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The densities in the cores of the neutron stars (NSs) can reach several times that of the nuclear saturation
density. The exact nature of matter at these densities is still virtually unknown. We consider a number of
proposed phenomenological, relativistic mean field equations of state to construct theoretical models
of NSs. We find that, based on our selected set of models, the emergence of exotic matter at these high
densities restricts the mass of NSs to ≃2.2M⊙. However, the presence of magnetic fields and a model
anisotropy significantly increases the star’s mass, placing it within the observational mass gap that
separates the heaviest NSs from the lightest black holes. Therefore, we propose that gravitational wave
observations, like GW190814 and other potential candidates within this mass gap, may actually represent
massive, magnetized NSs.
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I. INTRODUCTION

Neutron stars (NSs) are the end products of the stellar
evolution of main-sequence stars with masses between
10 and 25M⊙. NSs are some of the most extreme objects in
the Universe. A typical NS contains a mass on the order of
the Sun squeezed into a radius of ∼10 km. At their cores,
NSs can have densities several times that of the nuclear
saturation density [1,2].
However, there is still much that is unknown about

NSs—chief among them being the equation(s) of state
(EOS). The strong interactions occurring within the cores
of NSs are poorly constrained and, in many cases, virtually
unknown. This is further complicated by the fact that, at
the exceptionally high densities within NS cores, “exotic”
particles like hyperons and deltas become energetically
favorable [3]. Notably, these exotic particles are even less
constrained than nucleons themselves and lead to their own
theoretical challenges (for a summary of the “hyperon
puzzle” and possible solutions, see [4]). As a result, unlike
the celebrated Chandrasekhar limit of white dwarfs, NSs
do not have a fixed maximum mass limit (although there
have been some EOS-independent estimates—see [5–7]
for instance). NSs are the only laboratory we know of at

present where matter exists in such extreme conditions.
As a result, the study of NSs becomes a direct probe of the
rich theoretical physics of nuclear matter at high densities.
Theoretically, high-density nuclear matter EOS fall into

two main categories—microscopic and phenomenological.
The microscopic EOS start from bare two- and three-
nucleon interactions to reproduce the nucleon scattering
data and properties of bound systems with few nucleons.
We will not be focusing on these in the current work.
Instead, we explore the phenomenological EOS, which are
effective interaction models. A class of phenomenological
EOS that has been explored extensively in recent years is
the relativistic mean field (RMF) models (for a recent
review on NS EOS and associated physics, see [8]). These
are constructed under the quantum hadrodynamics model,
where the interactions in nuclear matter are modeled at the
hadronic level, with baryon-baryon interactions taking
place through the exchange of mesons. These EOS are
constrained in two ways—using the properties of nuclear
matter at saturation density and the observations of NSs
themselves.
On obtaining an appropriate EOS, one can construct a

family of NSs from it, parametrized by the central density
by solving the general relativistic hydrostatic equilibrium
equations first proposed by Tolman, Oppenheimer, and
Volkoff (TOV) [5]. Thus, every EOS maps onto a mass-
radius (M-R) curve, which is then used to calculate the
theoretical mass limit of NSs. Thus, a range of nuclear
matter EOS directly results in a range of mass limits.
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From an observation perspective, NSs are challenging
objects. Although the first radio pulsar observation was
made in 1968 [9], NS measurements still harbor a lot of
uncertainties. Particularly, the radius of a NS is very
difficult to measure and is poorly constrained by the
available data. Indeed, it is the measurements of masses,
particularly those of heavy NSs, that serve as an important
discriminator among the various EOS models.
Observations of “massive” NSs are, therefore, crucial

to constrain the properties of high-density nuclear matter.
The heaviest observed NS (as of the time of writing) is the
“black widow” pulsar PSR J0952-0607 [10,11], which
has a mass M ¼ 2.35� 0.17M⊙. On the other hand, the
lowest observed black hole mass appears to be around
M ¼ 3.3M⊙ [12] (however, see also [13]). This has led to
an apparent “mass gap” that exists between the heaviest
NSs and the lightest black holes.
Recently, gravitational wave (GW) observations have

made significant strides in addressing this gap [14,15].
In particular, the GW190814 observation [16] revealed the
merger of two compact objects, one of which was inferred
to have a mass within the range of 2.50 − 2.67M⊙,
squarely placing it within the mass gap. Arguments
proposing that this event involved two black holes have
been presented in [17]. However, the true nature of this
object, whether it is a black hole or a NS, remains
uncertain, as no electromagnetic counterpart was identi-
fied for this event. Additional observations, such as
GW200210-092254 [18], have also suggested the pos-
sibility of objects residing within the mass gap.
Apart from the possibility of mass gap detections, GW

observations also significantly help with constraining NS
radii. A parameter that has gained relevance in recent
years is the dimensionless tidal deformability (Λ). This is
related to the deformation of the star under external tidal
fields, such as that of a companion object in a binary.
This deformation leaves an imprint on the GW signal
and, hence, binary mergers such as GW170817 have been
used to place an observational limit on this parameter.
Although the limit varies depending on the priors and
models considered, it proves to be a useful discriminant
between various EOS candidates as it gives a range of
acceptable stiffness for a particular EOS model. Since
the tidal deformability is closely linked to the radius of
the NS, this ends up indirectly providing an additional
observational constraint. Combining GW observations
with Neutron Star Interior Composition Explorer
(NICER) data gives us a radius constraint of around
11–13 km for a 1.4M⊙ NS [19,20].
As mentioned previously, the heaviest NS has a mass

above 2M⊙. Other pulsar observations such as PSR J1614-
2230, M ¼ 1.97� 0.04M⊙ [21,22]; PSR J0348þ 0432,
M ¼ 2.01� 0.04M⊙ [23]; and PSR J0740þ 6620, M ¼
2.08� 0.07M⊙ [24,25] support the idea that the NS’s
“Chandrasekhar” limit (if it exists) could be well above this

value. On the other hand, it has been shown through
previous work in our group (starting with [26]) that the
magnetic fields of compact stars can lead to significant
enhancements in their masses, both through classical and
quantum effects.
NSs are known to have significant magnetic fields.

Typical surface fields fall in the range of 108–1013 G.
An important subset of NSs is the strongly magnetized
“magnetars,” which can have surface fields up to the order
of 1015 G. Magnetars may account for around 10% of the
NS population [27,28]. Emphasizing once more, the field
strengths mentioned here are all for the surface values. The
fields at the center of the star can end up being orders of
magnitude higher than the ones quoted here.
Hence, it seems that the magnetic fields of NSs and their

associated effects on the M-R relationship are not igno-
rable. The introduction of magnetic fields can affect the
star in two ways. Classically, the magnetic field can lead to
a magnetic pressure that contributes to the hydrostatic
balance of the star. Further, this magnetic pressure can also
lead to an overall pressure anisotropy in the NS. Another
important effect the magnetic field can have is on the
quantum microstates of the nuclear matter itself, i.e.,
modification of the EOS through Landau quantization.
However, as shown previously [29], this effect is only
significant for fields above 3 × 1018 G. In the present work,
we restrict ourselves to fields well below this value and
consider only the classical effects of the field.
Along with the anisotropy arising from the magnetic

pressure, NSs can have other sources of being anisotropic
stars. In a very basic sense, the matter distribution within
the star itself can lead to an inherent anisotropy. This can
arise due to a variety of physical effects. For instance,
convective and/or turbulent mixing in the context of two
fluid models can lead to anisotropy [30]. At the high
densities inside NSs, other effects can contribute to
anisotropy. For instance, in the superdense NS cores, the
formation of pion/kaon condensates [31,32] is favored,
leading to pressure reduction along the radial direction, but
not overall. The presence of possible superfluidity [33,34]
in NS cores can be an additional source of anisotropy.
On introducing a magnetic field to the star, an additional

source of uncertainty arises, which is the magnetic profile
within the star. The profile of the magnetic field within
the compact star is unknown, which means that one can
explore a number of profiles, making sure they are
consistent with the Einstein-Maxwell equations. One of
the most widely used profiles is a density-dependent
exponential profile for the magnetic field magnitude, first
proposed by Bandyopadhyay et al. [35]. Although this
profile can be shown to be consistent with the Einstein-
Maxwell equations (see the discussion in Sec 2.4 of [36],
for example), some critics have argued that simulations
from LORENE indicate the field profile should be more of a
polynomial fit [37–39]. However, one should note that
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LORENE and hence the resulting polynomial profile are
only calculated and inferred in the context of purely
poloidal configurations within the star. It has been well
known that purely poloidal (or purely toroidal) field
profiles in stars lead to instabilities [40,41], and rather
mixed field configurations ensure the most stability,
e.g., [42–44]. Nevertheless, in this work, as a first approxi-
mation, we consider two main orientations for the magnetic
field introduced—radially oriented (RO) fields are fields
directed toward the radial direction, while transversely
oriented (TO) fields are fields directed randomly in a
direction perpendicular to the radial direction. The orien-
tation of the magnetic field plays a crucial role. As
described in this paper, our approximate choice of model
profiles helps to explore a series of realistic EOS in contrast
to the other simulations of our group where the field profile
is more accurate, but the EOS is approximate [45,46].
Further, there is no consensus on whether a magnetic field
always leads to an increase in the mass of a compact
star [47–49]. Thus, the study of magnetized, anisotropic
NSs can help resolve multiple open issues.
However, the TOVequations hold for isotropic, spherical

stars and are modified in the presence of anisotropy, such as
that introduced by magnetic fields. We follow the approach
laid out by a previous paper in our group in the same
line [36] and introduce models for the magnetic field and
anisotropy constructed under the assumption of spherical
symmetry. This assumption of approximate spherical sym-
metry is valid in a number of field configurations and
magnitudes, as shown previously in our group through two-
dimensional simulations [45].
In the present work, we look at the theoretical possibility

of massive, magnetized NSs as possible mass gap candi-
dates. The paper is structured as follows. In Sec. II, we set
up the basic formalism and equations solved to construct
our NS models. We describe the EOS used, as well as the
models introduced to describe the magnetic field and
anisotropy present in the star. In Sec. III, we describe
our obtained results and discuss possible implications of
the same. We explore a different magnetic field profile with
its caveats in Sec. IV. We end by summarizing our results
and with our conclusions in Sec. V.

II. FORMALISM AND SET OF EQUATIONS

To describe NSs, we solve the general relativistic hydro-
static balance equations, i.e., the TOV equations. Because
of the introduction of anisotropic effects (both from the
magnetic field and general matter effects), the TOV
equations are modified. We follow the same modification
of the TOV equations outlined in previous work by our
group [36], given by

dm
dr

¼ 4πr2
�
ρþ B2

8π

�
; ð2:1Þ

dpr

dr
¼

8>>>>>><
>>>>>>:

−ðρþprÞ
�
4πr3ðpr−B

2

8π
Þþm

�
rðr−2mÞ þ2

rΔ�
1− d

dρðB
2

8πÞð dρ
dpr

Þ
� ðfor ROÞ;

−ðρþprþB2
4πÞ
�
4πr3ðprþB2

8π Þþm

�
rðr−2mÞ þ2

rΔ�
1þ d

dρðB
2

8πÞð dρ
dpr

Þ
� ðfor TOÞ:

ð2:2Þ

Here, m denotes the mass, ρ the density, and B the
magnitude of the magnetic field at a given radius r within
the star. Because of the presence of anisotropy, the pressure
along the radial direction pr is different from the pressure
along the transverse direction pt. This is captured in the
effective anisotropy factor Δ defined as

Δ ¼
� ðpt − pr þ B2=4πÞ ðfor ROÞ;
ðpt − pr − B2=8πÞ ðfor TOÞ: ð2:3Þ

The magnetic field thus modifies the expressions for the
hydrostatic equilibrium andΔ in different ways based on its
orientation (RO or TO).

A. Modified Bowers-Liang model for anisotropy

To close the system of equations defined above, we need
a model functional form for Δ. We use the general para-
metric form first introduced by Bowers and Liang [50]. As
done previously in our group [36], we modify the Bowers-
Liang form to further include the effects of the magnetic
field. Δ is then given by

Δ ¼

8>><
>>:

κr2
ðρþprÞ

�
ρþ3pr−B2

4π

�
1−2m

r
ðfor ROÞ;

κr2
ðρþprþB2

4πÞ
�
ρþ3prþB2

2π

�
1−2m

r
ðfor TOÞ:

ð2:4Þ

This model is derived keeping in mind the following key
assumptions:

(i) The anisotropic force must vanish at the center,
leading to the anisotropy term vanishing quadrati-
cally at the center.

(ii) Anisotropy varies with position inside the star.
(iii) Δ includes the effects due to local fluid anisotropy as

well as the anisotropy due to the magnetic field (both
its magnitude and orientation).

Following previous work [50,51], we restrict κ to the
range ½−2=3; 2=3�. This is to ensure the physicality of the
solution and ensure that we do not get a positive dp=dr.
We further need to supplement the set of equations (2.1),

(2.2), (2.4) with the EOS and magnetic field profile to make
it completely solvable.

B. Magnetic field profile

We introduce a density-dependent magnetic field in the
star [35], given by

BðρÞ ¼ Bs þ B0

�
1 − exp

�
−η

�
ρ

ρ0

�
γ
�	

: ð2:5Þ
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This profile gives us the magnitude of the field as a
function of the density and, hence, the radius within the
star. Here, Bs corresponds to the surface field of the star,
B0 and ρ0 control the field at the center, and η and γ are
model parameters that control how the field decays from
center to surface.
Throughout this work, we have chosen Bs to be 1015 G.

However, the results we obtain are found to be largely
independent of this parameter, as long as Bs is not
comparable to B0.

C. Equations of state

To describe the matter present within the star, we use a
selection of phenomenological EOS, constructed using
the RMF approach. Here, the matter is modeled at the
hadron level, with the interactions between the baryons
modeled using meson fields as mediators. The meson field
strengths are then set to their mean values as per the RMF
approximation. Three such meson fields are included
in this work—the scalar meson σ, describing attraction
between baryons; the vector mesonω, describing repulsion;
and the isovector meson ρ, explaining isospin asymmetric
interactions.
RMF EOS are constrained in two ways—they must be

able to reproduce the observed NS properties, and they
must reproduce the properties of symmetric nuclear matter
(SNM) at saturation density (n0).
At the high densities present in NS cores, the presence of

exotic particles is energetically favorable. Exotic particles
are those that do not exist in stable form under terrestrial
conditions. In the present work, we have considered two
such classes of exotic particles—hyperons (particles with at
least one strange baryon in quark content) and Δ particles
(nonstrange baryons of spin 3=2). Thus, we explore pure
nucleonic (npeμ) EOS along with hyperon and Δ admixed
(npeμ − YΔ) EOS.
The general Lagrangian of the relativistic model in the

mean field approximation is given by

LRMF ¼ Lbaryons þ Lmesons þ Lleptons: ð2:6Þ

The baryon content (B) here comprises the nucleons
N ∈ fn; pg, the hyperons Y ∈ fΛ;Σþ;Σ0;Σ−;Ξ0;Ξ−g, and
Δ∈ fΔþþ;Δþ;Δ0;Δ−g. The Lagrangian for interacting
baryons is given by

Lbaryons ¼
X
B

ψB

�
γμ

�
i∂μ − gωBðnÞωμ −

1

2
gρBðnÞτ:ρμ

�

− ðmB − gσBðnÞσÞ
	
ψB; ð2:7Þ

where gσBðnÞ, gωBðnÞ, and gρBðnÞ are the meson-baryon
coupling constants, mB is the mass of the baryon, n is the
baryon number density, τ ¼ ðτ1; τ2; τ3Þ is the Pauli isospin

matrix, and γμ are the Dirac matrices. The coupling
constants are set to reproduce the properties of SNM at
n0 within their experimental bounds.
The inclusion of hyperonic matter has been done by

including meson-hyperon couplings based on the SU(3)
ESC08 model [52] and the inclusion of Δ particles done
by including a near-universal meson-Δ coupling: xiΔ ¼
giΔ=giN ¼ 1.2. This value of xiΔ is in accordance with the
consideration of meson-Δ coupling based on group theory
as explored in recent work [53]. Here, g represents the
coupling constants; the subscript Δ indicates the Δ par-
ticles, N the nucleons, and i represents the mesons
mentioned above.
The Lagrangians for the leptons (∈ fe−; μ−g) and the

mesons are given by

Lleptons ¼
X
λ

ψλ½iγμ∂μ −mλ�ψλ and ð2:8Þ

Lmesons ¼
1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

4
ðωμνω

μνÞ þ 1

2
m2

ωðωμω
μÞ

þ 1

2
m2

ρðρμρμÞ −
1

4
ðρμνρμνÞ: ð2:9Þ

Additional nonlinear self-interaction terms (dependent
on σ3 and σ4) are often introduced to ensure that the
empirical values of properties like nuclear incompressibil-
ity (K0) and effective nuclear mass (m�=mN) are repro-
duced correctly.
Apart from introducing nonlinear terms to the Lagrangian,

another approach that ensures the proper reproduction of
all saturation properties is to make the coupling constants
density dependent. The elimination of the need for nonlinear
terms leads to density-dependent RMF (DDRMF) para-
metrizations, introduced as

giBðnÞ ¼ giBðn0ÞfiðxÞ; ð2:10Þ

where i∈ fσ;ω; ρg, x ¼ n=n0. fðxÞ gives the form of the
density dependence, typically described using an ansatz of
the form

fiðxÞ ¼ ai
1þ biðxþ diÞ2
1þ ciðxþ diÞ2

; ð2:11Þ

for i∈ fσ;ωg, and

fρðxÞ ¼ exp½−aρðx − 1Þ�: ð2:12Þ

Thus, now, the parameters that must fit to the SNM
properties at n0 are the nine density-dependent parameters:
aσ; bσ; cσ; dσ; aω; bω; cω; dω, and aρ, along with the meson-
baryon couplings at saturation density: gσBðn0Þ; gωBðn0Þ,
and gρBðn0Þ.
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Another density-dependent modification to the standard
RMF scheme comes from the recently constrained slope of
the symmetry energy at n0 (L0). Here, the isovector meson-
baryon coupling constant alone is modified to take a
density-dependent form as

gρBðnÞ ¼ gρBðn0Þ exp½−aρðx − 1Þ�: ð2:13Þ

Following previous work [54], we refer to this as the
RMFL approach. The value of L0 is then fixed based on
the coefficient aρ along with the standard meson-baryon
coupling constants.
From the Lagrangian constructed using the RMF/

DDRMF/RMFL approach, one can then obtain the baryon
and meson field equations by applying the Euler-Lagrange
method. As we are constructing RMF models, the
meson fields are set to their mean values (values in the
ground state).
Along with the meson mean field equations, we impose

charge neutrality and baryon number conservation, leading
to a system of five coupled nonlinear equations to be
solved. Additionally, for the RMFL and DDRMF models,
baryon chemical equilibrium has to be imposed, as the
density-dependent coupling leads to a rearrangement
energy contribution (for the detailed systems of equations,
see [54]). The solution of this system of equation gives us
the meson mean fields ω; σ̄, and ρ̄, along with the Fermi
momenta of the baryons under consideration [54].
We choose a few RMF EOS—GM1L [55], SWL [54],

DD2 [56], DD-ME1 [57], DD-ME2 [58], and DDMEX
[59]—that best satisfy both the constraints from SNM
properties and the kind of astrophysical observations we
seek to explain in this work. The first two EOS are
constructed using the RMFL approach, whereas the rest
are DDRMF EOS. The SNM properties at n0 for this list of
EOS are shown in Table I.
Figure 1 shows that the pure nucleonic EOS are much

stiffer (i.e., have a higher pressure at a given energy
density) when compared to the cases with exotic particles.

This is consistent with past literature. Indeed, the softening
of the EOS by hyperonic/exotic matter and the necessity
to reconcile with massive NS observations has led to the
hyperon puzzle, with different resolutions being proposed,
including introducing further repulsive interactions.

D. Tidal deformability

We can further constrain the NS EOS using tidal
deformability limits from GWobservations. In the presence
of an external gravitational field (ϵij), a star develops a
quadrupole moment (Qij) such thatQij ¼ −λϵij, where λ is
the tidal deformability of the star.
Theoretically, one can link λ to the dimensionless second

Love number k2, arising from gravitational multipole
expansion, as λ ¼ ð2=3Þk2R5 [60]. If λ is recast into a
dimensionless form, we obtain Λ ¼ λ=M5 ¼ ð2=3Þk2C−5,
where C ¼ M=R is the compactness of the star.
We compute the tidal love number k2 by solving the

static, linearized perturbation equation arising from the
external tidal field. This corresponds to a metric gαβ ¼
gð0Þαβ þ hαβ, where hαβ is the linearized, perturbation metric.
By expanding hαβ into spherical harmonics, Ym

l ðθ;ϕÞ, and
restricting to the l ¼ 2, static, even-parity perturbations in
the Regge-Wheeler gauge, we can write [60,61]

hαβ ¼ diag½e−νðrÞHoðrÞ; eλðrÞH2ðrÞ;
r2KðrÞ; r2 sin2 θKðrÞ�Y2mðθ;ϕÞ; ð2:14Þ

whereH0,H2, and K are all radial functions determined by
the perturbed Einstein equations. Expanding the perturbed
stress-energy tensor and subsequently inserting the fluid
and metric perturbations in the linearized Einstein equa-
tions, we obtain H0 ¼ H2 ≡H and K0 ¼ Hν0 þH0.
Further subtracting the equation δGθ

θ þ δGϕ
ϕ ¼ 16πδp from

TABLE I. Properties of SNM at n0 for the EOS used in this
work. Properties tabulated here are the energy per nucleon (E=N),
symmetry energy (J), slope of the symmetry energy (L0), the
curvature of the symmetry energy (J00), the incompressibility (K),
and the effective mass (m�=m).

Property GM1L SWL DD2 DD-ME1 DD-ME2 DDMEX

n0 ðfm−3Þ 0.153 0.150 0.149 0.152 0.152 0.152
E=N (MeV) −16.3 −16.0 −16.02 −16.20 −16.14 −16.097
J (MeV) 32.5 31 31.67 33.1 32.3 32.269
L0 (MeV) 55 55 55.04 55.45 51.25 49.576
J00 (MeV) −124.6 −106.2 −93.23 −101.05 −87.19 −71.47
K (MeV) 240 260 242.7 244.5 250.89 267.06
m�=m 0.70 0.70 0.5625 0.578 0.572 0.556

FIG. 1. Different RMF EOS: Here, the upper branch denotes
the npeμ EOS, while the lower branch represents the hyperon-Δ
admixed npeμ − YΔ EOS.

MASSIVE NEUTRON STARS AS MASS GAP CANDIDATES: … PHYS. REV. D 109, 023027 (2024)

023027-5



the tt component of the perturbed Einstein equations, we
obtain a differential equation for H as

H00 þH0
�
2

r
þeλ

�
2mðrÞ
r2

þ4πrðpr−ρÞ
�	

þH

�
4πeλ

�
4ρþ8prþ

ρþpr

Ac2s
ð1þc2sÞ

�
−
6eλ

r2
−ν02

	
¼0:

ð2:15Þ

Here, HðrÞ is a radial function arising from the static,
linearized perturbations of the Einstein equations. As we
are solving for k2, we restrict ourselves to the l ¼ 2, static,
even-parity perturbations of the perturbation metric.
The other quantities are A ¼ dpt=dpr, c2s ¼ dpr=dρ
(the speed of sound squared), eλ ¼ ½1 − 2m=r�−1, and
ν0 ¼ 2eλðmþ 4πprr3Þ=r2. For isotropic stars, A ¼ 1.
On obtaining HðrÞ by solving Eq. (2.15) simultaneously

with our system of equations, one can compute the tidal
Love number k2 as

k2 ¼ ð8=5ÞC5ð1 − 2C2Þ½2 − yR þ 2CðyR − 1Þ�
× f2Cð6 − 3yR þ 3Cð5yR − 8ÞÞ þ 4C3

× ½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� logð1 − 2CÞg−1;

ð2:16Þ

where yR ¼ rH0ðRÞ=HðRÞ.
In recent years, due to GW observations, observational

constraints have been placed on the dimensionless tidal
deformability. From the binary NSmerger event GW170817,
the dimensionless tidal deformability at 1.4M⊙ has been
constrained to be Λ1.4 < 800 [14] and Λ1.4 < 580 [15]. The
two different limits are due to different models. We have
enforced both in our subsequent analyses.

III. RESULTS AND DISCUSSION

As mentioned previously, this work investigates the
theoretical possibility of NSs with masses high enough
to fall in the observational mass gap.

A. Isotropic cases: Pure EOS effect

To start with, we look at the completely isotropic case—
magnetic field and anisotropy parameter κ are both set to
zero. This gives us an idea of the role that pure EOS effects
play in the M-R relationship. M-R curves for the npeμ and
npeμ − YΔ EOS are displayed in Fig. 2.
As expected, the stiffer npeμ EOS give higher masses,

with the maximum mass limit (Mmax) reaching as high as
2.57M⊙ for the DDMEX EOS. The npeμ − YΔ EOS,
being softer, give a mass limit Mmax of about 2.25M⊙ (for
the same DDMEX EOS). The results for the isotropic cases

are shown in Table II. However, on computing the tidal
deformability (Fig. 3) of these cases, it is clear that the
nucleon-only cases all violate at least one of the observa-
tional upper bounds, while the hyperon-Δ admixed cases
do not. These results are consistent with NS properties
obtained in previous work in this line using the same
EOS [54,62,63]. Nevertheless, as we will see in further
results, the introduction of anisotropy and/or magnetic
field helps to change the value of tidal deformability and
even bring the nucleon-only cases below observational
thresholds. However, based on energy considerations
mentioned previously and the tidal deformability con-
straints, it appears that npeμ − YΔ cases are better favored
overall. For the rest of this analysis, we consider only the
npeμ − YΔ admixed cases.
As seen from the isotropic results, pure EOS effects are

not sufficient to bring the stable NS to mass gap levels
(> 2.5M⊙). As a result, we turn to the additional physics of
magnetic fields and/or anisotropy.

B. Introducing magnetic field
with fixed anisotropy parameter κ

We first introduce magnetic fields following Eq. (2.5)
in the presence of a fixed anisotropy parameter, κ ¼ 0.5.

FIG. 2. M-R curves for npeμ EOS (dotted) and npeμ − YΔ
EOS (solid). In each set, the top-to-bottom curves are sequentially
for DDMEX, DD-ME2, DD-ME1, DD2, SWL, and GM1L.

TABLE II. The physical parameters of isotropic NSs, both by
inclusion of exotic particles and for pure nucleonic matter.

npeμ matter npeμ − YΔ matter

EOS Mmax (M⊙) R (km) Mmax (M⊙) R (km)

GM1L 2.32 11.45 2.04 11.37
SWL 2.34 11.43 2.01 11.25
DD2 2.45 11.94 2.11 11.79
DD-ME1 2.47 12.12 2.15 12.10
DD-ME2 2.51 12.24 2.19 12.25
DDMEX 2.58 12.64 2.26 12.53
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We start with a profile described by η ¼ 0.2, γ ¼ 2. The
general shape of this profile within a star is given in Fig. 4.
We vary B0 to take values 1.2 × 1018 and 0.9 × 1018 G
in the transverse direction and 0.6 × 1018 and 0.9 × 1018 G
in the radial direction. Bs is kept fixed at 1015 G. As
mentioned previously, varying Bs (in a range not compa-
rable to B0) does not have an effect on the results.
The trend obtained is similar to previous work done in

this line [36]. Introducing anisotropy enhances the mass of
the star, even in the absence of magnetic fields. For the
latter, it is the matter anisotropy that is ultimately contrib-
uting to the enhanced mass of the star. However, it is
important to note here that, in general, anisotropy is not
wholly independent of the magnetic field and its effect. On
introducing a TO field to an already anisotropic (by matter)
star, its mass further increases, whereas a RO field tends to
decrease the mass. In these cases, the anisotropy is not
wholly a matter effect, but instead has contributions from

the magnetic field introduced. This leads to the anisotropy
being a consequence and/or an extension of the magnetic
effect on the NS’s structure and properties. Thus, different
M-R curves are obtained on varying the magnetic field. The
results for the two stiffest EOS (DD-ME2 and DDMEX)
are shown in Figs. 5 and 6. Results for all the EOS are given
in Table III.
It seems that the highly magnetized TO stars are most

promising in terms of mass gap candidates. As seen from
Table III, all the EOS give stars of maximum mass
>2.5M⊙ for the TO field with B0 ¼ 1.2 × 1018 G. The
mass of the NS is increased up to even 2.8M⊙ for the
DDMEX EOS. However, on computing the tidal deform-
ability for these cases (Figs. 7 and 8), we see that these
highly magnetized cases fail to meet either of the obser-
vational bounds set by GW observations. Similar issues
arise when we perform a stability analysis [42], as all the

FIG. 3. Tidal deformability Λ as a function of M for npeμ EOS
(dotted) and npeμ − YΔ EOS (solid). The various curves are the
same as Fig. 2.

FIG. 4. Representative field profile within a star for η ¼ 0.2,
γ ¼ 2.

FIG. 5. M-R curves for varying B0 and orientation in case of the
profile corresponding to η ¼ 0.2, γ ¼ 2 for the DD-ME2 EOS.
Anisotropic parameter κ is set to 0.5 throughout.

FIG. 6. M-R curves for varying B0 and orientation in case of the
profile corresponding to η ¼ 0.2, γ ¼ 2 for the DDMEX EOS.
Anisotropic parameter κ is set to 0.5 throughout.
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B0 ¼ 1.2 × 1018 G cases give high magnetic energy (Emag)
to gravitational energy (Egrav) ratios of order 0.1 (not
explicitly shown here).
Can we then rule out the underlying high fields men-

tioned above at the cores of NSs completely? The answer
is no. It is important to note that the results discussed so far
are profile specific—i.e., specific to a particular η and γ.
We next try a second profile: η ¼ 0.01, γ ¼ 2. The general
shape of this profile within the star is shown in Fig. 9. On
comparing with the previous profile, we see that the
magnetic field here has a much more gradual fall in the
star, leading to a lower Lorentz force near the surface of
the star. Hence, we expect that this profile will lead to lower
masses, however, with better prospects for stability.
We introduce RO and TO fields by varying B0 to take the

values 1 × 1017, 5 × 1017, 1 × 1018, 2 × 1018, 3 × 1018,
4 × 1018, and 5 × 1018 G. The M-R curves obtained in the
case of the DDMEX EOS are shown in Fig 10. The
important quantities are also listed in Table IV.
As seen from the results, we require central fields (Bc)

of around 5 × 1017 G or higher for the magnetic field to
significantly affect the mass of the star. For comparable

values of Bc in both chosen profiles, we see that the second
profile leads to lower masses. For DDMEX, for instance,
the second profile gives a maximum mass of 2.69M⊙
as opposed to 2.84M⊙ in the first profile. However,
Emag=Egrav is now reduced from nearly 0.2 for the first
profile to 0.05 for the second. Similar trends are seen for the
other EOS used. Thus, this second profile gives us much
more stable stars overall.
We further look at the tidal deformability computed for

the second profile. The results are shown in Fig. 11. We see
that the lower η leads to much lower Λ1.4. In fact, most of
the values of Λ1.4 are clustered around 580. This means that
these stars are better candidates to satisfy even the stricter
observational limit on Λ1.4.
Although there was no measurable tidal deformations in

the GW190814 signal, there have been tidal deformability

TABLE III. Mmax for the different EOS under varying B0 and
orientations. Anisotropy parameter κ ¼ 0.5 throughout. The field
profile is for η ¼ 0.2, γ ¼ 2. κ by itself leads to higher masses,
which are further enhanced (reduced) by TO (RO) fields.

B0 ð1018 GÞ
Mmax ðM⊙Þ for different EOS

GM1L SWL DD2 DD-ME1 DD-ME2 DDMEX

1.2 (TO) 2.57 2.52 2.64 2.72 2.76 2.84
0.9 (TO) 2.47 2.42 2.55 2.63 2.67 2.75
0 2.34 2.31 2.43 2.49 2.54 2.62
0.6 (RO) 2.24 2.21 2.32 2.37 2.41 2.49
0.9 (RO) 2.11 2.09 2.19 2.22 2.26 2.34

FIG. 7. Tidal deformability Λ as a function of M for varying B0

in case of the profile corresponding to η ¼ 0.2, γ ¼ 2 for the DD-
ME2 EOS. Anisotropic parameter κ is set to 0.5 throughout.

FIG. 8. Tidal deformability Λ as a function of M for varying B0

in case of the profile corresponding to η ¼ 0.2, γ ¼ 2 for the
DDMEX EOS. Anisotropic parameter κ is set to 0.5 throughout.

FIG. 9. Representative field profile within a star for η ¼ 0.01,
γ ¼ 2.
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constraints from this event, obtained from reexamining
the analysis of GW170817 under the assumption of
GW190814 having a massive NS. In particular, the spectral
EOS distribution from GW170817 was taken and each EOS
was reweighted by the probability that its maximum mass
falls in the mass of the secondary object detected in the
GW190814 [16]. This favors stiffer EOS with the updated
tidal deformability constraint being 458 < Λ1.4 < 889.
These updated limits are additionally shown in Fig. 11.
We see that all the cases, including the highly magnetized
ones, are consistent with all the tidal deformability con-
straints laid out so far.
Exploring just these two profile cases, we thus see a wide

variety of behavior possible by experimenting with the

model parameters of the magnetic field. Since the true form
of the magnetic field within the star is essentially unknown,
it is important to experiment with different profiles and
check the results. In particular, we cannot rule out the
possibility of high fields existing within NSs based on
results from one profile alone.

C. Varying the anisotropy parameter κ

We next look at the effect of varying κ in the presence of
a fixed magnetic field. We take κ as 0.1, 0.2, 0.3, 0.4, 0.5,
and 0.6 by fixing B0. In Fig. 12, we show the M-R curves

TABLE IV. Results for the DDMEX EOS under varying B0 and
orientations. Anisotropy parameter κ ¼ 0.5 throughout. The field
profile is for η ¼ 0.01, γ ¼ 2.

B0 ð1018 GÞ Bc ð1017 GÞ Mmax ðM⊙Þ R (km) Emag=Egrav

5 (RO) 10.71 (RO) 2.46 13.39 0.044
4 (RO) 9.19 (RO) 2.52 13.33 0.031
3 (RO) 7.14 (RO) 2.56 13.30 0.019
2 (RO) 4.87 (RO) 2.59 13.27 0.009
1 (RO) 2.47 (RO) 2.61 13.25 0.002
0.5 (RO) 1.23 (RO) 2.62 13.24 0.0005
0.1 (RO) 0.25 (RO) 2.62 13.26 3 × 10−5

0 0 2.62 13.26 � � �
0.1 (TO) 0.25 (TO) 2.62 13.26 3 × 10−5

0.5 (TO) 1.24 (TO) 2.62 13.25 0.0006
1 (TO) 2.46 (TO) 2.63 13.25 0.002
2 (TO) 4.92 (TO) 2.64 13.23 0.009
3 (TO) 7.38 (TO) 2.65 13.21 0.02
4 (TO) 9.50 (TO) 2.67 13.21 0.04
5 (TO) 11.89 (TO) 2.69 13.18 0.056

FIG. 11. Tidal deformability Λ as a function of M for varying
B0 in case of profile corresponding to η ¼ 0.01, γ ¼ 2 for the
DDMEX EOS. Anisotropic parameter κ is set to 0.5 throughout.
The red dotted lines show the limits on Λ1.4 from GW190814.
The various curves are the same as Fig. 10.

FIG. 10. M-R curves for varying B0 in case of the field profile
with η ¼ 0.01, γ ¼ 2 for the DDMEX EOS. Anisotropic param-
eter κ is set to 0.5 throughout. Dotted lines indicate RO fields,
dashed lines indicate TO fields.

FIG. 12. Change in the M-R curve of the DDMEX EOS due to
varying anisotropy parameter κ. Three different B0 have been
considered: 0, 2 × 1018, and 5 × 1018 G. From top to bottom,
each set corresponds to κ ¼ 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1
sequentially.
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for varying κ with three fixed B0: 0, 2 × 1018, and
5 × 1018 G, for the DDMEX EOS. In Fig. 13, the effect
of changing κ is shown for three different EOS: GM1L,
DD2, DDMEX, at B0 ¼ 0 G (i.e., nonmagnetized star).
We see that higher values of κ lead to higher masses

being supported by the star, even at zero field. From the
results tabulated in Table V, we see that, for a given field,
a higher κ leads to a lower Emag=Egrav (and lower Bc)

along with a higher mass. Higher κ also reduces the tidal
deformability (Fig. 14). EOS that violate the observational
bounds on Λ in the case of isotropic cases can be seen to be
consistent with the same bounds when we introduce
anisotropy to the star. This dependence of Λ on the degree
of anisotropy present in the star could be crucial in
determining the observational bounds on κ. Indeed, pre-
vious work [61] discussed how κ could be eventually
constrained using GW observations.
However, as of now, there are not any observational

bounds on κ. Nevertheless, the presence of anisotropy
within a NS is well motivated, both by the possible
presence of a magnetic field and by high-density effects,
such as superfluidity. Previous studies also explored the
possibility of the mass gap object in GW190814 being an
anisotropic NS [64].

D. Universal relations

As mentioned throughout this paper, the primary chal-
lenge arising in the theoretical study of NSs is the unknown
EOS. However, unlike the M-R curves explored so far,
there are “universal relations” between NS parameters
that are independent/insensitive to the underlying EOS.
Such relations are found to exist between the moment of
inertia (I) of the star, stellar compactness (C), and the tidal
deformability (Love). This leads to the I-Love-C relations.
Replacing C with the quadrupole moment Q leads to the
other famous set of universal relations, the I-Love-Q
relations. These universal relations exhibit immediate
applicability to various realms of physics. They help to
break the degeneracy that exists between the quadrupole
moment and spin in GW signals. They can also be a source
of EOS-independent tests of the fundamental physics of
general relativity [65,66].
These universal relations were first introduced/studied in

the context of isotropic NSs constructed under the slow

FIG. 13. Change in the M-R curve for EOS GM1L, DD-ME2,
and DDMEX due to varying anisotropy parameter κ. B0 has
been fixed to 0 G throughout. From top to bottom, the curves for
each EOS correspond to κ ¼ 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1
sequentially.

TABLE V. Results for the DDMEX EOS under varying κ for
three B0: 0, 2 × 1018, and 5 × 1018 G. The profile corresponds to
η ¼ 0.01, γ ¼ 2.

B0 (G) κ Bc ð1017 GÞ Mmax ðM⊙Þ R (km) Emag=Egrav

0 0.1 � � � 2.32 12.65 � � �
0.2 � � � 2.39 12.79 � � �
0.3 � � � 2.46 12.95 � � �
0.4 � � � 2.54 13.08 � � �
0.5 � � � 2.62 13.25 � � �
0.6 � � � 2.71 13.39 � � �

2 × 1018 0.1 6.65 2.33 12.64 0.013
0.2 6.29 2.40 12.76 0.012
0.3 5.76 2.47 12.93 0.011
0.4 5.42 2.55 13.06 0.010
0.5 4.92 2.63 13.23 0.009
0.6 4.44 2.72 13.37 0.008

5 × 1018 0.1 15.7 2.39 12.59 0.08
0.2 14.8 2.46 12.72 0.07
0.3 13.5 2.53 12.90 0.064
0.4 12.6 2.61 13.04 0.06
0.5 11.9 2.69 13.18 0.056
0.6 11.8 2.78 13.33 0.052

FIG. 14. Change in Λ −M relation of the DDMEX EOS due
to varying anisotropy parameter κ. B0 has been fixed to 0 G
throughout.
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rotation approximation. Recent publications [61,67,68] have
extended this to anisotropic stars as well. We now examine if
this universality can be extended to the magnetic, anisotropic
NSs we have discussed so far in this paper.
In Figs. 15–17, the C − I, C − Λ, and I − Λ relations are

shown for the DDMEX EOS by varying κ considering its
different values as 0.1; 0.2; 0.3, 0.4, 0.5, and 0.6. As seen
from the figures, the C − I relations are unaffected by the
presence of anisotropy in the star. However, the C − Λ and
I − Λ relations show slight deviation once anisotropy is
introduced, particularly at the low Λ regime. This slight
anisotropic deviation was also seen in previous work [67].
To find the extent of the deviation, we fit the relations using
the least squares fitting.
We fit the C − I relation using the following general

polynomial [69,70]:

C ¼
X4
0

anðlog10 IÞ−n; ð3:1Þ

where an represents the best-fit parameters. For the C − Λ
relation fitting, we use the following general polynomial [71]:

C ¼
X2
0

bnðlnΛÞn; ð3:2Þ

where bn represents the best-fit parameters. Finally, for the
I − Λ relation, we use [69,70]

log10 I ¼
X3
0

cnðlog10ΛÞn; ð3:3Þ

where cn represents the best-fit parameters.
The calculated values of parameters an, bn, and cn,

along with the standard error (square root of variance) on
each parameter are given in Table VI. To quantify the

FIG. 15. C − I relation for nonmagnetic NSs constructed under
DDMEX EOS with varying κ. I is normalized in units of the cube
of the NS’s mass (M3).

FIG. 16. C − Λ relation for nonmagnetic NSs constructed
under DDMEX EOS with varying κ.

FIG. 17. I − Λ relation for nonmagnetic NSs constructed under
DDMEX EOS with varying κ. I is normalized in units of the cube
of the NS’s mass (M3).

TABLE VI. The best-fit parameters and calculated errors for the
universal relations for NSs constructed by DDMEX EOS with
varying degrees of anisotropy.

Fit parameter Best-fit value Error

C − I a0 −0.00891 5.950 × 10−3

a1 −0.2343 3.259 × 10−2

a2 1.1321 6.236 × 10−2

a3 −0.9169 4.998 × 10−2

a4 0.24284 1.432 × 10−2

C − Λ b0 0.35587 5.983 × 10−4

b1 −0.03921 1.925 × 10−4

b2 0.001123 1.120 × 10−5

I − Λ c0 0.56707 5.776 × 10−3

c1 0.20232 6.673 × 10−3

c2 0.024963 2.0170 × 10−3

c3 −0.00134 1.7265 × 10−4
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goodness of fit, we calculate the root-mean-squared error
(RMSE), given by the square root of the mean of the
difference between the predicted and actual results
squared. The corresponding RMSE for the varying κ
cases is given in Table VII.
To examine the effect of magnetic field on the universal

relations, we look at the same three relations, C − I,
C − Λ, and I − Λ, but by fixing κ to be 0.5. Along with
the nonmagnetized cases, we also include B0 ¼ 2 × 1018

and B0 ¼ 5 × 1018 G cases. The results for the DDMEX EOS are shown in Figs. 18–20. We see that the
universal relations are unaffected by the presence of
the magnetic field.
The fitting is done as explained previously. The best-fit

parameters, along with the errors on the same, are given in
Table VIII. The RMSE is also listed in Table IX.
Finally, we check the universality of the I-Love-C

relations across EOS. In Figs. 21–23, each of the universal
relations are shown for NSs for three different EOS: GM1L,

TABLE VII. RMSE for the universal relations for NSs con-
structed by DDMEX EOS with varying degrees of anisotropy.

Universal relation RMSE (%)

C − I 0.1626
C − Λ 0.3721
I − Λ 1.9505

FIG. 18. C − I relation for DDMEX EOS with fixed κ ¼ 0.5.
Two values of B0 are chosen along with the nonmagnetized case.

FIG. 19. C − Λ relation for DDMEX EOS with fixed κ ¼ 0.5.
Two values of B0 are chosen along with the nonmagnetized case.

FIG. 20. I − Λ relation for DDMEX EOS with fixed κ ¼ 0.5.
Two values of B0 are chosen along with the nonmagnetized case.

TABLE VIII. The best-fit parameters and calculated errors for
the universal relations for NSs constructed by DDMEX EOS with
fixed κ ¼ 0.5 and varying B0.

Fit parameter Best-fit value Error

C − I a0 −0.06922 2.751 × 10−3

a1 0.11608 1.362 × 10−2

a2 0.42245 2.322 × 10−2

a3 −0.31825 1.639 × 10−2

a4 0.064622 4.100 × 10−3

C − Λ b0 0.35466 3.4206 × 10−4

b1 −0.04009 1.1658 × 10−4

b2 0.00118 7.0507 × 10−6

I − Λ c0 0.5531 6.0172 × 10−4

c1 0.2381 8.5816 × 10−4

c2 0.015847 2.94299 × 10−4

c3 −0.000723 2.7440 × 10−5

TABLE IX. RMSE for the universal relations of NSs con-
structed by DDMEX EOS with fixed κ ¼ 0.5 and varying B0.

Universal relation RMSE (%)

C − I 0.0745
C − Λ 0.1574
I − Λ 0.2402
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DD-ME2, and DDMEX. We fix the anisotropy parameter
κ ¼ 0.5 and magnetic field with B0 ¼ 2 × 1018 G. We see
that the universal relations remain preserved across EOS for
magnetized stars with fixed anisotropy. In each figure, the
fitting is done as explained previously. The best-fit param-
eter values and the errors on them are listed in Table X. The
RMSE for the fits are shown in Table XI.
Thus, we find that under the model anisotropy and

magnetic field considered, the universal relations I-Love-C
are mostly preserved. It appears that of all effects consid-
ered, it is the anisotropy that has a maximal effect on the
universality of these relations, more precisely on C − Λ and
I − Λ relations. Varying κ makes the RMSE of the fit
roughly 2–4 times that of the case with fixed κ. However,
varying magnetic field while keeping κ fixed gives, indeed,
a better universal fit. As explained in previous work [61],
the rigorous exploration of the effect of anisotropy on the
I-Love-C relations could lead to possible observational
constraints on κ and the degree of anisotropy in the star
in general.

IV. COMPARISON BETWEEN POLYNOMIAL
AND EXPONENTIAL PROFILES

All the above explorations are based on a particular law
of the density-dependent magnetic field profile, which
offers an exponential variation. One may question if the

FIG. 22. C − Λ relation forNSs constructed byDDMEX,GM1L,
and DD-ME2 EOS with fixed κ ¼ 0.5 and fixedB0 ¼ 2 × 1018 G.

FIG. 23. I − Λ relation for NSs constructed byDDMEX,GM1L,
and DD-ME2 EOS with fixed κ ¼ 0.5 and fixedB0 ¼ 2 × 1018 G.

TABLE X. The best-fit parameters and calculated errors for the
universal relations of NSs constructed by DDMEX, GM1L, and
DD-ME2 EOS with fixed κ ¼ 0.5 and fixed B0 ¼ 2 × 1018 G.

Fit parameter Best-fit value Error

C − I a0 −0.1127 2.309 × 10−2

a1 0.29967 1.106 × 10−1

a2 0.14764 1.900 × 10−1

a3 −0.1451 1.395 × 10−1

a4 0.02503 3.371 × 10−2

C − Λ b0 0.35364 4.184 × 10−4

b1 −0.03977 1.412 × 10−4

b2 0.00117 8.420 × 10−6

I − Λ c0 0.55371 2.248 × 10−3

c1 0.2322 2.768 × 10−3

c2 0.017612 8.679 × 10−4

c3 −0.0008565 7.622 × 10−5

TABLE XI. RMSE for the universal relations of NSs con-
structed by DDMEX, GM1L, and DD-ME2 EOS with fixed
κ ¼ 0.5 and fixed B0 ¼ 2 × 1018 G.

Universal relation RMSE (%)

C − I 0.1629
C − Λ 0.1636
I − Λ 0.4941

FIG. 21. C − I relation for NSs constructed byDDMEX,GM1L,
and DD-ME2 EOS with fixed κ ¼ 0.5 and fixedB0 ¼ 2 × 1018 G.
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density-dependent magnetic field profile used in this work
[Eq. (2.5)] is inconsistent with the Maxwell equations [37].
Actually, this should not be an issue. Under the formalism
of approximate spherical symmetry (which is quite a good
approximation, particularly for toroidal fields) described in
this paper, the density-dependent profile only gives us the
magnitude of the magnetic field at a particular density (and,
hence, radius) within the star. The orientation is determined
by whether we consider “RO” or “TO” fields. As we have
shown in the previous work in the same line, we can always
make the magnitude obtained from the density-dependent
profile consistent with the Maxwell equations, approxi-
mately in the regime of spherical symmetry, for both of the
orientations considered in this work. A detailed proof of
this is shown in Sec. 2.4 of [36], under similar formalism
and assumptions.
One of the alternative profiles is a polynomial profile,

with magnetic field expressed as a function of the baryon
chemical potential (μB). The profile is obtained by fitting
the two-dimensional results from the numerical code
LORENE using quadratic polynomials [38,39], given by

BðμBÞ ¼
aþ bμB þ cμ2B

B2
c

μ; ð4:1Þ

where μB is the baryon chemical potential and μ is the
dipole magnetic moment, respectively, expressed in MeV
and A=m2, to obtain B in units of the electron’s
critical field Bc ¼ 4.414 × 1013 G. We use coefficients,
a, b, c, obtained from the numerical simulation of a
2.2M⊙ star in previous work [38,39], which are
a ¼ −0.769 G2=Am2; b ¼ 1.20 × 103 G2=Am2MeV, and
c ¼ −3.46 × 10−7 G2=Am2MeV2. As implied, this pro-
file, in principle, is valid only for 2.2M⊙ NSs. Other NSs
should have different a, b, c.
We introduce magnetic fields to our star using the above

profile by varying μ with values 2 × 1031; 5 × 1031; 1032

and 2 × 1032 Am2. An important caveat here, however, is
that LORENE can only generate poloidal magnetic fields.
In the current formalism, this translates to an RO field. We
set the anisotropy κ ¼ 0.1 throughout.
The M-R relations for the four magnetized cases men-

tioned above, along with a nonmagnetized (but still
anisotropic) case for the DDMEX EOS are shown in
Fig. 24. The corresponding values of the tidal deformability
are shown in Fig. 25. As this profile leads to pure poloidal/
RO fields, we see that, under the current formalism, it leads
to an overall decrease in the mass of the NS.
It appears that the magnetic field effect is extremely

limited in the case of this profile as opposed to the previous
profile. From the results listed in Table XII, we see that
the NS properties are not all that different from the
nonmagnetized cases even for high magnitudes of
the central (maximum) magnetic field and Emag=Egrav.
The trend of variation of the magnetic field within the

star for each of the μ cases is shown in Fig. 26. We see that
this profile always gives, at most, an order-of-magnitude
difference between the center and the surface fields. This
means that a maximum magnetic field of order 1018 G
within the star corresponds to a surface field of similar
order or, at the maximum, reduced up to 1017 G. This is
much higher than the present measurements for the surface

FIG. 24. M-R curves for varying dipole magnetic moment μ for
the DDMEX EOS, where κ ¼ 0.1 throughout.

FIG. 25. Tidal deformability Λ as a function of M for varying
dipole magnetic moment μ for the DDMEX EOS, where κ ¼ 0.1
throughout.

TABLE XII. Results for the DDMEX EOS with varying μ in
the polynomial magnetic field profile, where κ ¼ 0.1 throughout.

μ ðAm2Þ Bc ðGÞ Mmax ðM⊙Þ R (km) Emag=Egrav

0 � � � 2.32 12.66 � � �
2 × 1031 1.18 × 1017 2.32 12.65 0.002
5 × 1031 2.95 × 1017 2.32 12.64 0.01
1032 5.90 × 1017 2.31 12.60 0.04
2 × 1032 1.18 × 1018 2.28 12.44 0.17
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magnetic field of NSs. Additionally, such a high field
throughout the star leads to high Emag=Egrav (Table XII),
which might destabilize the star. On the other hand, if we
aim to achieve the surface field ∼1015−16 G, then the
corresponding central field hardly affects the stellar struc-
ture. Therefore, this profile does not seem to be a viable
profile, from either stability or observability.
Indeed, this 1 order of magnitude variation of the

magnetic field from the center to surface is consistent with
previous work, done using this profile [38,39,72]. It is also
consistent with the numerical simulation results for the
poloidal fields from our group using the XNS code [45,46].
However, it has been long known [40,41] that purely
poloidal or purely toroidal field configurations lead to
unstable stars. The most stable field configuration in NSs is
a mixed field configuration consisting of both poloidal
and toroidal fields; perhaps toroidally dominated [73], also
see [44,74]. Hence, it would be incorrect to rule out the
magnetic field’s effect on the star based on the results from
the purely poloidal polynomial profile. In fact, the XNS

code shows that toroidal fields can have 2 orders of
magnitude variation between the maximum field and the
outer crust field (exactly at the surface, it exhibits zero or
very low field by the very geometry). Hence, the chosen
field profile with the exponential variation, as used in all the
previous sections, is likely to be a natural situation with the
right combination of toroidal and poloidal fields within
the star. The toroidal field varies from its maximum to
minimum (close to the surface) by 2 orders of magnitude
and the corresponding poloidal field varies by one order.
If the core field is toroidally dominated with 2 orders of
magnitude higher than its poloidal counterpart, then for a
maximum toroidal field of 1018 G, the surface poloidal
field could be 1015 G (exactly at the surface, the toroidal
field vanishes). In such a star, the poloidal field hardly
affects the stellar structure. This further justifies the
approximate spherical choice of our model, when a

significant deviation from the spherical symmetry is only
by the poloidal field.
Thus, although the polynomial profile is constructed in

order to be consistent with the Einstein-Maxwell equations,
it does not account for the instabilities that arise from
purely poloidal configurations as well as possible insta-
bility due to high Emag=Egav. Indeed, all the profile-based
approaches, whether they be the exponential profile or the
polynomial profile, are ultimately approximations that have
limitations in predicting the NS physics. For a first-order
study into the NS’s mass limits, such as the one done in this
work, it appears that the exponential profile is more than
adequate. For more sophisticated studies of the magnetic
field profiles and the precise effect of its geometry, one
must turn to two-dimensional Einstein-Maxwell solvers
such as XNS, as done already by some of us [45,46].
However, at present, the XNS code cannot deal with realistic
EOS such as the ones studied in this paper; it can deal only
with the polytropic form. Thus, the approximate studies, as
reported in the present paper, become important to gain
insights into the EOS dependence of NS properties.

V. CONCLUSIONS

In this work, we investigate the possibility of massive
NSs being mass gap candidates to explain observations
such as GW190814. We first examine the pure EOS effect.
Because of the appearance of exotic particles such as
hyperons, the EOS is softened considerably as compared
to the pure nucleonic case. The maximum mass obtained
for isotropic stars constructed from our chosen set of
npeμ − YΔ EOS was only ≃2.2M⊙. To truly bring our
theoretical models to mass gap ranges, we next investigate
the effects of magnetic field and a model anisotropy
in the NS. Crucially, both magnetic field and anisotropy are
well-established physical effects that show up in NSs. The
observations of magnetars, for example, support NSs
having surface fields as high as 1015 G. Anisotropy is
also expected to be present, both as a consequence of the
magnetic field introduced and as an independent effect
arising from high-density effects such as superfluidity.
Introducing anisotropy enhances the mass of the star, even
in the absence of the magnetic field. Depending on the
orientation of the magnetic field introduced (RO or TO), the
maximum mass can be either enhanced or decreased from
the nonmagnetized value. Only the toroidal field leads to a
reasonable increment in the mass of a NS. Although we
introduce these two nonspherical effects to the system, we
construct our NS models in approximate spherical sym-
metry. This is a reasonable approximation, particularly for
toroidally dominated stars, as shown previously by our
group using the two-dimensional numerical simulation
code XNS [45].
Nevertheless, many authors (e.g., [75–77]) tackle the

EOS-based restriction to the NS mass through the intro-
duction of additional effects such as rotation in the star.

FIG. 26. Variation of the magnetic field within the star for
varying μ based on the polynomial profile with the DDMEX EOS.
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There have also been arguments based on GW170817
observations combined with universal relations that the
maximummass of nonrotating, nonmagnetizedNSs is within
2.3M⊙ [78]; see also [79]. However, the hyperonization/
softening issue may be confronted through the adjustment of
the couplingconstant aswell [80],which thoughappears to be
an extreme assumption [17]. Moreover, the possibility of the
lighter component of GW190814 to be a quark star is not
ruled out [81]. Therefore, while the alternative choices may
lead to slightly varied outcomes, the fundamental findings of
the paper persist in their robustness.
We further use Λ and Emag=Egrav to ensure the physicality

of our results. We find that high magnetic fields from certain
profiles are ruled out under these constraints. However,
with the right choice of profile, NSs of masses in the range
2.5 − 2.67M⊙ are demonstrated to be possible, while
satisfying all stability criteria. On examining the role of
anisotropy in the star, we find that increasing the anisotropy
parameter κ leads to a decrease in the tidal deformability.
This is due to the enhanced mass, as the tidal deformability is
inversely proportional to the compactness. This means that
EOS that were previously ruled out based on isotropic
studies of the Λ1.4 constraint are still viable candidates if we
consider their anisotropic pressure modification. The sensi-
tivity of Λ on κ is extremely important, as it may help to
ultimately establish observational bounds on this parameter.
We finally examine the EOS independence of the

I-Love-C universal relations. We see that of the three
effects—EOS, magnetic field, and anisotropy—it is
the anisotropy that has a maximal effect of varying the
universal fit between the parameters. Nevertheless, the
deviation from universality is always with RMSE on
the order of 1%, which is still much smaller than exper-
imental errors on, say, the moment of inertia I.

In summary, NSs could possibly be mass gap candidates.
However, the EOS alone is unlikely to yield a massive
NS with a mass exceeding 2.5M⊙. The introduction of
anisotropy, arising from either matter, magnetic fields,
or a combination of both, appears to be a crucial factor
in achieving this. However, the magnetic field geometry
must be carefully controlled to prevent instability and
comply with the constraint imposed by tidal deformability.
With the appropriate magnetic field geometry and

strength, it becomes feasible to have a massive, stable
NS that fits within the mass gap while satisfying the tidal
deformability constraint. It is important to note that we
have not considered the effects of rotation. Building on the
findings of previous work [17], an additional increase in
mass will occur, which should facilitate the interpretation
of compact stellar objects within the mass gap as NSs rather
than low-mass black holes. This aspect will be a subject of
investigation in future research.
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