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Gravitational microlensing is one of the strongest observational techniques to observe nonluminous
astrophysical bodies. Existing microlensing observations provide tantalizing evidence of a population of
low-mass objects whose origin is unknown. These events may be caused by terrestrial-mass free-floating
planets or by exotic objects such as primordial black holes. However, the nature of these objects cannot be
resolved on an event-by-event basis, as the induced light curve is degenerate for lensing bodies of identical
mass. One must instead statistically compare distributions of lensing events to determine the nature of the
lensing population. While existing surveys lack the statistics required to identify multiple subpopulations of
lenses, this will change with the launch of the Nancy Grace Roman Space Telescope. Roman’s Galactic
Bulge Time Domain Survey is expected to observe hundreds of low-mass microlensing events, enabling a
robust statistical characterization of this population. In this paper, we show that by exploiting features in the
distribution of lensing event durations, Roman will be sensitive to a subpopulation of primordial black
holes hidden amongst a background of free-floating planets. Roman’s reach will extend to primordial black
hole dark matter fractions as low as fPBH ¼ 10−4 at peak sensitivity, and will be able to conclusively
determine the origin of existing ultrashort-timescale microlensing events. A positive detection would
provide evidence that a significant fraction of the cosmological dark matter consists of macroscopic,
nonluminous objects.
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I. INTRODUCTION

The nature of dark matter remains one of the most
pressing open questions in fundamental physics. While
multiple lines of compelling evidence indicate its existence,
its microphysical nature remains unknown (for a recent
review and up to date references see e.g., Chapter 27 of
Ref. [1]). Many models have been proposed to explain this
additional matter content, with many such models intro-
ducing new fundamental particles with suppressed inter-
action cross sections to populate the dark sector [1].
However, dark matter may instead be macroscopic and
potentially possess large interaction cross sections, escaping
detection due to its low number density. Primordial black
holes (PBHs) are a well-motivated candidate for such a
macroscopic dark matter model [2–5]. There are a wide
variety of mechanisms that result in the formation of PBHs,
from the collapse of overdensities sourced by inflation [3,6]
to phase transitions [7] and topological defect collapse [8] in
the early Universe (see the discussion in Sec. III A below).
PBHsmay form over a wide range of masses, from as low as
asteroidmasses up to thousands of solar masses and beyond.
The Earth-mass range, ∼10−6M⊙, is of particular inter-

est, as observations of excess short-duration microlensing

events have been suggested to constitute a first hint of a
population of PBHs at terrestrial masses [9]. However,
there is another possible candidate to explain these events;
free-floating planets (FFPs). These are planets that have
been ejected from their parent star system by dynamical
interactions during the chaotic early phases of system
formation. Such FFPs are expected to dramatically out-
number bound exoplanets at subterrestrial masses [10,11],
constituting a large potential background for surveys
seeking to observe PBHs at Earth masses and below.
Previously, constraints on the PBH abundance have

been placed in regions of parameter space for which the
expected contribution from FFPs is negligible. However,
with the upcoming launch of the Nancy Grace Roman
Space Telescope, this will change; over the course of its
Galactic Bulge Time Domain Survey (GBTDS) [12],
Roman is expected to observe hundreds of free-floating
planets at roughly Mars mass and above [13]. This
unprecedented sensitivity will also provide the opportunity
to search for PBHs in new regions of parameter space. In
these regions, FFPs constitute an irreducible background
that must be taken into account in order to constrain or
claim the discovery of PBHs.
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FFPs and PBHs cannot generally be discriminated on an
event-by-event basis, as their light curves are degenerate for
identical masses. However, FFPs and PBHs are expected to
arise from different underlying mass distributions, permit-
ting a statistical means of discrimination. In this paper, we
present a method by which a subpopulation of PBHs can be
detected amidst a background of FFPs. We find that even in
the presence of FFPs, Roman will be sensitive to PBHs at
abundances well below existing constraints. In particular,
Roman will be able to conclusively determine the nature of
the Earth-mass “hint” of a PBH population claimed by [9].
The remainder of the paper is organized as follows. In

Sec. II, we discuss microlensing surveys and describe the
observables associated with microlensing lightcurves. In
Sec. III, we review mechanisms for PBH/FFP formation
and provide a fiducial mass function for the abundance of
each population. In Sec. IV, we describe the implementa-
tion of our analysis framework and the associated statistical
methodology for estimating Roman sensitivity. In Sec. V,
we present our results and discuss their implications before
concluding in Sec. VI.

II. MICROLENSING

Gravitational lensing is a powerful technique to observe
nonluminous massive objects at astronomical distances.
Light rays passing in the vicinity of a massive object are
bent by the gravitational field of the object, causing the
light from background stars (“sources”) to be distorted by
massive objects (“lenses”) that lie along the line of sight.
For high mass lenses, this effect produces multiple images
of the source; for low mass lenses, the images cannot be
individually resolved and instead contribute to an overall
apparent magnification of the source. This effect is known
as microlensing [14].
The duration and magnification of the source are

determined by the mass of lens M, the distance to the
lens and source, dL and dS, the relative proper motion of the
source and the lens μrel, the impact parameter u, the angular
diameter of the source θS, and the effective angular
diameter of the lens θE. This final quantity is also known
as the “Einstein angle” and is given by

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMð1 − dL=dSÞ

c2dL

s
: ð1Þ

When θS ≪ θE, the angular extent of the source is
negligible. This “point-source regime” is typical for large
lens masses and distant sources, and the associated event
duration is given by the time it takes for the source to cross
the Einstein radius of the lens. This “Einstein crossing
time” is defined as

tE ¼ θE
μrel

: ð2Þ

In the point-source regime, the apparent magnification is
given by [15]

ApsðuÞ ¼
u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ð3Þ

where u≡ uðtÞ is the impact parameter as a function of
time. This yields a characteristic light curve consisting of a
narrow peak.
When θS ≳ θE, however, the point-source approximation

breaks down. In this finite-source regime, the light curve
saturates at a lower maximum magnification and the event
duration is no longer set by tE, but rather by the time for the
lens to cross the finite angular extent of the source, a
timescale of ∼2θS=μrel. Similarly, the magnification in this
regime no longer diverges as u → 0 and is instead given by
an integral over the source disk, specified in polar coor-
dinates ðr;ϕÞ as [16–18]

Afiniteðu; ρÞ

≡ 1

πρ2

Z
ρ

0

dr
Z

2π

0

dϕrAps

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ u2 − 2ur cosðϕÞ

q �
; ð4Þ

where ρ≡ θS=θE and the origin has been chosen such that
the lens center is located at a distance u from the origin
along ϕ ¼ 0. The maximum impact parameter that produ-
ces a detectable event is defined implicitly via the relation
AfiniteðuT; ρÞ ¼ AT , where the minimum detectable magni-
fication, AT , is set by the photometric sensitivity of the
microlensing survey, and uT is the maximal impact para-
meter that results in a magnification of at least AT . uT
defines the phase space for the expected event rate
calculation (see Sec. IVA) and can be calculated for a
given dL, dS, and θS following the procedure given in [18].
For most events, the fundamental observable that can be

measured from the light curve is the duration. We define
this as the time over which the magnification is above
detection threshold (A > AT or equivalently u < uT),

tdur ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2T − u2min

q
θE
μrel

; ð5Þ

where umin is the impact parameter at the point of closest
approach. Assuming perfect photometry, uT ≈ ρ in the
extreme finite-source regime and ≈1 in the point-source
regime; hence, for a trajectory that passes through the
midplane of the source, tdur approaches the expected
∼2θS=μrel in the finite-source limit and ∼2tE in the
point-source regime.
Though finite-source effects reduce the peak magnifi-

cation, which can reduce detectability, they introduce
characteristic features in the light-curve that permit a
measurement of θE. Coupled with a measurement of the
lens distance, an estimate of the lens mass can be made.
However, the extraction of θE is a challenge for many
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events, especially those that do not conform to simple
single-lens models. Additionally, for low masses and short
event durations, estimating dL requires a simultaneous
observation by another telescope in order to provide a
parallax measurement, which is often unavailable. As such,
the only observable quantity that can be robustly measured
for most microlensing events is the event duration, tdur, and
is therefore the quantity we choose to employ to discrimi-
nate amongst various subpopulations of lenses in Sec. IV.

III. MICROLENSING TARGETS

In this section, we discuss two primary targets for micro-
lensing surveys in the terrestrial mass range and connect
them to existing observations.

A. Primordial black holes

Black holes not originating from the collapse of massive
stars are generically termed “primordial” black holes and
appear in many extensions of the Standard Model. Most
formation mechanisms rely upon the growth of large
density fluctuations in the early Universe that ultimately
collapse. These may be seeded by features in the infla-
tionary potential [19–25] or by other physical processes,
such as the collapse of inhomogeneities during the matter-
dominated era triggered by a sudden pressure reduction
[7,26,27], collapse of cosmic string loops [28–30], bubble
collisions [8,31], a scalar condensate collapsing to Q-balls
before decay [32–35], or domain walls [36–39]. (See,
e.g., [4,5] for recent reviews.)
If the overdensities are seeded by inflationary features,

the resulting PBH masses are related to the redshift of
formation since PBHs acquire a mass of order the total
energy within a Hubble volume at the time of collapse. The
resulting mass distribution is often well-described by a log-
normal distribution, which is a generic prediction for PBHs
forming from smooth, symmetric peaks in the power
spectrum of density fluctuations in the early Universe
[40]. Numerical and analytical evidence for this functional
form was provided in [41,42], see also the recent Ref. [43].
For this reason, in the following, we will consider a fiducial
PBH mass function of the form

fðM; σ;McÞ ¼
fPBH

ð ffiffiffiffiffiffi
2π

p ÞσM exp

�
−
log2 ðM=McÞ

2σ2

�
; ð6Þ

normalized such that

fPBH ¼ ΩPBH

ΩDM
¼

Z
dMfðM; σ;McÞ; ð7Þ

where hereΩPBH andΩDM are the fractional energy density
of PBHs and of all dark matter, respectively. HereMc is the
mean value of M and σ is the standard deviation of the
logarithmic mass.

PBHs are a compelling candidate for dark matter and
have been searched for across a wide range of masses. In
the mass range of ≈ 10−11M⊙–10M⊙, gravitational lensing
sets some of the strongest observational constraints
on their abundance [9,44–50] limiting the fractional energy
density to fPBH ≈ 10−1–10−2. At terrestrial masses, the
strongest limits are set by observations made by the
Optical Gravitational Lensing Experiment (OGLE) [9].
However, this survey also revealed an anomalous excess
of six short-duration events consistent with a population of
Earth-mass PBHs at f ≈ 10−2. To date, the nature of these
observations has not been resolved. As we will show in
Sec. V, upcoming observations by the Nancy Grace Roman
Space Telescope will be able to establish whether a
population of PBHs truly exists at these masses or whether
these events were more likely caused by, e.g., free-floating
planets.

B. Free-floating planets

The term “free-floating planets” is often used to describe
two different classes of astrophysical objects. At masses
near and above that of Jupiter, FFPs may form in situ as the
core of a failed star [51]. At lower masses, FFPs are
expected to primarily form within young planetary systems
before being ejected by dynamical processes onto unbound
orbits. There is a wide variety of processes that can result
in the ejection of a protoplanetary object, including strip-
ping by nearby stars, gravitational scattering off of plan-
etesimals, and interactions with an inner binary star
system [52–54]. Both simulations and observations suggest
that FFPs may dramatically outnumber bound planets at
masses ≲M⊕ [10,11,55]. FFPs are therefore an exciting
observational target for existing and upcoming microlens-
ing surveys.
Ejection processes typically yield a distribution of FFPs

that are well-described by a power law [55]. Here we adopt
the form

dN
d log10ðMÞ ¼ N

�
M

Mnorm

�
−p

ð8Þ

where N is the total number of FFPs per star at mass M
scaled by a normalization massMnorm. Throughout the rest
of the paper, we take all logarithms to be base 10 and
Mnorm ¼ M⊕ unless otherwise noted.
At present, observational measurements of the FFP

population do not place strong constraints on the values
of N and p. Existing microlensing surveys have observed
tens of FFPs, with only three events permitting a mass
estimate placing the lens in the terrestrial range.1 Based
off these data, combined with the results from simulations
of ejection [59–61] and observations of bound

1The associated events are OGLE-2012-BLG-1323 [56],
OGLE-2016-BLG-1928 [57], and MOA-9y-5919 [58].
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systems [10,62,63], the best estimates for p and N are of
order p ≈ 1 and N ≈ 10 with an uncertainty spanning
p ≈ 0.66–1.33 and N ≈ 2–20 [11,55,64]. We choose to
adopt p ¼ 1 and N ¼ 10 as our fiducial parameters and
marginalize over the uncertainty on their values when
computing our sensitivity (see Sec. IV B).

IV. DETECTING PRIMORDIAL
BLACK HOLES WITH ROMAN

In this section, we describe our statistical methodology
for detecting a subpopulation of PBH lenses within a
background of FFPs. The key point is that though PBH and
FFP events cannot be discriminated on an event-by-event
basis, the two populations can be distinguished by the
statistical distribution of their event durations, tdur [Eq. (5)].
This distribution is predominantly controlled by the under-
lying mass function of the lensing population, which differs
significantly between FFPs and PBHs (see Secs. III A
and III B). Additionally, the tdur distribution is influenced
by the distribution of lens distances and transverse veloc-
ities, both of which differ between FFPs and PBHs as well
(see Sec. IVA). As a result, the observed distribution of tdur
provides a robust means of identifying multiple populations
of lenses within a set of microlensing events.2

While existing observations have not yet yielded a
sufficient number of detections at terrestrial masses to
resolve the underlying distribution of tdur, this will change
in the coming years. The Galactic Bulge Time Domain
Survey (GBTDS), one of three primary surveys to be
conducted by the upcoming Nancy Grace Roman Space
Telescope (set to launch in 2027), will observe seven fields
tiling 2 square degrees of the Galactic bulge with a cadence
of 15 minutes during six 72-day observing seasons [12].
This survey strategy has been designed specifically to meet
core science requirements for the mission, including
measuring the abundance of free-floating planets to within
25%. As such, the GBTDS is expected to yield hundreds of
FFP microlensing events at Mars mass and above [13],
providing the opportunity for distribution-level analyses.
In the following two subsections, we will describe our

methodology for determining Roman’s sensitivity to dis-
criminating a PBH subpopulation from a background FFP
population using the observed distribution of tdur values.
This is done in two steps. First, in Sec. IVA, we compute
the event rate for both of these populations given Roman’s
fiducial survey parameters to determine the tdur distribution
for both populations. Then, in Sec. IV B, we perform a two-
sample Anderson-Darling test to determine the statistical

significance at which a combined FFP and PBH tdur
distribution differs from a FFP distribution without PBHs.

A. Event-rate estimation

The key input to our statistical methodology is the
distribution of event durations, tdur. In order to compute
this, we integrate over the differential event rate given
by [65,66]

dΓ
dMddLdtdurdumin

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2T − u2min

p v4T
v2c

exp
�
−
v2T
v2c

�
ρM
M

fðMÞεðtdurÞ; ð9Þ

where fðMÞ is the probability distribution of lens masses
[Eq. (6) or Eq. (8) for PBHs and FFPs, respectively], ρM is
the mass density of the lens population, εðtdurÞ is the
detection efficiency, and vT , the transverse velocity, is
given by

vT ¼ 2θEdL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2T − u2min

q
=tdur: ð10Þ

We set uT , the maximum impact parameter that produces a
detectable event, according to the procedure discussed in
Sec. II, adopting AT ¼ 1.34 as our fiducial threshold
magnification. This choice likely underestimates Roman’s
sensitivity, but is in keeping with the literature [13] (see
also Appendix). The event rate, Γ, is then evaluated as

Γ ¼ 2

Z
Mmax

Mmin

dM
Z

ds

0

ddL

Z
uT

0

dumin

Z
tmax

tmin

dtdur

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2T − u2min

p v4T
v2c

exp

�
−
v2T
v2c

�
ρM
M

fðMÞεðtdurÞ; ð11Þ

which we calculate using LensCalcPy,3 a package to semi-
analytically calculate microlensing observables. We take
tmin to be 15 min and tmax to be 6 × 72 days, corresponding
to the proposed cadence and observational duration of the
Roman GBTDS. By performing the integral and multiply-
ing the resulting rate by the GBTDS observational duration,
we compute the expected total number of events that
Roman will detect, denoted NFFP and NPBH for FFPs
and PBHs, respectively.
In computing the event rate, we must specify the velocity

and spatial distributions of the lenses. We assume that the
FFP density tracks the stellar distribution of the galaxy, for
which we adopt the exponential Koshimoto parametric
model described in [67]. We take the PBHmass distribution
to be a Navarro-Frenk-White profile given by

2An alternate strategy, as suggested by Niikura et al. [9], would
be to observe along different lines of sight, as FFPs and PBHs are
expected to follow different spatial distributions. As this would
require an additional dedicated survey, we leave the study of this
topic to future work. 3https://github.com/NolanSmyth/LensCalcPy.
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ρM ¼ ρ0�
r
rs

��
1þ r

rs

�
2
; ð12Þ

where ρ0 ¼ 4.88 × 106M⊙ kpc−3 and rs ¼ 21.5 kpc [68].
While the relative source-lens velocity depends in general
on the positions of both source and lens, we take
vc ¼ 220 km=s for PBHs and vc ¼ 200 km=s for FFPs.
The former is a typical value for a virialized DM halo [68],
and the latter is approximately the average transverse
velocity in the stellar disk (see e.g., [9] for a more complete
description). As the majority of sources are in the Galactic
bulge, finite-source effects imply that the low-mass lenses
we consider must be sufficiently far from the source in
order to be detectable, making this simplification appro-
priate for the scope of this work. Ultimately, our results are
fairly insensitive to changes in these choices of parameters,
as the dominant uncertainty in our analysis arises from the
normalization of the FFP mass function (see Sec. V).
However, we have compared our yields to those computed
by [13], which employ a different Galactic model and mass
function, and find Oð1Þ agreement (see Appendix).
For the mass function of PBHs, we assume a log-normal

distribution [Eq. (6)], while for FFPs, we adopt a power-law
[Eq. (8)] truncated atMmin ¼ 10−13M⊙ andMmax ¼ 0.1M⊙
for computational purposes. These cutoffs have been chosen
to lie well outside the mass range of Roman’s sensitivity
(≈ 10−8M⊙–10

−3M⊙) and we have verified numerically
that they do not have an effect on the results.
The resulting yields for PBHs and FFPs are shown in

Figs. 1 and 2. Figure 1 shows the number of PBH events
Roman is expected to see during its proposed observational
duration as a function of MPBH for fPBH ¼ 1. The various
curves correspond to different widths of the log-normal
distribution, σ. Note that a fPBH ¼ 1 abundance has already
been ruled out by other microlensing surveys, hence the
yields in unconstrained parameter space are necessarily
smaller than the values in Fig. 1. We see that in uncon-
strained parameter space (f ≲ 10−2), Roman is expected to
observe up to ≈104 PBH events.4

Figure 2 shows the number of FFP events Roman is
expected to see during its proposed observational duration
as a function of p, the power-law index of the FFP mass
distribution. The various curves correspond to various
normalizations of the power law, with N ¼ 10 the fiducial
value. The yield is only weakly dependent on p, with our

fiducial distribution yielding ≈400 events for a broad range
of p.

B. Subpopulation identification

Our statistical analysis relies upon discriminating
between tdur distributions sourced by either purely FFPs
or a combination of FFPs and PBHs. Wewill define the true
distributions from which a particular set of detected events
are sampled as T FFP

dur and T FFPþPBH
dur . These distributions

depend on a complex combination of several input param-
eters, including the power-law index of FFPs (p), the
central mass of the PBH distribution (MPBH), and the
overall number of observed FFPs and PBHs (NFFP and
NPBH). As such, they cannot be computed in a closed
analytic form. We therefore choose to employ a test that

FIG. 1. The total number of PBH microlensing events detect-
able by Roman for fPBH ¼ 1 as a function ofMPBH. The different
curves correspond to different widths of the PBH mass distri-
bution (see Sec. III A).

FIG. 2. The total number of FFP microlensing events detectable
by Roman as a function of p. The fiducial normalizationN ¼ 10

is shown as a solid blue line, with N ¼ 1 and 100 shown as
dashed and dash-dotted curves, respectively.

4We note that though distinguishing FFPs from PBHs requires
a statistical characterization when the observed yields of each are
comparable, there are regions of parameter space in which PBH
observations would well exceed the expected FFP yield, hence an
identification of this population would be much simpler. Inter-
estingly, this includes the parameter space in which PBHs explain
the short-duration OGLE events, making their interpretation as
FFPs more challenging.

REVEALING TERRESTRIAL-MASS PRIMORDIAL BLACK HOLES … PHYS. REV. D 109, 023013 (2024)

023013-5



discriminates based purely on empirical distribution func-
tions without relying on an underlying analytic background
model. The two-sample Anderson-Darling (AD) test is an
effective choice for this situation,5 as it is nonparameteric,
hence requires no model input, and outperforms the
Komolgorov-Smirnov test in the amount of data required
for significance, see Ref. [69].
The AD test computes the significance at which two test

distributions are sampled from the same underlying dis-
tribution. Given two distributions of size m, n sampled
from the true distributions T FFP

dur and T FFPþPBH
dur , we con-

struct two empirical distribution functions, denoted T FFP
dur;m

and T FFPþPBH
dur;n , respectively. In the context of our analysis,

m ¼ NFFP and n ¼ NFFP þ NPBH, where NFFP and NPBH
are calculated as described in the previous subsection. In
terms of these empirical distribution functions, the AD test
statistic can be written as [70]

A2
mn ¼

mn
N

Z
∞

−∞

ðT FFP
dur;m − T FFPþPBH

dur;n Þ2
KNð1 −KNÞ

dKN; ð13Þ

where

KN ¼ 1

N
ðmT FFP

dur;m þ nT FFPþPBH
dur;n Þ ð14Þ

and N ≡mþ n. Note that by performing this test, we do
not necessarily learn the PBH mass or abundance; merely
that the distributions are separable.
To determine the sensitivity, we fix N , p, MPBH, and σ

and allow r≡ NPBH=NFFP to vary. We set our limit at the
value of r such that the AD test rejects the null hypothesis
(i.e. both distributions are sampled from a pure FFP
distribution) at 95% confidence. Representative examples
of distributions that are distinguishable and indistinguish-
able by the AD test are displayed in Figs. 3 and 4,
respectively. In Fig. 3, the PBH distribution peaks at tdur
values well above the majority of FFPs, hence is readily
distinguishable. In Fig. 4, despite having the same number
of observed FFPs and PBHs as in Fig. 3, the two peaks
overlap and the PBH population cannot be discriminated
from background.
The weakness of this test is that in the low-statistics

regime, two distributions may appear to have been drawn
from different underlying distributions purely due to
random fluctuations. In order to mitigate this effect, we
perform our analysis 10 times and take the mean of the
results, which we have verified numerically is sufficient for

suppressing statistical fluctuation throughout our para-
meter space.
The analysis described above solely sets a limit on r, the

ratio of observed PBH yield to FFP yield. In order to
connect this to a physical density, we must calculate these
yields. To do so, we employ LensCalcPy and produce two
reference yield curves. The first is the expected yield of
observable PBHs as a function of MPBH for fPBH ¼ 1,
which we denote Nf¼1

PBHðMPBHÞ and appears in Fig. 1.
The second is the expected yield of observable FFPs for
N ¼ 10 as a function of p, which we denote NN¼10

FFP ðpÞ
and appears in Fig. 2. The fPBH corresponding to a
particular r is therefore simply given by fPBHðMPBH; pÞ ¼
r × ½NN¼10

FFP ðpÞ=Nf¼1
PBHðMPBHÞ�.

FIG. 3. A stacked histogram of FFP and FFPþ PBH distribu-
tions that are distinguishable at 95% confidence. These distri-
butions correspond to parameter values ofN ¼ 10, p ¼ 1.0. The
associated observable yields at this point in parameter space are
NFFP ¼ 389, NPBH ¼ 8%NFFP.

FIG. 4. A stacked histogram of FFP and FFPþ PBH distribu-
tions that are indistinguishable at 95% confidence. These dis-
tributions correspond to parameter values of N ¼ 10, p ¼ 1.0.
These parameters were chosen to yield the same observable
yields as Fig. 3, NFFP ¼ 389, NPBH ¼ 8%NFFP, however with a
different location of the PBH peak.

5In practice, Roman will likely perform a Bayesian analysis to
estimate the parameters controlling the lens distribution, which
will be more sensitive than the methodology we employ here.
However, the AD test provides a robust, if conservative, estimate
of Roman’s sensitivity.
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Our results depend implicitly onN and p, the true values
of which are unknown. Existing observations suggest
possible values in the range p ≈ 0.66–1.33 and N ≈
2–20 [11,13,55,71]. We therefore choose to marginalize
over this uncertainty by determining, for a givenMPBH and
σ, the p∈ ½0.66; 1.33� for which our analysis is weakest and
adopting the corresponding fPBH as our limit. To capture
the uncertainty on N , we choose to display three results:
our fiducial results (N ¼ 10), as well as results in whichN
has been taken to be larger/smaller than our fiducial value
by an order of magnitude. This likely dramatically over-
estimates the uncertainty on this parameter given current
constraints. However, by adopting this range, we encap-
sulate both the intrinsic uncertainty on its value as well
as the uncertainty induced by our Galactic model (see
Appendix).

V. RESULTS AND DISCUSSION

We display our ultimate sensitivity curves in Fig. 5.
Existing constraints are shown in gray [72]. Additionally,
we have included a dotted region (“OGLE hint”) corre-
sponding to the parameter space in which the short-time-
scale events observed by OGLE can be explained by a
population of PBHs [9]. The solid curves correspond to a
fiducial FFP normalization of N ¼ 10 and varying width
of the log-normal PBH distribution, while the dashed and
dot-dashed curves correspond to N ¼ 1 and 100, respec-
tively for a monochromatic PBH mass distribution. As
described in Sec. IV B, these extreme values of N likely
significantly overestimate the uncertainty on the FFP

distribution, however, as can be seen in Fig. 5, even these
variations only induce changes to the sensitivity at the
submagnitude level. Note that the largest number density of
FFPs corresponds to the weakest sensitivity, as a larger FFP
yield requires a correspondingly larger PBH yield to
achieve the same significance of discrimination. All curves
displayed have been marginalized over p via the method-
ology described in Sec. IV B.
Roman’s sensitivity to identifying a subpopulation of

PBHs peaks at fPBH ∼ 10−4 in the mass range MPBH ≈
10−8M⊙–10

−6M⊙. Both the location of this peak and the
corresponding value of fPBH can be understood simply.
Since the number density of PBHs scales as 1=MPBH for
fixed fPBH, the location of peak sensitivity corresponds to
the lowest possible mass before finite-source effects reduce
detectability. As discussed in Sec. II, finite-source effects
become relevant when θS ≈ θE, a condition that can be
rewritten in terms of mass to yield [73]

Mfinite ≈
θ2Sc

2dL
4Gð1 − dL

dS
Þ

�
dL
dS

�
: ð15Þ

Assuming the source to have a radius comparable to that of
the Sun and taking dS ¼ 8.5 kpc and dL ¼ 7.0 kpc as
typical distances for lensing events in the Galactic bulge,
one finds Mfinite ≈ 10−6M⊙, which corresponds with the
mass at which the sensitivity peaks in Fig. 5.
Similarly, fPBH can be estimated at this peak. We find

that at terrestrial masses, a PBH yield of roughly 10% NFFP
is sufficient to identify the PBH subpopulation. Figures 1
and 2 show that Roman’s expected yield for FFPs and
PBHs (atN ¼ 10 and fPBH ¼ 1) areOð1000Þ andOð106Þ,
respectively. We therefore see immediately that NPBH ≈
10%NFFP corresponds to fPBH ∼ 10−4, which matches onto
the maximal sensitivity shown in Fig. 5.
In the region of peak sensitivity, we find that sensitivity

weakens with increasing width of the log-normal PBH
distribution. This is not due to the fact that broader PBH
distributions appear more akin to the FFP power law, but
rather because broadening the PBH distribution pushes
PBHs outside the observable window and lowers the
overall yield of observable PBH events. This can be seen
in Fig. 1, where broadening the distribution causes a
monotonic decrease in the number of detected events in
the region of peak sensitivity.6 For a fixed number of PBHs
required for discrimination, this reduced detection rate must
be compensated for by an increase in fPBH.
The small decrease in sensitivity at MPBH ≈ 10−7M⊙ is

due to the peak of the PBH tdur distribution coinciding with
the peak of the FFP tdur distribution, as can be seen in
Fig. 4. At slightly higher and lower MPBH, the two

FIG. 5. Roman sensitivity to detecting a population of PBHs in
a background of FFPs. The solid curves correspond to N ¼ 10
and varying width σ of the log-normal PBH distribution, while
the dashed and dot-dashed curves correspond to N ¼ 1 and 100,
respectively. Existing constraints on the PBH abundance are
shown in gray [72] and the region in which existing observations
hint at a population of PBHs [9] is denoted “OGLE hint.” See text
for details.

6Note that well outside this region, the opposite effect can
actually improve sensitivity marginally for broad distributions by
pushing events into the observable window.
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distributions peak at slightly different tdur, improving
sensitivity. However, this effect is small, as the sensitivity
is predominantly governed by the PBH yield, which
decreases rapidly at masses much above 10−6M⊙ and
below 10−8M⊙.
In summary, our results show that even under

conservative assumptions about Roman’s detection thresh-
old (Sec. IVA) and the underlying background of FFPs
(Sec. IV B), the Galactic Bulge Time Domain Survey will
be highly sensitive to detecting a population of PBHs in
new regions of parameter space. Excitingly, these regions
include the parameter space in which existing short-time-
scale events have been suggested to hint at a subpopulation
of PBHs at terrestrial masses [9]. Roman is therefore poised
not only to make the first precise measurements of the FFP
mass distribution, but to possibly uncover a subpopulation
of PBHs lying within it as well.

VI. CONCLUSIONS

The launch of the Nancy Grace Roman Space Telescope
will open a new window into low-mass astrophysical
bodies. Though its Galactic Bulge Time Domain Survey
targets bound and unbound exoplanets, we have shown that
it will have unprecedented sensitivity to physics beyond the
Standard Model as well. In particular, it will probe the
fraction of dark matter composed of primordial black
holes at abundances as low as fPBH ≈ 10−4 at PBH masses
of roughly 10−6M⊙, with a sensitivity that decreases as
≈M1=3

PBH towards higher masses. Its region of sensitivity
extends up to three orders of magnitude below existing
constraints. This region fully encompasses the parameter
space in which an excess of short-duration microlensing
events observed by OGLE have been suggested to hint at a
population of PBHs [9]. Therefore, Roman will conclu-
sively determine the nature of these events, whether it be
rogue worlds or our first glimpse of what lies on the dark
side of the Universe.
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APPENDIX: COMPARISON
OF ESTIMATED YIELDS

In this appendix, we compare the fiducial FFP yield
calculated in our analysis to that of [13]. The authors of [13]

calculate their expected FFP yield for the Roman
GBTDS using the code Gravitational microlensing
Using Large Lensed Sources (GULLS) [74]. GULLS
draws explicit sources and lenses from a Bescançon
galactic model (version 1106 [75]) and simulates individual
microlensing events by generating realistic photometry
using synthetic images. This approach is significantly
different from the semianalytic approach we employ in
our paper. LensCalcPy, the code used to compute our FFP
yields, is designed to provide simple estimates of lensing
event rates, not to model individual events or generate
associated photometry. However, its speed and flexibility
makes it well-suited to population-level studies with large
numbers of events.
While our approach and that of [13] differ significantly

in implementation, we find that they produce very similar
ultimate FFP yields. In order to see this, we compare to
Table 2 of [13], where the authors have displayed their
fiducial FFP yield for a log-uniform mass distribution
( dN
d logM ¼ 1 dex−1) as a function of FFP mass. Performing
the equivalent analysis with LensCalcPy and adopting the
normalization of 1 dex−1 results in the yields shown in
Table I. We see that at masses >M⊕, our yields differ from
those of [13] by less than a factor of two. At lower masses,
the discrepancy between the approaches grows, reaching a
value of ≈6 at the lowest observable masses.
We see that our results tend to underestimate the total

FFP yield compared to GULLS, particularly for low-mass
objects. A primary source of this discrepancy stems from
differences between the definition of maximum detectable
impact parameter in the two analyses, which we compare
in Fig. 6. In [13], umin is drawn uniformly from
[0;maxð1; 2ρÞ] when generating an event. This effectively
sets

uT ¼
	
1 ρ < 0.5 ðpoint-source regimeÞ
2ρ ρ > 0.5 ðfinite-source regimeÞ ðA1Þ

resulting in the orange curve shown in Fig. 6. As described
in Sec. IVA, in our analysis, we instead determine the
maximal impact parameter by solving the implicit equation
AfiniteðuT; ρÞ ¼ AT . This yields the blue curve in Fig. 6. We

TABLE I. FFP yield comparison for log-uniform mass
distribution.

Mass ðM⊕Þ Johnson et al. [13] This work

0.01 0.31 0.05
0.1 4.49 1.75
1 22.1 19.0
10 87.1 72.6
100 313 234
1000 1025 744
10,000 3300 2370
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choose to adopt AT ¼ 1.34 as our fiducial threshold
throughout our analysis. This agrees with [13] in the
point-source regime, however in the finite-source regime
(which is most relevant for low-mass objects), their
approach yields generically larger values of uT than ours,
as can be seen in Fig. 6. Thus, their effective threshold
magnification is <1.34, resulting in the increased yields at
low masses seen in Table I. While we have chosen to use
AT ¼ 1.34 throughout our analysis, this is likely an
underestimate of Roman’s ultimate detection threshold,
which has been suggested to reach values of≲1% increases
in flux for sufficiently bright sources [13]. We therefore
note that depending on the photometric sensitivity achieved
by Roman, our current yield predictions may underestimate
the number of detected FFP events. This uncertainty is,
however, encapsulated by the range of normalizations in
the mass functions considered and thus in the curves shown
in Fig. 5.
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