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Neutrino-neutrino scattering could have a large secret component that would turn neutrinos within a
supernova (SN) core into a self-coupled fluid. Neutrino transport within the SN core, emission from its
surface, expansion into space, and the flux spectrum and time structure at Earth might all be affected. We
examine these questions from first principles. First, diffusive transport differs only by a modified spectral
average of the interaction rate. We next study the fluid energy transfer between a hot and a cold blackbody
surface in plane-parallel and spherical geometry. The key element is the decoupling process within the
radiating bodies, which themselves are taken to be isothermal. For a zero-temperature cold plate,
mimicking radiation into free space by the hot plate, the energy flux is 3%–4% smaller than the usual
Stefan-Boltzmann law. The fluid energy density just outside the hot plate is numerically 0.70 of the
standard case, the outflow velocity is the speed of sound vs ¼ c=

ffiffiffi
3

p
, conspiring to a nearly unchanged

energy flux. Our results provide the crucial boundary condition for the expansion of the self-interacting
fluid into space, assuming an isothermal neutrino sphere. We also derive a dynamical solution, assuming
the emission suddenly begins at some instant. A neutrino front expands in space with luminal speed,
whereas the outflow velocity at the radiating surface asymptotically approaches vs from above.
Asymptotically, one thus recovers the steady-state emission found in the two-plate model. A sudden
end to neutrino emission leads to a fireball with constant thickness equal to the duration of neutrino
emission.
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I. INTRODUCTION

Neutrino-neutrino scattering is notoriously difficult to
explore experimentally, leaving room for the speculation
of a potentially large modification by a new force carrier
and thus to large neutrino secret interactions (νSI) [1].
Motivated by the neutrino observation of the historical
SN 1987A, the idea has taken root that supernova
(SN) physics and the detectable neutrino signal should
be good places to search for such effects [2–21]. If
neutrinos in a SN core form a self-coupled fluid instead
of an ideal gas, for sure one would expect dramatic
modifications of the diffusive transport out of the SN
core, the expansion into space, and the detectable signal
properties.

A systematic treatment of these questions must include
several elements. One is the radiative transfer of energy
and flavor-dependent lepton number by neutrinos, both in
the diffusion limit deep inside and in the decoupling region,
the neutrino sphere, where the neutrino optical depth in the
nuclear medium becomes small. At larger distances, one has
to deal with the free expansion of a self-interacting fluid into
space, a purely hydrodynamical problem, where the relativ-
istic velocity of soundvs ¼ c=

ffiffiffi
3

p
≃ 0.577c is a crucial scale.

(Henceforth wewill use natural units withℏ ¼ c ¼ kB ¼ 1.)
Some previous works have focused on this hydrody-

namical question alone, modeling the SN neutrino burst as
a self-interacting fluid that expands freely after it has been
released. Many years ago, Ref. [7] has posed the problem as
that of a gas in plane-parallel geometry, which is suddenly
left free to expand after a piston is removed. Very recently,
Ref. [17] has returned to this subject and studied the same
question in spherical geometry. They proposed a self-
similar solution for the freely expanding fluid with no
interaction with matter, akin to an impulsive energy release.
A SN burst with a duration of, say, 3 s has a length of

106 km, compared with the protoneutron star (PNS) radius
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of 10 km. Obviously, the sudden release of the fluid does
not correspond to the physics of realistic neutrino emission.
Therefore, while the burst solutions of Refs. [7,17] are
interesting pedagogical problems to study the behavior of a
freely expanding blob of relativistic fluid, similar to earlier
studies in a different context [22,23], they do not include
the physics of neutrino emission by a quasithermal steady
source that feeds neutrino emission over a period very long
compared with all other relevant scales. Therefore, we
completely dismiss such solutions in the context of PNS
cooling.
The authors of Ref. [17] have proposed a second scenario,

corresponding to steady outflow. Specifically in their
Appendix H, they have worked out the hydrodynamic
solution outside of the PNS and have matched it to a
stationary solution within the PNS. At the same time, they
questioned whether such a solution could actually be
realized, or whether it required special conditions. The
reasons for such doubts were left unclear. It is clear that
the PNS acts as a source and thus as a boundary for the
neutrino outflow. As we will see, we recover the picture of a
steady wind, lasting for several seconds, and propagating
into space.
As a first approximation, one can picture neutrinos

being emitted as blackbody radiation from the PNS
surface. The burst duration (or spatial profile) is set by
the speed of PNS cooling, which is essentially set by
convective transport, and the decoupling process at the
surface. But irrespective of the detailed physics of energy
transfer, the PNS acts as a huge thermal reservoir of
energy to be emitted in neutrinos. Typically, a SN emits
200–400 B (1 B ¼ 1 bethe ¼ 1051 erg) in neutrinos.
On the other hand, assuming an internal temperature of
30 MeVand a radius of 10 km, the energy stored in a gas of
six species of nondegenerate neutrinos in the PNSvolume is
around 1.2 B. Therefore, the physics of PNS cooling
requires the steady production of neutrinos to be emitted
in the decoupling region, not simply the diffusion of trapped
neutrinos out of the PNS. Even if neutrino diffusion
transport (and not convection) dominates heat transfer
within the PNS, for our purposes, the latter acts as a
traditional blackbody source of radiation, without having
to specify the detailed internal physics of the emitter.
Therefore, here we treat the PNS as a source that

generates neutrinos and acts as a heat reservoir for their
thermal emission. After an initial transient emission from
the PNS surface, the solution near the PNS quickly relaxes
to a steady state analogous to the steady wind of Ref. [17],
although it differs inside the PNS, where the nucleons feed
energy to the neutrino fluid. Actually, starting the emission
process at some initial time, the escaping neutrino-fluid
front moves with the speed of light, and thus supersoni-
cally, so that the fluid near the PNS cannot know what
happens far away. The emission from the PNS surface can
be understood locally and does not require the dynamical
solution far away from the PNS.

One can mimic this situation with the neutrino-fluid
energy transfer between two blackbody surfaces at different
temperatures that could have plane-parallel geometry or
two nested shells in spherical geometry. In the limit of
vanishing temperature for the cold surface, the steady-state
solution mimics thermal emission into free space without
the dynamical approach to an asymptotic steady-state
solution. In any case, we find that the dynamical expansion
with a sudden initial beginning of neutrino emission
approaches asymptotically the steady-state solution near
the surface.
If we picture the PNS as a thermal source, the main

challenge is to understand the steady release of the neutrino
fluid from the PNS surface. If the energy flux from deep
inside to the surface is carried by neutrinos, the first
question is how diffusive radiative transport in the hot
nuclear background medium is modified by large νSI. If we
consider a background medium with a prescribed temper-
ature gradient in plane-parallel geometry, we find that the
diffusive transport of energy is exactly the same for
standard radiation or a fluid, with the caveat that the
neutrino average mean-free path (MFP) against absorption
on nucleons differs from the usual Rosseland mean. To
reach this conclusion, we assume that the MFP λνN does not
depend on energy; we outline in an Appendix A how the
approach should change to account for the energy depend-
ence of the MFP.
The next question, and the main subject of our paper, is

the decoupling of the radiation from the surface, i.e. the
transition between diffusion and free expansion. To study
this regime, we use the model of an isothermal body
(temperature T) that ends abruptly at its surface. For
standard (i.e. without secret interactions) radiation, the
emerging energy flux is given by the Stefan-Boltzmann law
that the energy flux is F ¼ eeq=4, where eeq is the black-
body energy density prescribed by the radiator’s T. One
factor 1=2 comes from the fact that only the outward-going
modes are occupied outside of the radiating surface and a
factor 1=2 from the angle average of the speed of different
modes away from the emitting surface.
In the fluid case, i.e. with secret interactions among

neutrinos, energy and momentum conservation is enough
to find the solution that interpolates between thermal
equilibrium deeply inside and free expansion outside, a
transition taking place over a few λνN. Surprisingly, the
usual thermal flux is reduced by only 3%–4%, which arises
from the near-cancellation of two competing effects. In the
standard case, the energy density outside the radiating
surface is 0.50eeq because only the outward-moving modes
are occupied. In the fluid case, this is found to be roughly
0.35eeq. In the standard case, the average speed of the modes
away from the surface is 0.50. In the fluid case, the outflow
velocity is vs ¼ 1=

ffiffiffi
3

p
, which implies an energy flux

4vs=ð3þ v2s Þ ¼ 2
ffiffiffi
3

p
=5 ≃ 0.69 times the laboratory-frame

energy density 0.35eeq and thus F ≃ 0.24eeq. We have not
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found a fundamental reason why the thermal flux of a
neutrino fluid vs. standard neutrino radiation should be so
similar.
Looking at the problem from several perspectives, we

always find that standard radiation and a self-coupled fluid
yield surprisingly similar results for radiative energy trans-
port and the emission from a hot body.
To substantiate these findings, we begin in Sec. II with the

question of radiative transfer in the diffusion limit by a self-
coupled fluid instead of radiation. Nextwe turn, in Sec. III, to
the steady-state energy transfer between two blackbody
plates of different temperature, considering both plane-
parallel and spherical geometry. For comparison, in
Sec. IV we also derive the dynamical fluid expansion if
the blackbody emission starts suddenly at some instant. In
Sec. V we study the opposite problem of the signal suddenly
switching off and recover the usual conclusion that, in
spherical geometry, most of the neutrino burst propagates
as a shell of constant thickness. In Sec.VIwe concludewith a
discussion and outlook as to what our findings might mean
for more realistic SN physics with large νSI.

II. DIFFUSIVE ENERGY TRANSFER

Before neutrinos can be emitted from the PNS surface, the
energy must be dredged up from deeper inside. While one
often reads as an explanation for the PNS cooling timescale
that the main agent is neutrino radiative transfer, Ledoux
convection plays a major role [24–29] and defines the
cooling timescale of a few seconds. However, we here
suppose that neutrino radiative transfer is important and
ask for the modifications by large νSI. Of course, the
efficiency of radiative transfer also determines if convection
occurs in the first place, and so the possible modifications
need to be understood.
We here consider a region so deep inside the PNS that

radiative transport is diffusive, meaning that the effective
MFP is short compared with the spatial scale of the
radiation-density variation: jd log eeq=drj−1 ≫ λ̄, where
eeqðrÞ is the blackbody radiation density engendered by
local thermal equilibrium (LTE), i.e., eeqðrÞ is a property of
the medium. The neutrino energy flux at radius r is in the
diffusion limit [30–32]

FðrÞ ¼ −
λ̄ðrÞ
3

∇eeqðrÞ: ð1Þ

This result follows from the radiation being slightly
disturbed from LTE, sporting a small anisotropy that leads
to an energy flux that depends linearly on the MFP. The
question is if and how λ̄ changes by large νSI.

A. Standard neutrinos

The main neutrino interaction channels in a PNS are with
nucleons. There are charged-current (CC) processes of the

type νen ↔ pe, ν̄ep ↔ neþ, and analogous for the μ
flavor, although the latter have been included only in some
recent numerical models [33,34]. The large muon mass of
105.66 MeV suppresses them in the colder SN regions.
Neutral-current (NC) processes of the type νN ↔ νN apply
to all flavors, although the cross section is smaller than for
CC processes, so the latter dominate whenever they are
available. Moreover, NC collisions, to lowest order, pre-
serve energy and have the main effect of changing the ν
direction, not its energy. For the ντ flavor and for νμ in
regions with few muons, (inverse) bremsstrahlung NN ↔
NNνν̄ in the main mode for energy exchange. Energy
exchange is also achieved in purely leptonic processes, or
processes involving pions, but nuclear bremsstrahlung is
the main effect [35–39].
CC processes as well as bremsstrahlung are absorptive

and as such apply separately to neutrinos of any energy ϵ.
For the occupation number f (assumed at energy ϵ) of the
neutrino radiation field, the Boltzmann collision equation
(BCE) for propagation along the z-direction is

∂f
∂t

þ cos θ
∂f
∂z

¼ −ΓAf þ ΓEð1 − fÞ
¼ −ðΓA þ ΓEÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Γ

f þ ΓE; ð2Þ

where the propagation angle θ is relative to the z direction
(homogeneity in the other directions assumed), ΓA is the
absorption rate by the background medium, and ΓE the
spontaneous emission rate that is reduced by a Pauli-
blocking factor. For bosons, (1þ f) would appear instead.
In the second line, ΓE was included as a negative absorption
rate in Γ, which is the traditional “reduced” absorption rate,
although it is actually enhanced. The terminology comes
from photon (boson) radiative transfer, where the sign is
opposite [40].
In a stationary situation and when the radiation is in LTE

with the surrounding thermal nuclear medium and in the
absence of gradients, the neutrinos will follow a Fermi-
Dirac distribution of the form

f ¼ 1

eðϵ−μÞ=T þ 1
ð3Þ

with the neutrino energy ϵ, chemical potential μ, and
temperature T. In LTE, the left-hand side of Eq. (2)
vanishes and the two coefficients are related by

ΓA ¼ eðϵ−μÞ=TΓE; ð4Þ

the detailed-balance relation between emission and absorp-
tion by a thermal medium. Notice that the medium not only
has a temperature T, but also a would-be chemical potential
μ for the neutrinos which are not part of the medium.
Finally we obtain

SUPERNOVA EMISSION OF SECRETLY INTERACTING … PHYS. REV. D 109, 023017 (2024)

023017-3



Γ ¼ ½1þ e−ðϵ−μÞ=T �ΓA

for the reduced absorption rate which is the absorption rate
appearing the BCE.
The neutrino gas will be near LTE so we can expand the

distribution function in the form f ¼ fth þ δf so that most
terms of the thermal distribution drop out. However, we
have to be careful about the perturbative expansion to keep
terms of the same order. As per our diffusion assumption,
the absorption rate Γ is large compared with the gradient of
the radiation field. Therefore, expanding consistently to
first order in small quantities yields the stationary BCE

cos θ
∂fth

∂z
¼ −Γδf; ð5Þ

where Γ is the monochromatic reduced absorption rate for
neutrino energy ϵ. We can directly invert this equation and
find for the disturbance

δf ¼ −λνN cos θ
∂fth

∂z
; ð6Þ

where here and henceforth we use λνN ¼ 1=Γ for the MFP
corresponding to the reduced absorption rate and thus to the
reduced opacity. So the lowest-order deviation from a
thermal distribution is a small dipole in the angular
distribution.
We can now write the monochromatic energy flux,

differential with regard to neutrino energy ϵ,

dFðϵÞ
dϵ

¼ −λνNðϵÞ
Z þ1

−1

2πϵ2d cos θ
ð2πÞ3 ϵcos2θ

∂fthν
∂z

¼ −
λνNðϵÞ

3

∂eeq;ϵ
∂z

; ð7Þ

where eeq;ϵ is the blackbody spectral intensity normalized
such that

R
dϵeeq;ϵ ¼ eeq is the blackbody radiation density

in LTE at the local conditions.
If the MFP does not depend on energy, called the “gray

approximation” in radiative transfer, one immediately
arrives at the form of Eq. (1).
However, neutrino cross sections strongly vary with

energy. If we were to suppose that in the relevant SN
region their distribution is not strongly degenerate and that
the energy flux is essentially driven by the temperature
gradient, one can arrive at the integral form of Eq. (1) such
that λ̄ has the standard meaning of a Rosseland average. To
this end we write the right-hand side (rhs) of the mono-
chromatic form Eq. (7) as −ðλνN=3Þð∂eeq;ϵ=∂TÞ∇T. After
integrating over energy, this yields the integrated flux

F ¼ −
∇T
3

Z
dϵλνNðϵÞ

∂eeq;ϵ
∂T

: ð8Þ

Likewise, we can express the right-hand side of Eq. (1) as
∂eeq=∂z ¼ ð∂eeq=∂TÞ∇T. Comparing the expressions and
using the explicit formulas for eeq;ϵ and eeq for a fermions
without μ, one finds that the average MFP in Eq. (1) is

λ̄ ¼
Z

∞

0

dϵλνNðϵÞ
30ϵ4eϵ=T

7π4T5ðeϵ=T þ 1Þ2 ; ð9Þ

which is the usual fermionic Rosseland average.
After including a chemical potential, one cannot directly

define a Rosseland average because two derivatives
∂eeq;ϵ=∂T and ∂eeq;ϵ=∂μ appear and one cannot define
one common effective MFP that would appear in an
equation of the form of Eq. (1). These questions were
discussed a long time ago, for example, by Bludman and
van Riper [41] and van den Horn and Cooperstein [42].
With the goal of explaining why secret neutrino inter-

actions do not fundamentally change diffusive energy trans-
fer we study explicitly only the hypothetical case where the
energy flux is driven by a temperature gradient, not a
chemical-potential gradient. As mentioned earlier, realisti-
cally energy is anyway transported mainly by convection.
Another question is the role of scattering on nucleons

instead of absorption. For heavy-flavor neutrinos this is the
dominant contribution to the opacity. However, once we
have large νSI, and if these affect all flavors, all of them will
form a common neutrino fluid for which the dominant
opacity derives from the CC interactions of the electron
flavor and the muon flavor (in the presence of muons).
Therefore, we will not explicitly worry about scattering.

B. Secretly interacting neutrino fluid

We now turn to large νSI, meaning λνν ≪ λνN , so that
neutrinos equilibrate among each other between collisions
with the nuclear medium. We should picture neutrinos as a
fluid that streams along the temperature gradient with a
small bulk velocity v, which from dimensional analysis is
OðλνN=rÞ. The neutrino fluid maintains LTE with the
medium so that, apart from small corrections, it must have
the blackbody energy density eeq prescribed by the proper-
ties of the background, analogous to the standard case. In
the medium frame, the neutrino distribution must be
thermal with a small anisotropic disturbance that allows
it to carry an energy flux. In the fluid frame, the distribution
must be isotropic, drifting with a small v relative to the
medium. For the fluid description, we adopt relativistic
hydrodynamical modeling (see, e.g., Ref. [43]); for this
section, we will only need the form for nonrelativistic bulk
velocities, while the equation of state is relativistic through-
out this work.
The exact properties of the neutrino fluid in its rest frame

are not fully fixed by our assumptions. While νSI inevitably
allow for number-changing processes, these need not be
fast enough to establish chemical equilibrium within the
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neutrino fluid so that only kinetic equilibrium may obtain.
However, for our present consideration this point makes no
difference because the medium and fluid frames are the
same up to the small drift velocity.
With these insights, it is surprisingly simple to derive the

diffusive equation of energy transfer, limiting ourselves to
the same model as in the standard case, i.e., neutrinos
interact with the medium only by absorption and emission.
The key idea is that the relativistic neutrino fluid has a
pressure p ¼ ρ=3 that must change along the radial
direction if the energy density is ρðzÞ ¼ eeqðzÞ as pre-
scribed by LTE.
On the other hand, in a steady flow, the momentum

flowing through each surface must be conserved. This
means that the pressure must be conserved along the
direction of its bulk motion, unless it is balanced by a
force. It arises from neutrinos being absorbed and emitted
with the rate Γ, the reduced absorption rate defined earlier,
but in an asymmetric manner because of the drift velocity.
The momentum carried by each volume element is
ðρþ pÞv ¼ 4ρv=3; notice the appearance here of the
enthalpy, rather than the energy density. Therefore, the
momentum lost per unit volume per unit time is −4Γvρ=3,
which must be balanced against the pressure gradient
∂p=∂z. If Γ ¼ 1=λνN does not depend on energy and with
ρ ¼ eeq, we thus find for the energy flux

F ¼ 4

3
eeqv ¼ −

λνN
3

∇eeq; ð10Þ

of the same form as Eq. (1). The drift velocity is

v ¼ λνN j∇ log eeqj
4

≪ 1; ð11Þ

which is small due to the original diffusion limit. It is
essentially the ratio between the MFP and the medium’s
temperature scale height.
Oncewe know the bulk velocity, we can express explicitly

the distribution function of the drifting neutrinos. Since
v ≪ 1, we can use a nonrelativistic expansion in terms of the
small velocity; we limit ourselves to the case of vanishing
chemical potential. Then the corresponding expression is
fth½ϵð1 − v cos θÞ�, which we Taylor expand as

f ¼ fth −
∂fth

∂ϵ
ϵv cos θ: ð12Þ

We now replace the drift velocity from Eq. (11), with
j∇ log eeqj ¼ 4j∇ logTj. Furthermore, we use the identity
∂ϵfthϵ ¼ −∂TfthT and obtain

f ¼ fth −
∂fth

∂z
λνN cos θ; ð13Þ

which correctly reproduces the noninteracting result in the
gray approximation.
In the fluid case, all neutrino modes interact with all

others, so a monochromatic case similar to Eq. (7) cannot
be contemplated. What if the interaction with the nucleons
is not gray (not independent of energy)? In this case we
need the spectral average of the force and thus the spectral
average of Γρ which is

R
dϵeeq;ϵ=λνNðϵÞ. Notice that the

drift velocity is common to all ϵ modes so that v factors out
of this averaging procedure. Therefore, in the non-gray
case, we recover an equation of the form of Eq. (1) with

λ̄fluid ¼
�
1

eeq

Z
dϵ

eeq;ϵ
λνNðϵÞ

�
−1

¼
�

120

7π4T4

Z
∞

0

dϵ
ϵ3

eϵ=T þ 1

1

λνN

�−1
; ð14Þ

different from the Rosseland average.
If νSI affect all flavors, and if we ignore chemical

potentials, then they together form the neutrino fluid with
ρ ¼ 6eeq if we think of eeq as the blackbody distribution of
a single nondegenerate neutrino degree of freedom. Of
these, νe and ν̄e (and possibly νμ and ν̄μ) interact by CCs,
affecting the entire fluid, whereas an additional force
derives from the weaker NC scattering that is equal for
all flavors. However, these depend on scattering angle and
thus require a more careful treatment.
In the standard diffusive transport case, most of the

energy flux is carried by those flavors that only interact
by the smaller NC rates, but which are now slowed down
by their indirect participation in the CC interactions.
Therefore, the overall diffusive energy flux will be smaller
than standard, facilitating the appearance of convection. A
detailed treatment would require a flavor model of νSI. On
the other hand, even in the standard case, the possible
existence of fast-flavor conversion even deeply inside the
PNS imply that there is no “standard” case to compare with.
In any event, a numerical SN simulation that includes νSI

will need to implement these effects, in particular in the
decoupling region where the diffusion approximation no
longer applies. Our discussion here mainly serves to clarify
a number of conceptual points. The main result is that there
is no mysterious slowing-down of the energy flux by
neutrinos being a fluid. But on the other hand, there are
quantitative differences arising from the different spectral
average of the interaction rate and from coupling all flavors
indirectly to the CC rates.

III. ENERGY TRANSFER BETWEEN TWO
BLACKBODY PLATES

We now turn to the more complex regime in which
neutrinos are emitted from the PNS surface. In the standard,
noninteracting case, deviations from isotropy are more
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pronounced, and therefore we can expect differences in the
secretly interacting case.
As a preliminary exercise, we tackle a simplified sta-

tionary setup with neutrinos transferring energy between
two blackbodies held at constant temperatures T1 and T2.
In the SN problem, there is only one surface, of course, but
as we will see, the limit T2 → 0 essentially leads to steady-
state single blackbody emission in a vacuum. We begin
with plane geometry, with two plates fixed at T1 and T2,
and later generalize to spherical geometry.

A. Setup of the problem

In our schematic setup, we make the simplest assump-
tions that capture the essence of what large νSI would do.
As in the previous section, we assume that λνν ≪ λνN so
that neutrinos act as a fluid on scales defined by the
interaction rate with the medium. We assume that emission
and absorption are the main interaction channels, that λνN
does not depend on energy, and that it represents the
reduced opacity. Moreover, the medium properties are such
that ν and ν̄ interact equally, i.e., deeply inside the radiating
bodies, neutrinos exist as fermionic blackbody radiation
without chemical potential. Therefore, in LTE the energy
density is

eeq;i ¼
7π2T4

i

40
; i ¼ 1 or 2: ð15Þ

Here we have multiplied the standard Fermi-Dirac energy
density for vanishing chemical potential by a factor 6, to
account for the six species of neutrinos and antineutrinos.
To fix the notation, we will everywhere denote by ρ the

comoving energy density of the fluid which moves with
bulk velocity v relative to the medium. In LTE, the radiation
energy density defined by the medium properties is eeq. The
fluid energy density in the laboratory frame (defined by the
medium at rest) is denoted by e and, by Lorentz trans-
formation, is

e ¼ 4γ2 − 1

3
ρ ¼ 1þ v2=3

1 − v2
ρ; ð16Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor. Furthermore,

the fluid energy flux can also be obtained by Lorentz
transformation as

F ¼ 4

3
γ2vρ ¼ eξ; ð17Þ

where we have introduced a convenient modified velocity
variable

ξ ¼ 4γ2v
4γ2 − 1

¼ 4v
3þ v2

: ð18Þ

Notice that ξ varies between 0 and 1 as v varies between 0
and 1. A special role is played by the speed of sound,
vs ¼ 1=

ffiffiffi
3

p
, corresponding to

ξs ¼
2

ffiffiffi
3

p

5
≃ 0.693 ð19Þ

for our modified velocity of sound.
The two plates have the same homogeneous density and

end abruptly at their surface. They are each held at a
constant temperature T1 and T2 throughout, although in
Appendix B we will also consider a self-consistent temper-
ature profile.

B. Plane geometry

In our first setup, the two blackbodies are two semi-
infinite materials disposed along the z axis and separated by
a distance D. Despite their extended nature, we will simply
refer to them as plates, since neutrinos are really emitted
from their surface. As neutrinos behave as a fluid even
inside the medium, the boundary conditions must be
imposed not at the surface, but rather deep inside. We
assume the first surface is located at z ¼ 0with temperature
T1, and the second one at z ¼ Dwith temperature T2 < T1.
The equations for the fluid are the equations of energy and

momentum conservation. In the laboratory frame, the energy
density is e and the energy flux is F ¼ eξ. Energy flux
conservation therefore implies ∂teþ ∂zF ¼ ðeeq − eÞ=λνN ,
where the net rate of energy gain appears on the right-hand
side, i.e., the difference between thermal energy gain and loss
by collisions with the medium. In a steady state, we drop the
time derivative and find

∂zðeξÞ ¼
eeq − e

λνN
: ð20Þ

for energy conservation.
As discussed in Sec. II B above Eq. (10), in steady state,

the pressure gradient along z must be balanced by the force
exerted by the plate absorbing neutrinos. If the neutrino fluid
is flowing with a bulk velocity, this constraint generalizes to
the law ofmomentum conservation. If the momentum flux is
M, and the momentum density is F (by definition this is
equal to the energy flux, so we use the same letter), we thus
need to satisfy ∂tF þ ∂zM ¼ −F=λνN, where here no gain
term appears because the background medium is isotropic.
Notice that the momentum flux, which for nonrelativistic
velocities coincides with pressure p, has now an additional
contribution from the bulk motion. In the neutrino fluid
frame, this is M ¼ pþ ðρþ pÞγ2v2, which can be written

as M ¼ eð5 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
Þ=3 in our lab-frame variables.

Finally, in steady state we need to satisfy ∂zM ¼ −F=λνN
and with F ¼ eξ, this is
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∂z

�
e
5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
3

�
¼ −

eξ
λνN

; ð21Þ

expressing momentum conservation for our system.
In the central region between the plates (0 < z < D), the

behavior is that of a simple fluid with no energy exchange,
corresponding to λνN → ∞. In this region, the fluid
equations require e and ξ both to be constant, to maintain
a constant energy and momentum flux. We will denote their
constant values in this region by e0 and ξ0 respectively.
Inside the left plate, Eqs. (20) and (21) must be solved

with the condition that for z → −∞ we have ξ → 0 and
e → eeq;1. This condition by itself does not determine a
unique solution, and must be complemented by another
condition at the right boundary z ¼ 0. For the moment, we
impose the condition ξðz ¼ 0Þ ¼ ξ0. Later, we will deter-
mine ξ0 by a matching to the dynamics in the rest of the
space, i.e., we need the second plate to determine a steady-
state solution.
As a first step, we determine how the energy density e

depends on ξ at every point z. To do so, from Eqs. (20)
and (21) we explicitly extract ∂zξ and ∂ze

∂zξ¼
ðeeq;1 − eÞ�8− 6ξ2 − 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 3ξ2

p 	
− 3eξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 3ξ2

p
eð8− 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 3ξ2

p
Þ

;

∂ze¼
3
h
2ðeeq;1 − eÞξþ eξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 3ξ2

p i
8− 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− 3ξ2

p : ð22Þ

We then take the ratio among these expressions to obtain

de
dξ

¼
3eξ

h
2eeq;1 þ e


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
− 2

�i
fðξÞeeq;1 − gðξÞe ; ð23Þ

where

fðξÞ ¼ 8 − 6ξ2 − 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
;

gðξÞ ¼ 8 − 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
þ 3ξ2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
− 2

�
: ð24Þ

Since T1 > T2, it is clear that ξ > 0 because the fluid flows
from left to right, so this equation can be solved with the
boundary condition deeply inside that eðξ ¼ 0Þ ¼ eeq;1.
In particular, it follows that the energy density and

velocity at z ¼ 0 are related by eðz ¼ 0Þ ¼ eeq;1Fðξ0Þ,
where FðξÞ is the universal function that solves the
equation

dF
dξ

¼ 3Fξ½2þ Fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
− 2Þ�

fðξÞ − gðξÞF ; Fð0Þ ¼ 1: ð25Þ

The solution is shown in Fig. 1, limited to the subsonic
range −ξs < ξ < ξs, which is the only range of physical

interest as we will see. Notice that FðξÞ is a decreasing
function, so for ξ > 0, corresponding to an outflow from
the body, the energy density decreases as the fluid moves to
the right and becomes faster and faster.
For the fluid to the right, the situation is specular; one has

the same equation for de=dξ, except that now ξ must be
taken with the opposite sign because the flux is ingoing
rather than outgoing. Therefore, the energy density and
velocity at z ¼ D are related by eðz ¼ DÞ ¼ eeq;2Fð−ξ0Þ.
As the fluid properties between the plates are the same from
the perspective of either plate, each characterized by eeq;1;2
corresponding to their T1;2, the velocity of the fluid
between the plates is determined by

eeq;1Fðξ0Þ ¼ eeq;2Fð−ξ0Þ: ð26Þ

Evidently, the fluid velocity depends only on the ratio
between the temperatures T1;2, or equivalently between the
blackbody energy densities eeq;1;2. From this equation we
can deduce both ξ0 and e0 ¼ eeq;1Fðξ0Þ, the energy density
and fluid velocity between the plates.
For eeq;2=eeq;1 relatively large (second plate not too

cold), the solution is a subsonic outflow from the hot to
the cold plate with ξ0 < ξs, corresponding to the sound
speed. However, when eeq;2=eeq;1 ≲ 0.07, the velocity
predicted by this method would exceed ξs. However, the
outflow from the hot body can never be supersonic.
The reason is that, in a steady outflow inside the plates,
the energy density rarefies and the velocity grows as a fluid

FIG. 1. Universal function determining the fluid energy density
at the plate surface esurface ¼ eeqFðξÞ as a function of the outflow
velocity variable ξ, shown in the subsonic range −ξs < ξ < ξs.
Negative ξ means energy flowing into the plate.
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element moves, as long as its speed is subsonic. When the
fluid element reaches the sonic point, this tendency inverts,
so one can never have a fluid element accelerated to
supersonic velocities for a steady outflow. Mathematically,
this shows up in the divergence of ∂ze and ∂zξ as ξ reaches ξs.
Thus, if eeq;2=eeq;1 ≲ 0.07, the outflow velocity from the

hot body is fixed to be the speed of sound, independently of
the cold body. The same conclusion follows from an
entirely different argument: once the motion becomes
sonic, when eeq;2=eeq;1 ≃ 0.07, the flow cannot be influ-
enced by a change in the cold body which lies in front of the
fluid flowing so that no information can travel toward the
hot plate. Therefore, if T2 is lowered further, the flow must
remain frozen to its sonic structure.
These different behaviors are summarized in Fig. 2, where

we show the three regimes of flow: (i) eeq;2=eeq;1 ≳ 0.07 (red
line), there is a subsonic flow of neutrinos from the hot to the
cold plate, with the energy density damping to the equilib-
rium values far away from the surfaces in both bodies.
(ii) eeq;2=eeq;1 ≃ 0.07 (blue line), the flow is sonic, and
the main properties are the same; this regime corresponds
to the maximum energy outflow from the hot plate.
(iii) eeq;2=eeq;1 ≲ 0.07 (green line), the outflow from the
hot plate is the same as (ii) and as large as it can be, with the
speed of sound.
Also in this third regime, the energy density decreases to

its cold-plate equilibrium value, but the bulk velocity in the
cold plate is nowquite different. In this regime, from thepoint
of view of the cold body, one has a steady inflow of energy at
the speed of sound, so the boundary conditions here are that
ξðz ¼ DÞ ¼ ξs, and eðz ¼ DÞ ≃ 0.348eeq;1 > 5eeq;2. Now,
if eðz ¼ DÞ ¼ 5eeq;2 the velocity would monotonically
decrease from vs to zero, while e would drop to its
equilibrium value eeq;2. However, if eðz ¼ DÞ > 5eeq;2, as
is the case for this regime, the tendency is in fact opposite, as
one can verify from the equation of motion. The velocity
actually increases and themotion becomes supersonic inside
the cold body, with e decreasing.
This trend continues until a critical velocity is reached,

which is determined by the condition ∂zξ ¼ 0, or, equiv-
alently, by the vanishing of the denominator of Eq. (23),
corresponding to the maximum of the green line in Fig. 2
at point A. Here, the velocity starts to decrease until it
reaches the speed of sound again (point B), where
eðξ ¼ ξsÞ ¼ 5eeq;2. One way to prove this result is to
integrate dξ=de from Eq. (23)1 and to notice that for
ξ ¼ ξs, the derivative dξ=de becomes infinite at e¼ 5eeq;2,
so independently of the initial value eðz¼DÞ the energy
density profile will reach e ¼ 5eeq;2 when it passes again
through the sonic point B. But here the profile has just the

correct value of energy density for the velocity to
smoothly go to 0 as the energy density smoothly goes
to eeq;2 as z → þ∞.
Notice that the velocity behavior in the cold plate is

discontinuous as we pass between the regimes: the slope
jumps from negative to positive between the blue and green
line at the surface of the cold plate (Fig. 2). In fact, the slope
of the green line is infinite at the surface as one can glean
from the denominator of Eq. (22) diverging when ξ → ξs.

FIG. 2. Steady-state flowof the neutrino fluid between twoplates
at temperatures T2 > T1. Energy density in units of eeq;1, the
blackbody density corresponding to the hot plate T1. We vary T2

and thus eeq;2 of the cold plate from subsonic transfer
(0.07≲ eeq;2=eeq;1 < 1) in red, sonic transfer in blue, and sonic
energy transfer with supersonic motion in the cold body
(0 ≤ eeq;2=eeq;1 ≲ 0.07) in green. In the lower panel, we show

the bulk velocity v, not ξ, with sound speed at vs ¼ 1=
ffiffiffi
3

p
≃ 0.577.

We use D ¼ 10 for the distance between the two surfaces.

1One cannot integrate the equation directly to obtain eðξÞ
since in this scenario this is a non-monotonic function; the
energy density decreases as the velocity first increases and then
decreases.
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Notice also that as T2 → 0, point A, where the velocity in
the cold body is largest, moves toward z → ∞, and in turn
the maximum velocity becomes closer to the speed of light.
At zero temperature, the fluid inside the cold body moves
with an ever-increasing velocity to the right while its
density drops to zero.
The flow parameters are also shown in Fig. 3 as a

function of eeq;2=eeq;1 ¼ ðT2=T1Þ4. Solid lines refer to
standard radiation, where the energy density between the
plates is trivially ðeeq;1 þ eeq;2Þ=2 and the energy flux
ðeeq;1 − eeq;2Þ=4. Dashed lines refer to the self-interacting
neutrino fluid. In both cases, the energy flux between the
two plates is very similar. In particular, for vanishing T2,
the energy flux is 0.24eeq;1 in the fluid case, compared with
0.25 in the standard case. On the other hand, the energy
density exhibits a noticeable drop in the fluid case and is
smallest in the limit of sonic outflow, for eeq;2=eeq;1 ≲ 0.07,
where e0 ¼ 0.35eeq;1, to be compared with 0.50 for the
standard Stefan-Boltzmann case.
Our solution for sonic outflow is similar to the one found

in Appendix H of Ref. [17], although these authors made
different physical assumptions. They set energy exchange
between the neutrino fluid and the nuclear medium to zero,
whereas we assumed LTE deep inside the plate, so the
properties of the neutrino fluid are fixed by the nuclear
medium. On the other hand, physically in the outer PNS
layers (the atmosphere), in steady state indeed there will be
no energy exchange. However, such a situation requires a

self-consistent temperature profile along the lines of our
Appendix B. Our assumption of an isothermal plate with
externally fixed properties is of course also unphysical
because one needs to assume an unspecified mechanism
that keeps the plate isothermal despite radiating.
While sonic outflow is a generic feature found both in

Ref. [17] and our treatment, our approach has the advantage
of relating the properties of the escaping fluid to the
properties (the temperature) of the source.

C. Number conservation

So far, our results have only used the fact that νSI turn
the neutrino gas into a fluid, and thus we have used energy
and momentum conservation and the ultra-relativistic
equation of state p ¼ ρ=3. A separate question is the
internal state of the neutrino fluid which, by assumption,
relaxes to kinetic equilibrium. If it also relaxes to chemical
equilibrium depends on the speed of number-changing
processes such as νν̄ → νν̄νν̄. In this case, the internal fluid
temperature follows from the energy density in its rest
frame. We here always model the background medium as
acting symmetrically for ν and ν̄, otherwise the neutrino
fluid can also inherit an excess lepton number before
decoupling.
If number-changing processes are too slow to be rel-

evant, the neutrino number density must be determined by
explicitly integrating an equation of number conservation.
We denote by n the comoving neutrino number density, so
that the equation of number conservation, assuming again
an energy-independent neutrino nucleon mean free path, is

∂zðγnvÞ ¼
nth − γn
λνN

; ð27Þ

where nth is the equilibrium neutrino number density within
the radiating body. Notice that the velocity profile is
entirely determined by energy and momentum conserva-
tion, so this new equation is not a novel dynamical
equation, but must only be solved within the fixed velocity
profile that we have determined earlier.
For T2 ¼ 0, which is the case of the hot plate radiating

into vacuum, we have integrated Eq. (27) numerically
assuming n ¼ nth for z → −∞, and using the velocity
profile that solves Eqs. (20) and (21). We find that at the
sonic point, namely at the surface of emission, the neutrino
number density n ¼ 0.29nth. Therefore, in the case of
number-conserving dynamics, this is the necessary boun-
dary condition to describe the dynamics outside of the
radiating surface.

D. Spherical geometry

We now extend these results to spherical geometry. In
place of the two plates we use an internal, hot sphere of
radius r1 and temperature T1 and an external, cold sphere of

FIG. 3. Parameters of the flow between the two blackbodies as
a function of eeq;2=eeq;1 ¼ ðT2=T1Þ4. Solid lines: standard radi-
ation according to the Stefan-Boltzmann Law. Dashed lines: fluid
with large νSI. We show the bulk velocity (only for the fluid) as
well as the energy density and energy flux in the lab frame in
units of B1.
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radius r2 and temperature T2 < T1. We will later also
comment on the opposite case T2 > T1. Assuming that
λνN ≪ r1 < r2, we can use plane-parallel geometry within
the spheres themselves. The only difference is the geo-
metric behavior in the vacuum gap between the surfaces,
where the energy density and the bulk velocity were
constant. Instead, in steady state, the spherical equations
must now hold

∂rðeξr2Þ ¼ 0;

1

3r2
∂r

h
eð5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
Þr2

i
−
2e
3r


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
− 1

�
¼ 0:

ð28Þ

These equations admit an implicit solution

GðξÞ ¼ ð2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
Þ3

324ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
− 1Þ2ð2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
Þ
¼

�
r
rs

�
4

:

ð29Þ

We choose the integration constant rs as a sonic radius at
which the velocity equals the speed of sound.
This solution admits an even simpler form in terms of the

original velocity variable

vð1 − v2Þ ¼ 2

3
ffiffiffi
3

p
�
rs
r

�
2

: ð30Þ

The velocity profile is shown in Fig. 4. There are two
branches for vðrÞ, corresponding to two physically differ-
ent behaviors. If the velocity at the inner surface r1 is

subsonic, then it tends to diminish with increasing r. On the
contrary, if the velocity at r1 is supersonic, it tends to
increase to the speed of light. It is a fundamental conclusion
that a steady subsonic flow decelerates in the direction of
propagation, while a supersonic flow accelerates. Notice
however that if the flow is inward—if the outer sphere is
hotter than the inner one—the two cases interchange, and a
subsonic flow would accelerate in the inward direction of
propagation.
The supersonic flow shown here corresponds to the

steady wind solution obtained in Ref. [17] for the motion
outside of the protoneutron star. On the other hand, the
completion of the solution below the blackbody surface,
which in Ref. [17] corresponds to the PNS, is in our case
quite different, since we consider that the neutrino fluid is
kept in thermal equilibrium inside the blackbody.
At radius r1, escaping the hot sphere, the unknown

escape velocity is ξ1. Entering the cold sphere, at radius r2,
the corresponding ξ2 is determined by the implicit equation

Gðξ2Þ
Gðξ1Þ

¼
�
r2
r1

�
4

: ð31Þ

If ξ1 is subsonic, one must choose the branch where both ξ1
and ξ2 are subsonic. As we know from our previous plane
case, for small enough eeq;2=eeq;1, the outflow velocity ξ1
will become sonic, in which case one must take the
supersonic branch ξ2 > ξ1. In both cases, we can define
a function ξ2ðξ1; r2=r1Þ giving the velocity at the outer
sphere as a function of the inner velocity and the ratio of the
radii. We can now construct an explicit steady spherical
solution. As in plane geometry, the behavior of the solution
depends on whether the outflow velocity from the inner
surface is subsonic or sonic.
In the subsonic branch, the outflow velocity is entirely

determined by the matching of the energy fluxes at the
inner and outer sphere. Both ξ1 and ξ2ðξ1; r2=r1Þ, the latter
determined from Eq. (31), are subsonic. From our
discussion in the plane case, we know that the energy
density at the emission from the inner sphere is eeq;1Fðξ1Þ,
while the energy density entering the outer sphere is
eeq;2F½−ξ2ðξ1; r2=r1Þ�. Since the energy fluxes must be
equal, we obtain a single equation for the outflow velocity
ξ1, which is

eeq;1Fðξ1Þξ1r21 ¼ eeq;2F½−ξ2ðξ1; r2=r1Þ�ξ2ðξ1; r2=r1Þr22:
ð32Þ

Notice that now the outflow velocity ξ1 depends not only
on eeq;2=eeq;1 as in the plane case, but also on r2=r1. If the
predicted outflow velocity exceeds the speed of sound, we
return to the earlier argument that it must be exactly sonic.
However, in our spherical geometry, the velocity becomes
supersonic already in the region between the spheres, and

FIG. 4. Velocity profile for spherical geometry according to
Eq. (30), measured from the sonic point at r ¼ rs.
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the fluid enters the cold, outer sphere already supersoni-
cally. As in the plane case, the flow structure then adjusts
itself inside the cold body in such a way as to match the
boundary condition at r → þ∞ that e → eeq;2.
We show the spherical flow parameters in Fig. 5 as a

function of eeq;2=eeq;1 (dashed lines) to be compared with
the energy density and flux in the noninteracting case (solid
lines), where the energy density at the inner surface would
be the average of eeq;1 and eeq;2. On the other hand, in the
νSI case, the neutrinos from the hot and the cold spheres
thermalize and, due to the geometrical dominance of the
cold sphere, the energy density at r1 is actually much closer
to eeq;2. However, the energy flux from the inner to the
outer sphere is not very different from the noninteracting
case. Especially for eeq;2=eeq;1 → 0 (zero-temperature outer
sphere), the standard and fluid cases lead to very similar
predictions. At a critical ratio eeq;2=eeq;1 ≃ 0.45, the outflow
from the inner sphere becomes sonic and is not anymore
influenced by the cold outer sphere. The specific number
0.45 of course depends on the chosen benchmark value of
r2=r1 ¼ 10, and slightly changes for other r2=r1 values.
If the outer sphere is hotter than the inner one, the flow is

reverted from outside in. However, the velocity now
increases in the inward direction until the velocity at the
inner sphere becomes equal to the speed of sound. As one

further lowers eeq;2=eeq;1, the flow cannot change any
further, because the velocity at the outer sphere is forced
to be subsonic—it is still true that the outflow from a hot
body cannot be supersonic, as we showed in the plane case.
Therefore, the flux remains frozen and is now entirely
determined by the cold body, contrarily to all earlier cases
where instead the hot body determined the flow. While this
may sound somewhat counterintuitive, there is no contra-
diction: the flow is now subsonic, and therefore it can be
determined by the central cold body. In fact, for r2 → ∞,
the cold body is essentially left inside a thermal hotter
environment, and it is clear that it must be the cold body
which determines the properties of the flow in this regime.

IV. DYNAMICAL EXPANSION

The steady state of a blackbody radiating a neutrino fluid
into a vacuum can be seen as the previous two-plate
solution for a zero-temperature cold plate (T2 → 0). This
solution corresponds to a steady, sonic outflow into space,
but how is it dynamically reached from a given initial
condition? Here we explore this question, assuming the
radiation process starts suddenly, mimicking SN core
collapse, so initially no neutrinos exist outside. The sudden
beginning leads to a front with a weak discontinuity in
energy density expanding into space, which gradually
approaches a steady outflow near the surface. Once more,
we separately discuss plane and spherical geometry.
We make the same physical assumptions as in the two-

plate problem (only emission-absorption, energy independ-
ence of the neutrinoMFP, no chemical potential, isothermal
radiating body) and denote the equilibrium neutrino black-
body energy density prescribed by the blackbody temper-
ature T as eeq ∝ T4.

A. Plane geometry

In the case of plane geometry, we need to solve the time-
dependent fluid equations of energy and momentum con-
servation

∂teþ ∂zðeξÞ ¼
eeq − e

λνN
; ð33aÞ

∂tðeξÞ þ ∂z

�
eð5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
Þ

3

�
¼ −

eξ
λνN

ð33bÞ

in analogy to the earlier stationary case of Eqs. (20) and
(21). Once more, e is the lab-frame fluid energy density and
F ¼ eξ its energy flux.
We first solve these equations numerically. To avoid

numerical instabilities, we use a smoothed surface and
modulate the MFP as

λ−1νN ¼ 5 km−1 ×

�
1 for z ≤ 10 km;

e−6ðz=km−10Þ for z > 10 km:
ð34Þ

FIG. 5. Parameters of the flow between two spherical surfaces
as a function of eeq;2=eeq;1 ¼ ðT2=T1Þ4, measured immediately
outside the inner sphere. In contrast to plane geometry, these
parameters evolve along the radial direction. Solid lines: standard
radiation. Dashed lines: fluid with large νSI. We show the bulk
velocity (only for the fluid) as well as the energy density and
energy flux in the lab frame in units of eeq;1. We choose a
benchmark value for r2=r1 ¼ 10.
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Likewise, as an initial condition eðz; t ¼ 0Þ for the fluid
energy density we use the same profile with the overall
coefficient eeq.
Figure 6 (left) shows the time evolution that we find

numerically. The energy density inside the blackbody
nearly immediately evolves to 0.35eeq, the value we
predicted for the steady sonic outflow in the earlier two-
plate model. The neutrino fluid first escapes with a front
moving with the speed of light. A rarefaction wave
smoothly connects this motion with the speed of sound
at the blackbody surface. As the front progressively moves
far away, the solution evolves indeed toward the steady

statewederived inSec. III,with a sonic outflowwith constant
velocity and constant energy density e0 ¼ 0.35eeq. Notice
that, since the outflow is sonic, this implies that the comoving
energy density at the emission surface is ρ0 ¼ 0.21eeq.
In fact, the solution outside of the surface exactly

coincide with the one found in Ref. [7] for the comple-
mentary problem of a gas inside a container whose piston is
suddenly removed. In Ref. [7] this solution was obtained by
the method of characteristics, somewhat obscuring its
mathematical simplicity. In reality, outside of the black-
body surface, the solution is self-similar and can be
expressed in the simple form

FIG. 6. Time evolution of the initial energy density and velocity profile in plane geometry (left) and spherical geometry (right). The
progressively lighter shadings correspond to snapshots in time taken every 50 μs from 0 μs to 250 μs. The thin dashed line in the upper
right panel denotes the steady velocity profile of Eq. (29).
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vðz; tÞ ¼
ffiffiffi
3

p ðz − zsÞ þ tffiffiffi
3

p
tþ ðz − zsÞ

; ð35Þ

and for the comoving energy density

ρðz; tÞ ¼ 0.21

�
tþ z − zs
t − zþ zs

�
−2=

ffiffi
3

p

; ð36Þ

where zs is the coordinate of the blackbody surface. The
factor 0.21 is chosen to match the boundary condition ρ ¼
0.21eeq at the blackbody surface for sonic outflow. Since
we have taken a profile for λνN which is smoothened for
numerical reasons, the value of zs is not exactly equal to
10 km, as is also visible from Fig. 6. However, we have
explicitly verified that with a value zs ≃ 11 km the self-
similar solution exactly matches our numerical solution at
all times.

B. Spherical geometry

For spherical geometry, the fluid equations to be
solved are

∂teþ
∂rðeξr2Þ

r2
¼ eeq − e

λνN
;

∂tðeξÞ þ
1

3r2
∂r

h
eð5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
Þr2

i
ð37aÞ

−
2e
3r


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
− 1

�
¼ −

eξ
λνN

: ð37bÞ

We solve these equations with the same conditions as for
plane geometry, except that now the z coordinate is
interpreted as radius r. We show the numerical solution
to these equations in Fig. 6 (right panels). Notice that, in
place of the energy density, we here show the combination
eðr=rsÞ2, where rs ¼ 11 km is the approximate radius of
the emitting sphere.
Initially, the solution behaves similarly to the plane case,

as one can expect. A neutrino weak discontinuity is
launched from the surface, and the energy density is here
equal to 0.35eeq, as we have repeatedly found. As the front
moves away, the self-similar profile breaks down; in fact,
there is no reason why we should expect a self-similar
solution for spherical geometry, where there is a character-
istic length, the radius of the emitting surface rs. Instead, the
velocity profile rapidly evolves into the steady supersonic
solution described implicitly in Eq. (29). Thus, in spherical
geometry, both the front and the region behind it movewith a
velocity close to the speed of light, maintaining their shape,
with the energy density decreasing as e ∝ r−2.

V. END OF THE SIGNAL

If the emission from the blackbody is interrupted, for
example by decreasing the temperature, the corresponding
neutrino emission drops. The fluid in the tail of the
emission will therefore propagate with a lack of pressure
behind it, which may slow it down and ultimately stretch
the signal duration. We now examine this question,
separately for plane and spherical geometry, and find that
in the latter case, the neutrino burst propagates as a shell of
constant thickness, in agreement with the usual fireball
theory.

A. Plane geometry

We consider the same setup adopted in Sec. IV, except
that now after t0 ¼ 20 km=c (we restore temporarily the
speed of light c to emphasize the units) we consider the
blackbody spectrum decaying exponentially in time as

eeqðtÞ ¼ eeq exp

�
−0.05

cðt − t0Þ
km

�
: ð38Þ

This form is meant to simulate the turning off of the
blackbody, which however happens only with a slow
exponential rather than abruptly to avoid dealing with
sharp features in the numerical solution.
Figure 7 (left panels) shows the temporal snapshots of

the corresponding solution. The region close to the front
keeps behaving according to the self-similar solution,
unaware that the blackbody has turned off. On the other
hand, after the blackbody temperature is dropped, the
escape from the emitting surface becomes subsonic, since
the fluid inside the blackbody has a lower pressure support
and slows down the fluid in front of it. For much later times,
the velocity profile would become even negative in the tail,
corresponding to the rarefaction wave caused by the lack of
pressure; in other words, there is fallback of a small fraction
of the fluid. However, our numerical solution develops
instabilities at such later times, so we only show snapshots
in the early phase.
One can prove that there is always a region that proceeds

without being affected by the blackbody turn-off. Signals
from the emitting surface can only propagate with a
maximum velocity given by the composition of the fluid
velocity and the speed of sound. We might call this limiting
surface the sound horizon, in front of which the flow is
unaffected. Therefore, there is a limiting curve given by the
equation

dz
dt

¼ vðz; tÞ þ vs
1þ vðz; tÞvs

; ð39Þ

with the initial condition that zðt0Þ ¼ zs, where zs is the
coordinate of the emitting surface. To the right of this
limiting curve, the flow remains given by the self-similar
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solution. Using Eq. (35), the limiting curve zlðtÞ is found to
be given by the implicit expression

�
tþ zlðtÞ
t − zlðtÞ

� 1ffiffi
3

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

zlðtÞ2
q ¼ t

t0
: ð40Þ

We find that this expression matches exactly the position at
which our numerical solution keeps behaving unaffected by
the blackbody turn-off. Notice that at late times, this
expression admits the asymptotic behavior

zlðtÞ
t

¼ 1 −
�
t0
t

� 2
ffiffi
3

p
2þ ffiffi

3
p
2

2−
ffiffi
3

p
2þ ffiffi

3
p
: ð41Þ

This shows that the sound horizon never catches up with a
light signal emitted simultaneously, since the delay with the
light signal keeps growing with time.
On the other hand, a fluid element that had been emitted,

say, at the initial time ti, moves at every instant with velocity
vðz; tÞ, so it is initially slower and at some point will be
caught in the tail of the motion which feels the lack of
pressure behind the expanding fluid and is slowed down.

FIG. 7. Time evolution of the initial energy density and velocity profile in plane geometry (left) and spherical geometry (right), with an
exponential turn-off of the blackbody emission after t0 ¼ 20 km=c. The progressively lighter shadings correspond to snapshots in time
taken every 50 μs from 0 μs to 250 μs.
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We can prove this picture by solving the equation dz=dt ¼
vðz; tÞ with the initial condition zðtiÞ ¼ 0. The calculation
follows the exact same steps as above, so we only report the
asymptotic result for the position of the fluid element at very
late times

zðtÞ
t

¼ 1 −
�
ti
t

� 2ffiffi
3

p þ1

2

ffiffi
3

p
−1ffiffi

3
p þ1: ð42Þ

Fromherewe see that, independently of howmuch earlier the
fluid element has been emitted, that is of howmuch smaller is
ti compared to t0, in the end all fluid elements will be caught
up behind the sound horizon.
Thus, as time goes by, an ever larger part of the fluid will

fall behind the sound horizon: an alternativeway to show this
is to integrate the lab-frame energy density ð4γ2 − 1Þρ=3,
using Eqs. (35) and (36), between zlðtÞ and z ¼ t, to
determine the total amount of energy that remains unper-
turbed. The integral can be performed analytically and, in the
limit of t → ∞, gives

Z
t

zlðtÞ

4γ2 − 1

3
ρdz ≃ 0.21eeq

3þ 2
ffiffiffi
3

p

3
t

�
t0
2t

� 4

2þ ffiffi
3

p
: ð43Þ

Thus the amount of energy of the fluid that remains

unaffected by the blackbody turning off decreases as t
ffiffi
3

p
−2ffiffi

3
p þ2.

This result confirms that in plane geometry, ultimately all of
the emitted fluid will be caught in the tail, because it has not
accelerated fast enough to escape the sound horizon zlðtÞ;
once it crosses this surface, it can finally feel the effect of the
blackbody turning off.
While the fluid in the tail behind the emission cannot be

described analytically in the setup described above, we can
gain some intuition about its behavior by taking the
extreme example of a semi-infinite column of fluid with
comoving energy density ρ0, for z > zs, moving with the
speed of sound—as is the case for the self-similar solution
when t → ∞—which is suddenly released free at z ¼ 0.
The lack of pressure support causes the fluid to expand to
negative z, even though it was initially moving to the right
with the speed of sound. The information about the lack of
pressure support can only propagate to the right of the
sound horizon given by dzl=dt ¼ ðvþ vsÞ=ð1þ vvsÞ,
where in this case v ¼ vs in the unperturbed motion, so
this equation trivially integrates to zl ¼ ffiffiffi

3
p

t=2. Thus, for
z >

ffiffiffi
3

p
t=2 the fluid continues its uniform sonic motion.

Behind the sonic horizon, a rarefaction wave launches to
the right, caused by the depression behind the fluid. The
absence of characteristic length scales implies that a self-
similar solution can be found, with the condition that v ¼
vs at zl ¼ ffiffiffi

3
p

t=2. One can easily verify that the velocity
profile

v ¼
ffiffiffi
3

p
z − t

z −
ffiffiffi
3

p
t

ð44Þ

satisfies the equations of motion and the boundary con-
dition. This velocity profile is valid, of course, for
z <

ffiffiffi
3

p
t=2, and furthermore for z > −t, where v ¼ −1,

where the fall-back motion that we had anticipated above
becomes luminal. By integrating the equations of motion,
we can also find the density profile

ρðz; tÞ ¼ ρ0

�
tþ z
t − z

�
2
ffiffi
3

p �
2 −

ffiffiffi
3

p

2þ ffiffiffi
3

p
�2

ffiffi
3

p

; ð45Þ

chosen so that ρð ffiffiffi
3

p
t=2; tÞ ¼ ρ0. Thus the fluid originally

in sonic motion is gradually entranced by the lack of
pressure support into a tail with this self-similar profile,
which smoothly goes to 0 at z ¼ −t.

B. Spherical geometry

In spherical geometry, the fluid accelerates immediately
nearly to the speed of light. Using the same time depend-
ence for the blackbody temperature, we show in Fig. 7
(right panels) the evolution of the flow. It is still true that a
part of the fluid proceeds completely unaware that the
blackbody behind it has turned off and that a tail develops
behind it. However, as we will now prove, there is a crucial
difference from the plane case: here, this tail does not feed
on the fluid in front of it that is performing its unperturbed
radial motion, and therefore the bulk of the fluid proceeds
maintaining its shape and thickness, without leading to a
sizable increase in the width of the neutrino shell and
therefore in the duration of the fireball. The reason for this
difference is that in spherical geometry, the fluid moves
much closer to the speed of light much closer to the
emitting surface compared to the plane-parallel case.
To prove our claim, we can deduce again the character-

istic line to the right of which the fluid remains unper-
turbed, using the definition

dr
dt

¼ vðrÞ þ vs
1þ vsvðrÞ

; ð46Þ

with rðt ¼ t0Þ ¼ rs and vðrÞ is now the steady velocity
profile given implicitly by Eq. (30). Notice that, while in
the plane case the velocity profile always depends on the
ratio z=t, here it is steady and only depends on r. This
equation can be integrated numerically to give rlðtÞ, the
position to the right of which the fluid proceeds unaffected.
We find that the solution to this equation nearly immedi-
ately evolves to the asymptotic profile

rlðtÞ ≃ rs þ ðt − t0Þ − 0.065rs; ð47Þ

so it lags behind a light signal emitted from the surface only
by 0.065rs—the delay accumulated in the initial phase of
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acceleration from sonic to near-luminal motion. In fact, this
delay that we find numerically can be analytically
expressed in terms of a rather complex combination of
hypergeometric functions and Gamma functions; we do not
reproduce the complicated expressions which however
exactly match with the numerical integration.
On the other hand, a fluid element emitted at a time ti and

moving with velocity vðrÞ in the unperturbed region has an
asymptotic position at a much later time t which we find
numerically to be

rfðtÞ ≃ rs þ ðt − tiÞ − 0.25rs: ð48Þ

We now see the crucial difference between spherical and
plane geometry. In plane geometry, fluid elements never
catch up with the speed of light, and the lag behind a light
signal keeps growing in time. All of the fluid is ultimately
entranced by the sound horizon, and slowed down by the
depression behind the fluid. In spherical geometry, the fluid
elements accumulate delay only very early, while accel-
erating, but the lag saturates to a finite value. Therefore,
fluid elements emitted sufficiently early before the black-
body turns off will never be caught by the sound horizon
and continue to propagate unaffected. Specifically, any
fluid element that has been emitted before the time ti ¼
t0 − 0.19rs will never fall below the sound horizon. More
generally, it follows that at any given instant fluid elements
emitted more than Δt ¼ 0.19rs earlier cannot be affected
by any perturbation at the emitting surface. Integrating
numerically the equation dr=dt ¼ vðrÞ, we find that such
fluid elements are beyond the sonic horizon rh ≃ 1.13rs.
Therefore, if the emission surface is at rs ¼ 10 km, the
sound horizon is only 1.3 km further out.
Because in a real SN we have a hierarchy that the signal

duration is orders of magnitude larger than rs, it follows
that only a negligible part of the emission can actually be
caught in the part of the motion that is slowed down by the
blackbody turning off. The fact that most of the fluid
remains unaffected can also be deduced by computing, as
we did for the plane case, the total energy contained in the
region between the sound horizon rlðtÞ and r ¼ rs þ t, the
position of the front; since asymptotically at large radii
the lab-frame energy density decreases as e ∝ r−2, it
follows that this energy is

Z
t

rlðtÞ
e4πr2dr ∝ t0 þ 0.065rs; ð49Þ

which is time-independent and therefore not subject to
further losses of fluid drifting to the tail region.

VI. DISCUSSION AND SUMMARY

Motivated by the possible existence of large νSI and the
question of how they would impact SN physics, we have
studied radiative energy transfer as well as outflow from a

hot radiating body representative of a collapsed SN core.
The long and short of our findings is that the fluid nature of
a self-coupled relativistic neutrino gas has surprisingly little
impact on these phenomena, although quantitatively,
numerical modifications arise for the Rosseland mean
opacities or the outflow rate from the neutrino sphere.
Our main approach was to use the fluid equations of

energy and momentum conservation, obviating the need for
a detailed understanding of its internal state. As long as the
interaction rates do not depend on energy, it is irrelevant,
for example, if the fluid reaches chemical equilibrium by
number-changing νSI, although otherwise numerical
differences arise for the transport coefficients because of
different averaging procedures over energy.
Our main result was to match the diffusion regime deeply

inside the radiating body with the free expansion outside,
leading to a consistent treatment of the outflow into space.
Our steady-state solution resembles the steady wind sol-
ution of Ref. [17], but we have taken it one step further in
that we have matched the hydrodynamical flux to a thermal
source. In this way, the properties of the source feed
through all the way to the detectable neutrino signal.
We have completely dismissed the picture of a sudden

release of a blob of neutrino fluid that was initially used in
Ref. [7] to illustrate that νSI do not prevent neutrinos from
streaming away. It was also proposed in Ref. [17] as an
alternative to steady outflow, but without explaining how
the required initial condition for the entire blob would be
engineered by SN-related physics.
We have assumed throughout that neutrinos behave as a

fluid in every stage of the emission, but this condition has
different quantitative meaning in different regions. In the
diffusion regime deep inside the PNS, neutrinos behave as a
fluid if they equilibrate between collisions with nuclei,
implying the strong assumption λνν ≪ λνN , with detailed
modifications by neutrino degeneracy.
As for the outflow from the neutrino sphere, where by

definition λνN ≃ rs, the fluid nature of neutrinos here
requires the much less stringent condition λνν ≪ rs. This
is, in order of magnitude, the condition that is sometimes
invoked to define the “trapping” region, for example in
Ref. [18]. We may then expect that couplings larger than
the trapping region by, say, one order of magnitude would
be described by the fluid dynamics discussed here.
For fireball propagation, the requirement is yet weaker:

the MFP λνν must be much shorter than the thickness of the
propagating shell. On the other hand, as the fireball
expands, the rest-frame number density decreases, so λνν
increases and of course at some point it will become larger
than the thickness of the shell. The details of this decou-
pling are discussed in our companion paper [44]. (See also
Refs. [45,46] for a similar decoupling in the context of
axion-sourced photon fireballs.)
The exact meaning of fluid behavior vs traditional one

would be important for a detailed study for particle-physics
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parameters where neutrinos might behave like usual radi-
ation deeply inside the PNS, but as a fluid for outflow and
initial fireball propagation. Our finding that fluid behavior
causes only small modifications in any phase remains
unchanged if, for given parameters, the fluid behavior only
occurs in the later phases.
On the technical level, our results agree with the founda-

tional ones of Dicus et al. [7] concerning the sudden
expansion of a fluid in plane-parallel geometry, although
the self-similar nature of the solution was somewhat
obscured in their expressions. However, we significantly
advance on those results by considering the diffusive
dynamics of the interior of the PNS, as well as extending
results to spherical geometry. Besides, even in plane
geometry, these authors consider an infinite reservoir of
fluid, and therefore never discuss what happens to the tail of
the signal after the reservoir is exhausted.
For spherical geometry, the dynamics outside the PNS

quickly stabilizes into a steady solution, whose velocity
profile coincides with the “steady wind” discussed in
Ref. [17]. However, while Ref. [17] proposed that this
solution may require unique conditions within and outside
the PNS to actually be realized, we show that an initial
condition corresponding to the PNS beginning to radiate in
a vacuum does actually relax quickly to the steady state.
This in turn descends from the sonic nature of the outflow,
by which the solution close to the PNS cannot depend
sensitively on the initial, transient emission far from it. In
addition, compared to Ref. [17], we are able to match this
solution with the diffusive thermal source and explicitly
predict the energy flux emitted by the PNS, albeit for a
simplified source model in the form of an isothermal body.
In the diffusion limit, Cerdeño et al. [20] have proposed

that the energy flow would be identical between a fluid and
standard radiation, using an argument of momentum
conservation in binary neutrino collisions. Such an argu-
ment is in itself not convincing, since the energy flow
depends on the collisions with the nucleons. In turn such
collisions depend on the angular and energy distribution of
neutrinos, which can be changed by secret interactions even
if momentum and energy are conserved in individual
neutrino-neutrino collisions. We do find that the energy
transport is identical, albeit only for energy-independent
λνN , but we clarify that a kinetic approach to gain insight
into the internal fluid interactions can be too simplistic, and
the reasons for the similar transport go beyond momentum
conservation. Still, we broadly agree with their conclusion
for the dynamics inside the PNS.
We have also discussed the “tail” of the neutrino signal,

emitted when the blackbody emission starts to decrease.
We address the somewhat counterintuitive idea of a shell of
neutrino fluid that propagates without expanding, in spite
of the lack of pressure support behind it. In plane geometry,
indeed the whole of the fluid initially propagating as a shell

is ultimately slowed down by the smaller density behind it,
resulting in a stretch of the thickness of that shell. However,
in spherical geometry, this phenomenon is much less
pronounced, and ultimately irrelevant for observable fea-
tures. The reason is that the information about the black-
body turn off cannot catch up with the already emitted
fluid, which has accelerated to essentially the speed of
light. Since the fluid speed becomes nearly luminal at
distances of the order of rs, the radius of the surface, while
the duration of the signal is orders of magnitude larger, only
a negligible part of the fluid is actually affected by the
blackbody turning down. This phenomenon is familiar
from the usual fireball expansion which thus fundamentally
depends on spherical geometry as opposed to a plane-
parallel model.
Thus, while the boundary condition for the fluid outflow

at the neutrino sphere is the same for plane and spherical
geometry, the subsequent propagation differs strongly. In
spherical geometry, once the fluid becomes essentially
luminal, the fluid nature of the neutrinos becomes essen-
tially irrelevant from the point of view of their angular
distribution. In this sense, one would not expect a strong
modification of the SN burst duration observable at Earth:
The burst duration is essentially set by the outflow speed at
the PNS and not by the fireball propagation. On the other
hand, the internal fluid dynamics (chemical equilibrium or
not) may in principle have some impact on the observable
signal properties.
We will return to these more phenomenological ques-

tions in a companion letter [44], where we use the technical
input from the present more abstract study.

ACKNOWLEDGMENTS

We thank Shashank Shalgar, Irene Tamborra, Mauricio
Bustamante, Po-Wen Chang, Ivan Esteban, John Beacom,
Todd Thompson, Christopher Hirata, and Thomas Janka for
informative discussions and/or comments on themanuscript.
D. F. G. F. is supported by the Villum Fonden under Project
No. 29388 and the European Union’s Horizon 2020
Research and Innovation Program under the Marie
Skłodowska-Curie Grant Agreement No. 847523
“INTERACTIONS.” G. G. R. acknowledges partial support
by the German Research Foundation (DFG) through the
Collaborative Research Centre “Neutrinos and Dark Matter
in Astro- and Particle Physics (NDM),” Grant No. SFB-
1258-283604770, and underGermany’s Excellence Strategy
through the Cluster of Excellence ORIGINS EXC-2094-
390783311. E. V. acknowledges support by the European
Research Council (ERC) under the European Union’s
Horizon Europe Research and Innovation Program (Grant
No. 101040019). This article is based uponwork fromCOST
Action COSMIC WISPers CA21106, supported by COST
(European Cooperation in Science and Technology).

SUPERNOVA EMISSION OF SECRETLY INTERACTING … PHYS. REV. D 109, 023017 (2024)

023017-17



APPENDIX A: ENERGY-DEPENDENT
INTERACTION

In the main text, we have usually assumed that the
neutrino interaction with the background medium does not
depend on energy (“gray atmosphere model”) and that only
emission and absorption contribute, not scattering. We here
briefly explore some consequences of the inevitable energy
dependence, for neutrinos roughly quadratic.
In the diffusion regime of Sec. II, we have found the

usual Rosseland mean in Eq. (9) and fluid equivalent in
Eq. (14). If we assume the MFP varies as

λνN ¼ λ0

�
ϵ0
ϵ

�
2

; ðA1Þ

these averages are

λ̄rad ¼
5

7π2
λ0ϵ

2
0

T2
≃ λ0

�
ϵ0

3.72T

�
2

; ðA2aÞ

λ̄fluid ¼
147

310π2
λ0ϵ

2
0

T2
≃ λ0

�
ϵ0

4.56T

�
2

; ðA2bÞ

implying λ̄fluid=λ̄rad ¼ 1029=1550 ≃ 0.664 and thus a
somewhat reduced MFP for the fluid.
In the diffusion limit, the fluid bulk velocity v ≪ 1 is

nonrelativistic, allowing one to use the same interaction
rate for energy and momentum exchange, whereas in the
decoupling region near the PNS surface, v reaches the
velocity of sound and one has to be more systematic.
The energy extracted from the nucleon fluid per unit time
and volume by collisions (emission and absorption) is

�
∂e
∂t

�
coll

¼ −6
Z

d3p
ð2πÞ3 ϵp

f − fth

λνN
; ðA3Þ

where f is the neutrino occupation number, fth its thermal
counterpart appropriate to the surrounding medium T, ϵp is
the neutrino energy, and the factor 6 accounts for the
number of neutrino species. Similarly, the gain in the
neutrino number is

�
∂n
∂t

�
coll

¼ −6
Z

d3p
ð2πÞ3

f − fth

λνN
: ðA4Þ

Finally, the gain in momentum along the axis z is

�
∂ðeξÞ
∂t

�
coll

¼ −6
Z

d3p
ð2πÞ3 ϵp cos θ

f − fth

λνN
; ðA5Þ

where cos θ is the angle of the neutrino with the z axis. If
the MFP does not depend on energy, these expressions lead
to the exchange terms adopted in the main text.

If instead the relaxation rate does depend on energy,
these exchange terms would become more complex, non-
linear functionals of the energy density, momentum density,
and neutrino number density. As an explicit example, we
use quadratic energy dependence of Eq. (A1). Moreover,
we assume that number-changing reactions in the neutrino
fluid are so fast that both kinetic and chemical equilibrium
obtain and the fluid is fully described by its bulk velocity v
and its internal temperature Tν in its rest frame, not to be
confused with the surrounding matter temperature T in the
matter rest frame. The integration then leads to the form for
the energy and momentum exchange term�
∂e
∂t

�
coll

¼ −
1

λ0ϵ
2
0

31π4

84

�
5þ 10v2 þ v4

5ð1 − v2Þ T6
ν − T6

�
: ðA6Þ

A similar integration for the momentum-exchange term
leads to

�
∂ðeξÞ
∂t

�
coll

¼ −
1

λ0ϵ
2
0

31π4

84

2vð5þ 3v2Þ
5ð1 − v2Þ T6

ν: ðA7Þ

By inverting the standard thermodynamic relations, these
can be expressed in terms of e and ξ as nonlinear
expressions.
The corresponding equations for the steady outflow are

∂zF ¼
�
∂e
∂t

�
coll

and ∂zM ¼
�
∂ðeξÞ
∂t

�
coll

: ðA8Þ

They can be solved numerically with the usual initial
condition that the neutrino fluid is in thermal equilibrium
deep in the body. Our result that the maximum outflow
velocity from a hot body is the speed of sound is entirely
independent of the specific form of the exchange term,
since it only depends on the property of the fluid equations
that the characteristics have the slope of the speed of sound.
Surprisingly, the numerical integration reveals that, for this
modified energy-momentum exchange term, also the
energy density at sonic outflow from the body is still
equal to e ≃ 0.35eeq. While we cannot draw from this the
general conclusion that any energy dependence of the MFP
would lead to identical results, this is certainly suggestive
that our assumption of energy-independent MFP does not
strongly impact our conclusions.

APPENDIX B: SELF-CONSISTENT
TEMPERATURE PROFILE

In the main text, we have always assumed the radiating
body to have a prescribed temperature profile which,
moreover, was taken to be isothermal. In a realistic
astrophysical situation, on the other hand, this profile is
the result of energy transfer by neutrinos and other agents,
such as convection, as well as the hydrodynamic solution
for the background medium. Usually the temperature
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profile decreases toward the surface and the emerging
radiation is a superposition of blackbody spectra emitted
from different depths. Typically it is a good approximation
to think of the radiation as emerging from the optical depth
τ ¼ 2=3with a flux corresponding to the Stefan-Boltzmann
law, evaluated with the temperature and radiating surface at
that depth [40]. If the interaction rate depends strongly on
energy, as is the case for neutrinos, the idea of an emitting
“neutrino sphere” strongly depends on energy and thus
becomes a rather approximate concept.
In normal radiative transfer in plane-parallel geometry,

however, a self-consistent matter profile is not necessary
because one can measure distance along z in units of the
MFP and depth is measured as the dimensionless optical
depth τ of the radiation. This situation is equivalent to using
a homogeneous matter profile that ends abruptly at the
surface, even though geometrically it may follow a power-
law profile, for example, that geometrically never ends. If
there are other scales in the problem, this approach is no
longer exact, for example in spherical geometry, where the
radiation decoupling layer need not be thin compared to the
radius.
However, to develop an impression of the difference

between standard radiation and fluid, we now consider a
plane-parallel situation and search for a self-consistent
temperature profile TðτÞ or rather, of eeqðτÞ ∝ T4ðτÞ, where
eeq as usual represents the neutrino energy density in LTE
prescribed by TðτÞ, where τ is the optical depth.
The temperature profile is self-consistent in a stationary

state if there is no energy exchange between matter and the
neutrino fluid, implying that the lab-frame neutrino energy
density eðzÞ ¼ eeqðzÞ. In turn, this means that the energy
flux F ¼ eξ is constant: ∂zðeξÞ ¼ 0. This formulation of
the problem was also used in the wind outflow scenario of
Ref. [17], providing the matching with the dynamics inside
the supernova.
The equation of momentum conservation Eq. (21) for the

neutrino fluid then gives

∂z

�
5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
3ξ

�
¼ −

1

λνN
: ðB1Þ

Let us call τ ¼ −
R
z
0

dz0
λνNðz0Þ the optical depth measured from

the surface inside the material. Then Eq. (B1) is easily
integrated and yields

5 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3ξ2

p
¼ 3ξðαþ τÞ: ðB2Þ

Here α is an integration constant, to be chosen according to a
boundary condition which we may take to be the fluid bulk
velocity at the emission point. We may take this condition to
be a sonic outflow, i.e., ξ ¼ ξs ¼ 2

ffiffiffi
3

p
=5 at τ ¼ 0, which

gives α ¼ ffiffiffi
3

p
=2. Then the velocity profile becomes

ξðτÞ ¼ 6

5
ffiffiffi
3

p þ 10τ þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð ffiffiffi

3
p þ τÞ

q : ðB3Þ

In turn, the energy density behaves as

eeqðτÞ ¼ eðτÞ ¼ F
ξðτÞ ; ðB4Þ

shown in Fig. 8 as a dashed line. Here the constant energy
fluxF is a chosen parameter of our problem. Deep inside the
material (τ → ∞) this is eeqðτÞ ¼ 3Fτ, providing a linearly
increasing profilewith depth. Close to the emission point, the
profile drops with a vertical asymptote as the speed
approaches the speed of sound, corresponding to the result
obtained also in the main text that sonic emission is the
maximum possible outflow velocity.
We may compare this result with the corresponding case

for a gray atmosphere with noninteracting radiation as the
dominant heat transfer mechanism. This amounts to deter-
mining the solution of the problem

μ∂τfðμ; τÞ ¼ −fthðτÞ þ fðμ; τÞ; ðB5Þ

where fðμ; τÞ is the distribution function of neutrinos in the
lab frame with μ ¼ cos θz the cosine of the angle with the z
axis and τ is the optical depth. Here fthðτÞ is the
equilibrium distribution function that neutrinos would
assume in LTE. In turn, the local temperature of the
medium should be self-consistently determined in such a
way that the energy flux carried by neutrinos

FIG. 8. Self-consistent temperature profile as a function of
optical depth, for the standard noninteracting case (solid) and the
interacting fluid case (dashed). F is the chosen value for the
constant energy flux in this problem.
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F ¼ 6

Z
fμ

d3p
ð2πÞ3 ðB6Þ

is constant. Here we have included a factor 6 for six species,
but this is not crucial in the following. The problem should
be solved with the condition that at the surface (τ ¼ 0) there
are no incoming particles, i.e., fðμ; 0Þ ¼ 0 for μ < 0.
The solution to this problemcan be found by analogy, after

one notices that in a scattering atmosphere, where neutrinos
are not emitted but only scattered, the energy flux is an
automatic invariant of motion. Therefore, one needs only
solve the corresponding problem for a scattering atmosphere

μ∂τfðμ; τÞ ¼ −
1

2

Z þ1

−1
dμ0fðμ0; τÞ þ fðμ; τÞ ðB7Þ

and finally identify the source function

fthðτÞ ¼ 1

2

Z þ1

−1
dμfðμ; τÞ: ðB8Þ

This is the well-known Milne problem, whose solution can
be found to a very good approximation using Gaussian sums
[32]. One usually finds the solution in a conventional form
involving a tabulatedHopf functionqðτÞ; in our notation, this
form is

eeqðτÞ ¼ 6

Z
fthðτÞ d3p

ð2πÞ3 ¼ 3F½τ þ qðτÞ�: ðB9Þ

The function qðτÞ ≃ 2=3 is nearly constant over the
entire range. eeqðτÞ based on this constant value is called

the Milne-Eddington approximation and can be found by
simple heuristic arguments, e.g., in Ref. [47].
We show the standard eeqðτÞ in Fig. 8 as a solid line,

where we use the Hopf function qðτÞ as tabulated in
Ref. [48]. A representation in terms of integral expressions
is provided in Eqs. (3)–(79) of Mihalas [30]. In the limit
τ → ∞, one finds [30]

qð∞Þ ¼ 6

π2
þ 1

π

Z
π=2

0

dθ

�
3

θ2
−

1

1 − θ cot θ

�
≃ 0.710:

ðB10Þ

Therefore, deep in radiating body, one finds eeqðτÞ ¼
3Fðτ þ 0.710Þ, whereas in the fluid case, our corresponding
result is eeqðτÞ ¼ 3Fðτ þ 0.866Þ. As we had already found
in Sec. II, in the diffusion limit and for a gray-atmosphere
model, the radiation and fluid cases provide identical energy
transfer. Here this finding turns around in that they provide
the same self-consistent linear profile for eeqðτÞ. On the other
hand, this similarity breaks down close to the surface, where
in the fluid case the flow becomes sonic and the energy
density has a downward cusp.
One corollary of this comparison is that the energy flux

from a nonisothermal body is given roughly by the usual
Stefan-Boltzmann law applied at optical depth τ ¼ 2=3.
The similarity between energy transfer by standard radi-
ation or a fluid also manifests itself in this context. The
findings of the main text are not limited to isothermal
radiating bodies.

[1] J. M. Berryman et al., Neutrino self-interactions: A white
paper, Phys. Dark Universe 42, 101267 (2023).

[2] D. A. Dicus, E. W. Kolb, and D. L. Tubbs, Spontaneous
lepton number violation and deleptonization in stellar
collapse, Nucl. Phys. B223, 532 (1983).

[3] G. B. Gelmini, S. Nussinov, and M. Roncadelli, Bounds and
prospects for the Majoron model of left-handed neutrino
masses, Nucl. Phys. B209, 157 (1982).

[4] E.W.Kolb andM. S. Turner, Supernova 1987A and the secret
interactions of neutrinos, Phys. Rev. D 36, 2895 (1987).

[5] A.Manohar,A limit on the neutrino-neutrino scattering cross-
section from the supernova, Phys. Lett. B 192, 217 (1987).

[6] Z. G. Berezhiani and M. I. Vysotsky, Neutrino decay in
matter, Phys. Lett. B 199, 281 (1987).

[7] D. A. Dicus, S. Nussinov, P. B. Pal, and V. L. Teplitz,
Implications of relativistic gas dynamics for neutrino-
neutrino cross-sections, Phys. Lett. B 218, 84 (1989).

[8] G. M. Fuller, R. Mayle, and J. R. Wilson, The Majoron
model and stellar collapse, Astrophys. J. 332, 826 (1988).

[9] A. V. Berkov, Y. P. Nikitin, A. L. Sudarikov, and
M. Y. Khlopov, Possible manifestations of anomalous
4 neutrino interaction, Sov. J. Nucl. Phys. 48, 497
(1988).

[10] R. V. Konoplich and M. Y. Khlopov, Constraints on triplet
Majoron model due to observations of neutrinos from stellar
collapse, Sov. J. Nucl. Phys. 47, 565 (1988).

[11] Z. G. Berezhiani and A. Y. Smirnov, Matter induced neu-
trino decay and supernova SN1987A, Phys. Lett. B 220, 279
(1989).

[12] Y. Farzan, Bounds on the coupling of the Majoron to light
neutrinos from supernova cooling, Phys. Rev. D 67, 073015
(2003).

[13] M. Blennow, A. Mirizzi, and P. D. Serpico, Nonstandard
neutrino-neutrino refractive effects in dense neutrino gases,
Phys. Rev. D 78, 113004 (2008).

[14] L. Heurtier and Y. Zhang, Supernova constraints on massive
(pseudo)scalar coupling to neutrinos, J. Cosmol. Astropart.
Phys. 02 (2017) 042.

FIORILLO, RAFFELT, and VITAGLIANO PHYS. REV. D 109, 023017 (2024)

023017-20

https://doi.org/10.1016/j.dark.2023.101267
https://doi.org/10.1016/0550-3213(83)90069-X
https://doi.org/10.1016/0550-3213(82)90107-9
https://doi.org/10.1103/PhysRevD.36.2895
https://doi.org/10.1016/0370-2693(87)91171-3
https://doi.org/10.1016/0370-2693(87)91375-X
https://doi.org/10.1016/0370-2693(89)90480-2
https://doi.org/10.1086/166695
https://doi.org/10.1016/0370-2693(89)90052-X
https://doi.org/10.1016/0370-2693(89)90052-X
https://doi.org/10.1103/PhysRevD.67.073015
https://doi.org/10.1103/PhysRevD.67.073015
https://doi.org/10.1103/PhysRevD.78.113004
https://doi.org/10.1088/1475-7516/2017/02/042
https://doi.org/10.1088/1475-7516/2017/02/042


[15] A. Das, A. Dighe, and M. Sen, New effects of non-standard
self-interactions of neutrinos in a supernova, J. Cosmol.
Astropart. Phys. 05 (2017) 051.

[16] S. Shalgar, I. Tamborra, and M. Bustamante, Core-collapse
supernovae stymie secret neutrino interactions, Phys. Rev. D
103, 123008 (2021).

[17] P.-W. Chang, I. Esteban, J. F. Beacom, T. A. Thompson, and
C. M. Hirata, Toward powerful probes of neutrino self-
interactions in supernovae, Phys. Rev. Lett. 131, 071002
(2023).

[18] D. F. G. Fiorillo, G. G. Raffelt, and E. Vitagliano, Strong
supernova 1987A constraints on bosons decaying to neu-
trinos, Phys. Rev. Lett. 131, 021001 (2023).

[19] K. Akita, S. H. Im, and M. Masud, Probing non-standard
neutrino interactions with a light boson from next galactic
and diffuse supernova neutrinos, J. High Energy Phys. 12
(2022) 050.

[20] D. G. Cerdeño, M. Cermeño, and Y. Farzan, Constraints
from the duration of supernova neutrino burst on on-shell
light gauge boson production by neutrinos, Phys. Rev. D
107, 123012 (2023).

[21] C. A. Manzari, J. Martin Camalich, J. Spinner, and R.
Ziegler, Supernova limits on muonic dark forces, arXiv:
2307.03143.

[22] P. Vitello and M. Salvati, Hydrodynamic free expansion of a
localized relativistic plasma, Phys. Fluids 19, 1523 (1976).

[23] M. Yokosawa and S. Sakashita, Relativistic hydrodynamics
of a free expansion and a shock wave in one-dimension,
Astrophys. Space Sci. 72, 447 (1980).

[24] R. I. Epstein, Lepton-driven convection in supernovae,
Mon. Not. R. Astron. Soc. 188, 305 (1979).

[25] A. Burrows and J. M. Lattimer, Convection, type II super-
novae, and the early evolution of neutron stars, Phys. Rep.
163, 51 (1988).

[26] W. Keil, H.-T. Janka, and E. Müller, Ledoux convection in
protoneutron stars—A clue to supernova nucleosynthesis?,
Astrophys. J. Lett. 473, L111 (1996).

[27] H.-T. Janka, K. Kifonidis, and M. Rampp, Supernova
explosions and neutron star formation, in Physics of
Neutron Star Interiors, edited by D. Blaschke, N. K.
Glendenning, and A. Sedrakian (Springer, New York,
2001), Vol. 578, p. 333.

[28] L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Multidi-
mensional radiation/hydrodynamic simulations of proto-
neutron star convection, Astrophys. J. 645, 534 (2006).

[29] H. Nagakura, A. Burrows, D. Radice, and D. Vartanyan, A
systematic study of proto-neutron star convection in three-
dimensional core-collapse supernova simulations, Mon.
Not. R. Astron. Soc. 492, 5764 (2020).

[30] D. Mihalas, Stellar Atmospheres, 2nd ed. (Freeman, San
Francisco, 1978).

[31] R. J. Rutten, Radiative transfer in stellar atmospheres,
Utrecht University Lecture Notes, https://robrutten.nl/
rrweb/rjr-pubs/2003rtsa.book.....R.pdf (2003).

[32] S. Chandrasekhar, Radiative Transfer (Courier Corporation,
Mineola, NY, 2013).

[33] R. Bollig, H.-T. Janka, A. Lohs, G. Martinez-Pinedo, C. J.
Horowitz, and T. Melson, Muon creation in supernova
matter facilitates neutrino-driven explosions, Phys. Rev.
Lett. 119, 242702 (2017).

[34] D. F. G. Fiorillo, M. Heinlein, H.-T. Janka, G. Raffelt, and E.
Vitagliano, Supernova simulations confront SN 1987A
neutrinos, arXiv:2308.01403.

[35] H.-T. Janka, Explosion mechanisms of core-collapse super-
novae, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).

[36] H.-T. Janka, Neutrino-driven explosions, in Handbook of
Supernovae, edited by A.W. Alsabti and P. Murdin
(Springer, New York, 2017), p. 1095, 10.1007/978-3-319-
21846-5_109.

[37] A. Burrows, D. Radice, D. Vartanyan, H. Nagakura, M. A.
Skinner, and J. C. Dolence, The overarching framework of
core-collapse supernova explosions as revealed by 3D
FORNAX simulations, Mon. Not. R. Astron. Soc. 491,
2715 (2020).

[38] A. Mezzacappa, E. Endeve, O. E. B. Messer, and S. W.
Bruenn, Physical, numerical, and computational challenges
of modeling neutrino transport in core-collapse supernovae,
Living Rev. Comput. Astrophys. 6, 4 (2020).

[39] A. Burrows and D. Vartanyan, Core-collapse supernova
explosion theory, Nature (London) 589, 29 (2021).

[40] A. Caputo, G. Raffelt, and E. Vitagliano, Radiative transfer
in stars by feebly interacting bosons, J. Cosmol. Astropart.
Phys. 08 (2022) 045.

[41] S. A. Bludman and K. A. van Riper, Diffusion approxima-
tion to neutrino transport in dense matter, Astrophys. J. 224,
631 (1978).

[42] L. J. van den Horn and J. Cooperstein, Neutrino diffusion in
stellar collapse, Astrophys. J. 300, 142 (1986).

[43] S. Weinberg, Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity (John
Wiley and Sons, New York, 1972).

[44] D. F. G. Fiorillo, G. Raffelt, and E. Vitagliano, companion
Letter, Large neutrino secret interactions, small impact on
supernovae, Phys. Rev. Lett. 132, 021002 (2024).

[45] M. Diamond, D. F. G. Fiorillo, G. Marques-Tavares, and E.
Vitagliano, Axion-sourced fireballs from supernovae, Phys.
Rev. D 107, 103029 (2023).

[46] M. Diamond, D. F. G. Fiorillo, G. Marques-Tavares, I.
Tamborra, and E. Vitagliano, Multimessenger constraints
on radiatively decaying axions from GW170817, arXiv:
2305.10327.

[47] Neutron Physics for Nuclear Reactors: Unpublished Writ-
ings by Enrico Fermi, edited by S. Esposito and O. Pisanti
(World Scientific, Singapore, 2010), 10.1142/7541.

[48] J. I. F. King, The Hopf q-function simply and precisely
evaluated, Astrophys. J. 132, 509 (1960).

SUPERNOVA EMISSION OF SECRETLY INTERACTING … PHYS. REV. D 109, 023017 (2024)

023017-21

https://doi.org/10.1088/1475-7516/2017/05/051
https://doi.org/10.1088/1475-7516/2017/05/051
https://doi.org/10.1103/PhysRevD.103.123008
https://doi.org/10.1103/PhysRevD.103.123008
https://doi.org/10.1103/PhysRevLett.131.071002
https://doi.org/10.1103/PhysRevLett.131.071002
https://doi.org/10.1103/PhysRevLett.131.021001
https://doi.org/10.1007/JHEP12(2022)050
https://doi.org/10.1007/JHEP12(2022)050
https://doi.org/10.1103/PhysRevD.107.123012
https://doi.org/10.1103/PhysRevD.107.123012
https://arXiv.org/abs/2307.03143
https://arXiv.org/abs/2307.03143
https://doi.org/10.1063/1.861355
https://doi.org/10.1007/BF00639150
https://doi.org/10.1093/mnras/188.2.305
https://doi.org/10.1016/0370-1573(88)90035-X
https://doi.org/10.1016/0370-1573(88)90035-X
https://doi.org/10.1086/310404
https://doi.org/10.1086/504068
https://doi.org/10.1093/mnras/staa261
https://doi.org/10.1093/mnras/staa261
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://robrutten.nl/rrweb/rjr-pubs/2003rtsa.book.....R.pdf
https://doi.org/10.1103/PhysRevLett.119.242702
https://doi.org/10.1103/PhysRevLett.119.242702
https://arXiv.org/abs/2308.01403
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1007/978-3-319-21846-5_109
https://doi.org/10.1007/978-3-319-21846-5_109
https://doi.org/10.1093/mnras/stz3223
https://doi.org/10.1093/mnras/stz3223
https://doi.org/10.1007/s41115-020-00010-8
https://doi.org/10.1038/s41586-020-03059-w
https://doi.org/10.1088/1475-7516/2022/08/045
https://doi.org/10.1088/1475-7516/2022/08/045
https://doi.org/10.1086/156412
https://doi.org/10.1086/156412
https://doi.org/10.1086/163788
https://doi.org/10.1103/PhysRevLett.132.021002
https://doi.org/10.1103/PhysRevD.107.103029
https://doi.org/10.1103/PhysRevD.107.103029
https://arXiv.org/abs/2305.10327
https://arXiv.org/abs/2305.10327
https://doi.org/10.1142/7541
https://doi.org/10.1086/146953

