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We investigate how our baryon-loss limits from anomalous binary-pulsar period lengthening can be
interpreted microscopically to yield specific constraints on the particle physics of baryon number violation
within a neutron star. We focus on the possibility of anomalous baryon disappearance via dark baryon
processes and on scenarios in which the produced dark-sector particles do not survive to influence the
response of the star to baryon-number-violating effects. We flesh out the conditions for which this may
occur, as well as other key assumptions. We then turn to the analysis of particle processes in the dense
nuclear medium found at the core of a neutron star, employing the techniques of relativistic mean-field
theory. Using our study of in-medium effects and limits on macroscopic baryon number violation, we
extract limits on in-vacuum baryon-number-violating processes, and we determine them for various
equations of state. We conclude by noting the implications of our results for models of dark-sector-enabled
baryogenesis.
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I. INTRODUCTION

The cosmic excess of baryons over antibaryons is well
established [1], but the theoretical mechanism by which it is
produced is not. The essential theoretical ingredients are
thought to be known: baryon number violation (BNV),
along with C and CP violation, must all be present in a
nonequilibrium environment [2]. Thus, BNVwould seem to
play an essential role, though in the Standard Model (SM)
BNV is thought to occur appreciably only at extremely high
temperature [3,4]—and the existence of BNV at low
energies has as yet to be established. In this paper, we
continue our scrutiny of such effects through observations
of neutron stars, which contain enormous reservoirs of
baryons. In earlier work, we identified sensitive limits on

BNV through the interpretation of precise observations of
energy loss in isolated neutron stars and in neutron-star
binary systems [5]. These studies limit the baryon-number-
violating effects that occur across the entirety of a neutron
star. In this sense, they aremacroscopic limits. In this paper,
we interpret these limits in a microscopic way, in that we
develop a framework in which they can be translated to
limits on the parameters of particular particle physicsmodels
that generate baryon-number-violating effects.
The particular models to which our studies are most

sensitive are those in which baryons decay or otherwise
transform to dark-sector fermions, of Oð1 GeVÞ in mass,
that carry a baryon number. In such cases, BNV becomes
an apparent, rather than explicit, effect, because the dark-
sector particles are unobserved, even if the baryon number
is not broken. Although the existence of dark matter is
certainly established through astrometric observations, both
its nature and origin continue to be open questions. It is
possible that the origins of dark matter and of the cosmic
baryon asymmetry are related, so that the loosely similar
value of the cosmic baryon and dark-matter energy den-
sities today may follow from a single underlying model [6].
The possibility of baryons that connect to hidden-
sector baryons of comparable mass figure in many such
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explanations. In this paper, we constrain this possibility
through the study of neutron and hyperon transitions to
final states with dark baryons in the neutron star. To our
knowledge, an in-depth, quantitative study of non-SM
processes within dense nuclear matter has not previously
been realized,1 and its execution necessitates much care.
The existence of neutron stars of about 2M⊙ in mass speaks
to central densities in excess of 3 times nuclear matter
saturation density, so that in this paper we employ
relativistic mean-field theory in baryonic degrees of free-
dom for our dense matter description, as its accuracy should
improve with increasing density—and, thus, it should work
best at the core of the star. We note that a neutron star may
become a hybrid star, i.e., one with a quark-based core
predicated by a finite-density quark-hadron phase transi-
tion, if it is sufficiently heavy, and this possibility can also
be constructed within this framework [9]. Transitions to
dark baryons could also occur within the quark-based core,
though we will set aside this possibility in this paper—and
revisit it only in offering an assessment of our uncertainties
in our concluding summary.
The broader possibility of dark decays of the neutron has

been noted in explanation [10,11] of the long-standing
neutron lifetime anomaly [12], in which the lifetime inferred
from counting surviving neutrons is significantly different
from that inferred from counting the protons subsequent to
ordinary neutron decay. Although the discrepancy may arise
from experimental effects, the possibility that dark decays
contribute to it in some measure is a continuing possibility
[5]. In this paper, we provide severe limits on the flavor
structure of possible new-physics models with dark baryonic
sectors, such as Refs. [10,13–16], that arise from the
interpretation of neutron-star energy loss constraints we
developed in Ref. [5]. We also flesh out the general
assumptions of that earlier analysis and note how the specific
models we consider can satisfy them.
Let us conclude our introduction with a brief outline of

the body of our paper. In Sec. II, we detail the models of
baryon dark decays that we are able to constrain through
our neutron-star studies, and we note how they are distinct
from models that we cannot. We also compute baryon dark
decay rates in vacuum, for later reference, as well as dark
baryon removal rates, because our analysis assumes that
SM dynamics determine the response of the star in the
presence of BNV. In Sec. III, we consider macroscopic
baryon number violation in neutron stars, revisiting our
earlier work [5] and fleshing out constraints following from
its assumptions in greater detail. In Sec. IV, we develop
how to evaluate particle processes within dense matter,
employing relativistic mean-field theory, as developed in
Refs. [17–19], to describe the neutron-star medium in β

equilibrium [20,21]. In this context, uncertainties in our
description of the dense medium are captured through
variations in the equation of state (EOS). With these
developments in hand, we evaluate particle processes
within our framework for the dense nuclear medium of a
neutron star in Sec. V and use our macroscopic limits on
BNV from Sec. III to report limits on the parameters of the
microscopic models we consider in Sec. VI. In Sec. VII, we
consider the implications of our results for models of
dark-sector baryogenesis and dark matter, and we offer a
summary and outlook in Sec. VIII.

II. PARTICLE PHYSICS MODELS
OF BARYON DARK DECAYS

The possibility of hadronic processes with dark-sector
particles naturally emerges in models that explain both the
origin of dark matter and the cosmic baryon asymmetry,
particularly if the dark-sector candidate carries a baryonic
charge [13,14,22]. Although it has long been thought that
dark matter could also be described as a relic asymmetry
[23,24], in these models, rather, the two problems are
solved simultaneously [6]. More recently, highly testable
scenarios [25] have been developed [16,26–30], and we
probe their flavor structure through the studies of this
paper—and in Sec. VII we consider the implications of the
constraints that we find. Since the dark-sector particles are
presumably SM gauge singlets, they could be light in mass,
potentially with masses comparable to that of the known
hadrons, and yet have escaped experimental detection
thus far.
Our current discussion is loosely inspired by models

connected to explanations of the neutron lifetime anomaly
[10,16,31], with neutrons decaying to a dark baryon with a
photon or an eþe− pair. Models with similar content have
been considered for broader purposes [15,32–34], and
alternative solutions have also been noted [35–37]. The
dark channels in the various models would impact the
determined bottle lifetime, with a mirror neutron model
[35,38] serving as a rare exception. There, neutron-to-
mirror-neutron conversion occurs in a strong magnetic
field, impacting the ability to detect protons in the
beam-lifetime experiment. This last possibility has been
excluded as a complete explanation of the anomaly by a
direct experimental search [39], and we refer to further
probes of mirror neutrons through existing and possible
experiments [40–43], through binary-pulsar timing mea-
surements [44,45], that we consider further here for a
distinct class of models, and through pulsar temperature
observations [43,46–48]. The last set of constraints can be
significantly weakened through the addition of visible-
hidden-sector interactions [48]. We note that models that
would explain the anomaly through neutron disappearance
or decay to dark-sector final states can also be constrained
by the close empirical agreement of the neutron lifetime
with its measured A decay correlation as interpreted in the

1Albeit studies of exotic light particle emission in dense matter,
which possesses simplifying aspects, are of long standing [7] and
continue to be investigated [8].
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SM [5,49,50]. This agreement limits the branching ratio on
such exotic processes to [51]

Brðn → exoticsÞ < 0.16% ð95% one-sided CLÞ; ð2:1Þ

where we note that the neutron lifetime anomaly is roughly
a 1% effect [10].2 Direct experimental limits on n → χγ
[55] and n → χeþe− [56] decays also exist, removing
ranges of parameter space as an explanation of the anomaly.
We will be able to set much more severe limits through our
studies, where we note the limit on Λ → χγ from SN1987
for Ref. [16]. We regard the neutron lifetime anomaly as a
motivation for further investigation of baryon dark decays,
with new limits constraining the manner in which the
cogenesis of dark matter and the cosmic baryon asymmetry
could possibly occur. We now turn to the development of
models of dark baryon decays.
Following Ref. [33], we introduce a Dirac fermion χ with

baryon number B ¼ þ1 which interacts with SM quarks
via the generic form

Lχ¼ χ̄ði∂−mχÞχþ
�
uidjdkχcL

Λ2
ijk

þQiQjdkχcL
Λ̃2
ijk

þH:c:

�
; ð2:2Þ

where i, j, and k are generational indices, Q and q denote a
left-handed quark doublet and a right-handed quark,
respectively, and color and Lorentz indices are left implicit.
Such interactions can generate both decay and scattering
processes involving dark final states, which we consider
closely in this paper. First, though, we address their flavor
structure. We could neglect this possibility altogether,
dropping all subscript dependence, but simple, renormaliz-
able models that produce Eq. (2.2), at energies below the
mass scale of their new physics, show that strong flavor
sensitivity can nevertheless exist. Turning to models with
leptoquarks [10,15], we consider colored scalars S1 and S̄1
transforming as3 ð3̄; 1; 1=3Þ and ð3̄; 1;−2=3Þ, respectively,
under the SM gauge groups and SM invariant scalar-
fermion interactions. Nontrivial flavor structure follows
from the choice of leptoquark in that S1 can mediate both
n → χγ and Λ → χγ decay at tree level, whereas S̄1 can
mediate Λ → χγ at tree level but mediating n → χγ would
require a one-loop process with W� exchange as well
[15]. Thus, in this paper, we strive to probe both n → χγ
and Λ → χγ decay processes. These models also readily
generate proton decay [10,15,33], noting p → χπþ or p →
χKþ decay as examples, so that the possible range of χ
masses is rather restricted as a result. We note that the

stability of the 9Be nucleus [10], particularly stability
against 9Be → χαα decay [57], requires

mχ > 0.937993 GeV; ð2:3Þ

slightly in excess of the proton stability constraint
mχ > mp −me, and that atomic hydrogen is stable if mχ >
mp þme ¼ 0.93878 GeV [34]. If either constraint were
not satisfied, then the empirical limit on the pertinent
lifetime would bound the parameters of the model. Within
the SM, both systems are absolutely stable, yet empirical
tests of that, with a determined lifetime as an outcome,
should be possible. We note H lifetime estimates, made
finite through a model with a suitably light χ, are made in
Ref. [34]. Moreover, the radiative decay H → νχγ, which is
subdominant relative to H → νχ, can be probed through
measurements at Borexino [34,58]. Similar expectations
follow from violating Eq. (2.3)—and a concrete estimate of
the 9Be lifetime—can be found in Ref. [59].
In what follows, we ignore the possible chiral structure

of the quark-χ couplings and simply consider4 [16]

L ⊃
uidjdkχc

Λ2
þ H:c: ð2:4Þ

Since the quarks carry electric charge, we have, at the
energy scales for which baryonic degrees of freedom are
pertinent,

Ln ¼ n̄

�
i∂ −mn þ

gne
8mn

σαβFαβ

�
nþ χ̄ði∂ −mχÞχ

þ εnχðn̄χ þ χ̄nÞ; ð2:5Þ

noting gn ¼ −3.826 is the g factor of the neutron [61]. This
form also holds for the Λ upon the replacement n → Λ,
taking gΛ ¼ −1.22. After redefining the fields to remove
the mixing term in Eq. (2.5), then if ε ≪ mn −mχ , with
mχ < mn, we have [10,15]

Ln→χγ ¼
gne
8mn

εnχ
mn −mχ

χ̄σαβFαβn; ð2:6Þ

though potentially this operator could also stem from a
distinct higher-energy source. Generally, the interaction of
Eq. (2.4) can also generate transitions to dark baryon states
with mesons, such as the decays n → χ þmeson or
Λ → χ þmeson. Reference [16] uses chiral effective
theory [62] to relate the possibilities. We eschew this path
because chiral effective theory ceases to be valid if the
density of the neutron-star medium much exceeds that of
nuclear matter saturation density. Since our particular

2The most precise measurement of the A correlation coefficient
yields the ratio of the axial-vector to vector coupling constants
jλj ¼ 1.27641ð56Þ [52], but recent measurements of the a
correlation do not completely fit this picture, yielding jλj ¼
1.2677ð28Þ [53] and jλj ¼ 1.2796ð62Þ [54].

3This variant was first considered in Ref. [10].

4In this reference, χ has B ¼ −1; here, rather, we define χ with
B ¼ þ1 and, thus, write χ → χc, with χc ≡ Cχ̄T [60].
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purpose is to set limits on microscopic models given BNV
limits determined from observables associated with the
entire neutron star, we set aside the study of final states
containing both dark and hadronic degrees of freedom.
They are distinct from the final states we do study, and
cancellations cannot occur. We thus expect that including
these additional decays with hadrons can only make our
limits more severe, though the inclusion of hadronic
channels would make our estimates less sure.
At low energies, the magnetic interaction of Eq. (2.6),

employed in Refs. [10,15], can be used to compute n → χγ
or Λ → χγ. A pertinent Feynman diagram is illustrated in
Fig. 1. Denoting B as either n or Λ, the total decay rate for
B → χγ is given by

ΓðB → χγÞ ¼ g2Be
2ε2Bχ

128π

ðmB þmχÞ2
m5

B

ðm2
B −m2

χÞ; ð2:7Þ

in agreement with Ref. [15]. The mixing parameter εBχ
follows once the UV model is given, and it is what we
constrain through the analysis of this paper.
To determine the impact of these microscopic processes

on the neutron star requires further model building. Thus
far, at low energies we have a dark baryon χ, which we take
to be a massive Dirac fermion. If it is a stable particle, then
it can also be a dark-matter candidate. If so, then it may
already exist within the material that collapsed to form the
protoneutron star, though likely only in small amounts, and
through dark decays or adsorption on the star it may
accumulate within the star. If it is able to give up its kinetic
energy, then it may settle in the core of the star, ultimately
impacting its properties and evolution.
There are many processes in which χ could participate,

though the interactions with baryons are severely limited by
the cold, degenerate nature of the interior of the neutron
star. In principle, given the nχγ and nχπ0 effective
interactions in the models we have noted, and using N
to denote either a neutron or a proton, χ could (i) be
produced via nN → χN scattering, (ii) interact elastically
with another nucleon via a nN intermediate state, (iii) be
formed via the annihilation nn → χχ, or (iv) decay via χ →
pþ e− þ ν̄e if it is heavy enough. The reverses of the
reactions in (i) and (iii) could also occur. Pauli-blocking

effects associated with the cold, dense neutron medium
strongly suppress all of the reactions in which nucleons
appear in the final state. Moreover, χ − N elastic scattering
is further suppressed in that it occurs atOðε2nχÞ at amplitude
level. We note Fig. 2 for an illustration. Given this and our
interest in limiting BNV within the star in a model-
independent way, implying that the response of the star
to BNVought be controlled by SM dynamics, we think that
ensuring χ disappearance is important. Thus, we consider
two different pathways to do just that. In the first, we add χ-
lepton interactions [5], which intrinsically break baryon
number and are intrinsically very poorly constrained. We
would also want the rate for χ decay to be no less of that for
χ production. This path, however, is potentially subject to
severe constraints from proton decay experiments. For
example, we could have χ → eþe−ν or χ → 3ν, and these
channels could give rise to proton decay via an off-shell χ�
state as in

p → πþχ� → πþeþe−ν: ð2:8Þ

(Exotic proton decays of just this ilk also emerge in models
with quark and lepton compositeness [63].) Admittedly,

FIG. 1. Illustration of n → χγ decay in the degrees of freedom
of Eq. (2.4). The decay Λ → χγ follows from the replacement of
one d quark with an s quark.

FIG. 2. Illustration of various χ-nucleon (N) processes at low
energies, with the heavy black dot denoting the nχπ0 effective
vertex noted in the text, namely, (a) n − N scattering to produce
χ − N, (b) χ − N elastic scattering, and (c) N − N annihilation to
produce χ − χ. Processes with γ in place of π0 are also possible.
The reverse of reactions (a) and (c) should be strongly suppressed
by Pauli-blocking effects in the interior of a neutron star.
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this process, as well as the p → πþ3ν channel, may evade
severe constraints due to the particular nature of existing
jΔBj ¼ 1 searches, because of both the final states studied
and the cuts on the final-state particle momenta needed to
control backgrounds. Although this path could prove to be
viable, we favor an alternate choice: we will allow χ to
decay to other dark particles. A simple realization of this is
given by [14]

Ldark ⊃ ydχ̄ϕBξþ H:c:; ð2:9Þ

where ϕB is a complex scalar with B ¼ þ1 and ξ is a
Majorana fermion—and both are dark-matter candidates.
Introducing a Z2 symmetry, so that χ, n, and p are all Z2

even, but ϕB and ξ are Z2 odd, we see Eq. (2.9) is the only
surviving hidden-sector interaction that traces to the visible
sector, with n − ξ oscillations, say, forbidden by the Z2

symmetry. We note that such an interaction is needed for
successfulBmesogenesis, and we also requiremξ þmϕB

>
0.937993 to ensure nuclear stability [16,29]. One interest-
ing consequence of this new path is that dark decays can be
induced in the scattering with either ϕB or ξ in the initial
state, as developed in Ref. [64] and illustrated in Fig. 3. A
similar mechanism, considered in the context of the neutron
lifetime anomaly, has been studied in Ref. [36]. The same
process can destabilize the proton, with jΔBj ¼ 1 exper-
imental studies constraining the model parameters [64]. We
note that the χ̄ϕBξ interaction can also induce χχ annihi-
lation, as noted and illustrated in Fig. 4. The scope of
possibilities can be limited through judicious choices of the
parameters of the dark sector. For example, if
mξ þmπ0 > mϕB

þmn, then one would expect dark-mat-
ter-induced nucleon decay will not occur, and with mξ >
mχ > mϕB

Fig. 4 depicts the only possible tree-level
annihilation channel. This last effect acts to remove χ
produced through neutron decay from the star, yet ϕB could
potentially accumulate in its core—and impact the survival
of the neutron star [65]. If we suppose, rather, that ϕB is

light enough to escape the star, then that outcome can be
avoided. Finally, we note that ϕB and ξ must each be stable
to be dark-matter candidates, nor should they decay into
each other [29]. In our dark-sector scenario, ξ → ϕBχ could
occur, with the subsequent decay χ → p̄π− or χ → n̄π0

appearing if χ is too heavy or if it has substantial coupling
to either u or d quarks. This could act to dilute an
asymmetry formed through B mesogenesis. Thus success-
ful baryogenesis within the dark-sector scenario of
Eq. (2.9) can be realized if mχ ≤ 1.07784 GeV, though
this is not the only possibility. We conclude by noting that
this and nuclear stability considerations gives us the
following window on χ:

0.937993 GeV < mχ < 1.07784 GeV; ð2:10Þ

though in what follows we consider neutron-star constraints
on χ-baryon mixing over a broader mass window, in
anticipation of richer model-building solutions. We now
turn to the explicit evaluation of processes that can remove
χ from the neutron star.

A. Dark baryon removal rates

If the masses of ξ and ϕB sum to less than the mass of χ,
then the decay χ → ξϕB is operative. Using Eq. (2.9) and
Refs. [66,67], we calculate the width of this decay to be

Γχ→ξϕB
¼ y2d

16πm3
χ
½ðmχ þmξÞ2 −m2

ϕB
�3=2

× ½ðmχ −mξÞ2 −m2
ϕB
�1=2: ð2:11Þ

However, if this decay is operative and if mϕB
þmξ <

mp −mπ , then this allows for proton decay via pþ →
πþξϕB. We avoid potentially running afoul of these
constraints by insisting that this decay not be operative
and, thus, require mξ > mχ .
Instead, we focus on possible annihilation processes of χ,

where we have assumed that only ϕB is lighter than χ.
Adopting the same tools to compute χχ → ϕBϕB, we have

FIG. 4. Feynman diagram contributing to χ-χ annihilation via ξ
exchange to yield B-carrying scalars, as per the conventions in
Fig. 3. Alternatively, χχ annihilation via ϕB exchange in the t
channel would yield a ξξ final state, which could ultimately
rematerialize as a χ̄χ̄ pair.

FIG. 3. Feynman diagram contributing to induced neutron decay
via a χ̄ϕBξ interaction, as per Ref. [66]—ap decay channel follows
from the replacement of d → u in the spectator quark.
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σχχ→ϕBϕB
ðsÞ ¼ y4dm

2
ξ

64πs

"
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

χÞðs − 4m2
ϕB
Þ

q
m4

ξ þm2
ξðs − 2m2

χ − 2m2
ϕB
Þ þ ðm2

χ −m2
ϕB
Þ2

þ 4

sþ 2m2
ξ − 2m2

χ − 2m2
ϕB

ln

 
sþ 2m2

ξ − 2m2
χ − 2m2

ϕB
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

χÞðs − 4m2
ϕB
Þ

q
sþ 2m2

ξ − 2m2
χ − 2m2

ϕB
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

χÞðs − 4m2
ϕB
Þ

q
!#

: ð2:12Þ

We note that this cross section goes to zero asmξ → 0. This
must occur, so that this outcome serves as a nontrivial
check of our procedure. Our cross section result does not
depend on whether the scalar is real or complex, but its
interpretation does. If the scalar is real, it cannot carry
baryon number, and χχ annihilation to scalars would then
break B by two units. This can only occur if mξ has a
nonzero baryon-number-violating mass. Thus, its rate
vanishes if mξ does.
We would like to understand how these annihilation

processes operate within a neutron star. As we will see in
Sec. III A, these cross sections would need to be averaged
over the true distribution of χ ’s produced in baryon decays
within the star. Generically, χ’s need not be distributed
thermally, and the process of thermalization would require
self-interactions, which do not appear at tree level in our
simple model. The problem of χ transport in the neutron
star is beyond the scope of this paper, so that we assume
that the thermally averaged cross section is a reasonable
estimate of what the true averaged cross section would be.
We proceed by employing pertinent results from the

seminal Ref. [68]. The thermally averaged cross section
hσvi is given formally by

hσvi ¼ 1

8m4
χTχK2

2ðmχ=TχÞ
Z

∞

4m2
χ

dsσðsÞ

× ðs − 4m2
χÞ

ffiffiffi
s

p
K1ð

ffiffiffi
s

p
=TχÞ; ð2:13Þ

where Tχ is the χ temperature (which is generically nonzero
and may be different from the temperature of the rest of the
neutron star) and K1;2 are modified Bessel functions of the
second kind. This expression assumes that it is appropriate
to describe the χ fluid as abiding by a Maxwell-Boltzmann
distribution; it would be inappropriate to apply this
expression to a cold, degenerate population of χ, but such
a population does not occur in our framework. To perform
the thermal averaging, we expand σðsÞ × v in powers of
ϵ≡ s=ð4m2

χÞ − 1:

σv ¼ að0Þ þ að1Þϵþ 1

2
að2Þϵ2 þ � � � ; ð2:14Þ

this requires that v ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1þ ϵÞp

=ð1þ 2ϵÞ. In the limit in
which the χ fluid is nonrelativistic, the thermally averaged

cross section can be written in terms of the coefficients aðnÞ
as follows:

hσvi ¼ að0Þ þ 3

2
að1Þ
�
Tχ

mχ

�
þ 15

8
að2Þ
�
Tχ

mχ

�
2

þ � � � : ð2:15Þ

This prescription is expected to be valid as long as
Tχ ≲ 3mχ [68]. For χχ → ϕBϕB, we find the leading-order
contribution to the thermally averaged cross section in Tχ

to be

hσviχχ→ϕBϕB
¼ 3

2

� h4m2
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ −m2
ϕB

q
8πmχðm2

ξ þm2
χ −m2

ϕB
Þ2
��

Tχ

mχ

�
þ � � � : ð2:16Þ

Since the að0Þ term vanishes, we conclude that the s-wave
annihilation contribution vanishes, resulting in a suppres-
sion at low temperatures. We expect our χ’s to have a
nonzero average kinetic energy from decays, so we do not
expect to encounter a scenario in which these annihilations
are completely quenched by the low energies of their
parents, but it is an interesting feature to note.
We conclude by noting some relevant qualitative features

of this model. Since χ self-interactions do arise at the one-
loop level as a result of interactions with ϕB and ξ, we can
expect the χ population would thermalize, but that time-
scale is likely slow relative to that of their annihilation to
scalars. There are many more interesting phenomenological
consequences of this model that one could explore, but, for
our purposes, it is enough to assume that the masses and
coupling conspire such that χ can be removed from neutron
stars quickly enough that our formalism is valid.

III. MACROSCOPIC BARYON NUMBER
VIOLATION IN NEUTRON STARS

We set out this section by elaborating the main assump-
tions for our analysis, followed by a description of the
resulting formalism, which we flesh out in greater detail
than in Ref. [5]. We then discuss the observable effects
associated with our framework, along with methods of
interpreting pulsar observations to yield limits on BNV in
such systems. We use the limits derived at the end of this
section to constrain specific baryon dark decay rates in
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Sec. VI, though we develop our description of dense matter,
as well as of particle processes within it, in intervening
sections before doing so.

A. Assumptions

The structure of a neutron star can be approximated by a
static and spherically symmetric metric (gμν) with a line
element given by [69]

dτ2 ¼ gμνdxμdxν

¼ e2νðrÞdt2 − e2λðrÞdr2 − r2dθ2 − r2 sin2 θdϕ2; ð3:1Þ

in which νðrÞ and λðrÞ are solutions to the Einstein field
equations [70],Gμν ¼ −8πGTμν, in whichGμν is Einstein’s
tensor, G is the gravitational constant, and Tμν is the stress-
energy tensor. The rotation effects on the neutron-star
structure, which are OðΩ2=ðGM=R3ÞÞ [71], amount to
less than 3% for the fastest spinning pulsar (J1614-2230)
that we consider in this work. Furthermore, the inclusion of
quasistatic BNV processes, which are sourced by the matter
in the star, would keep the spherical symmetry intact and
changes to the metric (gμν) very slow in time, such that the
use of Eq. (3.1) is warranted.
We also assume that the medium in the neutron star can

be described by a perfect fluid with

T0
0 ¼ E; Ti

i ¼ −P ði ¼ 1; 2; 3Þ; ð3:2Þ

as the only nonzero components of the stress-energy tensor.
We note P and E are the local pressure and energy density
of the fluid, respectively, which, in general, depend on the
local baryon number density (n) and temperature (T) via
the EOS. In the standard picture, neutron stars cool down to
internal temperatures T ≲ 1011 K ≪ EF ≲ GeV within a

minute after formation [72], such that the thermal contri-
bution to the pressure and energy density can be neglected.
The neutron-star fluid can then be described as a cold
degenerate Fermi gas at β equilibrium. The existing
terrestrial constraints on neutron dark decay [Eq. (2.1)]
along with the BNV limits we find in Table I, show that
BNV rates should be slow with respect to other dynamical
processes in the neutron star. We have also devised a model
in which χ, the dark-baryon-like particle, can be removed
efficiently from the star. Thus, we expect the deviations
from a degenerate state at β equilibrium due to BNV should
be negligibly small, and we leave a more detailed study of
possible thermal effects on neutron stars from BNV to
future work.
In order to be able to apply our model-independent

formalism [5], we are going to focus on a subset of models
in which the dark contributions to the EOS are negligible
relative to the energy density and pressure of the visible
sector. In other words, we demand that the following (local)
conditions:

EχðrÞ
EðrÞ ≪ 1 and

PχðrÞ
PðrÞ ≪ 1 ð3:3Þ

hold throughout the neutron star at all times, which can be
equivalently written as a condition on the local number
density of χ: nχðrÞ ≪ nðrÞ. This means that χ has to decay
or annihilate either back to the visible sector or to some
other dark particles that can escape the neutron star. We
assume that χ participates in self-annihilation to lighter
dark particles that can escape the neutron star (see Sec. II A
for more details).
We can express the condition nχðrÞ ≪ nðrÞ in terms of

the BNV rate ΓBNV and the annihilation cross section that is
averaged over χ distribution, which we denote by hσvi.

TABLE I. The relevant binary parameters for J0348þ 0432 [73], J1614-2230 [74,75], and J0737-3039A/B [76]. See the discussion in
Sec. III D for more details.

Name J0348þ 0432 J1614-2230 J0737-3039A/B

MpðM⊙Þ 2.01(4) 1.908(16) 1.338 185ðþ12;−14Þ [A]
McðM⊙Þ 0.172(3) 0.493(3) 1.248 868ðþ13;−11Þ [B]
Ps (ms) 39.122 656 901 780 6(5) 3.150 807 655 690 7 22.699 378 986 4727 8(9) [A]
Ṗobs
s ð10−18Þ 0.24073(4) 9.624 × 10−3 1.7600349(6) [A]

Pb (days) 0.102 424 062 722(7) 8.686 619 422 56(5) 0.102 251 559 297 3(10)
Ṗobs
b ð10−12Þ −0.273ð45Þ 1.57(13) −1.247 920ð78Þ

Ṗext
b ð10−12Þ 1.6ð3Þ × 10−3 1.25(10) −1.68ðþ11;−10Þ × 10−4

Ṗint
b ð10−12Þ −0.275ð45Þ 0.32(16) −1.247 752ð79Þ

ṖGR
b ð10−12Þ −0.258ðþ8;−11Þ −4.17ð4Þ × 10−4 −1.247827ðþ6;−7Þ

ðṖb
Pb
ÞĖ2σ ðyr−1Þ 2.7 × 10−10 2.7 × 10−11 8.3 × 10−13

ðṖb
Pb
ÞΩ̇ ðyr−1Þ < 1.4 × 10−13 ≈4.2 × 10−15 1.04ð7Þ × 10−13

ðṖb
Pb
ÞBNV2σ ðyr−1Þ 2.7 × 10−10 2.7 × 10−11 7.3 × 10−13

ðḂBÞBNV2σ ðyr−1Þ 1.8 × 10−10 2.0 × 10−11 4.0 × 10−13

HOW MACROSCOPIC LIMITS ON NEUTRON-STAR BARYON … PHYS. REV. D 109, 023021 (2024)

023021-7



We note that the exact distribution of χ in the neutron star
can, in principle, be found by solving the Boltzmann
transport equation in the star, but this is not practical for
our estimation purposes. We instead consider two scenarios
for χ: one in which the annihilation rate is much faster than
the self-interactions which help establish a thermal equi-
librium and another in which self-interactions of χ are
much faster than its annihilation rate, and we present them
in Appendix A.
With the assumptions set forth in this section, we need

only to specify the EOS of hadronic matter to find the
neutron-star structure. Once the EOS is specified, the
Tolman-Oppenheimer-Volkoff (TOV) [77,78] equations
can be integrated with the initial conditions Mð0Þ ¼ 0
and Eð0Þ ¼ Ec up to the surface of the star, corresponding
to PðrÞ ¼ 0. In other words, to study BNV effects on
neutron stars generated by a fixed EOS, we focus on the
unique family of stars, each parametrized by its central
energy density (Ec), known as the single-parameter
sequence [20] of stars.
The baryon decay rate (per baryon) in a small volume

(V) in the nuclear matter (n.m.) rest frame (Γn:m:) is defined
by dðnVÞ=dτ ¼ −Γn:m:nV, in which τ is the fluid’s proper
time and n is the proper baryon number density. We can
define a baryon number-flux vector by jμ ¼ uμn [79], in
which uμ is the four-velocity of the fluid (uμuμ ¼ 1) and
use the definition of Γn:m: to write jμ;μ ¼ −nΓn:m:, in which
“;” denotes the covariant derivative. We then use the
relationship

ffiffiffiffiffiffi−gp
jμ;μ ¼ ð ffiffiffiffiffiffi−gp

jμÞ;μ [20], in which “,”
denotes ordinary partial derivative and g≡ det jgμνj, to
arrive at

∂

∂t

Z ffiffiffiffiffiffi
−g

p
nu0d3xþ

Z
ð ffiffiffiffiffiffi

−g
p

nuiÞ;id3x

¼ −
Z

d3x
ffiffiffiffiffiffi
−g

p
nΓn:m:; ð3:4Þ

in which i ¼ 1, 2, 3. For a static (ui ¼ 0), spherically
symmetric neutron star with radius R, we can use the metric
in Eq. (3.1) to simplify Eq. (3.4) as

Ḃ
4π

≡ ∂

∂t

�Z
R

0

�
1 −

2MðrÞ
r

�
−1
2

nðrÞr2dr
�

¼ −
Z

eνðrÞ
�
1 −

2MðrÞ
r

�
−1
2

Γn:m:ðrÞnðrÞr2dr; ð3:5Þ

where B is the total baryon number of the neutron
star. We have used

ffiffiffiffiffiffi−gp ¼ expðνðrÞ þ λðrÞÞr2 sin θ, with
expð2λðrÞÞ ¼ ð1 − 2MðrÞ=rÞ−1, andMðrÞ is the total mass
included within radius r:

Mðr0Þ ¼ 4π

Z
r0

0

EðrÞr2dr: ð3:6Þ

Given a particle physics model for BNV, we can evaluate
Γn:m:ðrÞ and use Eq. (3.5) to find the resulting Ḃ.

B. Framework

It was shown in Ref. [5] that the conditions in Sec. III A
are necessary for a model-independent analysis of BNV
effects on neutron star. These conditions can be summa-
rized as (i) BNV is slower than chemical and dynamical
responses in the neutron star and (ii) the contributions to the
EOS from any new particles (e.g., χ) are negligible [see
Eq. (3.3)]. The overall effect of BNV within this framework
is to relocate the neutron star along its single-parameter
sequence prescribed by the chosen baryon-number-
conserving EOS. The rate of change in any neutron-star
observable O as a result of this quasiequilibrium evolution
can be written as

Ȯ≡
�
dEc

dt

��
∂O
∂Ec

�
: ð3:7Þ

Here, we ignore any possible dependence of O on the
angular velocity Ω; i.e., we assume O evolves along a one-
dimensional trajectory with Ω ¼ 0 on the general two-
dimensional space parametrized by Ec and Ω. We can solve
for Ėc in terms of the rate of baryon loss Ḃ, such that

Ȯ
O

¼
�
B
O

×
∂EcO

∂EcB

�
Ḃ
B
≡ −bðOÞ × ΓBNV; ð3:8Þ

in which we defined the effective BNV rate ΓBNV ≡ −Ḃ=B
and the dimensionless parameter bðOÞ encodes the relative
rate of change inO with respect to ΓBNV. We pick hadronic
versions of the DS(CMF) EOS [21] that includes a crust
[80] from the CompOSE database [81]. The details of these
EOS including their Lagrangians and particle contents are
given in Sec. IVA. In order to evaluate the bðOÞ factors, we
generate a sequence of neutron stars on a grid of Ec values
and then find the derivative of O using the central finite
difference method. The resulting bðOÞ is plotted in Fig. 5
for various observable quantities as a function of neutron-
star masses for the DS(CMF)-1 EOS. In Sec. III C, we use
this formalism to show how changes in neutron-star
parameters due to BNV would affect pulsar-binary orbital
decay rates.

C. Observables

Baryon loss in pulsars may lead to observable effects
on their individual spin-down rate (Ṗs) and their orbital
period lengthening (Ṗb) if they belong to a binary system
[5,38,44,82]. The BNV modifications to Ṗs are caused by
the quasiequilibrium changes in the moment of inertia (I)
and angular momentum loss due to light particles (e.g., ϕB)
escaping the pulsar. While the first contribution can be
expressed in a model-independent manner, the latter
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depends on the specific BNV model and the masses of
particles involved. Therefore, we focus our attention on
BNV modifications to Ṗb, which can still be formulated in
a model-independent way.
The energy loss due to BNV can modify the orbital

period decay rate in a binary system, assuming it is active in
one or both of the components. This energy loss can be
written as [5]

Ṁeff≡ d
dt

�
Mþ1

2
IΩ2

�

¼bðMÞ
�
Ḃ
B

�
MþbðIÞ

�
Ḃ
B

��
2π2I
P2
s

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BNV

−
4π2IṖs

P3
s

; ð3:9Þ

in which bðMÞ and bðIÞ are defined in Eq. (3.8) and Ps and
Ṗs are the observed pulsar spin period and its observed rate of
change, respectively. Note that the rates of change in I due to
spin-down, ðdI=dΩÞΩ̇, are negligible in the pulsars that we
consider. The relative rate of change in a binary period due to
energy loss in its components is given by [83–85]

�
Ṗb

Pb

�
Ė

¼ −2
�
Ṁeff

1 þ Ṁeff
2

M1 þM2

�
; ð3:10Þ

inwhich1 and2 refer to the components of thebinary system.
After plugging Eq. (3.9) into (3.10), we get the following
BNV and spin-down contributions to the energy-loss term:

�
Ṗb

Pb

�BNV

¼ −2
M1 þM2

X
i¼1;2

�
Ḃi

Bi

�

×

�
biðMÞMi þ biðIÞ

�
2π2Ii
P2
s;i

��
; ð3:11Þ

�
Ṗb

Pb

�Ω̇
¼ 8π2

M1 þM2

�
I1Ṗs;1

P3
s;1

þ I2Ṗs;2

P3
s;2

�
: ð3:12Þ

We should note that the second term in Eq. (3.11), which is
due to changes in the moment of inertia, is Oð10−3Þ ×
bðIÞM⊙ for J1614-2230 and even smaller for the other two
systems considered in this work. Given that bðMÞ ≈ 1 and
jbðIÞj ∼Oð1Þ, and the spin-down contributions from
Eq. (3.12) are usually subdominant, we conclude that our
limits would be mainly controlled by the first term in
Eq. (3.11). For this reason, our inferred limits on Ḃ=B are
not sensitive to the specific choices of EOS. We can use the
observed pulsar binary period decay rate to limit the
contributions from Eq. (3.11), but first we need to identify
other sources of binary orbital decay.

D. Interpretation

The dominant contributions to the observed relative rate
of orbital period decay can be written as [86]�

Ṗb

Pb

�obs

¼
�
Ṗb

Pb

�GR

þ
�
Ṗb

Pb

�Ė

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intrinsic

þ
�
Ṗb

Pb

�ext

; ð3:13Þ

in which the first term is due to gravitational radiation [87]
and the third term includes extrinsic effects, e.g., due to the
relative motion of a binary pulsar with respect to the solar

FIG. 5. (a) The set of observable quantities (O): mass (M), radius (R), baryon number (B), and moment of inertia (I) for a sequence of
neutron stars as a function of the central energy density (Ec) relative to their canonical values (O�): M⋆ ¼ 1.4M⊙, R⋆ ¼ 12 km,
B⋆ ¼ 1057, I⋆ ¼ 70 ðM⊙ km2Þ assuming the DS(CMF)-1 EOS. (b) The bðOÞ factors for three parameters (O ¼ M, R, I) as a function
of neutron-star masses for the DS(CMF)-1 EOS. See Sec. IVA for more details on our choice of EOS.
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system barycenter. The numerical values for each of these
contributions and the limits on ṖĖ

b , which is found
by subtracting the general relativity (GR) contribution
ṖGR
b from the intrinsic orbital-period decay rate Ṗint

b ≡
Ṗobs
b − Ṗext

b , are given in Table I for three binary systems.
Tens of binary-pulsar systems with measured Pb and

Ṗobs
b are known [88], and from those we choose ones for

which there is no mass transfer between the components,
because that would modify Ṗobs

b [89] in a complicated way.
We also choose systems for which the individual masses are
known. With those in place, our subsequent choices are
motivated by wanting better sampling of (mχ ; εB) space
(see Fig. 12). The precision of the orbital parameters in the
binary system under consideration determines the mini-
mum value of the excluded mixing parameter. Therefore,
we include the double pulsar J0737-3039A/B in our
analysis due to its high precision. (Although the Hulse-
Taylor pulsar system [90] has also been precisely measured
[91], it gives redundant information in this case.)
Furthermore, binaries with a heavier pulsar would yield
a better kinematical (horizontal) reach; i.e., the maximum
value of excluded χ’s mass for which the decays are
kinematically open. Selecting binary systems with heavy
pulsars is also crucial for setting limits on the Λ hyperon
dark decays. This is because, in EOSs that contain hyperon
degrees of freedom, hyperons start populating the medium
only at very high densities [92], i.e., in the cores of heavy
neutron stars (see Fig. 9). Among the heaviest known
pulsar candidates we exclude PSR J0952-0607, since it is a
“black widow” pulsar with relatively large errors in its mass
Mp ¼ ð2.35� 0.17ÞM⊙ [93] and a notable (∼11%) rota-
tion effect on the static structure of a neutron star given by
the metric in Eq. (3.1). The next candidates are PSR
J0740þ 6620 with Mp ¼ ð2.08� 0.07ÞM⊙ [94], PSR
J0348þ 0432 with Mp ¼ ð2.01� 0.04ÞM⊙ [73], and
PSR J1614-2230 with Mp ¼ ð1.908� 0.016ÞM⊙ [74].
For our study, we pick the latter two pulsars which have
smaller errors in Mp and Ṗobs

b .
(1) PSR J0348þ 0432. A pulsar–white dwarf binary

was discovered in 2007 with the Robert C. Byrd
Green Bank Telescope [95] with an orbital period of
about 2.4 h. We use the results from the analysis in
Ref. [73], in which it was shown that the kinematic,
spin-down [Eq. (3.12)], and tidal (ṖT

b ⪅ 10−16)
contributions to Ṗb are negligible and the observed
Ṗb should be mainly caused by the gravitational
wave (GW) emission. We use the value from
Ref. [73] for the intrinsic period decay rate: Ṗint

b ¼
−0.275ð45Þ × 10−12.

(2) PSR J1614 − 2230. A pulsar–white dwarf binary
was discovered in 2006 with the Parkes radio tele-
scope [96]. We use the Shapiro delay mass estimates
from Ref. [74] and the binary parameters from the
NANOGrav 12.5 yr dataset [75] at 56323 MJD.

The observed value of Ṗobs
b ¼ 1.57ð13Þ × 10−12 is

dominated by the Doppler shift due to the pulsar
motion which is itself mainly caused by the Shklov-
skii effect [97]:

ṖShk
b ¼ μ2d

c
Pb ¼ 1.24ð9Þ × 10−12; ð3:14Þ

in which we input the value for proper motion μ ¼
32.4ð5Þ mas yr−1 and used the parallax distance d ¼
0.65� 0.04 kpc [98].We use Eq. (16) fromRef. [99]
to estimate the contribution due to the Galactic
potential, namely,

�
Ṗb

Pb

�Gal

¼−
Kzj sinðbÞj

c

−
Ω2

⊙R⊙

c

�
cosðlÞþ β

β2þ sin2ðlÞ
�
cosðbÞ;

ð3:15Þ

in which β≡ ðd=R⊙Þ cosðbÞ − cosðlÞ, R⊙ ¼ 8.0ð4Þ
is the Sun’s galactocentric distance, Ω⊙ ¼
27.2ð9Þ km s−1 kpc−1 is its Galactic angular veloc-
ity, and Kz is the vertical component of Galactic
acceleration approximated by

Kzð10−9 cm s−2Þ
≈ 2.27zkpc þ 3.68ð1 − expð−4.31zkpcÞÞ ð3:16Þ

for Galactic heights z≡ jd sinðbÞj ≤ 1.5 kpc.We use
the pulsar’s coordinates ðl; bÞ ¼ ð352.64°; 20.19°Þ to
find z ¼ 0.223ð14Þ kpc, and ṖGal

b ¼ 1ð5Þ × 10−14.
These extrinsic effects combine to yield Ṗext

b ¼
ṖGal
b þ ṖShk

b ¼ 1.25ð10Þ × 10−12. Our resulting esti-
mate for the period derivative, Ṗint

b ¼0.32ð16Þ×10−12,
is positive at 2σ significance, pointing to a possible
underestimation of extrinsic effects and their errors.
However, we note that if, for example, we instead
assume a negligible value for Ṗint

b ≈ 0 and double our
error estimates, then we would still obtain the same
limits. We also evaluate the relatively small GW
contribution which for circular orbits is given by [87]

ṖGW
b ¼ −

192π

5

�
2πT⊙

Pb

�
5=3 MpMc

ðMp þMcÞð1=3Þ
¼ −4.17ð4Þ × 10−16; ð3:17Þ

in which we used the pulsar and white dwarf masses
from Ref. [74], T⊙ ¼ 4.92549094 × 10−6 s, and we
neglected the small eccentricity of the orbit e ¼
1.333ð8Þ × 10−6 [100]. In estimating ṖΩ̇

b using
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Eq. (3.12), we assumed the canonical value I ¼
1045 g cm2 for the pulsar’s moment of inertia.

(3) PSR J0737-3039A/B. A double pulsar was discov-
ered in 2003 [101], comprised of two radio pulsars
(A and B) with pulse periods of 22.7 and 2.8 ms,
respectively. We use the data from Ref. [76] and the
inferred limits on BNV contributions from Ref. [5].

We can now translate the bounds on ðṖb=PbÞBNV from
Table I to limits on ðḂ=BÞ using Eq. (3.11), which are
presented in the last row in Table I. In deriving these limits,
we assumed that BNV is active only in the pulsars. We also
note that we can infer only a model-independent limit on a
linear combination of BNV in pulsars A and B of the
double pulsar system (J0737-3039A/B). However, we
expect that the rates of BNV (per baryon) would be about
the same in both pulsars, i.e., ðḂ1=B1Þ ≈ ðḂ2=B2Þ, since
their masses are very close and the composition of light
neutron stars ought not change much over 0.1M⊙. In
Sec. VI, in which we adopt a specific BNV model
(B → χγ), our inferred limits on the mixing parameter
(εBχ) are found by evaluating the individual BNV rates in
each of the two pulsars J0737-3039A and J0737-3039B,
which we then sum to compare to the observational limit on
BNV in this system. We also observe that changing
between the DS(CMF) EOSs (see Table II) induces
variation in, at most, the last significant digit in our limits
[see the discussion below Eq. (3.12)].

IV. DENSE MATTER CONSIDERATIONS
FOR PARTICLE PROCESSES

Different lines of evidence reveal that dense matter
environments can be discriminating probes of non-SM
processes. For example, limits on Λ → χγ, as well as other
decay channels with dark particles, follow by noting that
the duration of the observed neutrino pulse in SN 1987A
should not be significantly impacted by dark-sector emis-
sion [16]. We, too, have found severe limits on BNV from

binary-pulsar period lengthening, as shown in Table I.
In this context we note the limit of Ref. [82] as a constraint
on dark-sector emission. Here we sharpen BNV studies by
computing particle processes within a theoretical frame-
work suitable to the description of the dense matter in the
interior of a neutron star.
To compute particle processes in dense matter we might

first turn to chiral effective theory to describe the low-
energy interactions of such hadrons [104,105]. At the
simplest level, these studies exploit the symmetries of
QCD to systematize the interactions of mesons and baryons
in a momentum expansion in powers of ðQ=ΛχÞ, in which
Q is the momentum or pion mass and Λχ is the chiral-
symmetry-breaking scale (Λχ ≈ 1 GeV), with experiments
fixing the value of the unknown low-energy constants
(LECs) that appear. This framework can also be extended to
the determination of the EOS of neutron stars [106,107].
The empirical nature of the LEC determinations limit the
applicability of chiral effective theory to densities no more
than 2nsat [108]. Moreover, in neutron stars, the central
densities can easily exceed that of saturation density by a
factor of a few, making the nucleons relativistic. As a result,
we turn to relativistic mean-field (RMF) theory in hadronic
degrees of freedom to describe the dense matter at the
core of a neutron star. In what follows, we first describe
how a RMF treatment emerges from a simple, covariant
quantum field theory description of hadronic interactions
before describing the specific, state-of-the-art chiral mean-
field (CMF) EOS that we employ for generating our
numerical results, showing how this specific choice maps
onto the RMF treatment of the simpler model. We then
show how particle decays can be computed within that
framework.

A. Modeling dense matter

A prototypical choice is the Walecka model [17–19],
namely,

TABLE II. The set of CMF EOS variants taken from Refs. [102,103]; we refer to them as DS(CMF)-1 through
DS(CMF)-8, respectively, in later use. The second and third columns describe the degrees of freedom (d.o.f.);
nucleons (N), hyperons (Y), and delta resonances (Δ); and the additional vector interactions (“Add. int.”) beyond the
standard terms (LSelf ) that are included for each EOS, respectively. The fourth column represents the assumed value
for symmetry energy (Esym) slope (L). The fifth to eighth columns are the single-particle hyperon potentials, and the
last column is the maximum neutron-star mass (Mmax), or the TOV mass, that can be generated.

EOS d.o.f. Add. int. L (MeV) UΛ (MeV) UΣ (MeV) UΞ (MeV) UΔ (MeV) Mmax ðM⊙Þ
1 Nþ Y 88 −28 5 −18 2.07
2 N 88 −28 5 −18 2.13
3 Nþ Y ωρ 75 −28 5 −18 2.00
4 N ωρ 75 −28 5 −18 2.05
5 Nþ Y ωρþ ω4 75 −27 6 −17 2.07
6 N ωρþ ω4 75 −27 6 −17 2.11
7 Nþ Yþ Δ ωρþ ω4 75 −27 6 −17 −64 2.07
8 Nþ Δ ωρþ ω4 75 −27 6 −17 −64 2.09
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Lφ=V ¼ ψ ½ði=∂ − gV=VÞ − ðmN − gsφÞ�ψ

þ 1

2
ð∂μφ∂μφ −m2

sφ
2Þ

−
1

4
FμνFμν þ

1

2
mvVμVμ þ δL; ð4:1Þ

where Fμν ¼ ∂μVν − ∂νVμ and δL is a counterterm, as the
model is renormalizable. It is similar to massive QED with
a scalar extension and a conserved current (baryon num-
ber). Both a neutral scalar meson (φ) and a neutral vector
meson (Vμ), describing the attractive and repulsive features,
respectively, of the nucleon-nucleon force appear. The
equations of motions (EOMs) take the form

ð=∂2 þm2
sÞφðxÞ ¼ gsψ̄ψ ; ð4:2Þ

∂νFνμ þm2
vVμ ¼ gvψ̄γμψ ; ð4:3Þ

f½i=∂ − gv=VðxÞ� − ½mN − gsφðxÞ�gψðxÞ ¼ 0: ð4:4Þ

The EOMs are nonlinear and, thus, complicated. Working
in the mean-field limit is grossly simplifying, however.
That is, at high baryon number densities, the sources for
φðxÞ and VμðxÞ fields become large, and these field
operators can be replaced by their vacuum expectation
values (VEV) in the n.m. frame: φðxÞ → hφðxÞi≡ φ̄, and
VμðxÞ → hVμðxÞi≡ δμ0V̄0. In doing this, we assume rota-
tional invariance and note that in static uniform matter, as in
a neutron star, φ̄ and V̄0 become constants that depend only
on density. The solutions to Eq. (4.4) would then take the
form of that of the free Dirac equation if suitable replace-
ments of the baryon (canonical) four-momentum kμ (in a
uniform medium) and mass m are made. Thus, the medium
effects in the RMF limit are captured by a shift in the
baryon momenta and masses, namely, by mapping kμ →
k�μ ≡ kμ − gvVμ with Vμ → δμ0V̄0 andm → m� ≡m − gsφ̄.
In generalizing this result for broader use, we note that the
Lagrangian of interactions for a more realistic hadronic
model would have more ingredients (e.g., mesons).
However, we would still be able to add up the scalar
meson VEVs that modify the baryon’s mass in a similar
manner and denote the effective baryon mass by m�,
independent of the specific scalar mesons in our model.
Similarly, we can combine all the contributions to the
baryon’s momentum from vector mesons and denote them
by Σμ, such that in going from the vacuum to the in-medium
formalism we would replace kμ → k�μ ≡ kμ − Σμ in the
mean-field limit. Equipped with this result, we can write the
wave function for a baryon in a uniform medium as

ψðxÞ ¼ e−ik·xuðk�; λÞ; ð4:5Þ

in which k�μ ≡ kμ − Σμ ¼ fE�ðk�Þ; k⃗ − Σ⃗g is defined to be
the kinetic four-momentum and the vector self-energy (Σμ)

is generated by the vector meson VEVs, with Σ⃗ ¼ 0 in the
n.m. frame. The time component of k�μ is defined by

E�ðk�Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2 þ jk⃗�j2

q
, in which m� is generated by the

scalar meson VEVs. The baryon spinor uðk�; λÞ satisfies
the Dirac equation

ð=k� −m�Þuðk�; λÞ ¼ 0; ð4:6Þ

which has the following solution in Dirac-Pauli
representation:

uðk�; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðk�Þ þm�p �

1

σ⃗·k⃗�
E�ðk�Þþm�

�
χλ; ð4:7Þ

in which σ⃗ contains the Pauli matrices and χλ is the
Pauli spinor with χ↑ ¼ ð1; 0ÞT and χ↓ ¼ ð0; 1ÞT . Note
that u has a Lorentz-invariant normalization given by
ūðk�; λÞuðk�; λÞ ¼ 2m�. The wave function for antibaryons
can be similarly constructed. The energy spectrum of
baryons (k0) is given by

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2 þ jk⃗ − Σ⃗j2

q
þ Σ0; ð4:8Þ

in the mean-field approximation, Σμ and m� do not depend
on kμ, but they do vary with density. The values for m� and
Σ0 (in the n.m. frame) decrease and increase, respectively
(see Fig. 6) in such a way that the total energy of baryons in
Eq. (4.8) increases at higher densities. As we will see
shortly, this brings about in-medium baryon decays to
particles that are heavier than the baryon’s vacuum mass
since Eð0Þ > mB at high densities. In general, the increase
in the repulsion between baryons in a RMF framework can
be understood by comparing the timelike component of
vector (repulsive) interactions, which are proportional to
u†u, with scalar (attractive) interactions, which are para-
metrized by ūu ¼ ðm�=E�Þu†u. As the density increases,
m� decreases and the strength of the attractive forces
relative to the repulsive ones diminishes [109]. However,
we should note that having a highly repulsive nuclear
interaction at extremely high densities (compared to nsat) is
a reasonable expectation, regardless of the specific dense
matter formalism. Having explained the formalism utilized
in this work, we now describe the specific EOS that we use
for generating our numerical results.
We choose an EOS based on a nonlinear hadronic

SU(3) CMF model [110], in which the baryonic degrees
of freedom include nucleons (n, p), hyperons (Λ, Σ, Ξ), and
the spin-3=2 resonances (Δ, Σ�, Ξ�, Ω). These baryons
interact via exchange of scalar (σ, δ, ζ, χ) and vector
mesons (ρμ, ωμ, ϕμ), in which ρμ and δ are both isovectors.
In the RMF limit, the mesons become classical fields, and
in the n.m. frame only the zeroth components of vector
mesons develop VEVs. We employ the CMF model of
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Ref. [21], using the CMF EOS variants taken from
Refs. [102,103]. We refer to them as DS(CMF)-1 through
DS(CMF)-8 as detailed in Appendix B and note that
Appendix for further discussion of this class of models.

The numerical values for m� and Σ0 in the DS(CMF-1)
EOS are plotted in Fig. 6. We note that the reduction of the
effective baryon masses at high densities as shown in Fig. 6
is due to chiral symmetry restoration at high densities.

FIG. 6. The effective masses (a), vector self-energies (b), and the energy of baryons at rest in the n.m. frame (c) as a function of density
in the DS (CMF)-1 EOS. The horizontal lines correspond to the vacuum masses of baryons, and the vertical lines indicate the central
number density (nc) of the pulsars we consider in this work.
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The conventional approach to determining the coupling
constants in RMFmodels, which we also use here, relies on
an extrapolation from symmetric finite nuclei to infinite
neutron matter. We would like to contrast this with an
alternative that we may wish to employ in the future, which
is based on fitting uniform pure neutron matter properties
determined through the use of chiral effective field theory
[111]. The latter procedure involves fitting the RMF
couplings with the synthetic neutron matter data generated
using quantum Monte Carlo many-body methods [112], in
addition to reproducing nsat, B=A, and K.

B. Medium effects: Effective masses and beyond

In this section, we discuss some of the notable features
that emerge in studying processes in the medium and make
comparisons with the vacuum formalism. We start with the
quantization of baryon fields in the medium followed by
the rate and cross section calculation formalism. We then
discuss the electromagnetic form factors of the baryons that
are needed for our calculations in Sec. V B.
The presence of the baryon Fermi sea modifies the

quantization procedure of the baryon fields, ψðxÞ, in the
medium [18] compared with the usual procedure in
the vacuum [113]. Once the coefficients behind the
Fourier modes of ψðxÞ are promoted to baryon creation
[a†ðkÞ] and annihilation [aðkÞ] operators [likewise b†ðkÞ
and bðkÞ for antibaryons], we conclude that the action of
these operators on the medium ground state jΩi, which
contains baryon levels filled to a Fermi momentum (kF),
should be given by

bðkÞjΩi ¼ 0 ∀ k⃗;

a†ðkÞjΩi ¼ 0; jk⃗j < kF;

aðkÞjΩi ¼ 0; jk⃗j > kF: ð4:9Þ

This leads to a different form (compared to in the vacuum)
for the baryon propagator, which is given by [18]

GðpÞ≡ ðp� þm�Þ
�

1

p�2 −m�2 þ iε

þ 2πiδðp�2 −m�2Þθðp�
0Þθ
�
k2F þ p�2 −

ðp�
μBμÞ2
BμBμ

�	
;

ð4:10Þ
in which θ is the Heaviside step function, Bμ is the baryon
current density, which in the n.m. frame is given by
Bμ
n:m: ¼ δμ0nB, and the second term in Eq. (4.10) allows

for the propagation of holes in the Fermi sea. Using this
modified propagator and the spinors in Eq. (4.7), one can
derive Feynman rules [18] for calculating the amplitudes for
various processes (see Sec. V B). However, in calculating
rates via phase space integrals,we should first observe that an
on-shell (p�2 ¼ m�2) and positive energy (p0 > 0) Lorentz-
invariant integral over the four-momentum is given byZ

d4pδððpμ − ΣμÞ2 −m�2Þθðp0ÞfðpμÞ

¼
Z

d3p
f

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jp⃗ − Σ⃗j2 þm�2
q

þ Σ0; p⃗
�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗ − Σ⃗j2 þm�2

q : ð4:11Þ

Therefore, we identify the Lorentz-invariant (on-shell) vol-
ume element in themedium as d3p=2E�ðpÞ. This means that
the normalization factors in the in-medium phase space inte-
grals should contain ð2E�Þ−1 in place of the usual vacuum
expression.
We also note that the velocity of a baryon is defined in

terms of the kinetic momentum as opposed to the canonical
one, i.e., vμ ≡ k�μ=E�. This velocity should be used for
calculating the cross section of two-body scattering involv-
ing a baryon (see Appendix E). We can explicitly show this
by performing an integration over the longitudinal (ẑ)
components of the incident beams’ momenta (k̄zA and k̄zB).
Let us assume for the moment that only one baryon (B) is
involved, inwhich casewe have [see Eq. (4.77) inRef. [114]]

Z
dk̄zAdk̄

z
Bδ

�
k̄zA þ k̄zB −

X
f

pz
f

�
δ

�
ĒA þ ĒB −

X
f

Ef

�

¼
Z

dk̄zAδ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2A þm2

A

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk̄B − Σ⃗BÞ2 þm2

B

q
þ Σ0

B −
X
f

Ef

�����
k̄zB¼
P

pz
f−k̄

z
A

¼
���� k̄zAĒA

−
k̄zB − Σz

B

Ē�
B

����−1 ¼
���� k̄zAĒA

−
k̄�zB
Ē�
B

����−1 ≡ jvA − vBj−1; ð4:12Þ

in which in the last line we are assuming k̄zB ¼Ppz
f − k̄zA

and have identified the baryon velocity using the kinetic
momentum, such that jvA − vBj is the relative velocity
of the beams as viewed from the laboratory frame.

The generalization to the case with two baryons is straight-
forward. The fact that the velocity of a baryon is zero when
k⃗� ¼ 0 could have also been deduced by inspecting the
kinetic energy component in Eq. (4.8). For this reason, the
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frame in which k⃗� ¼ 0 holds is called the center of velocity
(c.v.) frame which is distinct from the center of mass (c.m.)
frame defined by k⃗ ¼ 0. Therefore, the decay rate of a baryon
in an arbitrary frame (Γ) is found by boosting (γ) the rate
evaluated in the c.v. frame using Γ ¼ γ−1Γc:v:.
Since we study processes that involve electromagnetic

interactions with baryons, the generalization of the usual
form factors from the vacuum to within the medium should
be checked. The in-medium spinors in Eq. (4.7) are
different from their vacuum counterparts. Therefore, certain
commonly used properties (e.g., the Gordon decomposi-
tion) in vacuum need to be reestablished. However, we note
that the general form of these interactions is determined by
the structure of Dirac algebra. While important for for-
mulating our analyses, this is slightly tangential to the
broader narrative of this work; we thus relegate the details
to the Appendixes, but we encourage the reader to study
them nonetheless. In Appendix C, we explicitly show that
the vacuum EM vertex form can be generalized to its in-
medium form if one replaces m → m� and p → p� and
identifies the electric charge and magnetic moment of a
baryon from the scattering amplitudes in the c.v. frame. Our
numerical results in Sec. V assume the vacuum values for
the in-medium form factors F�

1;2 of neutron and Λ. We also
derive the nonrelativistic limit of baryon’s EM interactions
and their elastic scattering formalism in Appendix D. We
present the calculations for in-medium Compton scattering
in Appendix E, as a demonstration of the RMF formalism
utilized in this work.

V. BARYON DARK DECAY RATES
IN DENSE MATTER

In this section, we develop the procedures for evaluating
particle physics processes, such as neutron decays and
neutron-neutron scattering, in the neutron-star medium.
Our particular interest is in radiative decays such as B → χγ
in the core of the star. In the absence of a matter
environment, a common procedure, adopted in many
contexts, is to assume the mixing is weak and to redefine
the fields, here Bi and χ [115], so that they no longer mix,
and then to analyze Bi → χ transitions in that new basis. In
Sec. VA, we show why and how this procedure can fail in
strongly interacting dense matter, and we argue for a
Feynman diagram analysis in its place. Subsequently,
starting in Sec. V B, we show how the transition rates
can be evaluated explicitly and consider their implications.

A. General considerations

To illuminate the essential points, we consider the
possibility of n-χ mixing in a background field Σμ, the
vector self-energy of a neutron in the neutron-star medium,
which interacts with the neutron field ψn but not the χ field
ψχ . Thus, we adopt the following simple model:

L ¼ ψ̄nði=∂ − Σ −m�
nÞψn þ ψ̄ χði=∂ −mχÞψχ

− εðψ̄nψχ þ ψ̄ χψnÞ: ð5:1Þ

Under a field redefinition, ψ → ψ 0, prescribed by

�
ψ 0
n

ψ 0
χ

�
¼
�

cos θ sin θ

− sin θ cos θ

��
ψn

ψχ

�
; ð5:2Þ

Equation (5.1) becomes

L0 ¼ ψ̄ 0
n ði∂−Σcos2θ−m�

ncos2θ−mχsin2θÞψ 0
n

þ ψ̄ 0
χði∂−Σsin2θ−mχcos2θ−mnsin2θÞψ 0

χ

þ ψ̄ 0
n

�
sinð2θÞ

2
ðm�

n −mχ þΣÞ− εcosð2θÞ
�
ψ 0
χ : ð5:3Þ

If Σμ were absent, and with ε real, then, for tan ð2θÞ ¼
2ε=ðm�

n −mχÞ, L0 describes two decoupled fields with a
modified energy spectrum. These fields can then map to the
asymptotic (“in” and “out”) states needed to define the S
matrix [60]. To do this, any interactions with these fields
should vanish as t → �∞. For the neutron (and other SM
baryons), we note that the effect of the vector self-energy
can be absorbed into the definition of a modified single-
particle spinor, as discussed in Sec. IVA, and, thus, suitable
“in” and “out” states can still be constructed. In the current
case, Σμ mediates an interaction between the rotated n and χ
fields, putting the utility of our field redefinition procedure
into question. After all, even in the mean-field limit, Σ0 can
greatly exceed the n and χ masses at the high densities
reached within a neutron star, and it cannot vanish as
t → �∞, since we work within a medium of infinite extent.
Since Σμ is not a Lorentz scalar, we cannot extend our field
redefinition approach to include it. Therefore, there would
seem to be no advantage to following a field redefinition
approach in neutron matter. Moreover, in the small mixing
limit (ε ≪ jm�

n −mχ j), the mass (n0, χ0) and interaction
(n, χ) eigenstates are nearly the same. Working with
Eq. (5.1), we can treat εψ̄nψχ as a tiny interaction that
mediates n ↔ χ transitions within perturbation theory. This
Feynman diagram analysis, through the in-medium baryon
propagator [Eq. (4.10)] naturally includes the impact of
momentum dependence and of the neutron self-energy on
n-χ mixing. We emphasize that both effects are absent in
the field redefinition procedure. As a result, too, we do not
have large enhancements in our predictions should the
in-medium neutron and χ states become degenerate in
energy—the imaginary part of the neutron self-energy
effectively eliminates that possibility. Nevertheless, n-χ
mixing within the neutron-star medium could potentially
lead to effects not possible in terrestrial experiments, and
we consider those possibilities more carefully in Sec. V C.
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B. Dark decay rate estimates

We now turn to the explicit evaluation of rates of particle
processes within the neutron-star medium, with a particular
focus on dark decay rates. As long known, the background
field associated with matter leads to a spontaneous breaking
of Lorentz symmetry, but as a consequence of our Lorentz
covariant description, discussed in Sec. IVA, our expres-
sions always have definite Lorentz transformation proper-
ties. In what follows, we exploit our freedom to choose a
frame to simplify our analysis.
Generally, processes of the form B þ fXg → χ þ fYg

lead to the following rate of change of the local baryon
density nB (with respect to the proper time, τ, referenced to
that spacetime point):

dnB
dτ

¼−
Z

dΠB

�Y
fXg

dΠX

�
dΠχ

�Y
fYg

dΠY

�

×fBðp⃗BÞ
�Y

fXg
fXðp⃗XÞ

�
ð1−fχðk⃗χÞÞ

�Y
fYg

½1�fYðk⃗YÞ�
�

× jMj2×ð2πÞ4δð4Þ
�
pBþ

X
fXg

pX−kχ−
X
fyg

kY

�
; ð5:4Þ

where fXg (fYg) is some set of other states in the initial
(final) state—which may be empty. Moreover, dΠi ¼
d3p⃗i=½ð2πÞ3ð2E�

i Þ� is the Lorentz-invariant phase space
measure, fðp⃗Þ are the species-dependent occupation num-
bers,5 and jMj2 is the spin-summed (as opposed to spin-
averaged) squared matrix element. We denote final-state
momenta with ki instead of pi. Consistent with our
assumption that there is no appreciable background of χ,
we set its occupation factor fχðk⃗χÞ to zero. All baryonic
species abide by zero-temperature Fermi distributions
characterized by distinct Fermi momenta pF;B.
We briefly discuss important qualitative features of the

evaluation of Eq. (5.4) for the decay process B → χγ and
present the corresponding results. We relegate details of the
calculation to Appendix G. We work in the interaction
basis, so that the decay proceeds via the Feynman diagram
containing the n-χ interaction and the baryon magnetic
dipole moment operator, which we write as

OBγ ¼
gBe
8m�

B
B̄σμνBFμν; ð5:5Þ

noting gn ¼ 3.826 and gΛ ¼ −1.226 [61]. This computa-
tion is made in a background mean field of neutron matter,
and the associated decay amplitude, as developed in
Sec. IVA, is determined by replacing the canonical
momenta of the in-vacuum computation with kinetic

momenta as per Eq. (4.5). Labeling canonical momenta
as BðpBÞ→χðkχÞþγðkγÞ, the corresponding spin-summed
squared matrix element is

jMj2 ¼ ε2Bχg
2
Be

2

2ðm�
BÞ2

½ðp�
B · kχÞ þm�

Bmχ �; ð5:6Þ

noting that both the kinetic momentum p�
B and the in-

medium mass m�
B appear. It then remains to insert this into

Eq. (5.4) and integrate. The integral takes the form

dnB
dτ

¼ −
Z

d3p⃗B

ð2πÞ3ð2E�
BÞ

d3k⃗χ
ð2πÞ3ð2EχÞ

d3k⃗γ
ð2πÞ3ð2EγÞ

fBðp⃗BÞ

× jMj2 × ð2πÞ4δð4ÞðpB − kχ − kγÞ; ð5:7Þ

and it can be computed in different ways. The Lorentz
invariance of each measure dΠi affords the opportunity
of performing different parts of the integration in differ-
ent frames. We note that the integration over dΠB is

simplest in the n.m. frame: there, we have fBðp⃗ðn:m:Þ
B Þ ¼

ΘðpF;B − jp⃗ðn:m:Þ
B jÞ, and the integrand is isotropic.

Contrariwise, it is simplest to evaluate the integration over
dΠχdΠγ in the c.v. frame. Moreover, as discussed in
Sec. IV B, the width of an individual baryon is most
simply interpreted in its respective c.v. frame, since the
baryon is not moving. The baryon width in the c.v. frame
takes the form

Γc:v:ðjp⃗ðn:m:Þ
B jÞ ¼ 1

2m�
B

Z
d3k⃗χ

ð2πÞ3ð2EχÞ
d3k⃗γ

ð2πÞ3ð2EγÞ
×
1

2
jMj2

× ð2πÞ4δð4ÞðpB − kχ − kγÞ; ð5:8Þ

where the argument of Γc:v: follows from our earlier frame

choice.6 Henceforth, we abbreviate pB ≡ jp⃗ðn:m:Þ
B j. We have

p�;ðc:v:Þ
B ¼ ðm�

B; 0Þ and pðc:v:Þ
B ¼ ðm�

n þ Σðc:v:Þ;0
B ; Σ⃗ðc:v:Þ

B Þ, with
Σðc:v:Þ
B the baryon vector self-energy in the c.v. frame. The

results in different frames are connected by Lorentz boosts,
yielding

Γc:m:ðpBÞ ¼
�

m�
B

E�;ðc:m:Þ
B

�
Γc:v:ðpBÞ

¼
�
E�;ðn:m:Þ
B

E�;ðc:m:Þ
B

�
Γn:m:ðpBÞ: ð5:9Þ

The total rate of baryon loss in the n.m. frame is then
given by integrating over all baryons in the local fluid,
accounting for the contraction of their individual widths by

5The occupation factor for Y depends on whether or not Y is a
boson (þ) or fermion (−).

6The additional factor of 1
2
in Eq. (5.8) arises because jMj2 has

been spin summed and not spin averaged.
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a factor γ−1 ¼ m�
B=E

�
B, with E

�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
B þ ðm�

BÞ2
q

the n.m.-
frame energy associated with the kinetic momentum:

dnB
dτ

¼ −2 ×
Z

pF;B

0

p2
BdpB

2π2
γ−1Γc:v:ðpBÞ: ð5:10Þ

The prefactor of 2 comes from the baryon’s two spin
degrees of freedom, and the factor of 2π2 in the denom-
inator ensures that if the function γ−1Γc:v:ðpBÞ were a
constant, then the result would be ðγ−1Γc:v:Þ × nB.
Combining Eqs. (5.8) and (5.10), we find that this
procedure leads to the same result as the direct evaluation
of Eq. (5.7) shown in Appendix G. In either case, we arrive
at the following result:

dnB
dτ

¼−
ε2Bχg

2
Be

2

128π3
ðm�

BÞ2
Z

xF

1

dx
ffiffiffiffiffiffiffiffiffiffiffi
x2−1

p
×
1þ2xσþσ2−μ2

ð1þ2xσþσ2Þ2
× ½ð1þ2xσþσ2Þð1þxσþ2μÞþμ2ð1þxσÞ�; ð5:11Þ

in which

x≡ E�;ðn:m:Þ
B

m�
B

; xF ≡ E�;ðn:m:Þ
F;B

m�
B

;

σ ≡ Σðn:m:Þ;0
B

m�
B

; μ≡ mχ

m�
B
: ð5:12Þ

The corresponding c.m.-frame single baryon decay rate
Γc:m:ðpBÞ is given in Eq. (G18).
We illustrate the rates ofB → χγ as a function ofmχ and n

in Fig. 7, for both neutrons (a) and Λ’s (b). (In contrast, in
Fig. 8, we show how these proper decay rates change across
the different pulsars of interest for various values of the χ
mass.) These calculations are for the DS(CMF)-1 EOS, but
the results are qualitatively similar for the other EOS in this
family.7 The vertical axes have been normalized to the value
of nuclear saturation density in this EOS, nsat ¼ 0.15 fm−3.
The respective color scales are shown at right, assuming
εBχ ¼ 10−16 MeV; the units are fm−3 s−1, andwe emphasize
that these rates scale as ε2Bχ . To guide the eye, we have also
added black contours every quarter order of magnitude.
Solid contours correspond to integer numbers; dot-dashed
contours correspond to half-integer numbers; and dotted
lines correspond to quarter-integer numbers. In either panel,
the dashed vertical line indicates the vacuum mass of the
corresponding baryon. The dotted horizontal line corre-
sponds to the central density of the heaviest stable neutron
star within this EOS, corresponding to MTOV ≈ 2.07M⊙;
the region above this line has been grayed out because
these densities do not occur in a stable neutron star.
Similarly, the dot-dashed horizontal lines correspond to

the central densities of neutron stars with the masses
of J0348þ 0432, J1614-2230, and J0737-3039A/B. We
observe that, when n → χγ is operative, it is almost always
numerically larger than the rate of Λ → χγ (for εnχ ¼ εΛχ).
This is a simple consequence of larger neutron number
fractions at these densities, and the two rates often differ by
several orders of magnitude. However, Λ’s have a further
reach inmχ when they are present than neutrons do, owing to
the larger total energy of Λ’s in neutron matter.

C. Medium-enabled dark decay processes

It was shown in Sec. IVA that baryons in neutron stars
have a lower effective mass (m�

B) and a higher self-energy
(Σ0

B) at higher densities (see Fig. 6), but their overall energy
can be much higher than their vacuum rest mass (mB). In
order to illustrate this for a heavy neutron star, we plot the
baryon rest energies [E0

B ≡ EBðp ¼ 0Þ in the n.m. frame]
for PSR J0348þ 0432 as a function of radius in Fig. 9. We
can see that baryon decays containing a final state χ with
mχ > mB, which would be forbidden in vacuum, can occur
at the core of heavy neutron stars. This enables a novel way
of analyzing models with mχ values for which nuclear and
vacuum decays are kinematically forbidden. Furthermore,
constraints derived from heavy neutron stars can still be
applicable in the vicinity ofmχ ≈mB and beyond that. This
should be contrasted with limits derived from processes in
vacuum and within nuclei, which diminish at mχ ≈mB or
even at much lower values of mχ due to the binding energy
and possible energy cuts on the final states. For example,
when inferring limits on n → χγ via the nondetection of γ,
there is an energy cut Emin

γ [116], which means mχ values
larger than mn − Emin

γ cannot be constrained.

1. Spontaneous B → χ conversion

The existence of χ raises the possibility that the baryons
to which they couple might undergo spontaneous conver-
sion to χ in the neutron-star medium as they propagate.
Such an effect could prove loosely analogous to empiri-
cally observed matter-enhanced neutrino oscillations [117]
or to the possibility of neutron-antineutron oscillations
[118–120], breaking the baryon number by two units. In the
latter case, the presence of external interactions from matter
or magnetic fields modify the energy of the n and n̄
differently, severely reducing the spontaneous oscillation
probability for a fixed source of new physics [121], and the
cross section for scattering-mediated n-n̄ conversion is also
very small [122]. In this section, we note the distinct
features of B-χ conversion.
The essential physics is, thus, B and χ constitute a two-

level quantum system. As we have noted in Sec. VA, if
the coupling εBχ is nonzero, then B and χ constitute
the interaction basis, whereas the eigenstates of this
Hamiltonian, which we term f1 and f2 for this discussion,

7Of course, the EOSs that do not contain hyperons will not lead
to Λ → χγ decays within neutron stars.
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constitute the mass basis. Formally, the strong interactions
that operate in neutron matter only ever produce n—this is
what it means forB to be an interaction eigenstate. ThisB is,
however, a coherent superpositionoff1 andf2 at themoment
of its creation. The subsequent evolution of this coherent
wave packet depends on the details of the B − χ system.
These details are discussed in depth in Appendix F; we pick
out themost relevant results as they pertain to this discussion.
The Hamiltonian that describes our two-state system

depends on the local environment: The total energy of the
baryon depends on the density through m�

B and ΣB, and
baryons with different n.m.-frame momenta will mix differ-
ently with χ because Lorentz invariance is spontaneously
broken by the background. There exists a resonance in this
system wherever the condition, which follows from energy-
momentum conservation of the canonical momenta,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χþjp⃗ðn:m:Þj2
q

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

BÞ2þjp⃗ðn:m:Þj2
q

þΣ0;ðn:m:Þ
B ð5:13Þ

is satisfied. We expect that this condition will occur for at
most one value of the (magnitude of the) baryon momen-
tum for a given density. Moreover, Eq. (5.13) cannot be

satisfied if Σ0;ðc:v:Þ
B is complex. In what follows, we set this

latter possibility aside, because, as we will see, other
effects act to suppress the likelihood of B-χ conversion.
At resonance, the offset between the interaction and
mass bases is maximal, corresponding to a mixing angle
of θ ¼ 45°; however, if Eq. (5.13) is violated by more
than a few times εBχ , then the mixing angle is parametri-

cally small: θ2∼ε2Bχ=ðωðþÞ
B −ωðþÞ

χ Þ2≡ðεBχ=δωðþÞÞ2, where

FIG. 7. The proper rates for B → χγ decays, ð−dnB=dτÞ (in fm−3 s−1), for neutrons (a) and Λ’s (b) assuming DS(CMF)-1 EOS. In
either panel, we fix the corresponding εBχ to be 10−16 MeV. Note that the color scales are different between the two panels. See the text
for additional details.
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ωðþÞ
χ and ωðþÞ

B are the left- and right-hand sides of
Eq. (5.13), respectively [cf. Eqs. (F14) and (F15)].
We first consider what happens when the system is not

close to resonance. In this case, the eigenvalues of the system
are given by Eqs. (F25) and (F27), which are very nearly
given by ωðþÞ

χ and ωðþÞ
B up to Oðε2BχÞ corrections. If the

system is far from resonance, then these eigenvalues arewell
separated. As a result, the B states produced in scattering
processes will essentially immediately decohere into their
component f1 and f2 with, respectively, probabilities of
cos2 θ and sin2 θ. As such, the state that emerges from the
scattering process manifests as either f1 with probability
cos2 θ ∼ 1 or f2 with probability sin2 θ ∼ ðεBχ=δωÞ2, and the
latter may be vanishingly small—and, thus, sowould be any
yield in χ.
The situation is richer if the state is close to resonance. In

this case, if the canonical momentum of the baryon is fixed
by Eq. (F17), then the eigenvalues of the Hamiltonian are
better given by Eq. (F32). They are nearly identical to each
other, but they are split by a small factor:

Δω� ¼ 2εBχΣ
0;ðn:m:Þ
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

B þmχÞ2 − ðΣ0;ðn:m:Þ
B Þ2

½ðm�
BÞ2 −m2

χ �2 − ðΣ0;ðn:m:Þ
B Þ4

vuut
þOðε3BχÞ: ð5:14Þ

This means that when B is produced in some strong
interaction, the wave packet containing f1 and f2 may
remain coherent over relatively long timescales. This is
analogous to how neutrino mass eigenstates remain coher-
ent as they propagate in terrestrial oscillation experiments,
despite being formed in an interaction eigenstate.8 As in
the case of neutrino oscillations, the f1 and f2 components
of the B state generically evolve with different phases; over
time, this leads to nonzero overlap between the evolved

FIG. 8. The baryon proper decay (B → χγ) rate ð−dnB=dτÞ (per
unit volume) assuming εBχ ¼ 10−16 MeV for (a) neutrons and
(b) Λ’s as a function of radius for four pulsars using DS(CMF)-1
EOS. The numbers next to curves (colors) indicate different
values of mχ ¼ f0.5; 1.0; 1.2; 1.3g GeV.

FIG. 9. The particle composition (a) and the energy of baryons
at rest in the n.m. frame (b) as a function of radius in PSR
J0348þ 0432 assuming the DS (CMF)-1 EOS. The horizontal
lines correspond to the vacuum masses of baryons. We choose
models for which we expect the steady-state admixture of dark
states to be completely negligible.

8We point the interested reader to Ref. [123] for a discussion
about the role of (de)coherence in understanding neutrino
oscillations specifically, as well as Ref. [124] for a comparative
analysis of neutrino oscillations with adiabatic conversion.
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state and either B or χ. The state is then measured, in a
sense, at its next interaction some time t later, either by its
environment or by some experimental apparatus. It is
appropriate, in this case, to invoke the concept of an
oscillation probability; this is estimated by

PB→χðtÞ ¼ sin22θ × sin2
�ðΔω�Þt

2

�
: ð5:15Þ

When the state is observed, however, it collapses to the
combination of f1 and f2 appropriate to either B or χ with
probabilities given by Eq. (5.15), and the process repeats
for further interactions. While the oscillations have a
large amplitude [sin2 2θ ∼Oð1Þ] in this regime, the prob-
ability to convert will remain small if the time between
successive measurements δtmeas is small, in the sense
ðΔω�ÞðδtmeasÞ ≪ 1. This is precisely the quantum Zeno
effect [125,126].
It remains to determine the timescale of the interactions

in the nuclear medium in order to estimate the rate of
B → χ conversions. We estimate this to be the light time of
the mean interparticle separation around nuclear saturation
density: δtstrong ∼ n−1=3sat c−1 ∼Oð10−23Þ s. For a benchmark
value εBχ ¼ 10−16 MeV, the argument of the latter sine
function in Eq. (5.15) is ∼Oð10−39Þ MeV s ∼Oð10−18Þ;
this is safely approximated as small, and we see that the
quantum Zeno effect is indeed operative under these
conditions. Therefore, even if the mixing angle is large,
we estimate the probability to be

PB→χðδtstrongÞ ∼Oð10−36Þ ×
�

εBχ
10−16 MeV

�
2

×

�
δtstrong
10−23 s

�
2

: ð5:16Þ

This implies an approximate per-baryon conversion rate of

RB→χðδtstrongÞ ∼Oð10−13Þ s−1 ×
�

εBχ
10−16 MeV

�
2

×

�
δtstrong
10−23 s

�
: ð5:17Þ

One might expect that this would multiply the large density
of baryons to yield a macroscopically relevant rate.
However, the near-resonance region occupies a thin shell
(parametrically of width ∼εBχ) within the baryon Fermi
sphere; the fraction of baryons relevant for this phenome-
non is fantastically small, even in the best case scenario.
Thus, we summarize by emphasizing that we do not expect
B − χ conversion to be a phenomenologically relevant
mechanism for the production of χ.

D. Total rates

In this section, we report the total baryon decay rates that
emerge after integrating our earlier results over the structure
of a neutron star with a given central density, nc. For
example, in Fig. 10, we show the rates that result from
integrating the local BNV rates in Fig. 7 over the neutron-
star volume using Eq. (3.5) and report these results as
a function of mχ and nc. Figure 10(a) is for neutron
decays, while Fig. 10(b) is for Λ decays; similar to
Fig. 7, the contours correspond to constant (base-ten log
of the) integrated rate of B → χγ. We have again fixed
εBχ ¼ 10−16 MeV, and note that the results are in s−1. We
have coded the black contours in the same way as in Fig. 7,
and we have again indicated the central densities of
J0348þ 0432, J1614-2230, and J0737-3039A/B within
this EOS. Figures 10(c) and 10(d) contextualize these results
by showing the neutron-starmassMNS on the horizontal axis
as a function of the central density on the vertical axis. Note
that Figs. 7 and 10 together imply that J0737-3039A/B are
both too light to contain hyperons.

VI. INFERRED LIMITS ON BARYON
DARK DECAYS

We now turn to the task of assessing the limits on the
B − χ mixing parameters that emerge from our numerical
assessment of the stellar-volume-integrated baryon dark
decay rates, as shown in Fig. 11, and the macroscopic
baryon number loss limits we have determined from
astrophysical observations and their analysis. The latter,
namely, are limits on anomalous binary-pulsar period
lengthening, to which we refer as “binary spin-down,”
and they are given in Table I. We show the limits we find for
each astrophysical system as well as that associated with a
final combined limit. To make our presentation more
compact, we first discuss how the individual limits on
εBχ can be combined before showing all of these results.
Note, too, that since our constraint depends on the square of
εBχ its sign is left unconstrained—we choose εBγ > 0 in
reporting our limits.

A. Combining individual limits

Here we briefly describe our statistical procedure for
combining limits on εBχ derived from different pulsar binary
systems.The limitswe showhave implicitly beendetermined
as contours of constant χ2ðmχ ; εBχÞ. Our assumed-true
hypothesis is that rate of BNV-induced binary spin-down
vanishes in these systems, sowe have χ2 ¼ 0 for εBχ ¼ 0. As
such, each χ2 function is generically of the form

χ2ðmχ ; εBχÞ ¼
�
Ṗb

Pb
ðmχ ; ε0Þ

�
2 ðεBχ=ε0Þ4

σ2

≡ FðmχÞ × ε4Bχ : ð6:1Þ
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The first equality follows from the fact that Ṗb=Pb ∝ ε2Bχ ,
noting Eq. (3.11), and we emphasize that F is a function of
mχ only. The limits we have shown correspond to χ2 ¼ c9;
we call the resulting curve ε̃ðmχÞ. From this, we determine

FðmχÞ ¼
c

ε̃ðmχÞ4
; ð6:2Þ

this allows one to determine the χ2 function over the entire
parameter space.
The combined limit, then, corresponds to the contour

along which the sums of the individual χ2 functions also
equal c. Using the definitions above, we determine the
combined limit ε̃combðmχÞ as follows:

FIG. 10. The volume-integrated rates for B → χγ decays, ð−dB=dtÞ (in s−1) for neutrons (a) and Λ’s (b) assuming the DS(CMF)-1
EOS. As in Fig. 7, we have fixed εBχ ¼ 10−16 MeV. Panels (c) and (d) show the relationship between the neutron-star mass and its
central density.

FIG. 11. The total baryon-loss rate per baryon ð−Ḃ=BÞ due to
B → χγ decays assuming εBχ ¼ 10−16 MeV for neutron and Λ as
a function of mχ for four pulsars using the DS(CMF)-1 EOS.

9For two degrees of freedom, the 2σ exclusion curves we have
shown correspond to c ¼ 6.18.
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χ2combðmχ ;εBχÞ¼
X
i

FiðmχÞε4Bχ¼
X
i

c

�
εBχ

ε̃iðmχÞ
�

4

; ð6:3Þ

χ2combðmχ ; ε̃combðmχÞÞ ¼ c

⇒ ε̃combðmχÞ ¼
�X

i

ε̃iðmχÞ−4
�

−1=4
: ð6:4Þ

This discussion has assumed that all ε̃i are defined at the
same level c and that the desired combined limit is also at c.
This result can be generalized for distinct individual
significances ci and combined significance C:

ε̃comb ¼
�X

i

ci=C × ε̃iðmχÞ−4
�

−1=4
: ð6:5Þ

We show our individual pulsar limits as well as our
combined limits, realized via our described procedure,
for the DS(CMF)-1 EOS in Fig. 12.
Figure 13 depicts our results for the constraints on εnχ

(upper panel) and εΛχ (lower panel) as functions of mχ ,

calculated for each of the eight EOS in the DS(CMF)
family. Equations of state that do not include hyperons are
indicated with dashed curves in the upper panel. We also
note that the DS(CMF)-3 EOS formally cannot support a
neutron star with a mass of 2.01M⊙—its maximum TOV
mass is 2.00M⊙ (note Table II in Appendix B). However,
this is within 1σ of the observed mass of J0348þ 0432; we
therefore elect to include it in this figure but instead show
the constraint derived for this maximal neutron star. This
constraint has been shown in a dot-dashed line to indicate
that it is qualitatively different from the others.
We underscore that we have fixed the masses of these

neutron stars to their best-fit values to construct these
limits. A more statistically complete analysis would propa-
gate the uncertainty in the inferred masses of the observed
pulsars into the determinations of their central densities
(within the context of a given EOS) and, thus, into the
predicted baryon-loss and binary spin-down rates. The
mass uncertainties on J0348þ 0432 and J1614-2230 are
Oð10−2ÞM⊙; we anticipate that there would be Oð1Þ
corrections to the limits whenever these are the only
operative constraints, though the orders of magnitude are

FIG. 12. Exclusion constraints at 2σ on the n − χ (upper panel) and Λ − χ (lower panel) mixing parameters as functions of mχ for
the DS(CMF)-1 EOS. The blue, red, and green curves correspond to the 2σ limits derived from J0348þ 0432, J1614-2230, and
J0737-3039A/B, respectively. The dashed black curves correspond to the combined limits, realized as per the discussion in the text. The
vertical dashed lines indicate the in-vacuum baryon mass in each case.
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expected to be correct. That said, the uncertainties on the
masses of J0737-3039A/B areOð10−5ÞM⊙ [76], so that we
expect the limits on εnχ for mχ ≲ 1000 MeV, noting
Fig. 12, to be quite robust.
In Fig. 14, we reinterpret our constraints on εBχ as

constraints on the branching fractions for B → χγ in
vacuum and contrast them against laboratory constraints,
with neutrons (Λ’s) in the upper (lower) panel. For
neutrons, we also show the KamLAND constraint on
invisible neutron decay [127] in red and the
SuperKamiokande constraint on n → νγ [128] in light
blue. (We note that the KamLAND constraint [127] is
also pertinent to our study of n → χγ decay, because the
prompt photon would not pass the correlation cuts and
would remain undetected.) These are as much as 20 orders
of magnitude stronger than the constraints we have derived,
but we note that these are operative only up to mχ ¼ 920

and 827 MeV, respectively, as a result of experimental cuts.
We emphasize, in particular, that these experiments cannot
probe the region mχ > mn; while they are more powerful
when they are operative, they are fundamentally con-
strained in ways that astrophysical probes of new physics
are not. For Λ’s, we show the constraint on invisible decays
from BESIII [129] in dark cyan. In this case, we find the

opposite result: pulsar binaries are able to probe this
branching ratio as much as 20 orders of magnitude more
severely than laboratory constraints. The caveat is that this
requires hyperons to appear in neutron stars, which is still a
matter of debate, simply because EOSs without hyperons
exist that confront current observational data successfully.
However, if hyperons appear in an appreciable amount in
these objects, then one can expect vast improvements on
laboratory searches.
The upper panel in Fig. 14 is incomplete in that there are

additional constraints around mχ ≈mn, a region that has
become of interest in recent years as a result of tests of new-
physics explanations [10] of the neutron lifetime anomaly
[12]. We examine this region more closely in Fig. 15;
Fig. 15(a) casts these searches in terms of constraints on
εnχ , while Fig. 15(b) casts them in terms of constraints on
Brðn → χγÞ. We show in blue the estimated constraint from
a direct search for n → χγ using ultracold neutrons [116],
and in green we show a constraint from Borexino from
searches for hydrogen decay, both from Ref. [34]. We also
show the curve along which the free hydrogen lifetime is
supposed to be τH ¼ 1032 s in dashed gold, also from
Ref. [34]. (The constraints from Ref. [34] are reported at
90% CL, though the differences between those and limits at

FIG. 13. Combined exclusion constraints at 2σ on the n − χ (upper panel) and Λ − χ (lower panel) mixing parameters as functions of
mχ for the eight equations of state in the DS(CMF) family.

HOW MACROSCOPIC LIMITS ON NEUTRON-STAR BARYON … PHYS. REV. D 109, 023021 (2024)

023021-23



FIG. 14. Exclusion limits at 2σ on the vacuum branching fraction for B → χγ for neutrons (upper panel) and Λ’s (lower panel).
The results for each EOS are color coded as in Fig. 13. We also show constraints from KamLAND [127], SuperKamiokande [128], and
BESIII [129].

FIG. 15. Exclusion limits at 2σ on (a) εnχ and (b) the vacuum branching fraction for n → χγ as per Fig. 14, in the particular χ mass
region pertinent to an explanation of the neutron lifetime anomaly. Additional constraints and expected limits have been included as
detailed in the text, after Ref. [34].
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2σ should be very small given the ranges shown in the
figure.) Clearly, neutron stars are more sensitive to these
decays than these (would-be) laboratory constraints by
many orders of magnitude.
It was noted in Ref. [10] that the existence of χ can

destabilize nuclear matter, including 9Be. This constraint
was calculated more precisely in Ref. [59], assuming that
the lifetime of 9Be is longer than 3 × 109 yr to account for
the presence of 9Be in old, metal-poor stars [130]. This
constraint is shown in Fig. 15 and is competitive with (if not
dominant to) our neutron-star constraints in the region of its
operation, mχ < 937.993 MeV. We note that other probes
of dark decays of nuclei with low neutron separation
energies have been discussed in, e.g., Ref. [57].
Particular attention has been paid to decays of 11Be, with
experimental efforts underway at CERN-ISOLDE [131]
and ISAC-TRIUMF [132], though we are unaware of any
efforts to interpret these experimental results as constraints
on new physics. As a side note, it is curious that there are no
laboratory constraints, as far as we can tell, on the lifetime
of 9Be. We find the arguments about the presence of 9Be in
old stars compelling and agree that this is a valid constraint,
but we are surprised, frankly, that the lifetime is constrained
only at the billion-year scale. While experimentalists of
yore would have had little reason to interrogate the stability
of 9Be—or, indeed, any species thought to be stable in the
SM—we regard the observation that the stability of these
systems has not been tested in a detailed way in the
laboratory as a potentially promising avenue for con-
straining new physics.
We conclude by noting that Ref. [59] has also presented

constraints on n → χγ from cosmology and from neutron-
star cooling. The former is a combination of constraints
coming from modifications to big bang nucleosynthesis
(BBN) and the cosmic microwave background (CMB); this
treatment includes the reverse decay χ → nγ when mχ >
mn and so constrains the region shown. However, in their
calculations, χ is assumed to constitute (at least some of)
the dark matter. This is unlike our framework, in which we
introduced more new states (ξ and ϕB) to prevent over-
accumulation of χ. Therefore, the limits they derive from
BBN and CMB do not apply here, though we agree that this
would be an interesting and important avenue to explore.
The neutron-star cooling constraint derived there makes
very rough assumptions about how heat from decays is
deposited into the neutron star, with the implicit assumption
that increases in the temperature of the core of the neutron
star lead to commensurate increases in the observed
effective temperature. A more sophisticated analysis
appears in Ref. [46], though in the particular case of
n − n0 mixing [38,47,48]. We note that the response of
the star is sensitive to the precise connections between
visible and dark sectors, as shown explicitly in Ref. [48];
here we focus on n → χγ with subsequent χ decay,
removing energy from the star, though Fermi heating from

the neutron decay is also present. The thermal transport and
cooling in neutron stars demands careful investigation; for
instance, BNV decays lead to β disequilibrium, which leads
to neutrino cooling via (direct and modified) Urca proc-
esses, which impact how the energy released in the decays
is deposited back into the SM fluid. We cannot say at this
time whether a constraint from thermal heating is more
stringent or not. While we agree that old, cold neutron stars
should constrain this model, the details are intricate and
dark process dependent, and we decline to include such
constraints here.

VII. IMPLICATIONS FOR MODELS OF
BARYOGENESIS AND DARK MATTER

The prospect of explaining the origins of both the dark-
matter abundance and the cosmic baryon asymmetry within
a single dynamical framework is a beguiling one. Different
possibilities have existed for some time, and many share a
common feature: There is a dark-sector baryon that carries
baryon number and into which SM baryons can decay.
A particularly intriguing variant is that of B mesogenesis
[14,29,133]. It proceeds in the early Universe from late
time, out of equilibrium production of B mesons (with
equal fractions of b and b̄ quarks) that evolve under SM
CP-violating processes before decaying to a SM baryon
and a dark fermion carrying the opposite sign of baryon
number. Thus, no new sources of CP violation of the SM
are required; the baryon number of the Universe is
conserved—it is just sequestered into visible and dark
sectors with opposite baryon number; and it occurs late in
the history of the Universe in that occurs after the QCD
phase transition, making it possible to realize hadronic
states, and before the epoch of big bang nucleosynthesis.
Finally, it is an example of a testable mechanism of
baryogenesis [25], in that its essential features are subject
to direct experimental investigation. Particularly, its reli-
ance on the SM mechanism of CP violation (albeit new
CPV sources could enter) implies that the branching ratios
of B mesons in SM baryons and the dark fermion
(antibaryon) cannot be too small, with the expectation that
the branching fractions can roughly be no less than
BrðB0

s;d → χ̄BÞ ≳ 10−5 or BrðBþ → χ̄BðþÞÞ≳ 10−6 [133],
which is compatible with the expectation BrðB0

s;d →
χ̄BMÞ≳ 10−4 for meson M due to the latter’s larger
phase space [29]. The expected theoretical window in χ
mass is 0.94 GeV < mχ < 4.34 GeV [29], which is larger
than what we provide in Eq. (2.10), because in their dark-
sector model ξ and ϕB have a limited mass difference to
avoid washout of the produced baryon asymmetry. Studies
from Belle [134] and BABAR [135] limit the available
parameter space for χ̄ubs couplings in the mass region of
1–4.4 GeV, and it is anticipated that the remaining
parameter space can be probed at Belle-II [135]. This
model is particularly close to the model we study. In this
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paper, we have established severe limits on the εnχ and εΛχ
mixing parameters for χ masses satisfying mχ≲1400MeV,
as shown in Fig. 13. In this mass region and for the regions
of hidden-sector parameter space we have chosen, our
limits constrain the flavor structure of models of B meso-
genesis, and we now turn to those and their implications.
Different UV completions of B-mesogenesis models fare

differently in light of our constraints. Here we consider
versions in which only one extra particle is needed. For
example, in Ref. [14], a color-triplet, SUð2ÞL singlet scalar
with the SM quantum numbers ð3; 1;−1=3Þ is used, though
a scalar of form ð3; 1;þ2=3Þ [29] or a vector of form
ð3; 2;−1=6Þ [16] are noted alternatives. We do not consider
this list exhaustive. The two scalars are just the lepto-
quarks we have noted in Sec. II: S�1 and S̄�1 [10,15]. The
phenomenology of these specific models has been studied,
and, in order to explain the baryon asymmetry, the dark-
matter abundance, and all empirical constraints, including
those on jΔFj ¼ 2 meson mixing, a rich flavor pattern of
couplings to quarks is needed [29].
To determine the implications of our constraints, we first

note the structure of the Lagrangian for eachUV completion,
following Ref. [16], though we write our 2-spinors as in
Ref. [136] and employ the conventions given there. Denoting
the new scalars as YY and the new vector as Xμ, we have

LY2
3

⊃ −ydadbϵαβγYα
2
3

dβad
γ
b − yχucY

α�
2
3

χcuαc þ H:c:; ð7:1Þ

LY−1
3

⊃ −yuadbϵαβγYα
−1

3

uβad
γ
b − yχdcY

α�
−1

3

χcdαc

− yQaQb
ϵαβγYα

−1
3

ðQβ
aεQ

γ
bÞ þ H:c:; ð7:2Þ

LX ⊃ −yQadbϵαβγðXα
μεQ

β
aÞσμdγb − yχQc

ðX†α
μ Qα

cÞσμχc
þ H:c:; ð7:3Þ

where ε is an antisymmetric tensor in the two-spinor
indices and χc, noting Eq. (2.4) and its accompanying
footnote 4, is a right-handed field. With the B assignments
of −2=3 for the scalars Y2

3
and Y−1

3
and B ¼ 1 for χ,

the noted interactions conserve baryon number. In
Refs. [15,29], yQaQb

(for each a, b) is taken to be zero.
The color structure of the first term of Eq. (7.1) requires that
the product of d-like quarks be antisymmetric in the
generation indices a, b, which follows because we have
assumed the scalar is a color triplet. As for the last case, the
vector Xμ can be written in two-spinor form as [16]

Xμ ¼
� Yμ

2
3

Yμ
−1
3

�
; ð7:4Þ

and, thus, through Eq. (7.3) we see that both scalars couple
to left-handed quarks. We have defined our scalar-fermion
couplings in the flavor basis rather than the mass basis, but

in the case of couplings to right-handed quarks no
distinction needs be made. However, in the case of
couplings to left-handed quarks, we need to rotate the
fields to the mass basis, to parallel the treatment of the
charged weak current in the SM. As a result, a flavor
diagonal coupling to a left-handed quark of a single flavor
can engender a contribution to a flavor-changing neutral
current (FCNC). In the example of Z0 models, satisfying
FCNC constraints with a large Z0 coupling requires nearly
flavor-universal couplings [137], where we note that in the
flavor-universal limit the unitary structure of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix makes the FCNC
couplings vanish. We will see that this effect does not
appear here, because our scalars do not ever couple to two
left-handed quarks of the same flavor. Replacing a left-
handed flavor state di with a combination of mass states via
Vijdj, with V the CKM matrix, we see that the Xμ

completion does lead to a FCNC of form [16]

LX∶FCNC ⊃ −yQadbY2
3
μVaa0 d̄ca0γ

μPRdb; ð7:5Þ

where we have employed four-component notation. This
interaction engenders not only jΔFj ¼ 2 meson mixing but
also structures such as BðsÞ → K̄ or BðsÞ → π0 at tree level,
which can be probed through B decay studies. We also see
explicitly that the structure of the vertex does not require a
flavor-universal coupling to control the size of the effect.
Thus, there are no particular flavor conspiracies in satisfy-
ing the jΔFj ¼ 2 constraints, and, to determine the impact
of the constraints we have found on the mixing parameters
εnχ and εΛγ on these models, it suffices to consider the
contributions to these quantities from the scalar-fermion
couplings within a particular UV complete model.
Considering, then, the flavor structure of the couplings in

Eq. (7.1), we see that n → χγ cannot occur at tree level (via
valence quarks), and a loop graph withW and YY exchange
is needed to generate the process [15]. The opposite
situation is true for Λ → χγ, with Eqs. (7.1) and (7.2)
yielding that process at tree level and one-loop level,
respectively. Pertinent Feynman diagrams are illustrated
in Fig. 16, replacing the illustration in Fig. 1. Noting
Eqs. (2.5) and (2.7), it is apparent that the mixing
parameters εnχ and εΛχ depend very differently on the
underlying scalar-fermion couplings in the two cases—we
refer to Ref. [15] for explicit expressions. In particular, the
one-loop diagrams bring in a coupling to the b quark as
well, in the combinations

ydbyχu; ydbyχc; ydbyχt; ð7:6Þ

each of which could saturate the bound we have found for
εnχ . Turning to Λ → χγ decay, as shown in Fig. 16(d), we
note, in contrast, that this process yields a constraint on
ysdyχu. However, additional couplings enter at one-loop
level, to which two graphs contribute. Their form follows
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from replacing one or the other of the d quarks in the graph
in Fig. 16(b) with an s quark. The one-loop graphs also
probe b-quark combinations, specifically,

ysbyχu; ysbyχc; ysbyχt: ð7:7Þ

Turning to the model in Eq. (7.2), we see, in contrast,
that n → χγ does occur at tree level, and a loop graph with
W and YY exchange is needed to generate Λ → χγ decay,
with an example illustrated in Fig. 16. If we replace the s
quark in the initial state with a d quark, we have a
contribution to n → χγ decay as well. Consequently, our
limit on εnχ constrains the b-quark combinations

ytdyχb; ycdyχb; yudyχb; ð7:8Þ

appearing from the loop graph. In contrast, our limit on εΛχ
constrains the b-quark couplings

ytsyχb; ycsyχb; yusyχb: ð7:9Þ

In regards to the mechanism of Bmesogenesis, operators
with the flavor combinations χbud, χbus, χbcd, and χbcs
are pertinent, and they take one of three forms [29]

θð1Þij ¼ ðχbÞðuidjÞ; θð2Þij ¼ ðχdjÞðuibÞ;
θð3Þij ¼ ðχuiÞðdjbÞ; ð7:10Þ

where i∈ u, c, j∈ d, s, and the colors have been contracted
to form a color singlet in each case. We see that the Y2=3

scalar is uniquely associated with the θð3Þij operators, and the
Y1=3 scalar is associated with the other two operators. A
successful description of the baryon asymmetry that also
satisfies the various, existing experimental constraints
implies nontrivial flavor structure in the y2 couplings
[16,29]. Noting the suggested flavor-structure solutions
of Fig. 12 in Ref. [29] withmY ¼ 1.5 TeV, we see that their
Y2

3
solution would require ysbyχu to be of Oð1Þ [and ydbyχu

to be of Oð10−3Þ], but their Y−1
3
solution would require

ycbyχs or possibly ytbyχs to be of Oð1Þ. Since we cannot
constrain either of these latter two combinations, we see
that our studies can constrain the Y2

3
scalar scenario more

severely, though we defer a detailed numerical analysis of
our constraints on the flavor structure of all of the y2

couplings in both scalar scenarios to a subsequent paper.

VIII. SUMMARY

BNV has not yet been observed in terrestrial experi-
ments, and its deep ties to explanations of the observatio-
nally well-established cosmic baryon asymmetry [2] argue
persuasively for its investigation on broader fronts.

FIG. 16. Feynman diagrams for n → χγ and Λ → χγ decays as mediated by the baryon-number-carrying scalars Y2
3
and Y−1

3
as

discussed in the text, after Ref. [15].
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Previously, we have considered how it might eventually be
discovered through precision measurements of neutron-star
observables, particularly those of changes in the binary-
pulsar period, familiar from tests of general relativity [5].
Thus far, we have found limits, and they are macroscopic
ones, in that they emerge from the consideration of a
neutron star as a whole. Such constraints miss a concrete
connection to particle physics, and it is badly needed:
Regardless of whether we continue to constrain or, finally,
discern the existence of BNV (in contradistinction to a
failure of general relativity) from these studies, further
theoretical progress on the problem of BNV requires
constraints on the particle physics models of BNV them-
selves. In this paper, we have developed just such a
connection, using a concrete description of the neutron-
star interior based on a relativistic mean-field theory in
hadronic degrees of freedom [17–19] that successfully
confronts existing macroscopic properties of neutron stars
]21 ]. Within this context, we have developed how to assess

the rates for BNV particle processes in dense matter, and
we present explicit rates for benchmark processes, particu-
larly B → χγ, considering both its rate at local points within
a neutron star as well as its volume rate after integration
over the structure of the entire star, up to its crust. Although
our in-medium formalism is germane to the evaluation of
any particle process in the dense medium of a neutron star,
the focus of this paper—noting current sensitivities—is that
of apparent BNV through baryon decays to hidden-sector
particles. Finally, with this in place, we match the computed
rate to our inferred limits on anomalous binary-period
lengthening, i.e., how the binary itself spins down, to set
one-sided limits at 2σ on the mixing parameters εBχ , for
individual binary-pulsar systems, as well as a combined
limit for all of the studied systems.
As a result of these studies, we discover that neutron

stars open new windows on the study of BNV, probing mχ

parameter space not accessible to terrestrial nucleon decay
experiments, due to experimental limitations in the detec-
tion of a final-state photon. More than this, the dense
nuclear medium admits the study of regions for which mχ

exceeds the vacuum mass of the nucleon, as well as the
possibility of probing strange baryon decays. Our final
limits are reported in Figs. 14 and 15. We observe that, in
the regions of parameter space to which proton decay
(nuclear stability) experiments are sensitive [127,128], they
exceed the limits we set by nearly 20 orders of magnitude.
In contrast, however, our neutron-star limits exceed the
sensitivity of those from terrestrial Λ and neutron β-decay
experiments by a comparably large amount. Let us empha-
size that our limits are likely upper bounds and, hence, are
conservative, in that they are determined by the electro-
magnetic decay B → χγ alone, although the particle phys-
ics models we study do admit the possibility of
B → χ þmesonðsÞ decays as well. This latter set of decays
has no reason to be negligible compared to the

electromagnetic decays in rate—and we note Ref. [16]
for specific examples computed within (in-vacuum) chiral
EFT [62]. As a result, we would expect larger B decay rates
for fixed εBχ , but the challenges in realizing a suitable
theoretical assessment of the hadronic channels prompt the
conservative approach we have espoused in this paper.
We now turn to an assessment of the limitations in our

approach. One key question concerns the largest value of
εBχ , εmax

Bχ , we can possibly limit with our formalism, in
which the SM drives the dynamical response of the neutron
star to BNV. (In our work, dark-sector interactions drive the
removal of χ, so that the neutron-star survival constraints on
the mass of mχ noted in Refs. [115,138,139] do not
operate.) We believe a realistic assessment of εmax

Bχ requires
a study of neutron-star heating from relatively fast rates of
BNV, the complexities of which lie beyond the scope of this
paper. We note, however, the outcomes of terrestrial
neutron β-decay searches [55], shown in Fig. 15, as well
as limits arising from constraints due to the charged-current
structure of the SM [51], noted in Eq. (2.1). Since n → χγ
does not derive from a SM weak process in any way, a
Brðn → χγÞ limit of Oð10−3Þ implies a limit on εnχ of
Oð10−9Þ. Thus, we think these limits are severe enough that
determining εmax

Bχ precisely is not an immediate concern but,
rather, an important topic for future investigation.
Another potential limitation may be our use of a

relativistic mean-field theory framework [17–19] in which
to describe the nuclear medium within a neutron star. This
approach is computationally tractable and readily allows
for the treatment of more sophisticated models of the
nucleon-nucleon interaction than those in which it was first
devised. We have employed the chiral SU(3) hadronic
model of Refs. [9,21,140] in this paper. This is admittedly a
model that is not QCD, and our ability to assess the errors
predicated by this choice is rather limited. We have,
however, studied how our results change within a family
of EOSs, namely, DS(CMF) 1-8 EOSs [102,103], to which
it can be connected. Moreover, frankly, there is no other
alternative for the treatment of dense nuclear matter, though
this may ultimately change [141]. We note that the use of
chiral effective theory has been championed in this regard
[107], but its applicability does not stretch much beyond
that of nuclear saturation density. In the future, it may be
advantageous to consider EOSs that blend the chiral
effective field theory and relativistic mean-field theory
approaches [111]. Nevertheless, given our interest in
order-of-magnitude estimates, we believe that our choice
is also reasonably realistic.
Different paths beckon as opportunities for future work.

We believe that studies of neutron-star heating from BNV
are important not only to discerning the limits of our
existing formalism, but also, crucially, to interpreting what
a significant observation of anomalous binary spin-down
might mean. It strikes us that theoretical heating studies and
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concomitant observational studies of neutron-star cooling
may be the only tangible way to tell a failure of general
relativity, in some undetermined way, from BNV. These can
be complex. Generally speaking, the star will respond to
perturbations placed on it in ways that need not be
adiabatic. There can be, for example, structural changes
in the neutron star and work done by gravity and pressure
on the fluid as it readjusts itself. There are also other
reactions that occur in response to the removal of a neutron
which contribute to extra heating and cooling. For example,
although thermal energy of OðEFÞ is dumped in the star
once a neutron is removed, through a dark decay or
oscillation process, this does not characterize a net gain
of thermal energy by the system. For that, we need to
include the cooling from Urca processes, which by
assumption are faster than our neutron disappearance
(apparent BNV) rates, because the thermal evolution of
neutron star is determined by the total rate of heating or
cooling.
As for other possibilities, we could consider how our

results could change if the neutron star were a hybrid star,
containing a quark core [9], or how viable models with a
significant χ admixture in the neutron star [albeit con-
strained by Eq. (2.1) [51]], such as that of Ref. [37], could
be addressed through modifications of our formalism. As
for future terrestrial experiments that could complement the
studies of this paper, it strikes us that empirical studies of
the lifetime of SM-stable composites, such as atomic
hydrogen, or of the 9Be nucleus, could yield fruitful results.
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APPENDIX A: DARK BARYON REMOVAL
IN A NEUTRON STAR

In this section, we consider two scenarios for the
removal of χ from the neutron star, so that the condition

nχðrÞ ≪ nðrÞ can be satisfied: one in which the annihila-
tion rate is much faster than the self-interactions which help
establish a thermal equilibrium and another in which self-
interactions of χ are much faster than its annihilation rate.
We first consider the scenario in which dark particles

have a nonthermal distribution at the time of their annihi-
lation. If we ignore the effects due to radial redistribution of
χ after their production and prior to their annihilation, their
number density (nχ) would approximately satisfy

ṅχðtÞ ¼ niðtÞ × ΓBNV − n2χðtÞhσvi; ðA1Þ

in which niðtÞ is the decaying baryon number density
which we take to be constant on short timescales and
hσvi is the annihilation cross section averaged over the
distribution of χ. The asymptotic value for χ number
density (at times t ≫ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niΓBNVhσvi

p
) is then equal to

n∞χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niΓBNV=hσvi

p
, which relative to the local baryon

number density nðrÞ, is given by

n∞χ ðrÞ
nðrÞ ¼ 1.4 × 10−15

ffiffiffiffiffiffiffiffiffiffi
fiðrÞ

p �
nsat
nðrÞ

�
1=2
�

ΓBNV

10−10 yr−1

�
1=2

×

�
10−26 cm3 s−1

hσvi
�

1=2

; ðA2Þ

in which fiðrÞ≡ niðrÞ=nðrÞ < 1 is the fraction of baryon i
relative to the total baryon number density, nsat ¼
0.15 fm−3 is the nuclear saturation density, and we used
the scale of the canonical weak-scale cross section
(10−26 cm3 s−1) for comparison. We can see that this ratio
is negligible for the reference values in this equation
if hσvi ≫ 10−56 cm3 s−1.
We can generalize Eq. (A1) to scenarios in which the

redistribution of χ ’s, after their production and prior to their
annihilation, is not negligible, by noting that the total χ
population satisfies

ṄχðtÞ ¼ BiðtÞ × ΓBNV − CannN2
χðtÞ; ðA3Þ

in which BiðtÞ is the number of decaying baryons of type i
and Cann is the annihilation rate per particle, such that the
total annihilation rate is identified as Γann ≡ CannN2

χ=2. We
are interested in short timescales during which BiðtÞ can be
taken as a constant (t ≪ Γ−1

BNV). In this case, the solutions to
Eq. (A3), assuming Nχð0Þ ¼ 0, are given by

NχðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BiΓBNV

Cann

s
tanhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BiΓBNVCann

p
tÞ; t≪Γ−1

BNV ðA4Þ

in which the timescale for achieving an equilibrium between
the production and annihilation of χ [Ṅχðτ∞Þ≈0] can be
identified as τ∞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BiΓBNVCann

p
, which can be achieved

for τ∞ < t ≪ Γ−1
BNV, if
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ΓBNV

Bi
≪ Cann: ðA5Þ

The total number of χ ’s can then be approximated by its
equilibrium value given by N∞

χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BiΓBNV=Cann

p
. We can

see that if the condition in Eq. (A5) holds, then N∞
χ ≪ Bi.

We now calculate Cann in the scenario in which the
annihilation rate of χ is slower than its self-interaction rate
and the χ’s are distributed spherically with an average
radius of Rχ , according to the Boltzmann distribution.
Using the virial theorem and assuming a radially uniform
distribution of background neutron-star matter (over Rχ)
with an average energy density Ē, we can write

nχðrÞ ¼ nχð0Þe−r2=R2
χ ; Rχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBTχ

2πGĒmχ

s
; ðA6Þ

in which kB is the Boltzmann constant and Tχ is the dark-
sector temperature. The total annihilation rate (Γann) andNχ

can then be evaluated as

Γann ¼
1

2

Z
Rχ

0

4πr2½nχðrÞ�2hσvidr

¼ 0.24

�
kBTχ

GĒmχ

�
3=2

hσvi½nχð0Þ�2; ðA7Þ

Nχ ¼
Z

Rχ

0

4πr2nχðrÞdr ¼ 0.78

�
kBTχ

GĒmχ

�
3=2

nχð0Þ; ðA8Þ

in which hσvi is the thermally averaged annihilation cross
section. Using the definition of Cann, we have

Cann ≡ 2Γann

N2
χ

¼ 0.78

�
GĒmχ

kBTχ

�3=2

hσvi; ðA9Þ

and an equilibrium between the production and annihilation
can be achieved on timescales t ≪ Γ−1

BNV, if [see Eq. (A5)]

hσvi ≫ 2 × 10−55
�
1057

Bi

��
Tχ

mχ

�
3=2
�
1015 g=cm3

Ē

�
3=2

×

�
ΓBNV

10−10 yr−1

�
cm3 s−1; ðA10Þ

in which Tχ and mχ have the same units. We can also find
the equilibrium value for χ number density at the core by
combining the definition of equilibrium number N∞

χ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BiΓBNV=Cann

p
with Eq. (A8) to arrive at

n∞χ ð0Þ
nsat

¼ 8 × 10−16
�

B57ΓBNV

10−10 yr−1

�
1=2
�
10−26 cm3 s−1

hσvi
�

1=2

×

�
Ē

1015 g=cm3

�
3=4�mχ

Tχ

�
3=4

; ðA11Þ

in which we defined B57 ≡ Bi=1057 ∼Oð1Þ. Assuming the
reference values in this equation, we can see that this ratio is
about 10−13ðMeV=TχÞ3=4 for mχ ∼OðGeVÞ. Therefore, we
have shown that the self-annihilation of χ can be very
effective at keeping its concentration negligible. This con-
cludes the analysis of the necessary conditions on the χ self-
annihilation cross section imposed by Eq. (3.3). The explicit
forms of decay and annihilation rates for χ in terms of our
model parameters are presented in Sec. II A.

APPENDIX B: SU(3) CMF MODELS
FOR THE EOS

The Lagrangian density of the class of CMF models we
employ is given by [21]

L ¼ LKin þ LInt þ LSelf þ LSB; ðB1Þ

in which LKin contains the usual kinetic terms for baryons
and leptons and LInt is due to the baryon-meson inter-
actions which are given by

LInt ¼ −
X
i

ψ̄ iðgiωγ0hω0i þ giϕγ0hϕ0i

þ 2giργ0I3ihρ03i þm�
i Þψ i: ðB2Þ

We note ψ i denotes a baryon of species i with an effective
mass m�

i and an isospin three-component I3i, and the
expectation value is evaluated in the ground state. The last
two terms in Eq. (B1), i.e., LSelf and LSB, contain the
self-interactions of scalar and vector mesons and explicit
chiral-symmetry-breaking terms, respectively. The explicit
expressions are given in Eqs. (3)–(5) in Ref. [21]. The
baryon effective masses are generated by the scalar
meson VEVs, except for a small explicit mass term
δmi ∼ 150 MeV, and are given by

m�
i ¼ giσhσi þ 2giδhδ3iI3i þ giζhζi þ δmi; ðB3Þ

in which δ3 is the isospin three-component of δ. The time
component of baryon self-energy is given by

Σ0
i ¼ giωhω0i þ giρhρ03iI3i þ giϕhϕ0i: ðB4Þ

We refer to Fig. 6 for a plot of m� and Σ0 with density.
The coupling constants are chosen [102,103,140] to
reproduce the hadron vacuum masses, the nuclear satura-
tion properties (density nsat ¼ 0.15 fm−3, binding energy
per nucleon B=A ¼ −16.00 MeV, and compressibility
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K ¼ 300 MeV), the symmetry energy (Esym ¼ 30 MeV),
and hyperon potentials. Furthermore, the pion and kaon
decay constants constrain the scalar meson VEVs.
Our chosen class of EOSs contain variations that depend

on the included degrees of freedom, and they are given in
Table II for convenience. Thus, in order to explore how our
results vary with the EOS, we employ the choices given
there. The set of EOSs that we utilize has also been
extended to include crusts based on a zero-temperature
unified EOS [80] at β equilibrium with similar values of the
symmetry energy slope (L), in which the effective inter-
actions are Skyrme forces Rs [142] (EOS 1–2) and
SkMP [143] (EOS 3–8) with cluster energy functionals
taken from Ref. [144].

APPENDIX C: IN-MEDIUM
ELECTROMAGNETIC FORM FACTORS

In this appendix, we derive the general form for
electromagnetic interactions of baryons in the context of
hadronic RMF models and explicitly show how the electric
charge and magnetic moment are to be identified from the
scattering amplitudes of baryons off of electric and mag-
netic potentials, respectively. We start from the Dirac
equation (4.6), puðp�Þ ¼ ðm� þ ΣÞuðp�Þ, in which we
suppressed the spin index λ, to write

ūðp0�Þ
�
iσμνðp0

ν − pνÞ
2m�

�
uðp�Þ

¼ ūðp0�Þ
�
γμ −

p0μ þ pμ

2m� þ Σμ

m�

�
uðp�Þ; ðC1Þ

in which σμν ≡ ði=2Þ½γμ; γν� and γμ are the usual Dirac
matrices. The in-medium Gordon decomposition is then
given by

ūðp0�Þγμuðp�Þ ¼ ūðp0�Þ
�
p0μ þ pμ

2m� þ iσμνqν
2m� −

Σμ

m�

�
uðp�Þ

ðC2Þ

in which we defined qν ≡ p0
ν − pν. The general form of a

vector interaction vertex, Γμ, can be written as

Γμ ¼ γμAþ ðp0μ þ pμÞBþ qμCþDΣμ; ðC3Þ

in which A, B, C, and D are functions of scalar quantities
(e.g., q2). Applying the Ward identity qμΓμ ¼ 0, plus
p0�2 ¼ p�2 ¼ m�2 and p02 − p2 ¼ 2q · Σ, yields C ¼ 0
and 2B ¼ D. The electromagnetic vertex factor can then
be written as

Γμ ¼ γμF�
1ðq2Þ þ

iσμνqν
2m� F�

2ðq2Þ; ðC4Þ

in which F�
1;2 are, in principle, distinct from their vacuum

counterparts F1;2.
We now show how the electric charge can be identified

in the scattering amplitude of a baryon from a
Coulomb potential Aμ ¼ ðΦðxÞ; 0⃗Þ. Employing equations
ūðk�; λÞuðk�; λÞ ¼ 2m� and ūðk�; λÞγ0uðk�; λÞ ¼ 2E�ðk�Þ,
this amplitude can be written as

iM ¼ −ieF�
1ð0ÞΦ̃ðqÞ

�
E�

m�

�
2m�χ†χ; ðC5Þ

in which E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2 þ ðp⃗�Þ2

p
and χ is the Pauli spinor.

The electric charge (q) can then be identified, by consid-
ering this scattering in the c.v. frame (p⃗� ¼ 0), as
q ¼ F�

1ð0ÞðE�;ðc:v:Þ=m�Þ ¼ F�
1ð0Þ. This can also be under-

stood from the time component of spin-independent con-
served EM current J0 ¼ ψ̄γ0ψ ¼ 2E�, with the Lorentz
invariant electric charge defined in the c.v. frame
(E�;ðc:v:Þ ¼ m�).
Similarly, we can identify the magnetic moment from the

scattering amplitude of a baryon from a static magnetic
field potential Aμ ¼ ð0; A⃗Þ at small momentum transfers
(q2 ≈ 0), which is given by

iM ¼ þieūðp0�Þ
�
γiF�

1ð0Þ þ
iσiνqν
2m� F2ð0Þ

�
uðp�ÞÃið0Þ:

ðC6Þ

The first term can be written as

ūðp0�Þγiuðp�Þ ¼ ðE� þm�Þ
�
χ†; χ†

σ⃗ · p⃗0�

E� þm�

�

×

�
0 σi

σi 0

�� η
σ⃗·p⃗�

E�þm� η

�
¼ χ†½σiσ⃗ · p⃗� þ σ⃗ · p⃗0�σi�η; ðC7Þ

in which σi are the Pauli matrices and χ and η represent the
spin states. This expression can be further simplified using
σiσj ¼ δij þ iϵijkσk, such that

ūðp0�Þγiuðp�Þ ¼ χ†½ðp� þ p0�Þi − iϵijkðp0� − p�Þjσk�η:
ðC8Þ

The F2 term in the scattering amplitude (Eq. (C6)) already
contains a factor of q, and so we can evaluate it using the
leading-order expansion of the spinors in the nonrelativistic
limit (p⃗� ≪ m�), which is given by uðp⃗� ¼ 0Þ ¼ffiffiffiffiffiffiffiffiffi
2m�p ðχ; 0ÞT . We also note that

i
2m� σ

ijqj ¼
iϵijk

2m� σ
kqj; ðC9Þ
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i
2m� σ

i0q0 ¼
q0
2m�

�
0 σi

σi 0

�
; ðC10Þ

such that the spin-dependent contribution from Eq. (C10),
i.e., ūðp0�Þðσi0q0Þuðp�Þ, is proportional to q0qj, which is
subdominant to other terms. The term from Eq. (C9), i.e.,
ūðp0�ÞðσijqjÞuðp�Þ, is given by

ūðp0�Þ
�

i
2m� σ

ijqj

�
uðp�Þ ¼ iϵijkqjðχ†; 0Þ

�
σkη

0

�
¼ iϵijkqjχ†σkη: ðC11Þ

The amplitude in Eq. (C6) can then be written as (note
qj ¼ −qj)

iM ¼ −eχ†fϵijkqiÃjð0Þσk½F�
1ð0Þ þ F�

2ð0Þ�gη
¼ −2ie½F�

1ð0Þ þ F�
2ð0Þ�SkB̃k; ðC12Þ

in which we defined the magnetic field by B̃k ≡ −iϵijkqiÃj

and spin by S⃗≡ ð1=2Þχ†σ⃗η, and the baryon g factor can be
identified as g� ¼ 2½F�

1ð0Þ þ F�
2ð0Þ�.

APPENDIX D: NONRELATIVISTIC LIMIT
OF IN-MEDIUM SCATTERING

In this appendix, we study the nonrelativistic (NR) limit
of the RMF model and derive the elastic scattering
formalism in the Born approximation. Since the medium
effects in the RMF formalism resemble an electromagnetic
interaction with a constant electromagnetic background
field given by eAμ → Σμ, it is instructive to consider the NR
limit of baryon EM interactions in medium. We explicitly
show that the NR limit of the modified Dirac [Eq. (4.6)]
solutions under the influence of electromagnetism reduces
to the two-component Pauli spin theory, with replacements
m → m�, eΦ → eΦþ Σ0, and eA⃗ → eA⃗þ Σ⃗, in which Σ0

and Σ⃗ are the self-energies due to the medium effects and e
is the baryon electric charge, withΦ and A⃗ as the scalar and
vector EM potentials, respectively. We start from the
Schrödinger equation, which can be written by denoting
the Dirac wave function (ψ ) in two-component notation
[145], ψ ¼ ðφ̃; χ̃ÞT , such that we have

i
∂

∂t

�
φ̃

χ̃

�
¼ σ⃗ · π⃗

�
χ̃

φ̃

�
þðeΦþΣ0Þ

�
φ̃

χ̃

�
þm�

�
φ̃

−χ̃

�
; ðD1Þ

in Pauli-Dirac representation, with π⃗ ≡ p⃗ − Σ⃗ − eA⃗. Using
the definition ðφ̃; χ̃Þ ¼ expð−im�tÞðφ; χÞ, we can rewrite
Eq. (D1) as

i
∂

∂t

�
φ

χ

�
¼ σ⃗ · π⃗

�
χ

φ

�
þðeΦþΣ0Þ

�
φ

χ

�
−2m�

�
0

χ

�
: ðD2Þ

We note that in the NR limit, in which kinetic and
interaction energies are much smaller than m�, the second
component χ is subdominant to the first component φ and is
approximately given by

χ ≈
σ⃗ · π⃗
2m� φ: ðD3Þ

We also arrive at the Pauli equation governing the first
component (φ):

i
∂

∂t
φ¼

�ðp⃗− Σ⃗−eA⃗Þ2
2m� −

e
2m� σ⃗ · B⃗þeΦþΣ0

�
φ; ðD4Þ

in which B⃗ ¼ ∇ × A. This expression can be further sim-
plified for a weak uniform magnetic field (A⃗ ¼ B⃗ × r⃗=2) as

i
∂

∂t
φ¼

�jp⃗�j2
2m� −

e
2m� ðL⃗� þ 2S⃗Þ · B⃗þ eΦþΣ0

�
φ; ðD5Þ

in which p⃗� ¼ p⃗ − Σ⃗ is the kinetic three-momentum and
L⃗� ¼ r⃗ × p⃗� and S⃗ ¼ σ⃗=2 are the baryon’s kinetic orbital
angular momentum and spin, respectively. Note that in
the n.m. frame (Σ⃗ ¼ 0) the canonical and kinetic three-
momenta are equal p⃗ ¼ p⃗�.
We now construct the elastic scattering formalism off of

an arbitrary potential (V) in this NR limit, by turning off the
electromagnetic fields, i.e., A⃗ ¼ Φ ¼ 0, for the rest of this
discussion. From Eq. (D4), we deduce the energy eigen-
values E ¼ jp⃗�j2=2m� þ Σ0, which agree with the NR
expansion of Dirac energy eigenvalues given in
Eq. (4.8). The energy eigenfunctions in position space
satisfy

−∇2φþ 2iΣ⃗ · ∇!φþ ½jΣ⃗j2 − 2m�ðE − Σ0Þ�φ ¼ 0; ðD6Þ

with solutions of the form

φ ¼ e−iEt½A1eip⃗·x⃗ þ A2e−iðp⃗−2Σ⃗Þ·x⃗�; ðD7Þ

which can also be written in a more symmetric way in terms
of p⃗�. If we orient our coordinates such that Σ⃗ · x⃗ > 0, then
for a positive p⃗ (p⃗ · x⃗ > 0) the first term is a plane wave
moving to the right and the second term is a wave moving
to the left. Therefore, we pick the first term for incident
waves in the elastic scattering problem. Let H0 be the
Hamiltonian used in Eq. (D4) (with Φ ¼ A⃗ ¼ 0) and jkðþÞi
be the state that satisfies the following Schrödinger equa-
tion in the presence of a potential V:

ðE −H0ÞjkðþÞi ¼ VjkðþÞi; ðD8Þ
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then jkðþÞi can be found from the Lippmann-Schwinger
equation:

jkðþÞi ¼ jki þ 1

E −H0 þ iε
VjkðþÞi: ðD9Þ

The momentum representation of operator G≡ ðE −H0 þ
iεÞ−1 is given by

hq⃗jGjq⃗0i ¼ δðq⃗ − q⃗0Þ 2m�

ðk⃗ − Σ⃗Þ2 − ðq⃗ − Σ⃗Þ2 þ iε
; ðD10Þ

and the position space representation is given by

hr⃗jGjr⃗0i ¼
Z

d3q
ð2πÞ3

2m�

ðk⃗ − Σ⃗Þ2 − ðq⃗ − Σ⃗Þ2 þ iε
eiq⃗·ðr⃗−r⃗0Þ:

ðD11Þ

We define R⃗≡ r⃗ − r⃗0 and ξ⃗≡ k⃗ − Σ⃗ and change the
variable from q⃗ to Q⃗≡ q⃗ − Σ⃗ such that

hr⃗jGjr⃗0i ¼
Z

d3Q
ð2πÞ3

2m�

ξ⃗2 − Q⃗2 þ iε
eiðQ⃗þΣ⃗Þ·R⃗

¼ m�eiΣ⃗·R⃗

4π2ðiRÞ
Z

∞

−∞

QdQ

ξ⃗2 − Q⃗2 þ iε
½eiQR − e−iQR�

¼ −m�

2πR
eiΣ⃗·R⃗eiξR; ðD12Þ

in which we performed the angular integration in the
second line and the complex contour integration in the
third line. To characterize the scattering problem at r → ∞,
we approximate the above expression for ðr0=rÞ → 0 using
R ¼ jr⃗ − r⃗0j ≈ r − r̂ · r⃗0, such that

hr⃗jGjr⃗0i ¼
�
−m�

2πr

�
ei½jk⃗−Σ⃗jrþΣ⃗·r⃗�e−i½jk⃗−Σ⃗jr̂þΣ⃗�·r⃗0 : ðD13Þ

We now write the asymptotic form of the Lippmann-
Schwinger equation in position space as

ψkðr⃗Þ ∼ φkðr⃗Þ −
m�

2πr
ei½jk⃗−Σ⃗jrþΣ⃗·r⃗�

Z
d3r0e−i½jk⃗−Σ⃗jr̂þΣ⃗�·r⃗0Vðr0Þ

× ψkðr⃗0Þ; ðD14Þ

in which ψkðr⃗Þ≡ hr⃗jk⃗ðþÞi and φkðr⃗Þ≡ ð2πÞ−3=2 expðik⃗ · r⃗Þ.
The exponential outside of the integral in the second term is
an ellipsoidal wave (stretched along Σ⃗) which becomes
spherical in the n.m. frame (Σ⃗ ¼ 0). The exponent inside
the integral is a vector pointing in the direction of

jk⃗ − Σ⃗jr̂þ Σ⃗, which reduces to the familiar kr̂ term in
the n.m. frame. We can see that the gradient of the
ellipsoidal surface is equal to the vector in the exponent
inside the integral, since

∇½jk⃗ − Σ⃗jrþ Σ⃗ · r⃗� ¼ jk⃗ − Σ⃗jr̂þ Σ⃗; ðD15Þ

which suggests that the exponent k⃗0 ≡ jk⃗ − Σ⃗jr̂þ Σ⃗ is the
momentum of scattered particle in the direction of an
observer at r. Note that the kinetic energy of the scattered
particle is given by

Tðk0Þ ¼ ðk⃗0 − Σ⃗Þ2
2m� ¼ ðk⃗ − Σ⃗Þ2

2m� ¼ TðkÞ; ðD16Þ

and the scattering is indeed elastic. We can, therefore,
deduce the scattering amplitude by writing

ψkðr⃗Þ ∼ ð2πÞ−3=2
�
eik⃗·r⃗ þ ei½jk⃗−Σ⃗jrþΣ⃗·r⃗�

r
fðk0jkÞ

	
; ðD17Þ

in which

fðk0jkÞ ¼ −4π2m�
Z

d3rφ�
k0 ðr⃗ÞVðrÞψkðr⃗Þ; ðD18Þ

which is the Fourier transform of the potential in the Born
approximation.

APPENDIX E: IN-MEDIUM COMPTON
SCATTERING

In this section, we evaluate the Compton scattering cross
section of baryons, Bðp1Þ þ γðk1Þ → Bðp2Þ þ γðk2Þ (see
Fig. 17) in neutron-star medium, denoting the photon and
baryon energies by ω1;2 and E1;2, respectively. We first note
that the second term in the baryon propagator defined in
Eq. (4.10) vanishes, since

ðp�
1 þ k1Þ2 − ðm�

BÞ2 ¼ 2ðE�
1jk⃗1j − k⃗1 · p⃗�

1Þ

¼ 2jk⃗1j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp⃗�
1Þ2 þ ðm�

BÞ2
q

− k̂1 · p⃗�
1

�
> 0; ðE1Þ

FIG. 17. Feynman diagrams for the baryon Compton scattering
Bðp1Þ þ γðk1Þ → Bðp2Þ þ γðk2Þ.
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and, similarly, it can be shown that ðp�
1 − k2Þ2 − ðm�

BÞ2 is
strictly negative. The amplitude for the diagrams shown in
Fig. 17 can then be written as

iM ¼ iML þ iMR; ðE2Þ

in which

iML ¼ −iūðp2Þ
�
γμF�

1 þ
iσμνk2;ν
2m�

B
F�
2

�

× ϵ�μðk2Þ
�

p�
1 þ =k1 þm

ðp�
1 þ k1Þ2 − ðm�

BÞ2
�

×

�
γνF�

1 þ
iσναk2;α
2m�

B
F�
2

�
ϵνðk1Þuðp1Þ ðE3Þ

and

iMR ¼ −iūðp2Þ
�
γνF�

1 þ
iσναk1;α
2m�

B
F�
2

�

× ϵνðk1Þ
�

p�
1 − =k2 þm

ðp�
1 − k2Þ2 − ðm�

BÞ2
�

×

�
γμF�

1 þ
iσμνk2;ν
2m�

B
F�
2

�
ϵ�μðk2Þuðp1Þ; ðE4Þ

in which F�
1;2 are the in-medium form factors. The

interaction term in the amplitude can be simplified using�
γμF�

1 þ
iσμνk2;ν
2m�

B
F�
2

�
ϵ�μðk2Þ ¼ =ϵ�ðk2ÞF�

1 −
F�
2

2m�
B
=ϵ�ðk2Þ=k2;

ðE5Þ
which follows from ϵμðk1Þkμ1 ¼ ϵμðk2Þkμ2 ¼ 0. The spin-
averaged squared amplitudes simplify to

jMLj2 ¼
1

4½ðp�
1 þ k1Þ2 − ðm�

BÞ2�2
Tr

�
ðp�

2 þm�
BÞ
�
F�
1 þ

F�
2

2m�
B
=k2

�
γμðp�

1 þ =k1 þm�
BÞγν

×

�
F�
1 −

F�
2

2m�
B
=k1

�
ðp�

1 þm�
BÞ
�
F�
1 −

F�
2

2m�
B
=k1

�
γνðp�

1 þ =k1 þm�
BÞγμ

�
F�
1 þ

F�
2

2m�
B
=k2

��
ðE6Þ

and

jMRj2 ¼
1

4½ðp�
1 − k2Þ2 − ðm�

BÞ2�2
Tr

�
ðp�

2 þm�
BÞ
�
F�
1 þ

F�
2

2m�
B
=k1

�
γνðp�

1 − =k2 þm�
BÞγμ

×

�
F�
1 −

F�
2

2m�
B
=k2

�
ðp�

1 þm�
BÞ
�
F�
1 −

F�
2

2m�
B
=k2

�
γμðp�

1 − =k2 þm�
BÞγν

�
F�
1 þ

F�
2

2m�
B
=k1

��
; ðE7Þ

with the cross term given by

MLM
†
R ¼ Tr½TLR�

4½ðp�
1 − k2Þ2 − ðm�

BÞ2�½ðp�
1 þ k1Þ2 − ðm�

BÞ2�
; ðE8Þ

in which

TLR ¼ ðp�
2 þm�

BÞ
�
F�
1 þ

F�
2

2m�
B
=k2

�
γμðp�

1 þ =k1 þm�
BÞγν

�
F�
1 −

F�
2

2m�
B
=k1

�
ðp�

1 þm�
BÞ

×
�
F�
1 −

F�
2

2m�
B
=k2

�
γμðp�

1 − =k2 þm�
BÞγν

�
F�
1 þ

F�
2

2m�
B
=k1

�
; ðE9Þ

with MLM
†
R ¼ MRM

†
L. We now define the following Mandelstam variables:

s� ≡ ðp�
1 þ k1Þ2 ¼ ðm�

BÞ2 þ 2p�
1 · k1 ¼ ðm�

BÞ2 þ 2p�
2 · k2; ðE10Þ

t� ≡ ðp�
2 − p�

1Þ2 ¼ 2ðm�
BÞ2 − 2p�

1 · p
�
2 ¼ −2k1 · k2; ðE11Þ

u� ≡ ðk2 − p�
1Þ2 ¼ ðm�

BÞ2 − 2p�
1 · k2 ¼ ðm�

BÞ2 − 2p�
2 · k1; ðE12Þ
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such that s� þ t� þ u� ¼ 2ðm�
BÞ2. We suppress the superscripts (“*”) ofm�

B and F�
1;2 in some of the following equations for

convenience. The averaged amplitude squared can be written as

jMj2 ¼ 1

16

�
I

ðp�
1 · k1Þ2

þ II
ðp�

1 · k1Þðp�
1 · k2Þ

þ III
ðp�

1 · k1Þðp�
1 · k2Þ

þ IV
ðp�

1 · k2Þ2
�
; ðE13Þ

in which

I¼8F4
1ðm4

Bþm2
Bð3sþuÞ−suÞþ4F2

2F
2
1

�
1−

s
m2

B

�
½2m4

B−m2
Bð3sþuÞþsð3s−uÞ�−F4

2m
2
B

2

�
1−

s
m2

B

�
3

ðm2
B−uÞ; ðE14Þ

II ¼ III ¼ F4
2

�
2 −

sþ u
m2

B

�
ðsu −m4

BÞ − 8F4
1m

2
Bð2m2

B þ sþ uÞ

− 2F2
2F

2
1

�
3m2

Bðsþ uÞ − 2ðs2 þ suþ u2Þ þ suðsþ uÞ
m2

B

− 2m4
B

�
; ðE15Þ

IV ¼ 8F4
1ðm4

B þm2
Bðsþ 3uÞ − suÞ þ 4F2

2F
2
1

�
1 −

u
m2

B

�
½2m4

B −m2
Bðsþ 3uÞ þ uð3u − sÞ�

−
F4
2m

2
B

2
ðm2

B − sÞ
�
1 −

u
m2

B

�
3

; ðE16Þ

in which we note that I and IV are related via (s ↔ u) replacement. Equation (E13) can then be written as

jMj2 ¼ 2F4
1½6m8

B −m4
Bð3s2 þ 14suþ 3u2Þ þm2

Bðsþ uÞðs2 þ 6suþ u2Þ − suðs2 þ u2Þ�
ðm2

B − sÞ2ðm2
B − uÞ2

þ F4
2½3m8

B −m4
Bðs2 þ 8suþ u2Þ þ 4m2

Bsuðsþ uÞ − s2u2�
4m4

Bðm2
B − sÞðm2

B − uÞ

þ F2
2F

2
1½2m6

B − 3m4
Bðsþ uÞ þ 2m2

Bðs2 þ suþ u2Þ − suðsþ uÞ�
m2

Bðm2
B − sÞðm2

B − uÞ : ðE17Þ

We now consider the Compton scattering in the rest (c.v.) frame of Bðp1Þ (see Fig. 18), in which p⃗�
1 ¼ 0. We first note that

the relationship k1 · k2 ¼ p�
1 · ðk1 − k2Þ, written in the c.v. frame, yields ω1ω2ð1 − cos θÞ ¼ m�

Bðω1 − ω2Þ. We then arrive at
the following kinematics in the c.v. frame:

ω2 ¼
ω1

1þ ω1

m�
B
ð1 − cos θÞ ; ðE18Þ

FIG. 18. The Compton scattering in the rest (c.v.) frame of Bðp1Þ. Note that, even though there is a specific direction to the canonical
momentum p⃗ðc:v:Þ

1 ≠ 0, the amplitude depends only on p�
1 for which p⃗

�;ðc:v:Þ
1 ¼ 0. Therefore, we have the freedom to choose the z axis in

the direction of the incoming photon. Evaluating the integrated cross section in Eq. (E24) will require specifying the Fermi ellipsoid in

the c.v. frame, which depends on p⃗ðn:m:Þ
1 [see Eq. (E23)].
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p⃗�
2 ¼ ½−ω2 sin θ; 0;ω1 − ω2 cos θ�; ðE19Þ

E�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

BÞ2 þ ω2
1 þ ω2

2 − 2ω1ω2 cos θ
q

; ðE20Þ

which resembles the familiar Compton formula. We use these kinematical relationships to write Eq. (E13) in terms of ω1

and the scattering angle (θ) in the c.v. frame as

jMj2 ¼ 16F4
1mB

�
m3

B

4
ðcosð2θÞþ 3Þþω1sin2ðθ=2Þm2

Bðcosð2θÞþ 3Þþω2
1½mBðcosð2θÞþ 5Þ− 2ω1ðcosðθÞ− 1Þ�sin4ðθ=2Þ

	

− 8F2
1F

2
2mB

�
ω3
1

2
½cosð2θÞ− 8cosðθÞþ 7�sin2ðθ=2Þ−mBω

2
1½5cosðθÞ− 7�sin2ðθ=2Þþ 8ω1m2

Bsin
2ðθ=2Þþ 2m3

B

	
þF4

2mBω
2
1½5− cosð2θÞ�½mB −ω1ðcosðθÞ− 1Þ�: ðE21Þ

The phase space integrals over the final states [see Eq. (4.11)] can be written as

Z
dΠ2 ¼

Z
d3k2
ð2πÞ3

1

2ω2

d3p�
2

ð2πÞ3
1

2E�
2

ð2πÞ4δ4ðk2 þ p�
2 − k1 − p�

1Þ½1 − fBðp⃗2Þ�

¼
Z

ω2dω2dΩ2

16π2E�
2

δ


ω2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

BÞ2 þ ω2
1 þ ω2

2 − 2ω1ω2 cos θ
q

− ω1 −m�
B

�
½1 − fBðp⃗2Þ�

¼
Z

dΩ2

16π2
ω2

E�
2 þ ω2 − ω1 cos θ

½1 − fBðp⃗2Þ� ¼
Z

dΩ2

16π2
ω2
2

m�
Bω1

½1 − fBðp⃗2Þ�; ðE22Þ

in which dΩ2 ¼ d cosðθÞdϕ is the differential solid angle of
k⃗2 in the c.v. frame and fBðp⃗2Þ is the Pauli blocking factor
for the outgoing baryon. The shape of the Fermi surface in a
general frame (such as c.v.) changes from being spherical to
an ellipsoid. The general form of fBðp⃗2Þ in an arbitrary
frame is given by θðE�

F − p�μ
2 Bμ=nBÞ [109], in which

E�
F;B ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F;B þ ðm�

BÞ2
q

, pF;B is the Fermi momentum

defined in the n.m. frame, Bμ is the baryon current density
defined below Eq. (4.10), and nB is the baryon number
density. Evaluating the invariant argument of the step

function in the n.m. frame yields θðE�
F − E�;ðn:m:Þ

2 Þ, in which

E�;ðn:m:Þ
2 ¼

�
E�;ðn:m:Þ
1 E�;ðc:v:Þ

2

m�
B

�
þ
�
p⃗ðn:m:Þ
1 · p⃗�;ðc:v:Þ

2

m�
B

�
: ðE23Þ

We see that, even though the amplitude in the c.v. frame
depends only on θ, integrating over the azimuthal angle (ϕ)
requires the explicit coordinates of the initial baryon

Bðp1Þ momentum in the n.m. frame, p⃗ðn:m:Þ
1 , in our chosen

coordinate in Fig. 18. Using Eq. (4.12) and noting v�B ¼ 0,
v�A ¼ 1 in our chosen frame (c.v.), the in-medium Compton
scattering differential cross section can be written as

dσ
dΩ2

¼ ω2
2jMj2

64π2ω2
1ðm�

BÞ2
½1 − fBðp⃗2Þ�; ðE24Þ

in which we recover the Klein-Nishina [114,146] formula if
we set fBðp⃗2Þ ¼ 0, F1 ¼ e, and F2 ¼ 0 and replace m�

B
by me.

APPENDIX F: FERMION MIXING
IN DENSE MATTER

In this appendix, we evaluate the eigenvalues of a system
consisting of a neutral baryon (B) and a dark fermion (χ)
with a mixing term between them, in the context of the
RMF framework. We suppress the superscript (*) in the
baryon effective mass (m�

B) for convenience. The
Lagrangian for this system is presented in Eq. (5.1), with
conjugate momenta given by

ΠB;χ ¼
∂L

∂ψ̇B;χ
¼ iψ†

B;χ ðF1Þ

and a coupled set of equations of motion

ði=∂ − ΣB −mBÞψB ¼ εψχ ; ðF2Þ

ði=∂ −mχÞψχ ¼ εψB: ðF3Þ

Note that the baryon current JμB ≡ ψ̄Bγ
μψB satisfies

∂μJ
μ
B ¼ ð∂μψ̄BÞγμψB þ ψ̄B=∂ψB ¼ iεðψ̄ χψB − ψ̄BψχÞ ðF4Þ
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and as expected is not conserved: rather, the combined
current Jμ ≡ JμB þ Jμχ is conserved. The conserved energy-
momentum prescribed by the Noether theorem [114,147] is
given by

H ¼
Z

d3x½ψ̄Bðiγ⃗ · ∇!þ ΣB þmBÞψB

þ ψ̄ χðiγ⃗ · ∇!þmχÞψχ þ εðψ̄Bψχ þ ψ̄ χψBÞ�; ðF5Þ

P⃗ ¼
Z

d3x½ψ†
Bð−i∇

!ÞψB þ ψ†
χð−i∇!Þψχ �: ðF6Þ

We expand each of the fields in terms of four modes
ω�
1;2ðk⃗Þ as

ψðx; tÞ ¼
X
s

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p ½αða1ðk; sÞu1ðk; sÞe−iω
ðþÞ
1

tþik·x

þ b†1ðk; sÞv1ðk; sÞe−iω
ð−Þ
1

t−ik·xÞ
þ βða2ðk; sÞu2ðk; sÞe−iω

ðþÞ
2

tþik·x

þ b†2ðk; sÞv2ðk; sÞe−iω
ð−Þ
2

t−ik·xÞ�; ðF7Þ

in which ψðx; tÞ stands for ψB;χ, a1;2 and b1;2 are the
annihilation operators for particles and antiparticles, respec-
tively, ω stands for ωðk⃗Þ, and we note the inequality ωðk⃗Þ ≠
ωð−k⃗Þ if Σ⃗B ≠ 0 [see Eq. (4.8)] and the fact that in the
presence of medium (Σ0

B ≠ 0) the particle and antiparticle
energies are not equal anymore [e.g., seeEq. (2.40) in [109]].
The coefficients α and β can be found by requiring that the
Hamiltonian in Eq. (F5) is diagonal. The spinors uðp; sÞ and
vðp; sÞ satisfy [see Eq. (2.33) in Ref. [18]]

u†ðp; sÞuðp; s0Þ ¼ v†ðp; sÞvðp; s0Þ ¼ δss0 ; ðF8Þ
X
s

uðp; sÞūðp; sÞ ¼ pþm
2EðpÞ ; ðF9Þ

X
s

vðp; sÞv̄ðp; sÞ ¼ p −m
2EðpÞ ; ðF10Þ

in whichm stands formB; mχ andwemake the replacements
p → p�

B and E → E�
B for the baryon. We can combine

Eqs. (F2) with (F3) and arrive at the following equation after
multiplying the left-hand side by ðPþmχÞðP� þmBÞ:

ðP2 −m2
χÞ½ðP − ΣBÞ2 −m2

B�ψB

¼ ε2ð2PμðPμ − Σμ
BÞ þ 2mBmχ − ε2ÞψB; ðF11Þ

in which we note the definition Pμ ¼ i∂μ ¼ ðH;−P⃗Þ. We
now plug the field expansion from Eq. (F7) into Eq. (F11) to
arrive at the equation governing the spectrum ofω�

1;2 modes:

ðω2 − k2 −m2
χÞ½ðω−Σ0

BÞ2 − ðk⃗− Σ⃗BÞ2 −m2
B�

¼ 2ε2
�
ω2 − k2 −ωΣ0

B þ k⃗ · Σ⃗B þmBmχ −
ε2

2

�
: ðF12Þ

We denote the solutions in the absence of mixing (ε ¼ 0) by
ω0 and solve Eq. (F12) using a perturbation series in powers
of δ≡ ε=ω0:ω ¼P∞

i¼0 ωiδ
i, with the zeroth-order equation

yielding

Oðδ0Þ∶ ½ðω0 −Σ0
BÞ2 − ðk⃗− Σ⃗BÞ2 −m2

B�ðω2
0 − k2 −m2

χÞ ¼ 0;

ðF13Þ
such that we get the usual spectrum for B and χ:

ωð�Þ
0 ðχÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
; ðF14Þ

ωð�Þ
0 ðBÞ ¼ Σ0

B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗ − Σ⃗BÞ2 þm2

B

q
: ðF15Þ

For the rest of this discussion, we consider the energy

spectrum in the n.m. frame (Σ⃗ðn:m:Þ
B ¼ 0). Denoting Σ0;ðn:m:Þ

B
by Σ0 for convenience, we can rewrite Eq. (F12) as

ω4 − 2Σ0ω
3 − ½2k2 þm2

B þm2
χ − Σ2

0 þ 2ε2�ω2

þ 2Σ0½ðk2 þm2
χÞ þ ε2�ωþ ðk2 þm2

χÞðk2 þm2
B − Σ2

0Þ
þ ε2ð2k2 − 2mBmχÞ þ ε4 ¼ 0: ðF16Þ

We note that both of the parentheses in Eq. (F13) can be
simultaneously equal to zero, if k satisfies the following
condition at zeroth order:

jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΣ0 −mBÞ2 −m2

χ �½ðΣ0 þmBÞ2 −m2
χ �

q
2Σ0

: ðF17Þ

We divide our solutions into two sets: the normal solutions
for which the zeroth-order condition in Eq. (F17) is not
satisfied and those for which Eq. (F17) is satisfied, whichwe
denote by a * superscript. First, we write down the general
equations to third order in the perturbation. The first-order
equation is given by

Oðδ1Þ∶ 2ω0ω1½ðω0 − Σ0Þ2 − k2 −m2
B�

þ 2ω1ðω0 − Σ0Þðω2
0 − k2 −m2

χÞ ¼ 0: ðF18Þ
Given the Oðδ0Þ equation in Eq. (F13), we conclude that
either ω1 ¼ 0 or the condition in Eq. (F17) is satisfied. The
second-order equation yields

Oðδ2Þ∶ ðω2
1 þ 2ω0ω2Þ½ðω0 − Σ0Þ2 − k2 −m2

B�
− 2ω2

0ðmBmχ − Σ0ω0 þ ω2
0 − k2Þ

þ ð2ω2ðω0 − Σ0Þ þ ω2
1Þðω2

0 − k2 −m2
χÞ

þ 4ω0ω
2
1ðω0 − Σ0Þ ¼ 0: ðF19Þ
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Finally, the third-order equation is given by

Oðδ3Þ∶ ð2ω1ω2 þ 2ω0ω3Þ½ðω0 − Σ0Þ2 − k2 −m2
B� þ 2ω1ðω2

1 þ 2ω0ω2Þðω0 − Σ0Þ
þ ð2ω3ðω0 − Σ0Þ þ 2ω1ω2Þðω2

0 − k2 −m2
χÞ − 2ω2

0ω1ð2ω0 − Σ0Þ
þ 2ω1ω0ð2ω2ðω0 − Σ0Þ þ ω2

1Þ ¼ 0: ðF20Þ

First, let us assume that the condition in Eq. (F17) does not hold, in which case theOðδ1Þ condition yields ω1 ¼ 0. We then
solve for ω2 in Oðδ2Þ:

ωðþÞ
2 ðχÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q 

mχðmB þmχÞ − Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q �

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
χ

q
− Σ0

�
2
− k2 −m2

B

; ðF21Þ

ωð−Þ
2 ðχÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q 

mχðmB þmχÞ þ Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q �

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
χ

q
þ Σ0

�
2
− k2 −m2

B

; ðF22Þ

ωðþÞ
2 ðBÞ ¼


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
þ Σ0

�
2


mBðmB þmχÞ þ Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q h
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
þ Σ0

�
2
− k2 −m2

χ

i ; ðF23Þ

ωð−Þ
2 ðBÞ ¼ −


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
− Σ0

�
2


mBðmB þmχÞ − Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q 

Σ0



Σ0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q �
þm2

B −m2
χ

� ; ðF24Þ

which after plugging into the Oðδ3Þ equation yields ω3 ¼ 0, and so the energies of χ and B to third order are given by

ωðþÞðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
þ

ε2


mχðmB þmχÞ − Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q h
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
− Σ0

�
2
− k2 −m2

B

iþOðδ4Þ; ðF25Þ

ωð−ÞðχÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
−

ε2


mχðmB þmχÞ þ Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q h
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
þ Σ0

�
2
− k2 −m2

B

iþOðδ4Þ; ðF26Þ

ωðþÞðBÞ ¼ Σ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
þ

ε2


mBðmB þmχÞ þ Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q h
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
þ Σ0

�
2
− k2 −m2

χ

iþOðδ4Þ; ðF27Þ

ωð−ÞðBÞ ¼ Σ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
−

ε2


mBðmB þmχÞ − Σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q h
m2

B −m2
χ − Σ0



2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
− Σ0

�iþOðδ4Þ; ðF28Þ

in which the negative energy solutions would be interpreted as antiparticles. We now consider the second set of solutions
assuming that Eq. (F17) holds. The zeroth-order equation yields

ω�
0ðχÞ ¼ ω�

0ðBÞ ¼
m2

χ −m2
B þ Σ2

0

2Σ0
: ðF29Þ
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The first-order equation Oðδ1Þ is trivial, and the second-
order equation yields

ω�
1¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmBþmχÞ½2Σ2

0mBþðmχ−mBÞðmBþmχÞ2�−Σ4
0

4ðm2
χ−m2

B−Σ2
0Þ

s
;

ðF30Þ

which we plug into the third-order equation to arrive at

ω�
2 ¼

ðm2
χ −m2

BÞ3 − Σ2
0ðmχ −mBÞðmB þmχÞ3

4Σ0ðm2
B −m2

χ þ Σ2
0Þ2

; ðF31Þ

such that the full energy spectrum is given by

ω�
ð�Þ ¼

Σ2
0 −m2

B þm2
χ

2Σ0

� εΣ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmB þmχÞ2 − Σ2

0

ðm2
B −m2

χÞ2 − Σ4
0

s

þ ε2Σ0ðmχ −mBÞðmB þmχÞ3½ðmB −mχÞ2 − Σ2
0�

½ðm2
B −m2

χÞ2 − Σ4
0�2

þOðδ3Þ: ðF32Þ

Wecan see that the first-order term breaks the degeneracy by
splitting the energies.

APPENDIX G: BARYON DECAYS TO χ + γ

Here, we present the full calculation of the decay of a
baryon to χ þ γ.

1. Matrix element

The matrix element for this process is

iM ¼ iεBχgBe

4m�
B

ūχðkχÞ
1

=kχ − ΣB −m�
B
=ϵ�=kγuðp�

BÞ; ðG1Þ

where we note

ð=kχ − ΣB −m�
BÞ−1 ¼

=kχ − ΣB þm�
B

ðkχ − ΣBÞ2 − ðm�
BÞ2

≡ =k� þm�
B

ðk�χÞ2 − ðm�
BÞ2

ðG2Þ

and we define the quantity k�χ ≡ kχ − ΣB ¼ p�
B − kγ. Note

in the neutron-star medium that energy-momentum con-
servation of the total canonical momentum still holds:
pμ
B ¼ kμγ þ kμχ . Consideration of the kinematics show that

we need consider only the first term in the full baryon
propagator given in Eq. (4.10).
We then find the spin-summed matrix element to be

jMj2 ¼ ε2Bχg
2
Be

2ðp�
B · kγÞ

ðm�
BÞ2½ðm�

BÞ2 − ðk�χÞ2�2
f½ðm�

BÞ2 − ðk�χÞ2�ðkχ · kγÞ þ 2ðk�χ · kγÞðk�χ · kχ þm�
BmχÞg ðG3Þ

¼ ε2Bχg
2
Be

2ðp�
B · kγÞ

2ðm�
BÞ2ðp�

B · kγÞ2
½ðp�

B · kγÞðkχ · kγÞ þ ðk�χ · kγÞðk�χ · kχ þm�
BmχÞ� ðG4Þ

¼ ε2Bχg
2
Be

2

2ðm�
BÞ2

½ðp�
B · kχÞ þm�

Bmχ �; ðG5Þ

where we note the useful relations ðk�χÞ2¼ðm�
BÞ2−2ðp�

B ·kγÞ
and ðk�χ · kγÞ ¼ ðp�

B · kγÞ.

2. Integrated rates

We now address the full integral over phase space:

dnB
dτ

¼ −
Z

d3p⃗B

ð2πÞ3ð2E�
BÞ

d3k⃗χ
ð2πÞ3ð2EχÞ

d3k⃗γ
ð2πÞ3ð2EγÞ

fBðp⃗BÞ

× jMj2 × ð2πÞ4δð4ÞðpB − kχ − kγÞ: ðG6Þ

In the main text, we presented the rate as an integral over
the baryon Fermi sphere of the dilated widths of individual
baryons. Here, we will contrast this approach with a more
straightforward evaluation of this integral and demonstrate
that these yield consistent results, as expected.

Our first step in the evaluation of the rate is to separate
the integrals over the χ and γ phase spaces and evaluate
these first:

dnB
dτ

¼ −
Z

pF;n

0

p2dp
4π2E�

B

GðpÞ; ðG7Þ

GðpÞ ¼
Z

d3k⃗χ
ð2πÞ3ð2EχÞ

d3k⃗γ
ð2πÞ3ð2EγÞ

jMj2

× ð2πÞ4δð4ÞðpB − kχ − kγÞ: ðG8Þ

We have simplified the first integral by noting that it
depends on only the magnitude of the three-momentum
jp⃗Bj≡ p and that we integrate only within the neutron
Fermi sphere. We tackle this second integral by computing
it in the c.m. frame of the decaying neutron. We note,
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however, that the matrix element depends on p�
B, which has

a nonvanishing spatial component, though we will find that
this is not relevant for the ultimate evaluation of the
integral.
We begin by articulating the boost between the n.m.

frame and the c.m. frame. We denote the four-momentum
of a baryon in the n.m. frame by pðn:m:Þ

B ¼ ðEB; p⃗BÞ, and the
vector self-energy as Σðn:m:Þ

B ¼ ðΣ0
B; 0⃗Þ, and express the c.m.

frame four-momentum pðc:m:Þ
B only in terms of the quan-

tities in the n.m. frame. The boost from the n.m. to the c.m.
frame is parametrized by

γ ¼ E�
B þ Σ0

Bffiffiffi
s

p ; γβ ¼ jp⃗Bjffiffiffi
s

p ;

s≡ ðm�
BÞ2 þ 2E�

BΣ
0
B þ ðΣ0

BÞ2; ðG9Þ

such that

pðc:m:Þ
B ¼ Λ · pðn:m:Þ

B ¼
�

γ −γβ
−γβ γ

��
E�
B þ Σ0

B

jp⃗Bjẑ

�

¼
� ffiffiffi

s
p

0⃗

�
: ðG10Þ

Therefore, we write p�
B in the c.m. frame as

p�;ðc:m:Þ
B ¼ 1ffiffiffi

s
p
� ðm�

BÞ2 þ E�
BΣ

0
B

jp⃗BjΣ0
Bẑ

�
: ðG11Þ

With

Eðc:m:Þ
χ ¼ sþm2

χ

2
ffiffiffi
s

p ; jk⃗ðc:m:Þ
χ j ¼ s −m2

χ

2
ffiffiffi
s

p ; ðG12Þ

we may write

p�;ðc:m:Þ
B · kðc:m:Þ

χ ¼ ½ðm�
BÞ2 þ E�

BΣ
0
B�ðsþm2

χÞ
2s

−
ðjp⃗BjΣ0

BÞðs −m2
χÞ

2s
cos θ�; ðG13Þ

in which cos θ� is the angle between k⃗ðc:m:Þ
χ and ðp⃗BÞ�;ðc:m:Þ

and we note that the second term vanishes once an

integration over the direction of k⃗ðc:m:Þ
χ is performed. We

consider next the form of the energy delta function when

transformed to momentum; using k≡ jk⃗ðc:m:Þ
γ j ¼ jkðc:m:Þ

χ j,
we have

δ

 ffiffiffi

s
p

− k −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q �
¼ δ

�
k −

s −m2
χ

2
ffiffiffi
s

p
�
Eχffiffiffi
s

p : ðG14Þ

Putting these pieces together, we arrive at

GðpÞ ¼
Z

kdk
4πEχ

δ

�
k −

s −m2
χ

2
ffiffiffi
s

p
�
Eχffiffiffi
s

p ×
ε2nχg2Be

2

2ðm�
BÞ2

½ðm�
BÞ2 þ E�

BΣ
0
B�ðsþm2

χÞ þ 2sm�
Bmχ

2s
ðG15Þ

¼ ε2Bχg
2
Be

2

32πðm�
BÞ2
�
s −m2

χ

s2

�
fs½ðm�

BÞ2 þ E�
BΣ

0
B þ 2m�

Bmχ � þm2
χ ½ðm�

BÞ2 þ E�
BΣ

0
B�g: ðG16Þ

We can therefore write Eq. (G6) as

dnB
dτ

¼ −
Z

pF;B

0

p2dp
4π2E�

B

GðpÞ

¼ −
Z

EF;B

m�
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�

BÞ2 − ðm�
BÞ2

q
dE�

B

4π2
GðpÞ; ðG17Þ

which after using the definitions in Eq. (5.12) turns into the
expression given in Eq. (5.11). Using Eq. (5.9), we can also

write the individual baryon decay rate in the c.m. frame
Γc:m:ðpBÞ as

Γc:m:ðpBÞ ¼
�
g2Be

2ε2Bχ
128πm�

B

�
1þ σ2 þ 2xσ − μ2

ð1þ σ2 þ 2xσÞ3=2ð1þ xσÞ
× ½ð1þ σ2 þ 2σxÞð1þ σxþ 2μÞ
þ μ2ð1þ σxÞ�: ðG18Þ

We note that, if the self-energy were to vanish (σ ¼ 0), we
would recover the vacuum decay rate reported in Eq. (2.7).
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