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Electromagnetic field confinement due to plasma near accreting black holes can trigger superradiant
instabilities at the linear level, limiting the spin of black holes and providing novel astrophysical sources of
electromagnetic bursts. However, nonlinear effects might jeopardize the efficiency of the confinement,
rending superradiance ineffective. Motivated by understanding nonlinear interactions in this scenario, here
we study the full 3þ 1 nonlinear dynamics of Maxwell equations in the presence of plasma by focusing on
regimes that are seldom explored in standard plasma-physics applications, namely a generic electromag-
netic wave of very large amplitude but small frequency propagating in an inhomogeneous, overdense
plasma. We show that the plasma transparency effect predicted in certain specific scenarios is not the only
possible outcome in the nonlinear regime: plasma blowout due to nonlinear momentum transfer is
generically present and allows for significant energy leakage of electromagnetic fields above a certain
threshold. We argue that such effect is sufficient to dramatically quench the plasma-driven superradiant
instability around black holes even in the most optimistic scenarios.
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I. INTRODUCTION

A remarkable property of black holes (BHs) is that they
can amplify low-frequency radiation in a process known
as superradiant scattering [1,2], which is the wave analog
of energy and angular momentum extraction from a BH
through the Penrose process [3] (see [4] for an overview).
In 1972, Press and Teukolsky argued that superradiance can
in principle be used to produce a “BH bomb” [5] provided
the amplified waves are confined in the vicinity of the BH,
leading to repeated scattering and coherent energy extrac-
tion. A natural confining mechanism is provided by the
Yukawa decay of massive particles, which is the reason
why spinning BHs are unstable against massive bosonic
perturbations [6,7]. Due to this superradiant instability [4],
massive bosons can extract a significant amount of energy
from astrophysical BHs, forming a macroscopic conden-
sate wherein their occupation number grows exponentially.
This phenomenon leads to striking observable signa-
tures, such as gaps in the BH mass-spin distribution and
nearly monochromatic gravitational-wave emission from
the condensate [8,9]. In order for the instability to be
efficient, the Compton wavelength of these bosons
should be comparable to the BH size, which selects masses
around 10−11ð10M⊙=MÞ eV, where M is the BH mass [4].

The possibility of turning BHs into particle-physics labora-
tories [10] for searches of ultralight dark matter has
motivated intense study of the superradiant instability for
ultralight spin-0 [6,7,11–16], spin-1 [17–27], and more
recently spin-2 [28–30] fields, which in turn spread into
many diverse directions [4].
Already at the very birth of BH superradiance, Press and

Teukolsky suggested that in the presence of astrophysical
plasma even ordinary photons could undergo a superradiant
instability, without the need to invoke beyond Standard
Model physics [5,31]. Indeed, a photon propagating in a
plasma acquires an effective mass known as the plasma
frequency [32–35]

ωp ¼
ffiffiffiffiffiffiffiffiffi
nee2

m

r
≈ 10−11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne

10−1 cm−3

r
eV=ℏ; ð1Þ

where n, e, and m are the plasma density, electron charge,
and electron mass, respectively. In the case of interstellar
plasma (ne ∼ 10−1 cm−3), the effective mass is in the right
range to trigger an instability around stellar mass BHs
(which was also advocated as a possible explanation for
the origin of fast radio bursts [35]), whereas primordial
plasma could trigger superradiant instabilities in primordial
BHs potentially affecting the cosmic microwave back-
ground [34]. Furthermore, astrophysical BHs can be
surrounded by accretion disks due to the outward transfer
of angular momentum of accreting matter, effectively
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introducing a geometrically complex plasma frequency.
Given the ubiquity of plasma in astrophysics and the central
role that BHs play as high-energy sources and in the galaxy
evolution, it is of utmost importance to understand whether
the plasma can play an important role in triggering BH
superradiant instabilities.
While the first quantitative studies about the plasma-

driven superradiant instability [34,35] approximated the
dynamics as that of a massive photon with effective
mass (1), the actual situation is much more complex, since
Maxwell’s equation must be considered together with the
momentum and continuity equation for the plasma fluid.
Recently, a linearized version of the plasma-photon system
(neglecting plasma backreaction) in curved spacetime was
studied in [36,37], where it was shown that the photon field
can be naturally confined by plasma in the vicinity of the
BH via the effective mass, forming quasibound states that
turn unstable if the BH spins. Nevertheless, a crucial issue
was unveiled in [38], where it was argued that, during the
superradiant phase, nonlinear modifications to the plasma
frequency turn an initially opaque plasma into transparent,
hence quenching the confining mechanism and the insta-
bility itself. In the nonlinear regime, a transverse, circularly
polarized electromagnetic (EM) wave with frequency ω
and amplitude E modifies the plasma frequency of a
homogeneous plasma as [39]

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nee2

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2E2

m2ω2

q
vuut ; ð2Þ

where the extra term is the Lorentz factor of the electrons.
In other words, as the field grows, the electrons turn
relativistic and their relativistic mass growth quenches
the plasma frequency. As argued in Ref. [38], the threshold
of this modification lies in the very early stages of the
exponential growth, before the field can extract a signifi-
cant amount of energy from the BH.
While in this specific configuration the quenching of the

instability is evident, this argument suffers for a number of
limitations. In particular, circularly polarized plane waves
in a homogeneous plasma are the only solutions that are
purely transverse, as the nonlinear v⃗ × B⃗ Lorentz force
vanishes (here v⃗ is the velocity of the electron, while B⃗ is
the magnetic field). In this case, the plasma density is not
modified by the traveling wave and even a low-frequency
wave with large amplitude can simply propagate in the
plasma, without inducing a nonlinear backreaction. In
every other configuration instead (including an inhomo-
geneous plasma, different polarization, or breaking of the
planar symmetry, all expected for setups around BHs),
longitudinal and transverse modes are coupled, and there-
fore the plasma density can be dramatically modified by the
propagating field. This backreaction effect leads to a richer
phenomenology as high-amplitude waves can push away

electrons from some regions of the plasma, thus creating
both a strong pileup of the electron density in some regions
and a plasma depletion in other regions. For example, in the
case of a circularly polarized wave scattered off an inhomo-
geneous plasma, the backreaction on the density increases
the threshold for relativistic transparency, as electrons are
piled up in a narrow region, thus increasing the local
density and making nonlinear transparency harder [40].
However, in the case of a coherent long-timescale phe-
nomenon such as superradiant instability, one might expect
that, if the plasma is significantly pushed away by a strong
EM field, the instability is quenched a priori, regardless
of the transparency. Overall, the idealized configuration of
Ref. [39] never applies in the superradiant system, and
the nonlinear plasma-photon interaction is much more
involved.
The goal of this work is to introduce a more complete

description of the relevant plasma physics needed to under-
stand plasma-photon interactions in superradiant instabil-
ities. To this purpose, we shall perform 3þ 1 nonlinear
numerical simulations of the full Maxwell’s equations.
Clearly, this is a classical topic in plasma physics [41,42].
Here we are interested in a regime that is relevant for BH
superradiance but is seldom studied in standard plasma-
physics applications, namely a low-frequency, high-
amplitude EM wave propagating in an inhomogeneous
overdense plasma.

II. FIELD EQUATIONS

For simplicity, and because the stress-energy tensor of
the plasma and EM field is negligible even during the
superradiant growth, we shall consider a fixed background
and neglect the gravitational field. We consider a system
composed by the EM field and a plasma fluid, described
by the field equations (in rationalized Heaviside units
with c ¼ 1)

∇μFμν ¼ Jν; ð3Þ

uν∇νuμ ¼
e
m
Fμνuν; ð4Þ

∇μðneuμÞ ¼ 0; ð5Þ

where Fμν is the EM tensor, Jμ is the EM 4-current, uμ is
the 4-velocity field for the plasma fluid, and ne is the rest
number density of electrons inside the plasma.
Having in mind future extensions, below we perform

a 3þ 1 decomposition1 of the field equations that is valid
for any curved background spacetime. However, in this

1We shall use Greek alphabet to denote spacetime indices
μ; ν∈ f0; 1; 2; 3g and Latin alphabet to denote spatial indices
i; j∈ f1; 2; 3g.
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work we will perform our simulations in flat spacetime,
ds2 ¼ ημνdxμdxν.

A. 3 + 1 decomposition of the field equations

1. Generic spacetime

Let us introduce a foliation of the spacetime into
spacelike hypersurfaces Σt, orthogonal to the 4-velocity
of the Eulerian observer nμ. We then express the line
element as

ds2 ¼ −ðα2 − βiβ
iÞdt2 þ 2βidxidtþ γijdxidxj; ð6Þ

where α is the lapse, βi is the shift vector, and γij is the
spatial 3-metric. We can define the electric and the
magnetic fields as [43]

Eμ ¼ −nνFνμ; Bμ ¼ −nνF�νμ; ð7Þ

where F�μν ¼ − 1
2
ϵμνλσFλσ is the dual of Fμν. The EM

tensor can be decomposed as

Fμν ¼ nμEν − nνEμ þ ð3ÞϵμνσBσ; ð8Þ

where ð3Þϵμνσ ¼ nλϵλμνσ is the Levi-Civita tensor of the
spacelike hypersurface Σt. Note that Eμ and Bμ are ortho-
gonal to nμ and are spacelike vectors on the 3-surfaces Σt.
We can define the charge density as ρ ¼ nμJμ and the

3-current as ð3ÞJμ ¼ hμνJν, where hμν is the projection
operator onto Σt. Finally, we can write the Maxwell
equations as [43]

DiEi ¼ ρ; ð9Þ

DiBi ¼ 0; ð10Þ

∂tEi ¼ LβEi þ αKEi þ �
D⃗ × ðαB⃗Þ�i þ αð3ÞJi; ð11Þ

∂tBi ¼ LβBi þ αKBi −
�
D⃗ × ðαE⃗Þ�i; ð12Þ

where Di is the covariant derivative with respect to the
3-metric γij and Kij is the extrinsic curvature. Here the first
equation is the Gauss’ law, the second equation is equiv-
alent to the absence of magnetic monopoles, and the last
two are the evolution equations for the electric and
magnetic fields, respectively. The EM 4-current is given by
ions and electrons Jμ ¼ JμðionsÞ þ JμðeÞ. We assume ions to be

at rest, due to the fact that m ≪ mðionsÞ, so that JμðionsÞ ¼
−ρðionsÞnμ. For electrons instead we have JμðeÞ ¼ −eneuμ.
Let us decompose uμ into a component along nμ,
Γ ¼ −nμuμ, and a component on the spatial hypersurfaces,
ð3Þuμ ¼ hμνuν. The 4-velocity of the fluid can be written as

uμ ¼ Γnμ þ ð3Þuμ ¼ Γðnμ þ UμÞ; ð13Þ

where we defined ð3Þuμ ¼ ΓUμ. The above expression
allows us to write ρ¼nμJμ¼ρðionsÞ þρðeÞ ¼ρðionsÞ þenEL,
where nEL ¼ Γne is the electron density as seen by the
Eulerian observer. The density of ions is constant in time
and will be fixed when constructing the initial data.2

As JμðionsÞ is orthogonal to Σt, the 3-current ð3ÞJμ receives

only contributions from electrons, and we have ð3ÞJμ ¼
−eneΓUμ ¼ −enELUμ. Thus, the source terms that appear
in Eqs. (9)–(11) are

ρ ¼ ρðionsÞ þ enEL; ð3ÞJμ ¼ −enELUμ: ð14Þ

Let us now move to Eq. (4). Projecting it on nμ and Σt
we obtain, respectively (see Appendix A for the explicit
computation),

∂tΓ ¼ βi∂iΓ − αU i
∂iΓþ αΓKijU iUj − ΓU i

∂iαþ e
m
αEiU i;

ð15Þ

∂tU i ¼ βj∂jU i − Uj
∂jβ

i − αai − αU iKjlUjU l

þ α

Γ
e
m

�
−U iEjUj þ Ei þ ð3ÞϵijlBlUj

�
þ 2αKi

jUj þ U iUj
∂jα − αUjDjU i: ð16Þ

Finally, we can write the continuity equation (5) as

∂tnEL ¼ βi∂inELþαKnEL−αU i
∂inEL−αnEL∇μUμ: ð17Þ

While the above decomposition is valid for a generic
background metric, from now on we will focus on a flat
spacetime.

2. Flat spacetime

We use Cartesian coordinates, so that gμν ¼ ημν ¼
diagf−1; 1; 1; 1g. As a consequence, we have that for
any 3-vector ð3ÞVi ¼ ð3ÞVi, and

α ¼ 1; βi ¼ 0; Kij ¼ 0: ð18Þ

In these coordinates we can write the equations for the
EM field as

∂iEi ¼ ρðionsÞ þ enEL; ð19Þ

∂iBi ¼ 0; ð20Þ

∂tEi ¼ �
∂⃗ × B⃗

�
i − enELU i; ð21Þ

2Note that with the conventions we used, electrons carry
positive charge, while ions carry negative charge.
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∂tBi ¼ −
�
∂⃗ × E⃗

�
i; ð22Þ

the evolution equations for Γ and U i as

∂tΓ ¼ −U i
∂iΓþ e

m
EiU i; ð23Þ

∂tU i ¼−Uj
∂jU iþ 1

Γ
e
m

�
−U iEjUjþEiþ �

U⃗ × B⃗
�
i
�
; ð24Þ

and the continuity equation as

∂tnEL ¼ −U i
∂inEL − nEL∂iU i: ð25Þ

Moreover, from the normalization condition that
uμuμ ¼ −1 we can obtain a constraint for Γ and U i:

Γ2ð1 − U iU iÞ ¼ 1: ð26Þ

III. NUMERICAL SETUP

In this section we discuss our numerical setup, describ-
ing the integration scheme and the initialization procedure.

A. Integration scheme

The system of evolution equations can be schematically
written in the form

∂tY ¼ S
�
Y; ∂⃗Y

�
; ð27Þ

where Y ¼ ðE⃗; B⃗;Γ; U⃗; nELÞ is the vector containing
the fields while S comprises the right-hand sides of
Eqs. (21)–(25) and depends on the fields and their spatial
derivatives. Note that ρðionsÞ is not included in Y, since it is
kept constant during the evolution, consistently with the
approximation that ions are at rest.
We perform the numerical integration of the system (27)

with the method of lines. We use the fourth-order accurate
Runge-Kutta method for time evolution, computing the
spatial derivatives of the fields in S with the fourth-order
accurate centered finite differences scheme. In order to
monitor the accuracy and the reliability of our integration
algorithm, we evaluate the violation of the constraints (19)
and (26). Namely, we define the quantities

CVGauss ¼ ∂iEi − enEL − ρðionsÞ; ð28Þ

CVPlasma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2ð1 − U iU iÞ

q
− 1; ð29Þ

and we check that increasing the resolution they decrease to
zero as fourth-order terms, consistently with the accuracy
of our integration scheme. The results of our convergence
tests are shown in Appendix B.

For simplicity we shall simulate the propagation of plane
EM wave packets along the z direction, and therefore we
will obtain field configurations that are homogeneous along
the x and y directions. This feature allows us to impose
periodic boundary conditions in the x and y directions, as
they preserve the homogeneity of the solution without
introducing numerical instabilities. We impose periodic
boundary conditions also on the z axis and, in order to
avoid the spurious interference of the EM wave packet with
itself, we choose grids with extension along z large enough
to avoid interaction with spurious reflected waves during
the simulations.

B. Initialization procedure

When constructing the initial data for the simulations
we first set the profile of the plasma. We start by setting
Γðt ¼ 0; x⃗Þ ¼ 1 and U⃗ðt ¼ 0; x⃗Þ ¼ 0, so that the plasma is
initially at rest. Then, we initialize the profile of nEL with
barrierlike shape of the following form:

nELðt ¼ 0; x⃗Þ ¼ 2nbkg − nmax þ ðnmax − nbkgÞ
×
�
σðz;W1; z1Þ þ σðz;−W2; z2Þ

�
; ð30Þ

where σðz;W; z0Þ ¼ ð1þ e−Wðz−z0ÞÞ−1 is a sigmoid func-
tion. The qualitative behavior of Eq. (30) is shown in Fig. 1,
where we can see that nbkg is the background value of the
plasma density and nmax is the plasma density at the top of
the barrier. The parameters z1;2 determine the location and
width of the barrier, while the parameters W1;2 control its
steepness. Note that this profile was chosen to reproduce a
very crude toy model of a matter-density profile around a
BH [44], where the accretion flow peaks near the innermost

FIG. 1. Qualitative behavior of the barrier-shaped initial profile
for the plasma, Eq. (30). nmax and nbkg are the values of the
plasma density inside the barrier and on the background,
respectively, while the parameters z1;2 and W1;2 determine the
position and the steepness of the boundaries of the barrier,
respectively.
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stable circular orbit and is depleted between the latter
and the BH horizon. In our context this configuration is
particularly relevant because EM waves can be super-
radiantly amplified near the BH and plasma confinement
can trigger an instability [34,36,37,45–48]. Finally, the
constant profile of ρðionsÞ is determined by imposing that
the plasma is initially neutral, so that ρðionsÞðt ¼ 0; x⃗Þ ¼
−enELðt ¼ 0; x⃗Þ. Once the profile of the plasma has been
assigned we proceed to initialize the EM field. We consider
a circularly polarized wave packet moving forward in the z
direction:

E⃗ ¼ AE

0
B@

cos½kzðz − z0Þ�
sin½kzðz − z0Þ�

0

1
CAe−

ðz−z0Þ2
2σ2 ; ð31Þ

B⃗ ¼ AE
kz
ω

0
B@

− sin½kzðz − z0Þ�
cos½kzðz − z0Þ�

0

1
CAe−

ðz−z0Þ2
2σ2 ; ð32Þ

where AE is the amplitude of the wave packet, σ is its
width, z0 its central position, ω is the frequency, and

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

p

q
, where ωp ¼

ffiffiffiffiffiffiffiffiffi
e2nbkg
m

q
is the plasma fre-

quency computed using nbkg, as the wave packet is initially
located outside the barrier (i.e., σ ≪ z1 − z0).

IV. RESULTS

Here we present the results of our numerical simulations
of nonlinear plasma-photon interactions in different con-
figurations. We shall consider a low-frequency, circularly
polarized wave packet propagating along the z direction
and scattering off the plasma barrier with the initial density
profile given by Eq. (30).

A. Linear regime

As a consistency check of our code, we tested that for
sufficiently low-amplitude waves our simulations are in
agreement with the predictions of linear theory. We set
units such that e ¼ m ¼ 1 and consider an initial wave
packet of the electric field centered at z0 ¼ 0, with a charac-
teristic width σ ¼ 5. We also set ω ¼ 0.5 and AE ¼ 10−6,
so that the evolution can be described by the linear theory.
The plasma barrier was situated between z1 ¼ 40 and
z2 ¼ 100, and we set W1 ¼ W2 ¼ 1. The background

density of the plasma was nbkg ¼ 0.01 so that ωðbkgÞ
p ¼ 0.1

and all the frequency content of the EM wave is above the
plasma frequency of the background. We run six simu-
lations with nmax ¼ fnbkg; 0.25; 0.5; 0.75; 1; 1.25g, that
correspond to plasma frequencies at the top of the barrier

ωðmaxÞ
p ¼ f0.1; 0.5; 0.707; 0.866; 1; 1.12g, respectively, and

fall in different parts of the frequency spectrum of the EM

wave packet. In the linear regime, we expect that the

frequency components above ωðmaxÞ
p will propagate through

the plasma barrier, while the others will be reflected, and
this setup allows us to clearly appreciate how this mecha-
nism takes place. In all these simulations we used a grid that
extends in ½−1; 1� × ½−1; 1� × ½−450; 450�, with a grid step
Δx ¼ Δy ¼ Δz ¼ 0.2 and a time step Δt ¼ 0.1, so that the
Courant-Friedrichs-Lewy factor is CFL ¼ 0.5 The final
time of integration was set to T ¼ 400. Figure 2 shows
some snapshots of the numerical results at different times

for different values of ωðmaxÞ
p . It is evident that the analytical

predictions of linear theory are confirmed: as the plasma
frequency of the barrier increases, less and less components
are able to propagate through it and reach the other side. In

particular, when ωðmaxÞ
p ≳ 0.9 the wave is almost entirely

reflected, and the transmitted component becomes negli-
gible. As a matter of fact in this case, given the value of σ
that we set, on analytical grounds only a mere ≈2.5% of the
initial wave packet spectrum lies above the plasma fre-
quency and should penetrate through the barrier. Further-
more, in the linear regime the backreaction on the density is
effectively negligible, as the barrier remains constant over
the entire simulation (in fact, we observed a maximum
variation of nEL of the order of 10−11, which is clearly not
appreciable on the scale of Fig. 2).
To better quantify the frequency components that are

propagated and the agreement between the simulations and
the analytic expectation in the linear regime, we computed
the (discrete) Fourier transform of the time evolution of Ex

in two points along the z axis: z ¼ −50 and z ¼ 150, which
are located before and after the plasma barrier, respectively.
Figure 3 shows the absolute value of the Fourier transform
for the different values of the plasma frequency in the
barrier, which are represented as vertical dotted lines. As
we can see from the Fourier transform at z ¼ 150, the
transmitted waves have only components with frequency

ω > ωðmaxÞ
p , in agreement with the fact that only modes

above this threshold can propagate. Hence, the barrier
perfectly acts as a high-pass filter, with a critical threshold
given by the plasma frequency.

B. Nonlinear regime

We can now proceed to increase the amplitude of the
field until linear theory breaks down and the interaction
becomes fully nonlinear. As anticipated, we shall show that
the evolution is more involved than in the idealized model
described in [39]. Indeed, even from a first qualitative
analysis, it is evident from the z component of the
momentum equation (24) that in the nonlinear regime
electrons will experience an acceleration along the z axis
due to the nonlinear Lorentz term ðU⃗ × B⃗Þz. The formation
of a current along the z directions implies a modification of
the density profile because of the continuity equation and
also the formation of a longitudinal electric field that tries to
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FIG. 2. Propagation of an EM wave packet on a barrier of plasma in the linear regime. Here we show some snapshots of the evolution
of Ex for different values of the plasma density in the barrier, nmax, and we represent the initial profile of nEL with a gray dashed line.

When the plasma frequency in the barrier ωðmaxÞ
p becomes larger than ω, the wave packet is mostly reflected by the barrier, while the

transmitted component is suppressed. The corresponding animations are available online [49].
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balance and preserve charge neutrality. In the following, we
will support this qualitative analysis with the results of the
numerical simulations and show that nonlinear effects can
have a dramatic impact on the system dynamics.
In this set of simulations, we set units3 such that e ¼ 1

and m ¼ 1000, and we consider an initial wave packet
of the electric field centered at z0 ¼ −150, with a width4

σ ¼ 100 and ω ¼ 0.001. We vary the amplitude of the EM
in a range 0.1 ≤ AE ≤ 1000. As for the plasma profile,
we adopt a similar geometric model to the linear case, with
the barrier placed between z1 ¼ 100 and z2 ¼ 650, with
W1 ¼ W2 ¼ 0.1. We consider a background density nbkg ¼
5 × 10−6 and a maximum barrier density nmax ¼ 0.5, that

corresponds to a plasma frequency of ωðmaxÞ
p ¼ 0.022. We

use a numerical grid that extends in ½−2; 2� × ½−2; 2�×
½−750; 850�, with a grid spacing Δx ¼ Δy ¼ Δz ¼ 0.2,
and a time step Δt ¼ 0.1, so that CFL ¼ 0.5. The final time
of integration was set to T ¼ 500.

The parameters are chosen such that the frequency of the

wave packet is always much larger than ωðbkgÞ
p , but a

significant component of the spectrum, namely ≈97.5%,
is below the plasma frequency of the barrier and should
therefore be reflected if one assumes linear theory. First of
all, we quantify the value of the electric field which gives
rise to nonlinearities. A crucial parameter that characterizes
the threshold of nonlinearities in laser-plasma interactions
is the peak amplitude of the normalized vector potential,
defined as a0 ¼ eA=m (see, e.g., [41,42]). Specifically,
when a0 ≳ 1, electrons acquire a relativistic transverse
velocity, and therefore the interactions become nonlinear.
Given our units and estimating A ≈ E=ω, we obtain a
critical electric field Ecrit ≳mω=e ≈ 1.
We performed a set of simulations choosing different

values of the initial amplitude of the EM wave packet in the
range 0.1 ≤ AE ≤ 1000. Figure 4 shows snapshots of the
numerical simulations for some selected choices of AE. It is
possible to observe that in the case AE ¼ 1 (top panel)
the density profile of plasma is not altered throughout all
the simulation, as in the linear case discussed in the
previous section. Moreover, at sufficiently long times,
the wave packet is reflected by the barrier, in agreement
with linear theory predictions. From the second panel on
(i.e., as AE ≳ 10), instead, the wave packet induces a non-
negligible backreaction on the plasma density. This effect
increases significantly for higher amplitudes, and it is due
to the nonlinear couplings between transverse and longi-
tudinal polarizations: the nonlinear Lorentz term ðU⃗ × B⃗Þz
in the longitudinal component of the momentum equa-
tion (24) induces a radiation pressure on the plasma and
hence a longitudinal velocity U⃗z; as electrons travel along
the z direction and ions remain at rest, a large longitudinal
field due to charge separation is created, which tries to
balance the effect of the Lorentz force and restore charge
neutrality. This phenomenology resembles the one of
plasma-based accelerators, where superintense laser pulses
are used to create large longitudinal fields that can be used
to accelerate electrons [50].
To quantify the collective motion induced by nonlinear-

ities we computed the velocity dispersion of electrons as

ffiffiffiffiffiffiffiffiffi
hU2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V d

3x nELU iU iR
V d

3x nEL

s
: ð33Þ

Since the field are constant along the transverse directions,5

then nELðx; y; zÞ ¼ nELðzÞ and U iðx; y; zÞ ¼ UiðzÞ. This
allows us to evaluate the above integral as

ffiffiffiffiffiffiffiffiffi
hU2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
zþ∞
z−∞

dz nELðzÞU iðzÞU iðzÞR
zþ∞
z−∞

dz nELðzÞ

s
; ð34Þ

FIG. 3. Absolute value of the discrete Fourier transform of Ex

extracted before (upper panel) and after (lower panel) the plasma
barrier. The different colors refer to the different values of the
plasma density inside the barrier and hence to different values of

the plasma frequency ωðmaxÞ
p , indicated with vertical dotted lines.

We can clearly see that the barrier reflects the frequency

components below ωðmaxÞ
p and transmits the components above it.

3Note that, in rationalized Heaviside units, changing m (and
hence the classical electron radius) simply accounts for rescaling
lengths, times, and masses in the simulations. Lengths and times
are rescaled by ½m�−1, while the electric field amplitude scales as
½m�2. Hence, the results of this section can be obtained in the case
m ¼ 1 by rescaling the other quantities accordingly.

4While formally the initial profile of the EM field, Eq. (32),
represents a circularly polarized wave packet, the chosen value of
the parameter σ reduces the y component of the electric field,
making the polarization effectively elliptic.

5In Appendix C we show how the homogeneity of the fields
along the transverse plane is preserved during the evolution.
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FIG. 4. Snapshots of the evolution of Ex (solid line) and nEL (dashed lines) for the simulations of the propagation of an EM wave
packet inside a plasma barrier in the nonlinear regime. The initial profile of nEL is not varied across the simulations, and the different
panels refer to different choices of the initial amplitude of the wave packet. The backreaction effects of the EM field onto the plasma
density increase with AE, and for AE ≳ 50 wave packet “transports” electrons along the z axis, eventually creating a plasma-depleted
region (blowout regime). The corresponding animations are available online [49].
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where z�∞ are the boundaries of the z domain and we
compute the integral using the trapezoidal rule. In the upper
panel of Fig. 5 we plot the behavior of the velocity
dispersion with respect to the initial amplitude AE for
different times. As we can see the nonlinearities start
becoming relevant in the range 1≲ AE ≲ 10, where elec-
trons start to acquire a collective motion. This is also
confirmed by the middle panel, where the solid and dashed
lines denote the maximum of jU⃗j and Uz, respectively.
While these quantities do not represent the collective
behavior of the system, they have the advantage of not
containing the contribution given by the portion of the
plasma barrier that has not been reached yet by the EM
wave. From this plot we can observe that in the range

1≲ AE ≲ 10, the electrons start acquiring a relativistic
velocity with a large component on the transverse plane.
As already mentioned, the longitudinal motion of elec-

trons generate a longitudinal field. Nevertheless, plasmas
can sustain longitudinal fields only up to a certain thresh-
old, usually called wave-breaking (WB) limit, above which
plasma is not able to shield and sustain anymore electric
fields, and the fluid description breaks down. This phe-
nomenon was pioneered in [51] for the case of nonlinear,
nonrelativistic cold plasmas, where the critical longitudinal
field for WB was found to be Ez

WB ¼ mωp=e, and later
generalized for pulses with relativistic phase velocities [52].
This threshold field represents the limit after which the
plasma response loses coherence as neighboring electrons
start crossing each other within one plasma frequency
period. Therefore, above this critical electric field the
plasma is not anymore able to coherently act as a system
of coupled oscillators, and the fluid model based on
collective effects breaks down. This leads to the formation
of a spike in nEL, which eventually diverges, and to a
steepening of the longitudinal component of the electric
field. Full particle-in-cell numerical simulations are
required after the breakdown (see, e.g., [53,54]). In our
simulations, we observe the WB phenomenon at late
time for large values of the electric field, in which cases
we can only extract information before the breakdown of
the model.
In order to better appreciate how the WB takes place, we

repeated the simulation with AE ¼ 1 for a longer integra-
tion time and a larger grid. In the upper panel of Fig. 6 we
show the evolution of Ex (solid lines) throughout all the
simulation, where we can clearly see that the incoming
wave packet is reflected by the plasma barrier. However,
for t ≈ 700, the longitudinal component of U⃗ leads to an
evolution of the plasma density. In this stage the plasma
loses coherence and nEL develops local spikes that increase
in height and becomes sharper with time. When one of
these spikes becomes excessively narrow, the fluid descrip-
tion of the system breaks down and the simulation crashes.
This can be observed from the bottom panel of Fig. 6,

where we show the longitudinal component of E⃗ together
with the plasma density profile. Note that WB occurs as
soon as the nonlinearities come into play (we observed it
already for AE ¼ 1), and the fluid description in the
nonlinear regime cannot be used for long-term numerical
simulations. However the good convergence of the code
even slightly before WB takes place (see Appendix B)
ensures the reliability of the results up to this point. Finally,
notice that one can obtain an analytical estimate of the
critical WB field and achieve a good agreement with the
numerical simulation. In particular, from Fig. 6 we esti-
mated the local plasma density at which WB takes
place to be nEL ≈ 0.01, so that the critical longitudinal
field is Ez

WB ¼ mωp=e ≈ 3, which is comparable with
AE ¼ 1 used in Fig. 6.

FIG. 5. Collective behavior of plasma in the nonlinear regime
as a function of the initial amplitude AE of the EM wave packet.
The upper panel shows the velocity dispersion

ffiffiffiffiffiffiffiffiffi
hU2i

p
, and the

middle panel shows the maximum value of jU⃗j (solid lines) and of
the longitudinal velocity Uz (dashed lines), while the lower panel
shows the collective longitudinal velocity hUzi. The nonlinear-
ities start becoming relevant in the range 1≲ AE ≲ 10, where the
velocity dispersion increases and the motion of electrons has a
large component on the transverse plane. For AE ≳ 10 the plasma
enters in the blowout regime, where electrons are “transported”
by the EM field and acquire a positive collective longitudinal
velocity.
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Overall, Figs. 4 and 6 show that for AE ∼ 1 the system
becomes weakly nonlinear, in agreement with the previ-
ously mentioned analytical estimates.
Going back to the snapshots of the evolutions in Fig. 4, we

now wish to analyze the behavior of the system for larger
electric fields, where the backreaction is macroscopic. We
can see that in this case, i.e., for AE ≳ 50, all the electrons in
the plasma barrier are “transported” in the z direction and
piled up within a plasma wake whose density grows over
time. This corresponds to a blowout regime induced by
radiation pressure. In order to better describe how the system
reaches this phase, we can compute the longitudinal com-
ponent of the collective electron velocity as

hUzi ¼
R
V d

3x nELUzR
V d

3x nEL
¼

R
zþ∞
z−∞

dz nELðzÞUzðzÞR
zþ∞
z−∞

dz nELðzÞ
; ð35Þ

where, again, we took advantage of the homogeneity of the
system along the transverse direction to reduce the dimen-
sionality of the domain of integration. The results are
shown in the lower panel of Fig. 5, where we can see that
for AE ≲ 10, the longitudinal momentum remains low and
is not influenced by the wave packet. For AE ≳ 10 instead,
hUzi starts to increase in time, indicating that the system is
in the blowout regime, as electrons are collectively moving
forward in the z direction.
Overall, the above analysis shows that when the ideal-

ized situation studied in [39] cannot be applied and the
nonlinear Lorentz term does not vanish, the general
physical picture is drastically different and that penetration
occurs in this setup due to radiation-pressure acceleration
rather than transparency.

V. DISCUSSION: IMPLICATIONS FOR PLASMA-
DRIVEN SUPERRADIANT INSTABILITIES

Motivated by exploring the plasma-driven superradiant
instability of accreting BHs at the full nonlinear level,
we have performed 3þ 1 numerical simulations of a plane
wave of very large amplitude but small frequency scattered
off an inhomogeneous plasma barrier. Although nonlinear
plasma-photon interactions are well studied in plasma-
physics applications, to the best of our knowledge this is the
first analysis aimed at exploring numerically this interesting
setup in generic settings.
One of our main findings is the absence of the relativistic

transparency effect in our simulations. As already men-
tioned, the analysis performed in [39] showed that, above a
critical electric field, plasma turns from opaque to trans-
parent, thus enabling the propagation of EM waves with
frequency below the plasma one. From Eq. (2), such critical

electric field for transparency is Etransp
crit ¼ m

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4
p

ω2 − ω2

q
. In

our simulations, we considered electric fields well above
this threshold, yet we were not able to observe this effect.
On the contrary, in the nonlinear regime the plasma
strongly interacts with the EM field in a complex way.
The role of relativistic transparency in more realistic situa-
tions than the one described in [39] was rarely considered
in the literature and is still an open problem [55].
Nevertheless, some subsequent analysis found a number
of interesting features and revealed that its phenomenology
in realistic setups is more complex.
In Ref. [40] an analytical investigation of a similar setup

was performed by considering the scattering between a
laser wave packet and a sharp boundary plasma. The
conclusion of the analysis is that, when plasma is inho-
mogeneous, nonlinearities tend to create a strong peaking
of the plasma electron density (and hence of the effective
plasma frequency), suppressing the laser penetration and
enhancing the critical threshold needed for transparency.
Subsequently, Refs. [56,57] confirmed this prediction
numerically and showed that in a more realistic scenario

FIG. 6. Evolution of the electric field and plasma density in the
case of AE ¼ 1. Upper panel: snapshots of Ex (solid lines) and
nEL (dotted lines) of the full evolution, where we can see that the
wave packet is mostly reflected by the plasma barrier. Lower
panel: snapshots of the longitudinal component Ez (solid lines)
and nEL (dotted lines) focusing on the last stages of evolution.
Here we can clearly see the WB phenomenon taking place, with
the plasma density developing spikes in regions where the
longitudinal component of the electric field increases steeply.
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transparency can occur but the phenomenology is drasti-
cally different from the one predicted in [39]. For nearly
critical plasmas, transparency arises due to the propagation
of solitons, while for higher densities the penetration
effect holds only for finite length scales. Nevertheless,
these simulations were performed by considering a sim-
plified momentum equation due to the assumption of a
null-vorticity plasma, which is typically suitable for uni-
dimensional problems, but likely fails to describe complex-
geometry problems as the one of superradiant fields. Using
particle-in-cell simulations, it was then realized that radi-
ation pressure can push and accelerate the fluid to relativ-
istic regimes, similarly to our results, and produce
interesting effects such as hole boring, ion acceleration,
and light sail [58,59].
While the complicated interplay between relativistic

transparency and radiation-pressure acceleration is still an
open problem [55,60], we argue that the latter, which arises
in generic situations with very overdense plasmas and
high-amplitude electric fields, is sufficient to dramatically
quench the plasma-driven superradiant instability. Indeed,
in order to have an efficient instability akin to the BH
bomb, the plasma should be able to reflect EM radiation as
a perfect mirror. While our simulations feature this behav-
ior in the linear regime, in the nonlinear case the large EM

field exerts a pressure on the plasma profile, pushing it
away and possibly rendering the confinement ineffective.
A pictorial representation of this phenomenology is shown
in Fig. 7. To enforce this conclusion, we provide a rough
estimate of the total energy extracted from the BH before
nonlinear effects take place [38]. In order for the instability
to be efficient on astrophysical timescales, ω≲ ωp ≈
Oð1=ðGMÞÞ, where G is Newton’s constant and M is
the BH mass [36,37,46]. This gives a critical electric field

Ecrit ¼
mω

e
≈ 4 × 105

V
cm

�
M⊙

M

�
: ð36Þ

The associated total energy can be estimated as
U ¼ E2

critL
3, where L is the size of the condensate formed

by the superradiant instability, and corresponds to the
location of the plasma barrier. This gives

U ≈ 107 J

�
M
M⊙

��
L
6M

�
3

; ð37Þ

where we assumed that the peak of the plasma barrier
roughly corresponds to the location of the peak density of
an accretion disk, L ≈ 6M. On the other hand, the total
rotational energy of the BH is given byK ¼ MR2Ω2, where
R and Ω are the radius and the angular velocity of the
horizon, respectively. To efficiently satisfy the superradiant
condition, Ω≳ ωp ≈Oð1=ðGMÞÞ, so that

K ≈ 1043 J

�
M
M⊙

�
: ð38Þ

Therefore, when the electric field reaches the threshold for
nonlinearities, the total energy extracted from the BH is
tiny, U=K ≈ 10−36.
Another argument supporting this conclusion is that, for

the superradiant instability to be sustainable, the maximum
energy leakage of the confining mechanism cannot exceed
the superradiant amplification factor of the BH. For EM
waves, the maximum amplification factor (for nearly
extremal BHs and fine-tuned frequency) does not exceed
≈4% and is typically much smaller [4]. Therefore, the
instability is not quenched only if the plasma is able to
confine more than 96% of the EM field energy. Our
simulations shows that in the nonlinear regime the situation
is quite the opposite: almost the entirety of the EM field
is not confined by the plasma, thus destroying its capability
to ignite the instability. We expect this argument to be valid
also when ωp ≫ ω, in which case plasma depletion
through blowout is negligible, but the EM field can still
transfer energy into longitudinal plasma motion.
Note that the arguments above are extremely conser-

vative, since they are based on a number of optimistic
assumptions that would maximize the instability. First of
all, realistic accretion flows around BHs are not spherical

FIG. 7. Pictorial representation of the photon-plasma interac-
tion in the context of BH superradiance. While in the linear
regime the plasma profile does not evolve and is able to
efficiently act as a mirror, when the EM field grows and the
system enters in the nonlinear regime, the radiation pressure
pushes the plasma away and jeopardizes the instability.

NONLINEAR PHOTON-PLASMA INTERACTION AND THE BLACK … PHYS. REV. D 109, 023007 (2024)

023007-11



nor stationary, especially around spinning BHs. This would
generically introduce mode mixing and decoherence,
rendering the instability less efficient. More importantly,
even in the linear regime a disk-shape accretion geometry
can (partially) confine modes that are mostly distributed
along the equatorial plane but would naturally provide
energy leakage along off-equatorial directions [47,48].
Finally, a sufficiently high plasma density in the corona
could quench photon propagation in the first place [46],
at least at the linear level during the early stages of the
instability.
Although our results strongly suggest that nonlinearities

completely quench the ordinary plasma-triggered BH
superradiant instability, our framework can be directly
used to explore more promising problems in other contexts,
especially in beyond-Standard-Model scenarios. It would
be interesting to study how nonlinear plasma interactions
affects BH superradiant instabilities triggered by ultralight
bosons, for example in the context of axion electrodynam-
ics or in the case of superradiant dark photons kinetically
mixed with ordinary photons. In the latter case, if the
plasma frequency is much greater than the dark photon bare
mass, the two vector fields decouple due to in-medium
suppressions. In Refs. [61,62], it was assumed that as the
dark photon field grows and accelerates the plasma, the
effect of the plasma frequency vanishes as it is unable to
impede the propagation of high-amplitude EM waves.
While our results confirm these statements, they also prove
that in generic settings the propagation will dramatically
alter the plasma profile and therefore suggest that even
in these systems (as well as for axion-photon-induced
blasts [63–66]) a more careful analysis at the plasma
frequency scale must be performed.
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APPENDIX A: DERIVATION OF THE 3+ 1 FORM
OF THE FIELD EQUATIONS

Here we perform the explicit computation to obtain the
field equations in the 3þ 1 form. For the EM field we avoid
to rewrite the procedure and we refer directly to [43]. We
will thus consider only Eqs. (4) and (5).

1. Decomposition of Eq. (4)

Let us rewrite Eq. (4) for clarity:

uν∇νuμ ¼
e
m
Fμνuν; ðA1Þ

we have to project it separately on nμ and on Σt.

a. Projection on nμ

Contracting Eq. (4) with nμ we obtain

nμuν∇νuμ ¼
e
m
Fμνuνnμ: ðA2Þ

In the right-hand side we have

e
m
Fμνuνnμ ¼ −

e
m
Eνuν ¼ −

e
m
Eνð3Þuν; ðA3Þ

where in the last step we used the fact that Eμ lies on Σt.
The left-hand side requires more manipulation. In particular
we have that

nμuν∇νuμ ¼ uν∇νðnμuμÞ − uμuν∇νnμ

¼ −uν∇νΓ − uμuν∇νnμ: ðA4Þ

Let us now consider only the second term:

uμuν∇νnμ ¼ uμuνδλν∇λnμ ¼ uμuνðhλν − nλnνÞ∇λnμ

¼ uνuμhλν∇λnμ − uνnνuμaμ

¼ uνuμhλνδσμ∇λnσ þ Γuμaμ
¼ uνuμhλνhσμ∇λnσ − uνuμhλνnσnμ∇λnσ

þ Γuμaμ: ðA5Þ

Here we used the definition of the projection operator
hμν ¼ δμν þ nμnν and the definition of Γ and defined the
4-acceleration of the Eulerian observer, aμ ¼ nν∇νnμ ¼
Dμ ln α. Given that nμnμ ¼ −1 the second term in the last
line vanishes. Furthermore, by recognizing that Kμν ¼
−hλνhσμ∇λnσ , we can write the first term as −Kμνuμuν.
Substituting all these terms in Eq. (A2) we obtain

−uμ∇μΓþ Kμνuμuν − ΓuμDμ ln α ¼ −
e
m
Eμð3Þuμ: ðA6Þ

Using now the decomposed form of uμ [Eq. (13)] we can
write

∂tΓ ¼ βi∂iΓ − αU i
∂iΓþ αΓKijU iUj − ΓU i

∂iαþ e
m
αEiU i:

ðA7Þ
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b. Projection on Σt

Let us now project Eq. (4) with hμν:

hμσuν∇νuσ ¼
e
m
hμσFσνuν: ðA8Þ

In the right-hand side we have

e
m
hμσFσνuν ¼

e
m
hμσðnσEν − nνEσ þ ð3ÞϵσνλBλÞuν

¼ −
e
m
nνuνEμ þ e

m
ð3ÞϵμνλBλuν

¼ e
m
ΓEμ þ e

m
Γð3ÞϵμνλBλUν: ðA9Þ

In the left-hand side, instead, we start by substituting the decomposition (13):

hμσuν∇νuσ ¼ hμσuν∇νðΓnσ þ ð3ÞuσÞ ¼ hμσuνnσ∇νΓþ Γhμσuν∇νnσ þ hμσuν∇ν
ð3Þuσ

¼ ΓhμσðΓnν þ ð3ÞuνÞ∇νnσ þ hμσðΓnν þ ð3ÞuνÞ∇ν
ð3Þuσ

¼ Γ2hμσaσ − ΓKμ
ν
ð3Þuν þ Γhμσnν∇ν

ð3Þuσ þ hμσð3ÞuνDν
ð3Þuσ; ðA10Þ

where in the third step we used the orthogonality between
nμ and hμν, while on the fourth step we used the definition
of the 4-acceleration aμ and the extrinsic curvature Kμν.
The covariant derivative Dμ has been introduced according
to the definition Dν

ð3Þuμ ¼ hσνhμλ∇σ
ð3Þuλ. Let us now

rewrite this equation in terms of Uμ:

hμσuν∇νuσ ¼ Γ2aμ − Γ2Kμ
νUν þ ΓUμnν∇νΓ

þ Γ2hμσnν∇νUσ þ UνUμΓDνΓ

þ Γ2hμσUνDνUσ: ðA11Þ

Now we wish to rewrite the spatial components of this
equation in the form of an evolution equation, and for this
purpose we use a procedure similar to the one in
Eqs. (A14)–(A20) of [43]. First we note that for any
3-vector ð3ÞVμ, Ln

ð3ÞVν ¼ nμ∇μ
ð3ÞVν − ð3ÞVμ∇μnν, so that

hνσnμ∇μ
ð3ÞVσ ¼ hνσLn

ð3ÞVσ þ hνσð3ÞVμ∇μnσ

¼ hνσLn
ð3ÞVσ − ð3ÞVμKν

μ: ðA12Þ

Now, the Lie derivative can also be written in terms of
partial derivatives, and setting ν ¼ i we obtain

hiσnμ∇μ
ð3ÞVσ ¼ hiσLn

ð3ÞVσ − ð3ÞVjKi
j

¼ 1

α
∂t

ð3ÞVi −
βj

α
∂j

ð3ÞVi þ
ð3ÞVj

α
∂jβ

i

− ð3ÞVjKi
j; ðA13Þ

where we made use of the explicit expressions of hμν
and nμ.
If we now substitute Eq. (A13) in the ith component of

Eq. (A11), we get

hiσuν∇νuσ ¼ Γ2ai þ ΓU inν∇νΓþ U iUjΓDjΓ

þ Γ2

α
ð∂tU i − βj∂jU i þ Uj

∂jβ
iÞ

þ Γ2UjDjU i − 2Γ2Ki
jUj: ðA14Þ

Next, nν∇νΓ ¼ 1
α ½∂tΓ − βi∂iΓ�, which is given by Eq. (A7).

Substituting in Eq. (A14) we obtain

hiσuν∇νuσ ¼ Γ2ai þ Γ2U iKjlUjU l − Γ2U iUj ∂jα

α

þ Γ2

α
ð∂tU i − βj∂jU i þ Uj

∂jβ
iÞ þ e

m
ΓU iEjUj

þ Γ2UjDjU i − 2Γ2Ki
jUj: ðA15Þ

We are now ready to replace Eq. (A15) and the spatial
components of Eq. (A9) in the original equation (A8) and
isolate the evolution operator. The result is

∂tU i ¼ βj∂jU i − Uj
∂jβ

i − αai − αU iKjlUjU l

þ α

Γ
e
m
ð−U iEjUj þ Ei þ ð3ÞϵijlBlUjÞ

þ 2αKi
jUj þ U iUj

∂jα − αUjDjU i: ðA16Þ
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2. Continuity equation in 3 + 1 variables

Let us now use the variables that we have introduced to
rewrite the continuity equation (5). Using the decomposi-
tion uμ ¼ Γðnμ þ UμÞ and the definition of the electron
density seen by the Eulerian observer, nEL ¼ Γne, we can
rewrite Eq. (5) as

0¼∇μ½neΓðnμþUμÞ� ¼∇μ½nELðnμþUμÞ�
¼ nμ∇μnELþUμ∇μnELþnEL∇μnμþnEL∇μUμ: ðA17Þ

Expressing nμ∇μnEL in terms of Lie derivatives, Eq. (A17)
can be written as an evolution equation for nEL:

∂tnEL¼βi∂inELþαKnEL−αU i
∂inEL−αnEL∇μUμ: ðA18Þ

APPENDIX B: CONVERGENCE TESTS

We have evaluated the accuracy and the convergence
properties of our code by checking how the constraint
violations (28) and (29) scale with the resolution in two
test setups taken from the simulations presented in the
main text.
In particular, we focus on the two most challenging

nonlinear regimes: WB and blowout (although not shown,
the convergence of the linear regime is excellent). Starting
from the former, we repeated the simulation with AE ¼ 1
whose characteristic are described in Sec. IV B, using a
lower resolution Δx ¼ Δy ¼ Δz ¼ 0.4 and increasing the
grid size to ½−4; 4� × ½−4; 4� × ½−1450; 1150� in order to
maintain 21 grid points along the x and y directions. We
also doubled the time step to Δt ¼ 0.2, in order to keep the
CFL factor constant.
Figure 8 shows the constraint violations CVGauss

(left panel) and CVPlasma (right panel) along the z axis at

t ¼ 830, slightly before WB happens (cf. lower panel of
Fig. 6). In general, while for both the constraint violations
there is a region where they are dominated by noise, in the
central region they show an excellent fourth-order scaling,
and convergence is lost only for 65≲ z≲ 75, where the
WB phenomenon is taking place.
We now move to consider the convergence in the

blowout regime. We repeated the simulation with AE ¼
1000 using grid steps Δx ¼ Δy ¼ Δz ¼ 0.4 while main-
taining the CFL factor constant. As in the previous case
we extended the grid to ½−4; 4� × ½−4; 4� × ½−750; 850� in
order to have the same number of grid points along the
transverse directions x and y. We show the scaling of
CVGauss and CVPlasma on the z axis at t ¼ 190 in the left and
right panel of Fig. 9, respectively. We can see that the code
converges extremely well, except in the region just behind
the peak of the plasma density (cf. lowest panel of Fig. 4).
However, we note that the extension of the region where
convergence is lost decreases as the resolution increases
and that fourth-order scaling is restored in the plasma-
depleted region.
Given the excellent convergence properties in the non-

linear regime, we conclude that the code is reliable and
produces accurate results at the resolutions used in
this work.

APPENDIX C: HOMOGENEITY OF THE FIELDS
ALONG THE TRANSVERSE DIRECTION

Throughout all this work we used numerical grids whose
extension along the transverse directions x and y is
significantly smaller than in the z direction. This has the
advantage of reducing considerably the computational cost
and can be done by exploiting the planar geometry of the
system under consideration. In this appendix, we wish to

FIG. 8. Scaling of the violations of the Gauss law (left panel) and the condition uμuμ ¼ −1 along the z axis, for the simulation in the
nonlinear regimewith AE ¼ 1. CVGauss and CVPlasma are extracted at t ¼ 830, when the WB phenomenon starts taking place. Overall the
code converges extremely well, except in the region around the spike of nEL, where the constraint violation displays a peak. The insets
show a magnification of the constraint violations around this region.
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show that homogeneity of the variables along the transverse
directions is preserved also at late times during the
evolution, so that this grid structure is compatible with
the physical properties of the system for the entire duration
of the simulations.
For this purpose we consider the simulation in the

nonlinear regime with AE ¼ 1000, and we extract the
profiles of Ex, Ey, Ez, and nEL along the x and y axes
at z ¼ 240. This operation is performed at t ¼ 180 when

the system is already in a blowout state, and the value of the
z coordinate is chosen to be where plasma is concentrated at
this time.
We show the results in Fig. 10, where the left and right

panels represent the profiles along the x and y axes,
respectively. We see that all the profiles are constant along
the axes and that the values are consistent between the two
plots, confirming that the system maintains homogeneity
along the transverse direction.

FIG. 9. Convergence of CVGauss (left panel) and CVPlasma (right panel) along the z axis for the simulation in the nonlinear regime with
AE ¼ 1000. The constraint violation is computed at t ¼ 190, when the system is in the blowout regime. As we can see it satisfies fourth-
order scaling except in the region close to the “transported” plasma and behind it, where the constraint violations have a peak. This can
be better appreciated in the inset, that contains a magnification of the constraint violation around this region.

FIG. 10. Profiles of E⃗ and nEL along the transverse directions x (left) and y (right) at z ¼ 240 for the simulation with initial amplitude
AE ¼ 1000. These data are extracted at t ¼ 180, where the system is already in the blowout regime, and in the spatial region where the
plasma density peaks. All the profiles are constant in x and y, with values consistent between the two plots. This confirms that the
homogeneity property is conserved during the 3þ 1 simulations.
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