
Destabilization of high-mass neutron stars by the emergence
of d�-hexaquarks

Marcos O. Celi ,1,2,* Mikhail Bashkanov ,3,† Mauro Mariani ,1,4,‡ Milva G. Orsaria ,1,4,5,§

Alessandro Pastore,6,∥ Ignacio F. Ranea-Sandoval ,1,4,¶ and Fridolin Weber 5,7,**

1Grupo de Astrofísica de Remanentes Compactos, Facultad de Ciencias Astronómicas y Geofísicas,
Universidad Nacional de La Plata, Paseo del Bosque S/N, La Plata (1900), Argentina

2CONICET, Godoy Cruz 2290, Buenos Aires (1425), Argentina
3Department of Physics, University of York, Heslington, York Y010 5DD, United Kingdom

4CONICET, Godoy Cruz 2290, Buenos Aires (1425), Argentina
5Department of Physics, San Diego State University,

5500 Campanile Drive, San Diego, California 92182, USA
6CEA, DES, IRESNE, DER, SPRC, F-13108 Saint Paul, Lez Durance, France

7Center for Astrophysics and Space Sciences, University of California,
San Diego, La Jolla, California 92093, USA

(Received 2 August 2023; revised 21 November 2023; accepted 26 November 2023; published 3 January 2024)

We study the effects of the first nontrivial hexaquark, d�ð2380Þ, on the equation of state of dense neutron
star matter and investigate the consequences of its existence for neutron stars. The matter in the core regions
of neutron stars is described using density-dependent relativistic mean-field theory. Our results show that
within the parameter spaces examined in our paper, (i) the critical density at which the d� condensate
emerges lies between 4 and 5 times the nuclear saturation density, (ii) d� hexaquarks are found to exist only
in rather massive neutron stars, (iii) only relatively small fractions of the matter in the core of a massive
neutron star may contain hexaquarks.
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I. INTRODUCTION

The advent of new powerful instruments like the LIGO/
Virgo gravitational wave detectors and NICER x-ray tele-
scope has revolutionized the approach to studying neutron
stars (NS) and presents new challenges in comprehending
the ultradense nuclear matter that constitutes them. The
analysis of LIGO/Virgo data from the binary neutron star
merger events GW170817 [1] and GW190425 [2] in
addition to the observations of 2M⊙ binary pulsars such
as PSR J1614 − 2230 [3], PSR J0348þ 0432 [4], PSR
J2215þ 5135 [5], PSR J0740þ 6620 [6], combined with
NICER data of PSR J0030þ 0451 [7–10] have set strong
constraints on the theoretical models of the equation of
state (EoS) for matter at densities higher than nuclear
saturation density, n0.
In particular, for the isolated pulsar PSR J0030þ 0451,

there are two independent measurements of its gravitational

mass and equatorial radius obtained by the NICER col-
laboration:M¼ 1.34þ0.15

−0.14M⊙, Req ¼ 12.71þ1.14
−1.19 km [7] and

M ¼ 1.44þ0.15
−0.14M⊙, Req ¼ 13.02þ1.24

−1.06 km [9]. Using data
from NICER together with observations of XMM-Newton,
two independent mass and radius estimates of PSR
J0740þ 6620 have been inferred [11,12] (see also the
estimates of mass and radius obtained after the revised
analysis of the best available data from NICER [13]). The
results show that despite being almost 50% more massive
than PRS J0030þ 0451, the radius of PSR J0740þ 6620
does not exhibit a significantly smaller value. These
observations challenge our understanding of matter inside
the inner cores of NS and discard some modern EoS. On the
other hand, there is a constraint on the radius of a 1.4M⊙
NS [14], which is determined to be R1.4 < 13.6 km.
Additionally, it is estimated that a NS cannot sustain a
mass exceeding ∼2.3M⊙ [15]. The latter restriction implies
that the radius of a NS with a mass of 1.4M⊙ is estimated to
be R1.4 ¼ 11.0þ0.9

−0.6 km. Moreover, observations based on
x-ray emissions, as presented in the study by Landry et al.
[16], suggest a radius of R1.4 ¼ 12.32þ1.09

−1.47 km for a NS
with the same mass.
In addition to the aforementioned observations, there

are also data available from the (presumably) second
binary NS merger event GW190425 [2]. In this case, no
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electromagnetic counterpart has been detected. To estimate
the mass of the primary object, two scenarios were consid-
ered: one assuming a low spin and the other assuming a high
spin. The estimated values for the mass of the primary object
in the low-spin scenario range from 1.60 to 1.87M⊙, while in
the high-spin scenario, the estimated mass ranges from 1.61
to 2.52M⊙. The estimated mass values for the secondary
object in the low-spin scenario range from 1.49 to 1.69M⊙,
while in the high-spin scenario, the estimated mass ranges
from 1.12 to 1.68M⊙. Due to the lack of an electromagnetic
counterpart, the constraints on themass and radius of this NS
are not as tight as the ones obtained from GW170817.
However, despite this limitation, the detection implies that a
NS with a high mass (M > 1.7M⊙) would likely have a
larger radius, estimated to be around R ∼ 11 km or more.
To further our understanding of NS composition, it is

crucial to possess a comprehensive understanding of the
nuclear EoS. However, delving into this subject presents
significant challenges, primarily due to the inherent com-
plexity of the nuclear many-body problem. Some of the
dense-matter studies use a phenomenological approach to
describe nuclear interactions and some seek a microscopic
many-body perspective. Among the phenomenological
approaches, the most frequently employed ones are based
on the Skyrme [17–19] interaction and variations of the
relativistic mean-field (RMF) model [20–22]. Wewill focus
on the latter in this work. The RMF model used for this
study describes interactions between baryons in terms of
meson exchanges, based on effective Lagrangian densities
[23,24]. In order to determine the appropriate baryons-
mesons coupling constants for these models, we will
consider contemporary limitations imposed by nuclear
and astrophysical conditions [25,26].
Initially, the cores of NS were believed to consist of a

neutron-rich fluid in β equilibrium. However, given the
exceptionally high densities involved, it is anticipated that
new microscopic degrees of freedom will emerge in the
cores of NS (for a recent review, see Ref. [22] and
references therein). It has been found that Δ particles
may constitute a considerable fraction of total particles in
NS matter when the density is a few times n0 [22,27,28]. It
has also been shown that the presence of Δ particles has a
significant impact on the NS properties. More precisely, the
Δ population affects the radii of NS [22,29–32]. On top of
that, particles containing strange quarks may also be
expected to appear [33–35]. Hyperons may be present in
the NS interiors and their presence has an appreciable
impact on the radii of NS and also on their maximum
masses [36,37]. Another theoretical possibility that has
been explored is the appearance of quark matter in the inner
cores of compact stars (see, for example, Refs. [38–40] and
references therein). Such matter could potentially be
formed either by free quarks or by quarks forming a color
superconducting state (see, for example, Ref. [41]).
Furthermore, previous studies have examined the sig-

nificance of the d�ð2380Þ dibaryon for the nuclear

equations of state (EoS) (e.g., Bashkanov et al. [42],
Vidaña et al. [43], Mantziris et al. [44]). The d�ð2380Þ
is the first known nontrivial hexaquark for which exper-
imental evidence is available [45]. It is a massive, positively
charged nonstrange particle with an integer spin (J ¼ 3).
The study conducted by Bashkanov et al. [46] has revealed
that, despite its substantial mass, the d�ð2380Þ dibaryon
may be expected to exist at densities at whichΔ particles or
hyperons exist in the interiors of NS.
The d�ð2380Þ has very large ΔΔ coupling, so that in

some theoretical models it is treated as a 70 MeV bound
state of two-Δ’s, a Deltaron [42]. That is why the presence
of the d�ð2380Þ in an EoS model substantially changes the
behavior of other baryons, substituting Δ’s where possible.
Another important point is d�ð2380Þ-mediated many-body
forces. The d�ð2380Þ particle, due to the pn → d� → pn
process, introduces an additional degree of freedom in
nucleon-nucleon interactions. As a result, the d� − N
interaction effectively plays the role of three-body (3N)
nucleon forces, while d� − d� interactions resemble four-
body (4N) forces, which might be important in high-density
matter. While our Lagrangian does not explicitly incorpo-
rate these interactions, the mere presence of the d�ð2380Þ
particle partially accommodates such dynamics.
The main objective of this work is to build upon the

analysis of the behavior of the d�ð2380Þ, as presented in
Mantziris et al. [44]. We aim to enhance the aforemen-
tioned study by incorporating a broader set of EoS,
introducing density-dependent coupling constants, and
ensuring that the resulting EoS comply with both the latest
astrophysical constraints as well as constraints derived from
nuclear theory [47]. We will incorporate hyperons and the
Δ resonance as potential constituents of dense NS matter.
Considering that the work by Mantziris et al. [44] high-
lights the destabilizing effect of d�ð2380Þ particles in NS,
our main objective is to examine whether the parameters
within the EoS models of our study permit the presence of
d�ð2380Þ particles in dense NS matter. The EoS models we
will use in this study are DD2 [48,49], GM1L [50,51], and
SW4L [32,52], which are computedwithin the framework of
density-dependent RMF theory. Our choice of these three
parametrizations is motivated by their ability to satisfy the
constraint of 2M⊙ for NSs, which is a critical benchmark if
you consider hyperons, and their capacity to introduce
improvements inRMFmodelswith fixed coupling constants.
We have chosen these three parametrizations as represent-
atives of a wide family of hadronic EoS compatible with
modern astronomical observations. In these models, the
coupling constants associated with hyperons exhibit density
dependence,while for thed�ð2380Þparticle,wewill consider
the coupling constant to be density-independent. Given the
lack of understanding of the d� couplings within the
nucleonic sector, including density-dependent coupling con-
stants for thed�would necessitate additional free parameters,
increasing the number of free parameters further. We note,
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however, that our framework has the capability to be
extended to a density-dependent version of the coupling
constant for the d�ð2380Þ, which will be the topic of a
future study. We also note that upcoming ground-based
experiments focusing on d�ð2380Þ photoproduction in
nuclei [53] hold the potential to provide valuable insight
into the coupling constant of the d�ð2380Þ by measuring
the nuclear-dependent medium modification of the
d�ð2380Þ mass.
The paper is structured in the following manner. In

Sec. II, we provide a detailed description of the density-
dependent RMF model used in this study and explain how
the inclusion of d�ð2380Þ is incorporated within this
theoretical framework. In Sec. III, we discuss the astro-
physical implications of the appearance of the d�ð2380Þ in
the cores of NS and provide an analysis of the constraints
imposed by current astronomical observations on the
coupling constants associated with this particle. In
Sec. IV, we summarize the main findings and present
the most relevant conclusions drawn from our research.

II. THE RMF MODEL CONSIDERING d�ð2380Þ
The Lagrangian density has a general form that includes

various components: baryons (nuclear matter N ¼ n, p),
the four states of the Δ particle (Δ ¼ Δ−;Δ0;Δþ;Δþþ),
hyperons (H ¼ Λ0;Σþ;Σ0;Σ−;Ξ0;Ξ−;Ω−), mesons σ, ω,
ρ, σ� [54], ϕ, nonlinear terms for the σ meson, the dibaryon
d�ð2380Þ, and leptons (l ¼ e−; μ−). It is given by [32]

L ¼
X
B

LB þ Lσωρ þ LNLσ þ Lϕσ� þ Ld� þ
X
l

Ll; ð1Þ

where

LB ¼
X
B

ψ̄B½γμ
�
i∂μ − gωBωμ − gϕBϕμ −

1

2
gρBτ · ρμ

�

− ðmB − gσBσ − gσ�Bσ�Þ�ψB: ð2Þ

The summation over B includes all baryons including theΔ
resonance. The mesonic Lagrangians are as follows,

Lσωρ ¼
1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ

−
1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ; ð3Þ

LNLσ ¼ −
1

3
b̃σmnðgσNσÞ3 −

1

4
c̃σðgσNσÞ4; ð4Þ

Lϕσ� ¼ −
1

4
ϕμνϕμν þ

1

2
m2

ϕϕμϕ
μ

þ 1

2
ð∂μσ�∂μσ� −m2

σ�σ
�2Þ; ð5Þ

The dibaryon Lagrangian reads [44]

Ld� ¼ D�ξ�d�Dξd� −m�2
d�ξ

�
d�ξd� ; ð6Þ

where D ¼ ð∂μ þ igωd�ωμÞ, m�
d� ¼ md� − gσd�σ, and ξd� is

the dibaryon isoscalar-scalar field. Note that this descrip-
tion adopted in Ref. [44] from Ref. [55] corresponds to a
spin S ¼ 0 particle and it neglects spins structure of the d�
hexaquark which is S ¼ 3 particle. A proper spin S ¼ 3
theoretical treatment can be found in Ref. [56]. Following
Ref. [44] we used a simplified d� treatment. We do not
expect that such omissions would massively change the
outcome of our calculations.
The leptons are described by

Ll ¼ Ψ̄lðiγμ∂μ −mlÞΨl; ð7Þ

Baryon-baryon interactions are modeled in terms of scalar
(σ; σ�), vector (ω;ϕ), and isovector (ρ) meson fields.
The parametrization of the density-dependent constants

accounting for nuclear medium effects are given by [57,58]

giBðnÞ ¼ giBðn0Þai
1þ bið nn0 þ diÞ2
1þ cið nn0 þ diÞ2

; ð8Þ

for i ¼ σ, ω, and

gρBðnÞ ¼ gρBðn0Þ exp
�
−aρ

�
n
n0

− 1

��
: ð9Þ

The constants ai, bi, ci and di are fixed, in the nucleonic
sector, by the binding energies, charge and diffraction radii,
spin-orbit splitting, and the neutron skin thickness of finite
nuclei (see Table IV in the Appendix for details). The
density dependence of the meson-baryon coupling makes it
unnecessary to add self-interactions of the σ meson in the
DD2 parametrization (LNLσ ¼ 0). Hence, only the GM1L
and SW4L parametrizations need the nonlinear terms
shown in Eq. (4) (see also Table I). As the gωd� coupling
is responsible for repulsion and gσd� for attraction (follow-
ing the sign convention of Ref. [44]), we limit our analysis
to negative values of gωd� and positive values of gσd� . The
range of the d�ð2380Þ coupling constant was chosen

TABLE I. Coupling constants and terms included (indicated
with a ✓) or excluded (✗) from the general Lagrangian of Eq. (1)
depending on the hadronic parametrizations DD2, GML1 [62,63]
(and references therein), and SW4L [32,52].

DD2 GM1L SW4L

gσ�B ✗ ✗ ✓
gϕB ✗ ✗ ✓

Lϕσ� ✗ ✗ ✓

LNLσ ✗ ✓ ✓
giBðnÞ ✓ ✗ ✗
gρBðnÞ ✓ ✓ ✓
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between gid� ¼ 0 (representing the noninteracting case)
and gid� ¼ 2giN (corresponding to the universal coupling
limit) [59]. The meson-hyperon coupling constants of all
parametrizations have been determined following the
Nijmegen extended soft core (ESC08) model (see
Refs. [32,52,60], and references therein). Details of the
determination of some of these couplings are given in the
Appendix. For the Δ-resonance we use a quasi-universal
meson–Δ coupling xσΔ ¼ xωΔ ¼ 1.05, xρΔ ¼ xϕΔ ¼ 1.0,
xσ�Δ ¼ 0.0. Following Malfatti et al. [32] we also use
xσΔ ¼ xωΔ ¼ 1.25. At this point it is important to mention
that although Δ-resonances are spin 3=2 particles, their
equation of motion can be written as those of spin 1=2 and
for this reason can be included in the Lagrangian of Eq. (2)
(see Ref. [61] for details). For an easier numerical treat-
ment we consider xiH ¼ giH=giN for all meson–hadron
coupling constants.
The general system of nonlinear, coupled equations in

the RMF approximation is obtained by deriving the
equations of motion that arise from Eq. (1) and sub-
sequently substituting the meson field operators with their
mean-field values,

m2
σσ̄ ¼

X
B

gσBnsB þ ∂LNLσ

∂σ̄
þ gσd�nd� ;

m2
ωω̄ ¼

X
B

gωBnB − gωd�nd� ;

m2
ρρ̄ ¼

X
B

gρBI3BnB;

m2
σ�σ

� ¼
X
B

gσ�BnsB;

m2
ϕϕ̄ ¼

X
B

gϕBnB; ð10Þ

where the d� number density is given by nd� ¼ 2ðmd� −
gσd� σ̄Þξ�d�ξd� ¼ 2ðμd� þ gωd�ω̄Þξ�d�ξd� [44]. I3B is the
3-component of isospin. The quantities nsB and nB are
the scalar and particle number densities of a baryon, which
are given by

nsB ¼ 2JB þ 1

2π2

Z
pFB

0

p2dp
m�

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2

B

p ; ð11Þ

nB ¼ 2JB þ 1

6π2
p3
FB
; ð12Þ

where m�
B ¼ mB − gσBσ̄ − gσ�Bσ� denotes the effective

baryon mass and pFB
and JB are, respectively, the Fermi

momentum and the total spin of a baryon of type B. The
total baryon number density, n, follows from

n ¼
X
B

nB: ð13Þ

The chemical equilibrium condition for the dibaryon is
given by μd� ¼ 2μn − μe [44], where μn and μe represent
the chemical potentials of neutrons and electrons, respec-
tively. In addition, the chemical equilibrium of nucleons,
hyperons and Δ-resonances is given by μB ¼ μn þ qBμe,
where qB is the corresponding baryon electric charge. Thus,
the chemical potential of a baryon takes the form

μB ¼ gωBω̄þ gρBρ̄I3B þ gϕBϕ̄þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
FB

þm�2
B

q
þ R̃; ð14Þ

where the term

R̃¼
X
B

�
∂gωBðnÞ

∂n
nBω̄þ ∂gρBðnÞ

∂n
I3BnBρ̄−

∂gσBðnÞ
∂n

nsBσ̄

�
;

ð15Þ

guarantees thermodynamic consistency [64].
The hadronic pressure is given by

PH ¼ 1

3

X
B

2JB þ 1

2π2

Z
pFB

0

dp
p4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm�2
B

p −
1

2
m2

σσ̄
2

−
1

2
m2

σ�σ
�2 þ 1

2
m2

ωω̄
2 þ 1

2
m2

ρρ̄
2 þ 1

2
m2

ϕϕ̄
2

−
1

3
b̃σmNðgσN σ̄Þ3 −

1

4
c̃σðgσN σ̄Þ4 þ nR̃; ð16Þ

and the hadronic energy density can be expressed as

εH ¼
X
B

2JB þ 1

2π2

Z
pFB

0

dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2

B

q
þ 1

2
m2

σσ̄
2

þ 1

2
m2

σ�σ
�2 þ 1

2
m2

ωω̄
2 þ 1

2
m2

ρρ̄
2 þ 1

2
m2

ϕϕ̄
2

− LNLσ þm�
d�nd� ; ð17Þ

where m�
d� ¼ md� − gσd� σ̄ denotes the effective mass of d�

baryons in the RMF approximation. Note that the dibaryon
contributes directly to Eq. (17) but also contributes indi-
rectly to Eq. (16) due to the terms involving the wave
function ξ�d in the system of Eqs. (10).
It should be noted that for energy densities

ε < 56 MeVfm−3, corresponding to the crust layers of
NS, we use the Baym-Pethick-Sutherland (BPS) and
Baym-Bethe-Pethick (BBP) EoS [65,66].

III. RESULTS

To begin this section, we show in panels (a), (b), and (c) of
Fig. 1 the pressure as a function of energy density for the
DD2, GM1L, and SW4L parametrizations. The nuclear
saturation properties associated with these EoS are shown in
Table II. For each parametrization, the left (right) panels
display the EoS for meson-Δ coupling constants xσΔ ¼
xωΔ ¼ 1.05 (xσΔ ¼ xωΔ ¼ 1.25). In the exploration of each
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parametrization, we investigate the parameter space for the
ratio of the coupling constants of the σ andωmesons, and the
d� dibaryon, with values ranging from −2 ≤ xωd� ≤ 0 and
0 ≤ xσd� ≤ 2. Each curve in Fig. 1 represents a specific
combination of xσd� and xωd� , given a different parametriza-
tion and a different value of xσΔ and xωΔ. We find that for a
fixed value of xσd� , the smaller (less negative) the absolute
value of xωd� , the earlier the appearance of the d�. In
addition, for a fixed value of xωd� , the larger the absolute
value of xσd� , the earlier thed� particle appears. Furthermore,

the appearance of the dibaryon flattens the EoS, i.e., the
increaseofpressure is reducedwith increasing energydensity.
The color bar located to the right of the figure shows the ratio
of dibaryons to baryons,nd�=n. It can be seen that after thed�-
hexaquark appearance, the ratio of dibaryons increases as the
energy density increases. This behavior ismore noticeable for
the DD2 and GM1L parametrizations, panels (a) and (b),
respectively. Furthermore, the inclusion of hyperon-hyperon
interactions, via the strange-scalar (σ�) and strange-vector (ϕ)
mesons in the SW4Lparametrization, results in a stiffening of

FIG. 1. Pressure as a function of the energy density for the DD2 (a), GM1L (b), and SW4L (c) parametrizations, considering
xσΔ ¼ xωΔ ¼ 1.05 (left) and xσΔ ¼ xωΔ ¼ 1.25 (right). The color bar represents the ratio of the dibaryon number density to the total
baryon number density.
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the hadronic EoS when comparing SW4L with DD2 or
GM1L. One can observe the stiffening, setting a specific
energy density value, and comparing the pressures for each
parametrization. Consequently, the flattening of Pðε) in the
SW4L parametrization is less pronounced when the d�
appears. This leads to the absence of the Md� proportion
in the configurations with maximum stellar mass for the
SW4Lparametrization (note that Fig. 6 only shows the panels
for DD2 and GM1L parametrizations).
The mass-radius relationship for each parametrization is

shown in Fig. 2. The light blue (orange) curve represents a
meson-Δ coupling constant xσΔ ¼ xωΔ ¼ 1.05ðxσΔ ¼
xωΔ ¼ 1.25Þ. These colored curves represent configurations
without the presence of the d�-hexaquark particle, while the
introduction of this particle is indicated by a change to black

TABLE II. Properties of nuclear matter at saturation density
for the parametrizations used in this work. Shown are the
values of the nuclear saturation density n0, energy per
nucleon E0, nuclear compressibility K0, effective nucleon mass
m�

N=mN , asymmetry energy J0, and the slope of the asymmetry
energy L0.

Saturation
properties DD2 [48,49] GM1L [50,51] SW4L [32,52]

n0 (fm−3) 0.149 0.153 0.150
E0 (MeV) −16.02 −16.30 −16.00
K0 (MeV) 242.7 300.0 250.0
mN

�=mN 0.56 0.70 0.70
J0 (MeV) 32.8 32.5 30.3
L0 (MeV) 55.3 55.0 46.5

FIG. 2. Mass-radius relationship shown for the DD2 (a), GM1L (b), and SW4L (c) parametrizations with different combinations of
xωd� and xσd� . The orange (light-blue) curve corresponds to xσΔ ¼ xωΔ ¼ 1.25 (xσΔ ¼ xωΔ ¼ 1.05). The presence of the d�-hexaquark
destabilizes NS, resulting in stable, very short branches (black short lines) of stellar configurations containing dibaryons. The enlarged
area in each panel shows the effect of the combination of xωd� and xσd� for stars close to the maximum mass configuration. The red
circles indicate the stars considered in Fig. 4.
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color on each curve. Consequently, only the black branches
indicate stellar configurations with d� presence.
As can be seen, the presence of d�-hexaquark particles

has a destabilizing effect on NS. If the combination of xωd�
and xσd� leads to the appearance of d� particles at lower
energy densities in the EoS, the corresponding mass-radius
curve will be truncated before reaching the maximum-mass
configuration. As a result, there are very short stable
branches of stellar configurations containing dibaryons.
Moreover, this behavior is particularly important as it

affects the compatibility of the EoS with high mass pulsars
such as J1614-2230 [3], J0348þ 0432 [4], and J0740þ
6620 [6]. Stellar configurations with an early occurrence of
d� are unable to explain these high mass pulsars due to the
limited stability of dibaryons in their EoS. The enlarged
area in each panel of the figure provides a detailed view of
the influence of the combination of xωd� and xσd� for the
different parametrizations. Notably, it is observed that the
black stable branches containing dibaryons are slightly
longer in panels (b) and (c) for xωd� ¼ xσd� ¼ 1.05 com-
pared to the DD2 parametrization in panel (a).
For completeness, in Fig. 3 we show a representative

case of truncated EoS due to the aforementioned

FIG. 3. Dynamical neutron mass and the associated number
density due to the instabilities discussed in the text for a
representative truncated EoS. In particular, we present the results
for SW4L parametrization, and xσd� ¼ 0.7, xωd� ¼ −0.9,
xσΔ ¼ xωΔ ¼ 1.05. We show the neutron dynamical mass, in
units of the bare neutron mass, M�

n=Mn, and the neutron number
density, in units of the baryonic number density, nn=n, as a
function of the baryonic number density, in units of n0. The
dashed line indicates the onset of the d�. This truncated EoS
represents globally the behavior of all truncated EoS in this work.

FIG. 4. Particle populations of the maximum-mass stellar configurations for the DD2 (a), GM1L (b), and SW4L (c) parametrizations,
considering xσΔ ¼ xωΔ ¼ 1.05, xωd� ¼ −0.4, and xσd� ¼ 0.3, with a total mass of M ¼ 1.95M⊙, M ¼ 1.87M⊙, and M ¼ 1.77M⊙,
respectively.
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instabilities. We display the neutron dynamical mass,
denoted as M�

n=Mn, in units of the bare neutron mass,
and the neutron number density, nn=n, in units of the
baryonic number density, as a function of the baryonic
number density in units of n0. The onset of the d� is
indicated by a dashed vertical line. The truncation of this
EoS is not a consequence of the effective neutron mass
reaching zero before achieving the maximum mass

configuration; rather, it arises from the effects of different
combinations of d� couplings in each parametrization. It is
important to remark that this truncated EoS represents
globally the behavior of all truncated EoS in this work.
In Fig. 4 we show the particle population distribution in

the maximum mass stellar configuration for a particular
hadronic EoS characterized by coupling constant ratios
xσΔ ¼ xωΔ ¼ 1.05, xσd� ¼ 0.3, and xωd� ¼ −0.4. Notably,

FIG. 5. Onset of the dibaryon population in the xωd�–xσd� plane for DD2 (a), GM1L (b), and SW4L (c), considering meson-Δ coupling
constants of xσΔ ¼ xωΔ ¼ 1.05 (left panel) and xσΔ ¼ xωΔ ¼ 1.25 (right panel). The color bar shows the baryon density n, in units of n0,
at which the d�ð2380Þ appears for each parametrization. The white lines show the maximummasses of NS as a function of xωd� and xσd� .
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the presence of the d� hexaquark becomes evident at
approximately n ≃ 3.60n0 in panels (a) and (c), and at n ≃
3.75n0 in panel (b), significantly influencing the behavior
of all other particles in the star. Due to its high mass, the d�
particle appears only deep in the cores of these NS, in the
innermost part, at Rd� ∼ 2 km. Consequently, its impact on
the NS radius is minimal, but its presence is a key
determinant for the maximum NS mass, as demonstrated
in Fig. 2.
For the DD2 and GM1L parametrizations in panels (a)

and (b) respectively, the Δ− resonance is present at low
densities, with n ∼ 1.56n0 and n ∼ 2.23n0 respectively.
However, in the case of the SW4L parametrization in
panel (c), the appearance of the Δ− resonance takes place at
very high densities, specifically at n ∼ 7.60; n0, practically
at the center of the star. As a result, its presence is not as
noticeable in this scenario.

In Fig. 4, we observe another intriguing aspect of models
incorporating the d� particle: due to its low mass, the Λ
emerges at lower densities compared to the d� in all three
cases. However, the presence of the d� particle hinders the
Λ particles from reaching a substantial fraction in the EoS,
and this holds true for all three models.
In chiral effective field theories, such as in Ref. [67], the

absence of the Λ particle is ascribed to higher-order 3-body
forces. However, incorporation of d� particles into EoS
leads toΛ suppression mainly through two-body forces. All
models featuring the d� particle exhibit similar behavior: as
soon as the d� appears, it tends to convert all other particles
into itself, except for some negatively charged species that
serve as compensators for its positive charge. For all
models, the Δ− particle (and to a lesser extent, the Ξ−)
functions as a compensator, with electrons and muons
playing a smaller role in the compensation process.

FIG. 6. Ratio between the stellar mass containing dibaryons, M�
d, and the maximum stellar mass, Mmax. This ratio is analyzed in the

xωd�–xσd� plane for two different scenarios: one with xσΔ ¼ xωΔ ¼ 1.05 on the left-hand side and the other with xσΔ ¼ xωΔ ¼ 1.25 on
the right-hand side. The analysis considers the DD2 and GM1L parametrizations. The color bar shows the M�

d proportion in the
maximum-mass stellar configuration. The white lines show the maximum masses as a function of xωd� and xσd� . (The ratioM�

d=Mmax for
the SW4L parametrization is below the precision of our calculations and, therefore, is not presented in the figure.)
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The following and final results of this study consist of
colored maps that establish the relationship between the
d� and Δ coupling constants with various EoS and
astrophysical relevant quantities. In the subsequent para-
graphs, we present these results in detail. Prior to that, we
would like to clarify the general behavior of these figures:
on the respective parameter planes, the results are
displayed as colored polygons. Although we explore

the complete ranges of coupling constants as detailed
earlier, there are instances of instabilities in the resulting
EoS, which prevent us from obtaining results for the
entire planes presented in these figures. Consequently,
the polygons indicate the regions where we have
identified an unstable EoS behavior. The possible causes
of these emerging EoS instabilities are discussed in
Sec. IV.

FIG. 7. Ratio between the stellar mass containing Δ− particles,MΔ− , and the maximum stellar mass,Mmax, in the xωd�–xσd� plane for
xσΔ ¼ xωΔ ¼ 1.05 on the left-hand-side and xσΔ ¼ xωΔ ¼ 1.25 on the right-hand side). The analysis considers the DD2, GM1L, and
SW4L parametrizations. The color bar shows the Δ− mass fraction in the maximum-mass stellar configurations. The dark and white
lines show the maximum masses of NS as a function of xωd� and xσd� .
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Figure 5 illustrates the color map of the xωd� − xσd� plane
for each parametrization. The left (right) panels depict the
EoS with a meson-Δ coupling constant of xσΔ ¼ xωΔ ¼
1.05 (xσΔ ¼ xωΔ ¼ 1.25), respectively. The color bar in the
figure indicates the baryonic density, expressed in units of
the nuclear saturation density n0, at which the d�-hexaquark
onset occurs. The white curves represent the maximum
mass values achievable in the mass-radius curve of NS for
the corresponding combination of EoS (xωd� , xσd�).
Our findings reveal that a delayed appearance of the d�

particle stiffens the EoS, resulting in higher mass values in
the associated curve of stellar configurations, but it also
leads to the immediate destabilization of such stars.
Combinations of lower values for xωd� and xσd� cause
the dibaryon to emerge at increasingly higher densities.
The variation of the coupling constants xid� leads to a
monotonic change in the d� appearance density and,
consequently, contributes to a greater maximum NS mass
value.
In Fig. 6 we show the ratio of the gravitational stellar mass

containing d� particles to the total gravitational mass of the
maximummass star, as a function of xσd� and xωd� . In the left
(right) panels, we present the EoS for a meson-Δ coupling
constant of xσΔ ¼ xωΔ ¼ 1.05 (xσΔ ¼ xωΔ ¼ 1.25). For the
DD2 parametrization, shown in panel (a) on the left (right),
the largest ratio Md�=Mmax ¼ 2.0ð1.6Þ × 10−3 is obtained
for xσd� ¼ 0.5 and xωd� ¼ −0.6 (xσd� ¼ 0.3 and xωd� ¼
−0.3). For the GM1L parametrization, shown in panel
(b) on the left (right), the largest ratio Md�=Mmax ¼
6.3ð2.0Þ × 10−3 is obtained for xσd� ¼ 0.9 and xωd� ¼
−1.0 (xσd� ¼ 0.8 and xωd� ¼ −1.0).
For the SW4L parametrization, the value ofMd�=Mmax is

≲10−5 for both choices of meson-Δ coupling constants.
This value is below the precision of our calculations; thus,
we do not present the results in the figure.
All parametrizations display a nonmonotonic behavior

with a clear maximum at certain values of the coupling
constants xid� . This allows us to speculate about a proper
model based on purely theoretical grounds, hypothesizing
that a correct EoS should lead to the maximum possible d�
content within the NS.
In Fig. 6, the alteration of the remaining baryonic

coupling constants, denoted as xiΔ, also influences the
location of the maximum d� mass peak, offering a means to
adjust these constants accordingly. Additionally, as the
value of a coupling constant increases and approaches the
region where EoS instabilities arise, it results in a reduction
of the NS mass at the point where the d� content reaches its
maximum.
In Fig. 7, we present the ratio of the gravitational stellar

mass containingΔ− particles to the total gravitationalmass of
the maximum-mass stellar configuration, as a function of
xσd� and xωd� . The left (right) panels depict the EoS for a
meson-Δ coupling constant of xσΔ ¼ xωΔ ¼ 1.05 (xσΔ ¼
xωΔ ¼ 1.25).

In the specific case of the right panel of the DD2
parametrization, the largest value of MΔ−=Mmax ∼ 0.1 is
achieved at the center of the colored area, where xσd� ¼ 0.0
and xωd� ¼ −0.3. In all other panels, MΔ−=Mmax increases
as xωd� decreases for a fixed value of xσd� . Panel (a) of the
DD2 parametrization shows the highest MΔ−=Mmax ratio,
approximately 10% of Mmax. For the left panel (a), this is
achieved with xσd� ¼ 0.4 and xωd� ¼ −1.2. In the case of
the left (right) panel (b) of the GM1L parametrization, we
obtain MΔ−=Mmax ∼ 0.05ð0.09Þ by combining xσd� ¼ 0.3
and xωd� ¼ −0.7 (xσd� ¼ 0.1 and xωd� ¼ −1.0). The lower
mass fraction MΔ− is obtained for the SW4L parametriza-
tion, in panels (c), where MΔ−=Mmax ∼ 0.03 in the left
(right) panel with xσd� ¼ 0.1 and xωd� ¼ −1.0 (xσd� ¼ 0.3
and xωd� ¼ −0.5).
It is interesting to note that conventional baryons, such as

Δ resonances, demonstrate a monotonic behavior in
MΔ−=Mmax with the variation of xid� .

IV. SUMMARY AND CONCLUSIONS

In this study, we extended the investigation of the d�-
hexaquark’s presence in NS, building upon the work of
Mantziris et al. [44]. To model the matter in the interior of
such compact objects, we employed three different para-
metrizations of relativistic mean-field models with density-
dependent coupling constants, namely DD2, GM1L, and
SW4L. The interactions among protons, neutrons, hyper-
ons, and the Δ-resonances are described by the exchange of
σ, ω, ρ, σ�, and ϕ mesons. For each parametrization, we
incorporated the d� particle, accounting for s-wave con-
densation and its dispersion relation, while assuming a
constant (i.e., density-independent) coupling constant asso-
ciated with the dibaryon. The coupling constants for the Δ-
resonances were set to quasiuniversal values: xσΔ ¼ 1.05
and xωΔ ¼ 1.25. Throughout our analysis, we explored a
range of coupling values for the d� particle within the
intervals −2 ≤ xωd� ≤ 0 and 0 ≤ xσd� ≤ 2. By considering
different families of NS and their corresponding EoS, we
constructed color maps, taking into account current obser-
vational constraints on compact stars. The main findings of
our work are the following:

(i) The d� hexaquarks form a boson condensate, result-
ing in a softening of the equation of state for neutron
star matter.

(ii) The critical density at which the d� condensate
emerges lies between 4 and 5 times the nuclear
saturation density, varying depending on the specific
EoS. In this study, we utilized the SU(3) ESC08
model to determine the hyperon-meson coupling
constants at nuclear saturation density, focusing on
xσΔ ¼ 1.05 and xωΔ ¼ 1.25 values. However, it
should be noted that values around these choices
are also possible. Since these coupling constants are
phenomenological, they account for higher-order
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effects, such as 3− and 4 − body forces, and there
are no first principle constraints to fix them at
specific values. By varying the values of the cou-
pling constants, one obtains EoS that are either
stiffer or softer than the models used in our paper.
Due to this constraint, it is not possible to reach
definitive conclusions regarding the presence or
absence of d� hexaquarks in massive neutron stars.

(iii) This indicates that d� hexaquarks exist within a
sphere with a radius of less than ∼2 km in the cores
of neutron stars.

(iv) d� hexaquarks are found to exist only in rather
massive neutron stars.

(v) Within the parameter spaces examined in our paper,
the masses of such neutron stars cannot significantly
exceed two solar masses when the relativistic mean-
field theory is employed to model dense neutron star
matter.

(vi) Further investigation is needed to determine if other
theories of dense matter, possibly incorporating
phase transitions to other types of matter, could
lead to neutron stars where the destabilizing emer-
gence of d� hexaquarks allows for masses exceeding
two solar masses.

(vii) If this situation does not occur, one can confidently
dismiss the presence of d� hexaquarks in dense
neutron star matter, leading to more precise calcu-
lations of dense matter with one less degree of
uncertainty.

(viii) The influence of the d� particle on the EoS and its
impact on the observational constraints of NS is
related to the strengthening of the attraction (gσd�) or
the repulsion (gωd�). We observed a general trend
that increasing the absolute values of the coupling
constants increases the d� content in the stellar core
up to 4 × 10−3 times the maximum stellar mass.

In a future study, we intend to conduct minimization
studies in order to investigate how the maximum d� content
varies across the complete parameter space. However, due
to the extensive nature of the parameter space (approx-
imately 50 parameters), significant computational resour-
ces will be necessary for this undertaking.
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APPENDIX

1. Meson-hyperon coupling constants

Based on a modified SU(3) symmetry, we have used the
Nijmegen extended-soft-core (ESC08) model to deter-
mine the vector meson-hyperon coupling constants. These
couplings can be expressed in terms of octet-singlet
coupling ratio z, the vector mixing angle θV , and the
symmetric/antisymmetric vector coupling ratio αV [68]. In
the SU(3) ESC08 model, z ¼ 0.1949, θV ¼ 37.57° and
αV ¼ 1. Therefore, for the three parametrizations consid-
ered in this work, we have xωΛ ¼ xωΣ ¼ 0.79426, and
xωΞ ¼ 0.588521, where xωY ¼ gωY=gωN . Additionally,
for the SW4L parametrization, xϕΛ ¼ xϕΣ ¼ −0.609460,
and xϕΞ ¼ −0.877583, where xϕY ¼ gϕY=gωN . Note that
gϕN ¼ xϕNgωN , and xϕN ¼ xϕΔ.
Once the vector meson-hyperon couplings are deter-

mined, the scalar meson-hyperon coupling constants,

TABLE III. Scalar (σ), vector (ω), and isovector (ρ) meson-
nucleon coupling constants for the parametrizations used in this
work.

Parametrization gσN gωN gρN

DD2 10.69 13.34 3.627
GM1L 9.572 10.62 8.198
SW4L 9.801 10.39 7.818

TABLE IV. Meson masses and constants of the functions of
Eqs. (8) and (9) for the parametrizations that lead to the properties
of symmetric nuclear matter at saturation density given in
Table II.

Parameters DD2 GM1L SW4L

mσ (GeV) 0.5462 −0.5500 −0.5500
mω (GeV) 0.7830 −0.7830 −0.7826
mρ (GeV) 0.7630 −0.7700 −0.7753
mσ� (GeV) � � � � � � −0.9900
mϕ (GeV) � � � � � � −1.0195
b̃σ � � � −0.0029 −0.0041
c̃σ � � � −0.0011 −0.0038
aσ 1.3576 � � � � � �
bσ 0.6344 � � � � � �
cσ 1.0054 � � � � � �
dσ 0.5758 � � � � � �
aω 1.3697 � � � � � �
bω 0.4965 � � � � � �
cω 0.8177 � � � � � �
dω 0.6384 � � � � � �
aρ 0.5189 −0.3898 −0.4703

MARCOS O. CELI et al. PHYS. REV. D 109, 023004 (2024)

023004-12



xσY , xσ�Y , can be fitted to reproduce empirical hyperon
single-particle potentials in symmetric nuclear matter at
nuclear saturation density given in Ref. [52]

UY
ðNÞðn0Þ ¼ gωYω̄þ gϕYϕ̄ − gσY σ̄; ðA1Þ

where we have considered UðNÞ
Λ ðn0Þ ¼ −28 MeV,

UðNÞ
Σ ðn0Þ ¼ þ30 MeV, and UðNÞ

Ξ ðn0Þ ¼ −14 MeV. In
the case of SW4L parametrization, where the strange-scalar
meson σ� is included, we use the following potential

UΛ
ðΛÞðn0Þ ¼ gωΛω̄þ gϕΛϕ̄ − gσΛσ̄ − gσ�Λσ̄�;

where UðΛÞ
Λ ðn0Þ ¼ −1 MeV is considered to set the

coupling constant gσ�Λ in isospin-symmetric Λ-matter,

gσ�Σ ¼ gσ�Λ ¼ 1.924214, gσ�Ξ ¼ 7.724675. Note that
xσ�N ¼ 0, and xσ�N ¼ xσ�Δ (see Ref. [32] for details).
The relative isovector meson-hyperon coupling con-

stants for DD2 and GM1L parametrizations are scaled
by the hyperon isospin as xρY ¼ 2jI3Y j. For SW4L para-
metrization, we have used universal isovector meson-
hyperon couplings. The meson-nucleon coupling
constants for the different parametrizations are listed in
Table III. Table IV contains the meson masses and the
constants for the density-dependent functionals of
Eqs. (8) and (9).
To improve the readability of the coupling constants, we

present the ratio xiH (i ¼ σ, ω, ρ; H ¼ Λ;Σ;Ξ) in Table V.
In addition, the masses of the spin 1=2 baryon octect for the
three parametrizations are given in Table VI.
As mentioned in Sec. II, in addition to the hadronic

decuplet, we also consider the possibility of the corre-
sponding hyperon Fermi channel,Ω−, for which we assume
the coupling constants with mesons to be universal.
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