saturation parameters.
This manuscript is organized as follows. In Sec. II, we

briefly mention the equilibrium neutron star models, the
EOS considered in this study, and the shear modulus inside
the neutron star crust. In Sec. III, we focus on the i-modes
excited in the neutron stars. In Sec. IV, we derive the
empirical relations for the frequencies of the i- and s-mode
oscillations. Furthermore, in Sec. V we also discuss the
possibility for identification of higher frequency QPOs
observed in GRB 200415A [47] with the shear oscillations.
Finally, we conclude this study in Sec. VI. Unless other-
wise mentioned, we adopt geometric units in the following,
c ¼ G ¼ 1, where c andG denote the speed of light and the
gravitational constant, respectively.

II. EOS AND EQUILIBRIUM MODELS

In a similar way in Ref. [42], we simply consider a
nonrotating, strain-free, and spherically symmetric neutron
star as an equilibrium model in this study. The metric
describing such an object is given by

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where Φ and Λ are the metric functions depending on
only r. The mass function, mðrÞ, which is the enclosed
(gravitational) mass inside the position r, is associated with
Λ through e−2Λ ¼ 1–2m=r. Once an appropriate EOS is
selected, one can construct the stellar models by integrating
the Tolman-Oppenheimer-Volkoff equation. Since we focus
on the shear oscillations excited by the crust elasticity, the
position of the crust surface is crucial. In general, one can
neglect the thermal effect on the neutron structure, because
the Fermi temperature inside the neutron star becomesmuch
higher than the physical temperature. However, this con-
dition may break in the vicinity of the stellar surface. In
fact, as the density decreases, the Fermi temperature also
decreases and eventually becomes comparable to or less than
the physical temperature. As a result, the density of the crust
surface strongly depends on the radial distribution of
physical temperature [48]. Nevertheless, as in Ref. [42],
we simply assume that the density of the crust surface is

1010 g=cm3 and the surface density is 106 g=cm3, which are
typical values (see the Appendix for the dependence of the
i-mode frequencies on the surface density).
Regarding the EOS, we particularly adopt the phenom-

enological EOS in a nonrelativistic framework proposed by
Oyamatsu and Iida [49,50] (hereafter referred to as
OI-EOSs). The energy per nucleon, E=A, for any EOSs
can be expanded around the saturation density n0 for
symmetric nuclear matter as a function of the baryon
number density, nb, and an asymmetry parameter, α, as

E
A
¼w0þ

K0

2
u2þOðu3Þþα2½S0þLuþOðu2Þ�þOðα3Þ;

ð2Þ

where nb ¼ nn þ np and α ¼ ðnn − npÞ=nb with the neu-
tron number density, nn, and the proton number density, np,
while u ¼ ðnb − n0Þ=ð3n0Þ. In this expression, the five
coefficients (n0, w0, K0, S0, and L) are the (least) nuclear
saturation parameters, depending on the adopted EOS. That
is, each EOS has its own set of nuclear saturation
parameters, which characterizes the EOS. The parts without
the α dependence correspond to the energy per nucleon for
a symmetric nuclear matter, while the coefficient of α2

corresponds to the symmetry energy, SðuÞ. The saturation
density, n0, for a symmetric nuclear matter is determined by
∂ðE=AÞ=∂u ¼ 0, assuming α ¼ 0. w0 denotes the binding
energy for the symmetric nuclear matter at nb ¼ n0, while
K0, the so-called incompressibility, is the second derivative
concerning u for symmetric nuclear matter. Meanwhile, S0
is the symmetry energy at nb ¼ n0 and L is the density
dependence of SðuÞ, i.e., L≡ ∂SðuÞ=∂u. We remark that
the Skyrme-type EOSs and the EOSs based on the
relativistic mean field (RMF) theory are originally con-
structed with the interaction involving only up to the terms
of α2. The EOSs beyond the Skyrme-type EOSs or the
RMF EOSs may contain more than the α4 (or α3) terms, but
the contribution of the α4 terms may be tiny, e.g., the
deviation from the expression up to the α2 terms given by
Eq. (2) is only ∼1% [51].
Among these five parameters, n0,w0, and S0 are relatively

well constrained from the nuclear experiments, while the
constraint onK0 andL is more difficult because one needs to
know the experimental data in a wide density range to
determine the density derivative. We note that the current
constraint on K0 and L are K0¼240� 20MeV [52] and
L ¼ 60� 20 MeV [53,54]. As one can expect from the
expression of E=A,K0, and L strongly affect the stiffness of
a neutron star EOS, especially for a higher-density region.
That is, an EOS with larger K0 and/or L becomes a stiffer
EOS in a higher-density region. On the other hand,K0 andL
also affect the crust properties, which correspond to the
density region lower than the saturation density. Since
the symmetry energy in a density region lower than the
saturation density becomes small with an EOS with larger
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K0 and L, it is easier for the proton to change into a neutron.
That is, the ion charge number would be smaller for the EOS
with larger K0 and L. This tendency is important to discuss
the elastic oscillations because the shear modulus in the
phase of spherically symmetric nuclei is proportional to the
square of the ion charge [see Eq. (4)]. Anyway, in order to
systematically examine the saturation parameter depend-
ence of the neutron star oscillation frequencies, we adopt the
OI-EOS family in this study. For the given values of K0 and
L, OI-EOSs are constructed in such a way that the values of
n0, w0, and S0 are tuned by recovering the empirical nuclear
data with the extended Thomas-Fermi theory. The EOS
parameters adopted in this study are listed in Table I, where
we also list the transition density from spherical to cylin-
drical nuclei (SP-C), from cylindrical to slablike nuclei
(C-S), from slablike to cylindrical-hole nuclei (S-CH), from
cylindrical-hole to spherical-hole nuclei (CH-SH), and from
spherical-hole nuclei to uniform matter (SH-U) for each
EOS. We note that OI-EOSs with ðK0; LÞ ¼ ð230; 42.6Þ
and (230,73.4) are the same EOS models adopted in
Ref. [42]. We also note that some of the EOS parameters
shown in Table I are out of the current constraints on K0

and L, but we consider the EOSs listed in Table I to
examine the EOSparameter dependence in awide parameter
region.
Furthermore, to see the dependence of the EOS stiffness

in a higher-density region, we consider not only the original
OI-EOSs but also the original OI-EOSs for ε ≤ εt con-
nected to a one-parameter EOS for ε ≥ εt expressed as

p ¼ αðε − εtÞ þ pt; ð3Þ

where pt is the pressure at ε ¼ εt given from the OI-EOSs.
We note that α corresponds to the square of the sound
velocity. Since the EOSs are expressed more or less using
their own nuclear saturation parameters up to twice the
saturation density (e.g., [55]),we assume that εt is equivalent
to twice the saturation density in this study, as in
Refs. [42,56]. From Table I, one can observe that the density
at the boundary between the crust and core, i.e., SH-U, is at
most ∼2n0=3, considering that n0 ≈ 0.15–0.16 fm−3 [57].
The crust thickness depends on L (and K0) and stellar
compactness,M=R, where the thickness decreases as L and
M=R increases [50,58]. In this study, we especially focus on

the case of α ¼ 1=3, 0.6, and 1, as in Ref. [42]. In this study,
we simply discuss the stiffness of the core region of a neutron
star by assuming the simple EOS given by Eq. (3) with
the OI-EOSs constructed in a nonrelativistic formalism.
However, since the properties in a higher-density region
generally depend on whether the EOS is based on a non-
relativistic or relativistic formalism, it may be important to
see the dependence on the unified EOSs constructed with
different formalisms. The unified EOSs including the pasta
phases are unfortunately quite few now, but wewill examine
such dependence in the future.
The shear modulus, μ, is another important property

characterizing the elasticity. As mentioned above, neutron
stars have a lot of eigenfrequencies, depending on input
physics. By introducing the crust elasticity, the additional
eigenmodes, i.e., the i- and s-modes in the polar-parity
oscillations or the torsional (t-) modes in the axial-parity
oscillations, are excited. This is a reason why the i- and
s-modes considered in this study are important to extract
the crust properties and also why we have to explicitly
define the shear moduli here. The shear modulus, μsp, in the
phase composed of spherical nuclei has been studied
relatively well, but here we adopt the standard shear
modulus formulated as a function of ion charge number,
Z, ion number density, ni, and Wigner-Seitz cell radius, a,
which is related to ni through 4πa3=3 ¼ 1=ni,

μsp ¼ 0.1194
niðZeÞ2

a
; ð4Þ

assuming that the spherical nuclei form the body-centered
cubic (bcc) lattice with a pointlike ion [59]. We note that the
shear modulus could be modified a little with the phonon
contribution [60], the electron screening effect [61],
the polycrystalline effect [62], and the effect of finite sizes
of atomic nuclei [63]. The shear modulus, μcy, in the phase
composed of cylindrical nuclei and the shear modus, μsl,
in the phase composed of slablike nuclei have been
also discussed in Ref. [64]. According to their study, μcy
is given by

μcy ¼
2

3
ECoul × 102.1ðw2−0.3Þ; ð5Þ

TABLE I. The EOS parameters adopted in this study. SP-C, C-S, S-CH, CH-SH, and SH-U denote the transition
densities in the OI-EOSs characterized by K0 and L.

K0 (MeV) L (MeV) SP-C (fm−3) C-S (fm−3) S-CH (fm−3) CH-SH (fm−3) SH-U (fm−3)

180 31.0 0.05887 0.07629 0.08739 0.09000 0.09068
180 52.2 0.06000 0.07186 0.07733 0.07885 0.07899
230 23.7 0.05957 0.07997 0.09515 0.09817 0.09866
230 42.6 0.06238 0.07671 0.08411 0.08604 0.08637
230 73.4 0.06421 0.07099 0.07284 0.07344 0.07345
360 40.9 0.06743 0.08318 0.09197 0.09379 0.09414
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as a function of the Coulomb energy per volume of a
Wigner-Seitz cell, ECoul, and the volume fraction of
cylindrical nuclei, w2, while μsl is given by

μsl ¼ 0; ð6Þ

in the linear perturbation level, i.e., the shear elasticity in
the phase of slablike nuclei comes from the higher-order
perturbations. In this study, we adopt Eqs. (5) and (6) for
estimating μcy and μsl as in Ref. [42], but recently it has
been pointed out that the elastic constant in the polycrystal-
line lasagna (slablike nuclei) may become a (nonzero) tiny
value [65,66]. Moreover, the shear modulus, μch ðμshÞ, in
the phase of cylindrical-hole (spherical-hole) nuclei can be
estimated, using the formulas for μcy (μsp), because the
structure of liquid crystalline composed of cylindrical-hole
(spherical-hole) nuclei are the same as that of cylindrical
(spherical) nuclei (see Ref. [26] for details).

III. EIGENFUNCTIONS OF THE i-MODES

To determine the specific frequencies of neutron stars, we
make a linear perturbation analysis on the equilibrium
models mentioned in the previous section. For this purpose,
we adopt the relativistic Cowling approximation in this
study, where the metric perturbations are neglected during
the fluid oscillation. The perturbation equations are derived
from linearizing the energy-momentum conservation law.
By imposing the appropriate boundary conditions and

junction conditions, the problem to solve becomes the
eigenvalue problem. Since the perturbation equations,
boundary conditions imposed at the stellar center and the
surface, and the junction conditions imposed at the interface
where the shear modulus discontinuously becomes zero are
completely the same as shown in Refs. [40,42], we avoid
explicitly showing them here. However, we briefly mention
how to determine the eigenvalues, using such perturbation
equations, boundary conditions, and junction conditions.
The perturbation equations are integrated outward from the
stellar center with the boundary conditions, assuming a trial
value of eigenvalue, ω, up to the interface between the core
and the phase of spherical-hole nuclei. The resultant
perturbative variables at the interface are changed into those
for the elastic region with the junction condition, then they
are integrated outward again up to the next interface, which
corresponds to the position between the phases of cylindri-
cal-hole and slablike nuclei. By iterating these procedures,
finally, the perturbative variables at the stellar surface are
determined. Since the resultant perturbative variables do not
generally satisfy the boundary conditions at the surface, we
have to search the suitable value of ω, with which the
boundary conditions at the surface satisfy, by changing ω.
After we find the value of ω in such a way, the eigenfre-
quency, f, is determined via f ¼ ω=ð2πÞ. In this study, we
focus only on the l ¼ 2 oscillation modes.
The i-modes are excited due to the existence of the

interface between the phases with zero and nonzero shear
modulus [41]. Thus, in the most general case, the number

FIG. 1. Radial profile of the amplitude of ii-modes for the neutron star mode with 1.44M⊙ and 10.2 km using the EOS with K0 ¼ 230
and L ¼ 42.6 MeV. Here,W and V denote the Lagrangian displacement in the radial and angular directions. The vertical lines from left
to right denote the boundaries between core and spherical-hole nuclei, between cylindrical-hole and slablike nuclei, between slablike
and cylindrical nuclei, and between spherical nuclei and envelop. The eigenfunctions shown in the left panels correspond to the modes
excited even without the pasta structure, while those in the right panels correspond to the modes additionally excited due to the presence
of the phase composed of cylindrical-hole and spherical-hole nuclei.
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of the i-modes excited in a neutron star becomes equivalent
to the number of the interfaces, where the nonzero elasticity
discontinuously becomes zero. That is, since our model has
four interfaces inside a neutron star composed of a liquid
core, a solid crust with pasta structures, and envelopes, i.e.,
the boundary between the envelopes and the surface of
curst (the phase of spherical nuclei), the boundary between
the phases of cylindrical and slablike nuclei, the boundary
between the phases of slablike and cylindrical-hole nuclei,
and the boundary between the phase of spherical-hole
nuclei and core, one can expect the excitation of four
i-modes. Nevertheless, we have found that only three
i-modes can be excited in the neutron star model with a
relatively larger value of L. This may be because the
thickness of the phases composed of cylindrical-hole
and spherical-hole nuclei is relatively narrow, which
makes a situation that one of four i-modes is difficult to
be excited [42]. So, in this section, we carefully see the
behavior (and especially the number) of the i-mode
frequencies.
In Fig. 1, as an example of a typical case, we show

the radial profile of the eigenfunction of ii-modes for the
neuron star model with 1.44M⊙ and 10.2 km, using the
EOS with K0 ¼ 230 and L ¼ 42.6 MeV, where W and V
denote the Lagrangian displacement in the radial and
angular directions. In each panel, we show four vertical
dotted lines, which correspond to the position of the

interface, i.e., the boundaries between core and spheri-
cal-hole nuclei, between cylindrical-hole and slablike
nuclei, between slablike and cylindrical nuclei, and
between spherical nuclei and envelop from left to right.
The top-left and bottom-left panels correspond to the
i1- and i2-modes, which are dominantly excited inside
the phase composed of spherical and cylindrical nuclei,
while the top-right and bottom-right panels correspond to
the i3- and i4-modes. One can observe that the i3-modes are
excited even inside the phases of spherical-hole and
cylindrical-hole nuclei, while the i4-modes are inside the
phase of slablike nuclei. We note that the functional form
for the i1-, i2-, and i3-modes is essentially the same as
shown in Figs. 4 and 5 in Ref. [42]. In this study, we
identify the i-mode by checking these features of each
eigenfunction.
In the previous study, we simply assigned the ii-modes in

order from the highest to the lowest frequencies. However,
considering the shape of the eigenfunctions of ii-modes
shown in Fig. 1, it is found that the ii-modes should be
assigned as the i3-, i1-, i2-, and i4-modes from the highest to
the lowest frequencies, when four i-modes are excited (as
shown in the middle panel of Fig. 2). In Fig. 2, the ii-modes
are shown as a function of the stellar compactness for the
neutron star models constructed using the original OI-EOS
with K0 ¼ 230 MeV and L ¼ 23.7 MeV, 42.6 MeV, and
73.4 MeV in the left, middle, and right panel, respectively.

FIG. 2. Eigenfrequencies of the ii-modes are shown as a function of the stellar compactness, M=R, for the neutron star models
constructed using the original OI-EOSs withK0 ¼ 230 MeV and L ¼ 23.7 MeV, 42.6 MeV, and 73.4 MeV in the left, middle, and right
panel, respectively. We note the labeling of the ii modes for the stellar model shown in the middle panel is different from that in the
previous study [42] (see text for details).

TABLE II. The order of ii-modes excited in the neutron stars, depending on the EOS parameters. In general, the
ii-modes excited in the neutron star are in order of i4, i2, i1, and i3 from low to high frequencies, but the order
becomes different with some EOS models with higher or lower L, which are especially shown with bold font.

K0 (MeV) L (MeV) Original OI α ¼ 1=3 α ¼ 0.6 α ¼ 1

180 31.0 ði4; i2; i3Þ (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3)
180 52.2 (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3)
230 23.7 ði4; i2; i3Þ (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3)
230 42.6 (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3)
230 73.4 ði3; i2; i1Þ ði3; i2; i1Þ ði3; i2; i1Þ ði3; i2; i1Þ
360 40.9 (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3) (i4, i2, i1, i3)
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From this figure, we find that the stellar models constructed
with not only a larger value of L but also a smaller value of
L may have only three i-modes. We also find that the
i1-mode seems to disappear with a lower value of L, while
the i4-mode disappears with a higher value of L as shown in
the previous study. In fact, in Table II, we list which modes
are excited in the stellar models constructed with various
values of nuclear saturation parameters and with different
stiffness of core region characterized by α. From this result,
one can observe that four i-modes can be excited generally,
as expected. Meanwhile, we also mention that the value of
L, with which the stellar models have three i-modes except
for the i1-mode, may be too small, considering the fiducial
value of L ¼ 60� 20 MeV [53,54].

IV. EMPIRICAL RELATIONS

As shown in Ref. [42], the frequencies of the ii- and
si-mode (fii and fsi) excited in the neutron star are well-
expressed independently of the value of α as a function of
the stellar compactness as

fiiM ðkHz=M⊙Þ ¼ a0i þ a1ixþ a2ix2; ð7Þ

fsiR ðkHz kmÞ ¼ b0i þ b1ix; ð8Þ

where x denotes the stellar compactness, M1.4=R12 with
M1.4 ≡M=1.4M⊙ and R12 ≡ R=12 km, and a0i, a1i, a2i,
b0i, and b1i are the adjusted coefficients depending on the
crust properties (or the nuclear saturation parameters).

In the following, we will see how the frequencies (strictly
speaking a0i, a1i, a2i, b0i, and b1i) depend on the nuclear
saturation parameters.

A. Empirical relations for the i-modes

First, we confirm that fiM is well expressed as a function
ofM=R given by Eq. (7) independently of α (the stiffness of
stellar core) as shown in Fig. 3, where the solid lines denote
the fitting by Eq. (7), while various marks correspond to the
values of fi1M for the stellar models constructed with
different stiffness of core region. On the other hand, we also
find an exceptional instance in the i4-modes for the stellar
models having three i-modes except for the i1 mode with
ðK0; LÞ ¼ ð180; 31.0Þ and (230,23.7), although we can still
confirm that the i4-modes are expressed with Eq. (7)
independently of α as in Fig. 3 for the stellar models
having the four i modes. That is, as shown in Fig. 4 for the
stellar model with ðK0; LÞ ¼ ð180; 31.0Þ, the i4-mode in
the stellar model with the original OI-EOS is obviously
different behavior from those with α ¼ 1=3, 0.6, and 1. In
fact, as shown in the right panel of Fig. 2, the i4-mode
frequency seems to appear much higher for the stellar
model without the i1-mode. Anyway, considering the
fiducial value of L constrained from the experiments, such
as L ¼ 60� 20 MeV, an exceptional instance we found
may not be realized.
Then, we will see the dependence of the i-mode frequen-

cies on the nuclear saturation parameters. The coefficients in
Eq. (7), i.e., aji for j ¼ 0, 1, 2 and i ¼ 1–4, depend on the
crustal properties characterized by the nuclear saturation

FIG. 3. fi1M for various stellar models are shown as a function
of stellar compactness, where the circles, diamonds, squares, and
triangles denote the results with stellar models constructed with
original OI-EOS, OI-EOS, connected to the EOS with α ¼ 1=3,
0.6, and 1, respectively. The solid lines are the fitting given by
Eq. (7) and we denote the values of ðK0; LÞ on each line.

FIG. 4. Same as Fig. 3, but for i4-mode frequencies on the
neutron star models with K0 ¼ 180 and L ¼ 31.0 MeV.

TABLE III. yji (combination of K0 and L) for i ¼ 1, 2, 3, 4 and
j ¼ 0, 1, 2 in the fitting of a0i, a1i, and a2i, given by Eqs. (9)
and (10).

i y0i y1i y2i

1 ðK2
0L

3Þ1=5 L L
2 ðK3

0LÞ1=4 ðK4
0LÞ1=5 ðK9

0LÞ1=10
3 L L L
4 ðK3

0LÞ1=4 ðK2
0LÞ1=3 ðK2

0LÞ1=3
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parameters. Through a result of trial and error, we find the
correlation between aji and L or the combination of K0 and
L, using the fitting formulas given by

aji ¼ að0Þji þ að1Þji

�
yji

100 MeV

�
þ að2Þji

�
yji

100 MeV

�
2

; ð9Þ

aj4¼að0Þj4 það1Þj4

�
yj4

100MeV

�
−1
það2Þj4

�
yj4

100MeV

�
−2
; ð10Þ

for j ¼ 0, 1, 2 and i ¼ 1, 2, 3, where yji denotes L or the
combination of K0 and L depending on j and i, which are
listed in Table III. Here, we find such combinations by hand,
assuming that the power is an integer. In Fig. 5, one can see
how strong such correlations are, where the solid lines
denote the fitting given byEqs. (9) and (10). The coefficients

aðkÞji for j ¼ 0, 1, 2 and k ¼ 0, 1, 2 in Eqs. (9) and (10) are
shown in Table IV. We emphasize that the coefficients, aji
and aj4, can be expressed as a function of yji or yj4

independently of the uncertainties of K0 and L, although
we did not know the physical origin why such combinations
shown inTable IVare suitable in the expression. FromFig. 5,
one can observe that the correlation between aji and yji are
weak for i ¼ 2 and 4.
Now, we can get a kind of empirical relations for

expressing fiM as a function of M=R and the nuclear
saturation parameters, i.e., Eqs. (7), (9), and (10). In Fig. 6,
we show the relative deviation, Δ, calculated by

Δ ¼ jf − femj=f; ð11Þ

where f and fem denote the frequencies determined via the
eigenvalue problem and those estimated with the empirical
relations, respectively. The empirical relations we derived
here tell us the i1-mode frequencies within a few %
accuracies for canonical neutron star models, but the i2-
and i4-mode frequencies with only an order of magnitude
due to the weak correlations with nuclear saturation
parameters.

FIG. 5. Correlation between the coefficients in Eq. (7) and L or the combination of K0 and L, where the solid lines denote the fitting
given by Eqs. (9) and (10). The panels from left to right correspond to aji for i ¼ 1, 2, 3, 4, respectively.

TABLE IV. Coefficients aðkÞji for j ¼ 0, 1, 2 and k ¼ 0, 1, 2 in the fitting of a0i, a1i, and a2i with Eqs. (9) and (10).

i að0Þ0i að1Þ0i að2Þ0i að0Þ1i að1Þ1i að2Þ1i að0Þ2i að1Þ2i að2Þ2i

1 0.0038337 0.0073437 −0.0068798 0.083392 −0.042113 0.024719 −0.020817 0.010515 −0.0069116
2 0.016178 −0.019248 0.0048505 0.048374 0.010393 −0.0017163 −0.0088285 −0.0040927 0.00056104
3 0.02413 −0.053581 0.033518 0.1714 −0.2740 0.1446 −0.040238 0.059085 −0.028536
4 0.0017045 −0.0071152 0.0062548 0.018248 −0.049949 0.034971 −0.0045017 0.012316 −0.0086167
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B. Empirical relations for the s-modes

Next, we will see the behavior of the s-mode frequencies.
In a similarway shown in theprevious study [42],we confirm
that fsR is well-expressed as a linear function ofM=R as in
Eq. (8) without any exceptional instances, as shown in Fig. 7,
where the coefficients in Eq. (8), i.e., b0i and b1i, depend on

the crustal properties. Again, through trial and error, we find
that b0i and b1i can be expressed as a function of the
combination of K0 and L, using the fitting given by

b0i ¼ bð0Þ0i þ bð1Þ0i

�
z0i

100 MeV

�
þ bð2Þ0i

�
z0i

100 MeV

�
2

; ð12Þ

b1i ¼ bð0Þ1i þ bð1Þ1i

�
z1i

100 MeV

�
þ bð2Þ1i

�
z1i

100 MeV

�
2

; ð13Þ

where z0i and z1i are the specific combination of K0 and L
depending on i, which are listed in Table V, and the
coefficients in Eqs. (12) and (13) are listed in Table VI.

FIG. 6. The relative deviation, Δ, of the ii-mode frequencies estimated with the empirical formulas from those determined via the
eigenvalue problem, which is calculated with Eq. (11).

TABLE V. z0i and z1i (combination of K0 and L) in the fitting
of b0i and b1i expressed by Eqs. (12) and (13).

i z0i z1i

1 ðK4
0L

5Þ1=9 ðK5
0L

6Þ1=11
2 ðK0L6Þ1=7 ðK0LÞ1=2
3 ðK0L3Þ1=4 ðK0LÞ1=2
4 ðK4

0L
5Þ1=9 ðK0LÞ1=2

TABLE VI. Coefficients bðjÞ0i and bðjÞ1i for j ¼ 0, 1, 2 in the
fitting of b0i and b1i expressed by Eqs. (12) and (13).

i bð0Þ0i bð1Þ0i bð2Þ0i bð0Þ1i bð1Þ1i bð2Þ1i

1 1.8624 −0.2316 −0.1364 9.4614 0.7380 −2.1114
2 1.5724 2.5259 −2.1216 17.8859 −3.0316 −1.0974
3 3.8459 −3.8269 2.3209 18.4672 3.3390 −3.6406
4 3.5630 2.0388 −2.1046 28.7034 −8.3357 1.0013

FIG. 7. fs1R for various stellar models are shown as a function
of stellar compactness, where the circles, diamonds, squares, and
triangles denote the results with stellar models constructed with
original OI-EOS, OI-EOS connected to the EOS with α ¼ 1=3,
0.6, and 1, respectively. The solid lines are the fitting given by
Eq. (8) and we denote the values of ðK0; LÞ on each line.
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In Fig. 8, we show how the fitting of b0i and b1i works well
with (12) and (13), where the marks denote the numerical
values of b0i and b1i while the solid lines denote the fitting
with Eqs. (12) and (13).
Now, we get the empirical relations for fsR as a function

of M=R and the combination of the saturation parameters,
given by Eqs. (8), (12), and (13). In Fig. 9, we show how
our empirical relations work well, where the relative
deviation, Δ, is calculated with Eq. (11). From this figure,
one can observe that the empirical relations we derived can
estimate the s-mode frequencies for a canonical neutron
star within ∼1% accuracy.

V. POSSIBILITY FOR IDENTIFICATION OF
HIGHER-FREQUENCY QPOs

In the end, we consider the possibility of applying the
s-mode for the QPO observations. The higher frequency
QPOs, i.e., 836 Hz, 1444 Hz, 2132 Hz, and 4250 Hz, are
found in GRB 200415A [47]. Since GRB 200415A is
classified as a magnetar giant flare, we have discussed
the stellar model by identifying the observed QPOs with the
overtones of crustal torsional oscillations [27] with the
same framework as for the identification of the QPOs
observed in SGR 1806-20 and 1900þ 14. However, since
the QPO frequencies observed in GRB 200415A are

FIG. 8. Coefficients, b0i and b1i, in Eq. (8) are fitted as a function of z0i or z1i listed in Table V, which is the combination of K0 and L

with using the fitting formulas given by Eqs. (12) and (13). The coefficients in Eqs. (12) and (13), i.e., bðjÞ0i and bðjÞ1i for j ¼ 0, 1, 2, are
listed in Table VI.

10

10

10

10

10
s1-mode s2-mode

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
10

10

10

10

10

M/R

s3-mode

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
M/R

s4-mode

OI EOS
 = 1/3
 = 0.6
 = 1

OI EOS
 = 1/3
 = 0.6
 = 1

FIG. 9. The relative deviation, Δ, of the si-mode frequencies estimated with the empirical formulas from those determined via the
eigenvalue problem, which is calculated with Eq. (11).
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comparable to the other neutron star oscillations, such as
the shear modes discussed in this paper, one may identify
the observed QPO frequencies with other neutron star
eigenmodes. In fact, we can find the possible identification
with the shear oscillations. In Fig. 10, we show the f- and
si-mode frequencies for the stellar models with ðK0; LÞ ¼
ð230; 42.6Þ are shown as a function of the stellar compact-
ness, together with the QPO frequencies observed in GRB
200415A. The left and right panels correspond to the
results with α ¼ 1=3 and 0.6, respectively. From this figure,
one can identify the observed QPO frequencies with the
s1-, s2-, s4-, and s8-mode frequencies, if M=R ≃ 0.183 for
α ¼ 1=3 or M=R ≃ 0.195 for α ¼ 0.6. One could discuss
the crust properties via the identification of QPOs by the
torsional oscillations [27], owing to the independence of
their frequencies from the properties of the neutron star
core, but it may not be so simple to discuss the crust
properties via the identification by the shear oscillations as
shown in Fig. 10, because the shear oscillations depend not
only the crust properties but also the core properties.
Nevertheless, via the identification of the QPOs by the
shear oscillations, one may derive a kind of constraint
between the crust properties, core properties, and M=R.
Such a possibility may be studied somewhere in the future.

VI. CONCLUSION

The existence of the crust elasticity can additionally
excite the i- and s-modes. Because the crust thickness
strongly depends on the stellar compactness and nuclear
saturation parameters [58], one can expect that the i- and
s-mode frequencies depend on such properties. In addition,
since the i- and s-modes belong to the polar-type oscil-
lations, they also depend on the properties of the neutron
star core. Nevertheless, we have shown that fiM and fsR
can be expressed as a function of the stellar compactness

independently of the stiffness of core region [42]. In this
study, we further examine the dependence on the nuclear
saturation parameters. As a result, we find a correlation
between the coefficients in the fitting formulas with the
stellar compactness and the nuclear saturation parameters,
which gives us the empirical relations for expressing the i-
and s-mode frequencies. Unfortunately, the empirical
relations for the i2- and i4-modes do not work well,
because the correlations with the nuclear saturation param-
eters are not so strong. Using the empirical relations we
derived, one can estimate the i1-modes within a few % and
the s-mode within ∼1% accuracies for a canonical neutron
star. We also show the possibility of identifying the higher
QPO frequencies observed in GRB 200415A [47] with the
shear oscillations, as an alternative possibility instead of the
torsional oscillations. Unlike the torsional oscillations,
since the shear oscillations depend on not only the crust
properties but also the stiffness of the core region, it may be
more difficult to extract the physical information by
identifying the QPO frequencies with the shear oscillations.
Even so, via such an identification, one may be able to
extract a kind of constraint on the relation between the crust
properties, stiffness of the core region, and stellar compact-
ness, which will be done somewhere in the future.
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FIG. 10. The f- and si-mode frequencies are shown as a function of the stellar compactness for the stellar models constructed with
ðK0; LÞ ¼ ð230; 42.6Þ, together with the QPO frequencies observed in GRB 200415A [47]. The left and right panels correspond to the
results with α ¼ 1=3 and 0.6, respectively. The horizontal shaded bands denote the observed QPO frequencies, i.e., 835.9−84.7þ77.3,
1443.7−68.7þ74.8, 2131.7

−151.0
þ148.2 Hz, and 4249.7−102.7þ116.0 Hz [47], while the marks denote the frequencies expected theoretically. The vertical lines

denote the suitable stellar compactness for identifying the observed QPO frequencies with the s1-, s2-, s4-, and s8-modes, i.e.,
M=R ≃ 0.183 (0.195) for α ¼ 1=3 (0.6).
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APPENDIX: DEPENDENCE OF i-MODE
FREQUENCIES ON SURFACE DENSITY

Unlike the s-mode oscillations, which are confined only
inside the elastic region (see Fig. 6 in [42]), the eigen-
functions of the i-modes exude outside the elastic region
(see Fig. 1). Thus, while the i-mode frequencies depend on
the position of the interface (or the transition density at the
interface), they may also depend on the surface density,
although we fix it being ρs ¼ 106 g=cm3 in this study. In
this appendix, we check how the i-mode frequencies
depend on the surface density. In Fig. 11, we show the
i-mode frequencies as a function of ρs for the 1.44M⊙
neutron star model constructed with K0 ¼ 230 and
L ¼ 42.6 MeV.We note that the transition density between
the envelope and crust is set to 1010 g=cm3. From this
figure, one can observe that the i1-, i3-, and i4-modes are
independent of the selection of surface density, while the
i2-mode significantly changes if the ratio of the surface

density to the transition density between the envelope and
crust becomes more than 10%.
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