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A recent assessment of the central compact object in the supernova remnant HESS J1731 − 347

[Nat. Astron. 6, 1444 (2022)] reveals its remarkably small radius, accompanied by the intriguing
characteristic of a mass smaller than one solar mass, a feature that has hitherto defied a conclusive
explanation. To explain the astrophysical features of this peculiar source, in the present work, we consider
two distinct dark matter models: the single-fluid dark matter model and the two-fluid dark matter model,
both mixed within neutron stars. These two models can meet various astronomical observational
constraints well and successfully account for the observational requirements of HESS J1731 − 347.
We further estimate the parameter space of these two dark matter classes in light of multimessenger
observational constraints. Additionally, we investigate the effects of these dark matter models on tidal
deformability, neutron star nonradial oscillation frequencies, and gravitational waves during the binary
neutron star inspiral process. Our findings underscore the pivotal role played by dark matter in shaping the
gravitational wave-related properties of neutron stars, thereby offering valuable insights for future
observations.
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I. INTRODUCTION

Neutron stars (NSs), as a class of compact objects in the
Universe, represent an exceptional platform for scrutinizing
the four fundamental interactions of nature [1]. It is widely
held that the NS interiors may encompass not only baryon
matter but also components such as kaon condensates,
quark matter, and even dark matter (DM). The task of
discerning these components and providing an accurate
description of their equation of states (EOS) has become an
imminent scientific conundrum [2,3]. Simultaneously,
recent multimessenger observations continually push the
boundaries of our understanding of NSs. Notably, discov-
eries such as NSs with twice the solar mass (M⊙) [4–9], the
extraction of tidal deformability in the binary NS mer-
ger event GW170817 by the LIGO/Virgo Collaboration
[10,11], and the precise measurements of mass and radius
for PSR J0030þ 0451 [12,13] and PSR J0740þ 6620
[8,9] by NICER have presented formidable challenges to
our understanding of the dense matter composition and
structural characteristics within NSs. In response to these
challenges, various theoretical frameworks have been
proposed, such as the introduction of hyperonic degrees
of freedom by adjusting potential well depths to effectively
replicate the massive NS observations [14], the develop-
ment of the BigApple parameters within covariant density

functional theory to describe massive NS at the nucleonic
level [15], the incorporation of quark matter to account
for the GW190814 event [16], and the introduction of
isovector-scalar and isoscalar-scalar mesons to successfully
explain constraints arising from GW170817 and massive
NS observations, as well as heavy-ion collision and
PREX-II experiments [17].
However, recently, through the x-ray spectrum and

distance estimation obtained from Gaia observations,
inferences regarding the radius and mass of the central
compact object within the supernova remnant HESS
J1731 − 347 have been reported. It is noted that this object
exhibits an extraordinarily low mass of M ¼ 0.77þ0.20

−0.17M⊙
and a compact radius of R ¼ 10.4þ0.86

−0.78 km [18]. This
observation suggests that the central compact object within
HESS J1731 − 347 could potentially be the lightest known
NS to date, characterized by a radius even smaller than the
currently known most reliable NS sizes. Such a finding
raises concerns about reconciling such a compact object in
conventional NS theoretical models. Traditional baryon
models, such as the relativistic mean-field (RMF) BigApple
parametrized model [15], the density-dependent RMF
model [19], and the hyperon RMF model [14], can show
more obvious advantages in characterizing massive NSs.
However, these models face difficulties in providing a
radius smaller than 10 km for low-mass NSs of around
1M⊙. Meanwhile, when the mass is below the 1M⊙ scale,
its formation is considered unsupported by standard stellar*zren@tongji.edu.cn
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evolution [20]. To explain such an unusual object, adjusting
or expanding current models to accommodate these unique
observational findings may be the best course of action
[21–25]. For example, introducing delta mesons in nucleon
interactions [25], adopting a quark-core hybrid model [21],
or assuming a smaller symmetry energy slope in the baryon
model [23] could reconcile the characteristics of HESS
J1731 − 347 to some extent. Additionally, a more general
hypothesis is that it could be a quark star composed of
strange quark matter [24].
It is noteworthy that in compact objects like NSs the

interior not only involves interactions between microscopic
nuclei, but its strong gravitation also makes it possible to
couple DM. Several studies have shown that the presence
of DM components has a significant effect on NS mass-
radius relationship [26–28] and thus are expected to yield
lower mass and smaller radius. In the ΛCDM cosmic
model, DM constitutes 24% of total energy in the Universe,
and its existence has been predicted by various observa-
tions, including galaxy rotation curves, the cosmic micro-
wave background, and gravitational lensing [29,30].
Recently, the James Webb Space Telescope’s measure-
ments of some young galaxies [31], accompanied by the
indirect detection of infrared spectra from the DM decay
[32] or DM capture in old NSs [33], might bring about new
questions about the DM component and its interaction in
the Universe. Meanwhile, there is still a lack of precise
description of DM, with research primarily focused on the
search and validation of candidate particles, such as
PandaX-II [34], which holds promise in detecting potential
Fermi dark matter signals. Although DM typically does not
directly interact with ordinary matter, it exerts significant
gravitational effects on compact bodies [35]. When DM
extended to NS studies, it can affect various observational
properties [26–28]. In turn, NSs also serve as an excellent
observational platforms for assessing DM capture rates [36]
and constraining DM models [37].
In light of the NS’s important role as a gravitational wave

source, especially the merger of binary NSs can generate
powerful gravitational wave signals, which yields signifi-
cant implications for understanding binary star dynamics,
electromagnetic radiation processes, and the origin of
heavy elements [38,39]. Additionally, NS nonradial oscil-
lation, as another important source of gravitational waves,
also carries extensive information about the NS interior
[40]. With the advent of new observational instruments like
the Einstein Telescope and Cosmic Explorer [41–43], there
is potential to gain deeper insight into gravitational wave
observations from NS-related processes, making theoretical
research in this area increasingly urgent.
In this study, we introduce two classes of DM-mixed NS

models within the RMF framework to explain the obser-
vational outcomes of HESS J1731 − 347. Furthermore, we
also analyze the differences in NS-related gravitational
wave properties between these two DMmodels and explore

their impacts on the tidal deformability and nonradial
oscillation frequencies as well as the gravitational wave
emissions during the binary NS inspiral process. The
following is the organization of this paper. In Sec. II, we
provide an introduction to the construction of baryon
components as well as two types of DM components;
we also examine the possible distribution of DM within
NSs and further constrain the DM parameter space by
incorporating observational data. In Sec. III, we discuss the
role of DM in tidal deformability, oscillation frequencies,
and binary NS inspiral gravitational wave. Section IV
provides a brief summary of the entire research work.

II. BARYON MATTER AND TWO DARK
MATTER MODELS

A. Baryon matter model

The relativistic mean-field theory, as a phenomenologi-
cal many-body theory [44–46], exhibits unique advantages
in describing finite nuclei and infinite nuclear matter. In the
RMF framework, the interaction among baryons occurs
through the exchange of mesons [44–46]. To describe the
nature of nuclear forces, RMF models commonly encom-
pass four types of mesons. The scalar-isoscalar meson σ is
utilized to characterize medium-range attraction in nuclear
forces, the vector-isoscalar meson ω is employed to
characterize short-range repulsion, while the vector-iso-
vector meson ρ and the scalar-isovector meson δ are
dedicated to depicting the isospin properties among nucle-
ons and exhibit a capacity to effectively characterize the
symmetry energy and its slope in nuclear matter. In this
study, we adopt the simplest version within the RMF
theory, namely, the “σωρ” three-meson exchange model,
as it has extensive application in investigating the proper-
ties of nuclear matter and NSs [47–53]. The Lagrangian
density of this model can typically be expressed as a sum of
L ¼ LN þ Ll þ Lσ þ Lω þ Lρ þ Lρ−ω, where LN; Ll; Lσ;
Lω; Lρ; Lρ−ω represent the Lagrangian of the nucleon,
lepton, three mesons (σ;ω; ρ), and ρ − ω coupling term,
respectively, and they can be written as [44–46]

LN ¼
X
N¼n;p

ψ̄N

�
i∂μγμ −mN þ gσσ

− gωωμγ
μ −

1

2
gρρ⃗μγμτ⃗

�
ψN; ð1Þ

Ll ¼
X
l¼e;ν

ψ̄ l ði∂μγμ −mlÞψ l; ð2Þ

Lσ ¼
1

2
∂μσ∂

μσ −
1

2
m2

σσ
2 −

1

3
bmNðgσσÞ3 −

1

4
cðgσσÞ4; ð3Þ

Lω ¼ −
1

4
ð∂μωv − ∂vωμÞð∂μων − ∂

νωμÞ þ 1

2
m2

ωωμω
μ; ð4Þ
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Lρ ¼ −
1

4
ð∂μρ⃗v − ∂νρ⃗μÞð∂μρ⃗ν − ∂

νρ⃗μÞ þ 1

2
m2

ρρ⃗μρ⃗
μ; ð5Þ

Lρ−ω ¼ Λωðg2ρρμρμÞðg2ωωμωμÞ: ð6Þ
where N and l, respectively, represent nucleons (n,p) and
leptons (e,μ) in the NS beta-equilibrium system and mi
(where i ¼ N; σ;ω; ρ) represents the nucleon and various
meson masses.
The Lagrangian densities above, when substituted

into the Euler-Lagrange equation, yield respective motion
equations. Numerical solutions of these nonlinear equa-
tions pose considerable challenges. In the RMF theory,
considering the Fermi energy of baryon matter inside a NS
is sufficiently high due to its high density, far exceeding its
thermal motion, the NS can be treated as zero-temperature
system. At this point, within the mean-field approximation,
the field operators are approximated by their ground-state
expectation values, i.e., ψ̄ψ ⇒ hψ̄ψi, ψ̄γμψ ⇒ hψ̄γ0ψi ¼
hψþψi, σ̂ ⇒ σ0, ω̂ ⇒ ω0, ρ̂ ⇒ ρ0. Consequently, the
motion equations corresponding to the Lagrangian are
simplified to

�
i∂μγμ−mN þ gσσ0− gωω0γ

0 −
1

2
gρρ0γ0τ3

�
ψN ¼ 0; ð7Þ

ði∂μγμ −mlÞψ l ¼ 0; ð8Þ

gσσ0 ¼
�
gσ
mσ

�
2

½hψ̄ψip þ hψ̄ψin − g2σ20 − g3σ30�; ð9Þ

gωω0 ¼
�
gω
mω

�
2

½hψþψipþhψþψin −2Λωðgρρ0Þ2ðgωω0Þ�;

ð10Þ

gρρ0 ¼
�
gρ
mρ

�
2
�hψþψip− hψþψin

2
− 2Λωðgρρ0Þðgωω0Þ2

�
;

ð11Þ

where the expectation value hψþψiN¼n;p being nucleon
Nðn; pÞ vector density nvN, can be expressed in terms of
nucleon Fermi momentum kN as

hψþψiN¼n;p ¼ nvN ¼ 1

π2

Z
kN

0

k2dk ¼ k3N
3π2

; ð12Þ

the expectationvalue hψ̄ψiN¼n;p is nucleon scalar densityn
s
N,

which depends on the Fermi momentum kN and the effective
mass m�

N expressed in the form m�
N ¼ mN − gσσ0, can be

written as

hψ̄ψiN¼n;p ¼ nsN ¼ 1

π2

Z
kN

0

k2m�
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm�2
N

p dk: ð13Þ

Based on the energy-momentum tensor

T μν ¼ ∂L
∂ð∂μψÞ

∂
νψ − gμνL; ð14Þ

the energydensity andpressure of baryonmatter (BM) can be
expressed as

εBM ¼ T 00 ¼
X
N

hψþ
Niψ̇Ni þ

X
l

hψþ
l iψ̇ li þ

1

2
m2

σσ
2
0

−
1

2
m2

ωω
2
0 −

1

2
m2

ρρ
2
0 − ΛωðgρNρ0Þ2ðgωNω0Þ2

þ 1

3
g2σ30 þ

1

4
g3σ40; ð15Þ

pBM ¼ 1

3
T ii ¼ 1

3

X
N

hψþ
Nð−iα ·∇ÞψNi

þ 1

3

X
l

hψþ
l ð−iα ·∇Þψ li−

1

2
m2

σσ
2
0 þ

1

2
m2

ωω
2
0

þ 1

2
m2

ρρ
2
0 þΛωðgρNρ0Þ2ðgωNω0Þ2 −

1

3
g2σ30 −

1

4
g3σ40;

ð16Þ
where the expectation values hψþ

Niψ̇Ni and hψþ
l iψ̇ li are

expressed as

hψþ
Niψ̇Ni ¼ gωω0nvN þ 1

π2

Z
kF

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm�

NÞ2
q

dk; ð17Þ

hψþ
l iψ̇ li ¼

1

π2

Z
kF

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmlÞ2

q
dk ð18Þ

and the expectation values hψþ
Nð−iα · ∇ÞψNi and hψþ

l ð−iα ·
∇Þψ li are

hψþ
Nð−iα · ∇ÞψNi ¼

1

π2

Z
kF

0

k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm�

NÞ2
p dk; ð19Þ

hψþ
l ð−iα ·∇Þψ li ¼

1

π2

Z
kF

0

k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm�

l Þ2
q dk: ð20Þ

The system involves coupling parameters of gσN; gωN;
gρN; g2; g3;Λω, which are usually determined by fitting
saturation nuclear matter properties like the incompress-
ibility coefficient K, nucleon effective mass m�, binding
energy per nucleon E=A, saturation density n0, symmetry
energy Jsym, and its slope L. Among these, Jsym and L
are pivotal in characterizing neutron-rich nuclei, with
significant implications for astrophysical phenomena like
supernova nucleosynthesis and NS mergers [54], yet their
exact values, especially at a supersaturated density, remain
uncertain. Despite recent experiments providing a relatively
well-determined Jsym roughly located at 31.6� 2.7 MeV
[54–56], significant uncertainties still persist in the value
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of L [57–59], particularly the significant discrepancies
extracted from the very recent experiment PREX-II [60]
and CREX [61]. Currently, there are several excellent sets
of coupling parameters within the RMF framework that
perform remarkably well in describing nuclear physics and
NS properties. In the paper, we chose the parameter set
GM1 [62] introduced by Glendenning and Moszkowski in
the 1990s as our research parameter. This work focus on the
possibility that a DM-mixed NS will explain the peculiar
compact object in remnant HESS J1731 − 347, while for
the baryon model, we just expect it can provide massive
NS observations. Although we cannot claim that GM1 is
the most ideal parameter model, its form is simple,
and associated symmetry energy Jsym ¼ 32.5 MeV and
slope L ¼ 94 MeV [62] both fall within the currently
acceptable range. Furthermore, GM1 has also been fre-
quently employed within RMF by several recent studies
[63–67]. To avoid giving an overly absolute conclusion
under GM1, we also considered other three other relativ-
istic parameters BigApple [15], FSUGold [68], and
IU-FSU [69], as shown in Table I.

B. Dark matter model

For the DM component, we employ two distinct models.
One of these considers the interaction between DM and
baryon matter through the exchange of Higgs bosons, and it
has recently found extensive application in the study of NSs,
such as the investigation of mixed-DM NSs incorporating
short-range correlation effects [27] and the examination of

the impact of hyperon effects [70] on the mixed-DM NS
properties.An advantageous aspect of thismodel ariseswhen
dealing with the hydrostatic equilibrium equations, as the
interaction between dark matter and baryon matter, akin to
meson exchange interactions among nucleons, allows for the
application of a single-fluid Tolman-Oppenheimer-Volkoff
(TOV) equation. Consequently, within this model, DM is
uniformly distributed within NSs, and for brevity, we refer to
this as the single-fluid model hereafter. In this section, we
choose the lightest neutralino with the Fermi DM mass of
Mχ ¼ 200 GeV as the candidate. Since direct interactions
between DM and nucleons are absent, they interact only
through coupled Higgs fields, and their Lagrangian form can
be described as [71]

LDM ¼ χ̄½iγμ∂μ −Mχ þ yh�χ þ 1

2
∂μh∂μh

−
1

2
M2

hh
2 þ

X
N

f
mN

v
ψ̄NhψN; ð21Þ

in which mN represents the nucleon mass and Mh is Higgs
bosonwith a value of 125 GeV. The variables h and χ signify
the Higgs and DM fields; y is the coupling strength between
them, typically ranging from 0.001 to 0.1; and we adopt a
typical value of 0.07 for this study [71,72]. f mN

v is the
effective Yukawa coupling strength between nucleons and
Higgs bosons, where f is the Higgs-nucleon formation
factor, typically taken as 0.3, and v is the Higgs vacuum
expectation value, which is 246 GeV. Our selection of these
values, based on lattice computations, aligns with the DM-
nucleon scattering cross section experimental in PandaX-II
[34] and PandaX-4T [73]. Additionally, we assume that the
density of DM inside NSs is roughly lower than that of
nuclear matter by a factor of 1000. For a typical saturation
nuclear matter density n0 ¼ 0.16 fm−3, the corresponding
DM Fermi momentum kF is approximately 0.033 GeV.
According to the mean-field approximation, the energy

density and pressure of DM components are given by

εDM ¼ 1

π2

Z
kDMF

0

k2 dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q

þ 1

2
M2

hh
2
0 ð22Þ

and

pDM ¼ 1

3π2

Z
kDMF

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q −

1

2
M2

hh
2
0: ð23Þ

The nucleon and DM effective masses are donated by M⋆
N

andM⋆
χ , and ρDMs represents the DM scalar density; they are

expressed as follows:

M⋆
N ¼ mN − gσNσ0 −

fmN

v
h0; ð24Þ

TABLE I. The parameter set GM1 [62] and its corresponding
saturation nuclear properties adopted in this work. The saturation
properties include incompressibility coefficient K, nucleon ef-
fective mass m�, binding energy per nucleon E=A, saturation
density n0, symmetry energy Jsym, and its slope L. In addition to
GM1, we also consider other three different sets of relativistic
parameters: BigApple [15], FSUGold [68], and IU-FSU [69].

GM1 BigApple FSUGold IU-FSU

mσ (MeV) 512 492.73 491.5 491.5
mω (MeV) 783 782.5 782.5 782.5
mϱ (MeV) 770 763 763 763
n0ðfm−3Þ 0.153 0.155 0.1484 0.155
K (MeV) 300 227.001 230.0 231.33
m�=m 0.70 0.608 0.61 0.61
−E=A (MeV) 16.3 16.344 16.28 16.4
Jsym (MeV) 32.5 31.315 32.59 31.3
L (MeV) 94 39.8 60.5 47.21

gσ 8.910 9.6699 10.5924 9.9712
gω 10.610 12.316 14.3019 13.032
gϱ 8.196 14.16178 11.767 13.5899
g2ðfm−1Þ 9.7601 11.9173 4.2766 16.75
g3 −6.3024 −31.6793 49.934 48.76
Λω 0 0.047471 0.03 0.046
ξ 0 0.0007 0.06 0.03
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M⋆
χ ¼ Mχ − yh0; ð25Þ

ρDMs ¼ M�
χ

π2

Z
kDMF

0

k2dk

ðk2 þM�2
χ Þ1=2 ; ð26Þ

The energy density and pressure of the entire DM-mixed
NS system need to be brought into the TOV equation as
inputs, and for the single-fluid model, the static spherically
symmetric space-time background used here is

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð27Þ

and TOV equations can be derived from the Einstein field
equations [74],

dp
dr

¼ −
ðpþ ϵÞðM þ 4πr3pÞ

rðr − 2MÞ ;

dM ¼ 4πr2ϵdr; ð28Þ

where ε ¼ εBM þ εDM and p ¼ pBM þ pDM, and the metric
functions are expressed as

eλðrÞ ¼ ð1 − 2m=rÞ−1;

νðrÞ ¼ 2

Z
∞

r
dr0

eλðr0Þ

r02
ðmþ 4πr03pÞ: ð29Þ

In the standard NS calculation scheme, for the outer crust of
BM component, where the density located approximately
around 6.3× 10−12 fm−3⩽n⩽2.46× 10−4 fm−3, we employ
the Baym-Pethick-Sutherland EOS [75]. Moving to the
inner crust region, where the density falls within the range
of 2.46 × 10−4 fm−3⩽n⩽nt, we utilize the polytropic para-
metrized EOS of the form P ¼ aþ bε4=3 [76,77], where a
and b associated with the core-crust transition density nt are
determined using the thermodynamic method [78–80].
After taking into account the charge neutrality and β-
equilibrium conditions, the mass-radius relationship for the
DM-mixed NS system will be determined.
Another class of DM models, unlike the single-fluid

model where nongravitational interactions between baryon
and DM components occur through the exchange of
mesons, postulates the existence of solely gravitational
interactions between them. Consequently, when solving for
a DM-mixed NS, the ideal single-fluid TOV equations are
replaced by a two-fluid one (for specific derivations, refer
to Refs. [81,82]),

dpB

dr
¼ −

ðpB þ ϵBÞðM þ 4πr3pÞ
rðr − 2MÞ ;

dpD

dr
¼ −

ðpD þ ϵDÞðM þ 4πr3pÞ
rðr − 2MÞ ;

dMB ¼ 4πr2ϵBdr; dMD ¼ 4πr2ϵDdr; ð30Þ

where B and D, respectively, represent the BM and DM
components, while M denotes the total gravitational mass.
The crust of the BM component adopts the same EOS as
the single-fluid model. The proportion of DM within the
NS is represented as fDM ¼ MD=M.
In the following discussion, we refer to this model as the

two-fluid model and assume the DMs are asymmetric
fermionic particles [83], with their self-interactionsmediated
by the ϕ mediator through a repulsive Yukawa potential,

V ¼ αχ
r
exp ð−mϕrÞ; ð31Þ

where αχ represents the fine-structure constant of DM
coupling to dark mediator and we fix αχ ¼ 10−3 in this
work, mϕ is the mediator mass, and r denotes the distance
between particles. To provide a DM self-interaction cross
section consistent with numerical simulation results, the
mediator mass mϕ is typically constrained to be below
50 ∼ 60 GeV [84,85], although this constraint still carries
some uncertainty. Theoretical studies mainly focus around
10 GeV [83,86], and for this reason, we also adopt this
constraint in this study, exploringmediatormasseswithin the
range of 8 ∼ 16 GeV in the two-fluidDMmodel. The energy
density of DM can be expressed as

εDM ¼ εkin þ εY; ð32Þ
inwhich εkin and εY represent the kinetic energy andYukawa
potential energy density. The system pressure is related
thermodynamically as

pDM ¼ n
∂εDM
∂n

− εDM; ð33Þ

where n represents the Fermi DM number density. Like the
baryon matter mentioned above, here we assume that
the DM temperature is significantly lower than its Fermi
momentum, so DM component can be also treated as zero-
temperature system. According to the principles of statistical
mechanics, the number density, kinetic energy density, and
pressure of DM can be expressed in the forms

n ¼ gs
ð2πÞ3

Z
pF

0

4πp2dp ¼ gsm3
χ

6π2
x3; ð34Þ

εkin ¼
gs

ð2πÞ3
Z

pF

0

EðpÞ4πp2dp ¼ gs
2
m4

χξðxÞ; ð35Þ

pkin ¼
1

3

gs
ð2πÞ3

Z
pF

0

p2

EðpÞ 4πp
2dp ¼ gs

2
m4

χψðxÞ; ð36Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

χ

q
represents the relativistic energy

dispersion relation and gs denotes the DM spin. mχ ¼
2 GeV is the DM mass, and the ξðxÞ and ψðxÞ are defined
as [87]
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ξðxÞ ¼ 1

8π2
fx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ð1þ 2x2Þ − ln ½xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
�g;

ψðxÞ ¼ 1

8π2
fx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ð2x2=3 − 1Þ þ ln ½xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
�g;

in which x is defined as pF=mχ . To determine the total
Yukawa potential energy, it is theoretically necessary to
sum over all DM particles and subsequently approximate
the integral over their volume elements as

εY ¼ 2παχn2

m2
ϕ

¼ αχg2s
18π3

m6
χ

m2
ϕ

x6: ð37Þ

Thus, the total energy density and pressure of the DM
component are [86]

εDM ¼ gs
2
m4

χξðxÞ þ
αχg2s
18π3

m6
χ

m2
ϕ

x6; ð38Þ

pDM ¼ gs
2
m4

χψðxÞ þ
αχg2s
18π3

m6
χ

m2
ϕ

x6: ð39Þ

In the following discussion, we opt to investigate
mediator mass mϕ and Fermi momentum kF as variables,
as these two parameters profoundly reflect the nature of
DM interaction strength and DM mass, and their precise
values are still uncertain. Figure 1 illustrates the function of
mass as radius under these two different DM models. The
upper panel displays the mass-radius relationships in the
two-fluid scenario, in which the light green lines represent
the mass-radius relationship for DM components under
different mediator masses mϕ from 8 to 16 MeV, while the
purple lines address the mass-radius trend for correspond-
ing BM components. The orange region represents the total
gravitational mass-radius relationship, where the mass is
the sum of the DM and the BM that is not a simple
superposition of respective components; instead, we
assume that the central pressure for both DM and BM
components has the same initial value and integrate the
two-fluid TOV equation to obtain the mass-radius relation-
ships. Since the DM component radius cannot be directly
observed, the system radius is usually assumed to be the
BM component radius, which is in line with a common
convention employed in astrophysical studies. Moreover,
as mϕ increases, the DM component mass and radius
decrease continuously, whereas the mass and radius of BM
component just show the opposite trend. Although the
maximum mass cannot support 2M⊙ when mϕ exceeds
16 MeV, the mass-radius relationships provided by this
two-fluid model can still be matched well the observational
data of HESS J1713 − 347, as shown by the light cyan
shaded region. The lower panel illustrates the trend of
mass-radius under the single-fluid scenario as a function of
DM Fermi momentum by a wide space from 0.030 to

0.040 GeV. The Fermi momentum significantly affects both
the maximum mass and radius of a NS, with both mass and
radius decreasing significantly as the Fermi momentum
increases. It can be observed that the Fermi momentum
near 0.337 MeV can effectively meet the massive NS
observation as well as the constraints from HESS
J1713 − 347. For comparison, we also present the case
of a NS obtained from pure baryon matter within the GM1
set, depicted by a black dashed line in the figure. Clearly,
the radius of pure baryon matter is difficult to reconcile

FIG. 1. Under the GM1 parameter set, the mass-radius relation-
ships for two classes of DM models, with the shaded region
representing the mass-radius confidence interval for compact star
in HESS J1731 − 347. Upper panel (two-fluid DM model): the
light green curve represents the mass-radius relationship for DM,
while the purple curve represents that for BM. The orange curve
depicts the total gravitational mass-radius relationship (with mass
as the sum of DM and BM, and BM radius regarded as the
observable radius). Different curves of the same color indicate
different mediator mass. Lower panel (single-fluid DM model):
the mass-radius relationships corresponding to different DM
Fermi momentum. For comparison, the black dashed line in
both models represents the NS mass-radius relationship for pure
nucleonic matter under the GM1 parameter set.
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with the HESS J1713 − 347. It is worth noting that in Fig. 1
we only conducted a simple investigation of the advantage
of two DM types in characterizing the HESS J1713 − 347,
and in order to provide more comprehensive results in
accordance with constraints impose by multimessenger
observations, we offer a more detailed discussion in
Fig. 5 and Table II.
In contrast to the single-fluid model, where the BM and

DMcomponents are uniformlymixed, in the case of the two-
fluid model, the distributions of DM and BM often differ.
When the DM radius RD is greater than that of the BM
component RB, DM envelops BM, forming a dark matter
halo. Conversely, when RD is less than RB, BM envelops
DM, forming a dark matter core. In this paper, we will
analyze three scenarios for theDMdistribution: (a) fixedDM
fraction fDM with varying mϕ, (b) fixed mϕ with varying
fDM, and (c) equal central pressure for DM and BM.
For the first two scenarios (a) and (b), we select the most

typical 1.4M⊙ DM-mixed neutron star for discussion. In
Fig. 2, the relationships between respective component

central pressure and their radii are depicted for mediator
mass mϕ ranging from 8 to 16 MeV, with the DM fraction
fDM fixed at 50%. Solving the TOVequations for two-fluid
components reveals that when each component reaches its
boundary, the pressure rapidly approaches zero, marking
the corresponding component radius shown by solid
black line (BM component) and dashed red line (DM
component). It can be observed that when mϕ is 8 MeV
the DM radius RD is greater than RB, leading to
the formation of a DM halo. At this point, the central
pressure of DM component is lower than that of BM. As
mϕ increases, the radius of the DM component decreases,
resulting in a more compact core, accompanied by a
gradual increase in central pressure. Around 12 MeV,
the DM halo begins to transition toward a DM core, and
at mϕ ¼ 16 MeV, RB becomes greater than RD, forming a
DM core. In Fig. 3, the DM distribution is shown for
mϕ ¼ 12 MeV, with DM fractions of 50%, 30%, and 10%.
As the DM fraction decreases, the DM central pressure
continuously decreases, accompanied by a gradual increase
in its RD. Therefore, a lower mediator mass mϕ or a lower
DM fraction makes it easier to form a DM halo.
Currently, the DM capture in NSs remains somewhat

unclear, and theoretical discussions primarily focus on
scenarios a and b, where the pressures of DM and BM
at NS cores are not equal. To address this scenario
theoretically, we assume equal central pressures for the
BM and DM components and determine the corresponding
component radii through the two-fluid TOV equations.
Figure 4(a) illustrates the radii of the DM and BM
components as a function of central pressure for different
mϕ. The black line and red line represent the corresponding
radius for the BM and DM components. The black squares
indicate points where RB equals RD for differentmϕ, which

TABLE II. In light of current multimessenger observational con-
straints, including 2M⊙ observations, as well as GW170817, PSR
J0740þ 6620, PSR J0030þ 0451, and Rotation J1748 − 2446ad,
in addition to the GM1 set, we further constrain the possible values
ofmediatormass in the two-fluidmodel andDMFermimomentum
in single-fluid model by other three different sets of relativistic
parameter: BigApple [15], FSUGold [68], and IU-FSU [69].

CASES mϕ (MeV) kF (GeV)

GM1 10.0 ∼ 15.0 0.033 ∼ 0.038
BigApple 10.5 ∼ 17.0 0.030 ∼ 0.039
FSUGold 9.0 ∼ 14.0 0.035 ∼ 0.036
IU-FSU 11.0 ∼ 16.0 0.032 ∼ 0.037

FIG. 2. In the scenario where dark matter fraction of 50%, the variation of central pressure with radius within a 1.4M⊙ DM-mixed NS
for different mediator masses (a) 8 MeV, (b) 12 MeV, and (c) 16 MeV. The solid black line and the dashed red line represent BM and DM
components, respectively. An increase in the mediator mass leads to the transition of DM halo toward DM core.
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are the central pressure points for the two components. The
black arrows indicate that above this central pressure RD is
smaller than RB, resulting in the formation of a DM core,
while the red arrows indicate that below this central
pressure RD is greater than RB, leading to the formation
of a DM halo. Additionally, for mϕ ranging from 12 to
16 MeV, under the same central pressure, RD remains
consistently smaller than RB, indicating the formation of
only a DM core. Figure 4(b) displays the DM fraction
under different central pressures. As mϕ increases, the DM
fraction decreases. Furthermore, for a given mϕ, when the

central pressure values for both the DM and BM compo-
nents exceed 200 MeV=fm3, the DM fraction no longer
varies with pressure. Based on the results presented in
Fig. 1, it can be observed that satisfying both the require-
ments for the observation of massive NSs and the con-
straints imposed by HESS J1713 − 347 is challenging for
both two-fluid and single-fluid models. To provide a more
precise determination of the parameter ranges for these two
models, extensive numerical calculations was conducted.
Given the DM parameter ranges presented in Fig. 1, we
divided the Fermi momentum range in the single-fluid

FIG. 3. In the scenario with mediator mass of 12 MeV, the variation of central pressure as a function of radius within a 1.4M⊙ DM-
mixed NS for different DM fractions (a) 50%, (b) 30%, and (c) 10%. The solid black line and dashed red line represent BM and DM
components, respectively. A decrease in the DM fraction leads to the transition of the DM core into the DM halo.

FIG. 4. (a) The relationship between central pressure and their respective component radii (red for DM and black for BM) under
various mediator mass mϕ (different curves) for two-fluid model. Square intersections indicate points where the radius of DM
component equals the radius of BM component for a specificmϕ. The region above the intersections shows that the BM radius is greater
than the DM radius (black arrows), indicating the formation of a DM core above this central pressure, while the region below the
intersections (red arrows) suggests the formation of a DM halo. (b) The variation of the DM fraction with central pressure under
different mϕ.
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model and the mediator mass range in the two-fluid model
at equal intervals. Here, we discretized their respective
ranges into 100 groups, and for each of these 100 groups,
we input the corresponding EOS into the TOV equation to
calculate the mass-radius relationship for these two DM
models. Within the results, only the parameter range
satisfying the constraints imposed by multimessenger
astrophysical observations are retained, as depicted in
Fig. 5 with the orange and dark blue regions corresponding
to the two-fluid and single-fluid models, respectively. In the
two-fluid model that meets all observational requirements,
the mediator mass should be within the range of 10–
15 MeV, and values lower than this range will violate
causality (as indicated by the gray region in the upper-left
corner), while values higher than this range cannot support
recent 2M⊙ NS observation. For the single-fluid DM
model, it requires the Fermi momentum to be within the
range of 0.033–0.038 GeV, as values below this range
cannot meet the observational constraints of HESS J1713 −
347 [18], and values above this range cannot support
the observation of 2M⊙. In addition to satisfying the
aforementioned observations, the parameter ranges for
both models also comply with the observational con-
straints of GW170817 [10,11], PSR J0740þ 6620 [8,9],
and PSR J0030þ 0451 [12,13]. Along with these, we also

incorporate the constraint from the radio pulsar NS
J1748 − 2446ad, the fastest-spin known pulsar located in
the globular cluster Terzan having a spin frequency f ¼
Ω=ð2πÞ ≈ 716 Hz with Ω being angular velocity, reported
in 2006 by Hessels et al. [88]. This can be used to help us
further constrain the associated EOS [89], as depicted in
the bottom right corner of Fig. 5, representing the for-
bidden region imposed by the NS J1748 − 2446ad. It is
worth noting that these conclusions were also tested under
different parameter sets, including the FSUGold, BigApple,
and IU-FSU sets. The results, as shown in Table II, reveal
relatively small differences, with all of them centered
around a mediator mass of approximately 12 MeV and a
Fermi momentum of approximately 0.035 GeV. Although
this conclusion still exhibits some parameter dependence, it
is evident from the results that both single-fluid and two-
fluid models considering DM mixed can effectively meet
astronomical observational constraints, especially includ-
ing HESS J1731 − 347.
To further investigate the specific impact of these two

different DM models on NS-related gravitational wave
properties, such as tidal deformability, nonradial oscillation
frequencies, and gravitational wave during the binary NS
inspiral phase, we focus on the GM1 parameter set for both
models in the subsequent discussion. For the single-fluid
model, three different Fermi momentum values within the
range defined in Table II (0.033, 0.035, and 0.037 GeV) are
considered. For the two-fluid model, three different media-
tor mass are explored, namely, 10, 12, and 14 MeV. Their
corresponding EOS are illustrated in Fig. 6. It should be
noted that the single-fluid model yields a stiffer EOS
compared to the two-fluid model, resulting in larger mass
for the same radius, as reflected in Fig. 5.

FIG. 5. Parameter space exploration under astronomical ob-
servational constraints for two DM models within GM1 set. The
brown dashed line indicates the observation constraints from
GW170817. The shaded regions represent the mass-radius con-
straints for three NSs: PSR J0740þ 6620, PSR J0030þ 0451,
and HESS J1731 − 347. The gray regions in the top-left corners
correspond to the causality and the bottom-right corners corre-
spond to the forbidden region imposed by the fastest spin radio
pulsar NS J1748 − 2446ad. The range of mediator mass values
(10 ∼ 15 MeV) satisfying all astronomical constraint require-
ments for the two-fluid models is shown in orange, while the
range of Fermi momentum values (0.033 ∼ 0.038 GeV) is
indicated in dark blue. The black dashed line represents the
mass-radius relationship for pure nucleonic matter in NSs.

FIG. 6. Equation of states curves for two DM models, where
orange represents the two-fluid model, dark blue represents the
single-fluid model, and the black dashed line represents the
pure NS.
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III. NUMERICAL RESULTS ON NS
GRAVITATIONAL WAVE

A. NS tidal deformability

Tidal deformability is an extractable parameter character-
izing the NS distortion subjected to the tidal field of its
companion star, and it serves as a crucial astronomical ob-
servable for NS EOS [90–93]. Dimensionless tidal deform-
ability is defined as Λ ¼ 2

3
k2=C5, where C is the compact

parameter represented by M=R, a key physical quantity
governing the tidal deformability value and also affecting
gravitational wave signals during the binary NS merger
process [94]. The parameter k2, also known as the Love
number, typically falls in the range of 0.05 to 0.15 for NSs
and is highly dependent on the stellar structure [92,93]. The
analytical expression can be expressed by the formula [90]

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2Cð6 − 3yR þ 3Cð5yR − 8ÞÞ
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� logð1 − 2CÞg−1;

ð40Þ

here, the physical quantity yR satisfies the following differ-
ential equation

r
dyRðrÞ
dr

þ yRðrÞ2 þ yRðrÞFðrÞ þ r2QðrÞ ¼ 0: ð41Þ

The energy density and pressure involved in the expres-
sions for FðrÞ and QðrÞ are different for single-fluid and
two-fluid models. In the case of a single-fluid model, it is
necessary to jointly determine k2 by incorporating its
corresponding single-fluid TOV equation [Eq. (28)].
There is a substantial body of literature available on this
process, and we recommend Refs. [91–93]. For the two-
fluid model, the process is similar, although its solution is
slightly more complicated as it needs to consider the two-
fluid forms of FðrÞ and QðrÞ and also needs to simulta-
neously associate the two-fluid TOV equations [Eq. (30)]
for a numerical solution. For a detailed discussion and
derivation for this process, please see Ref. [95].
Figure 7(a) presents the relationships between dimen-

sionless tidal deformability Λ and total DM-mixed NS
gravitational mass for two DM models. As a comparison,
the RMF parametrization of GM1 which for pure baryon
matter (as shown by the black dashed line) is excluded by
the gravitational wave measurement of GW170817 can be
reconciled with tidal deformability measurement when
considering DM mixed models for both single-fluid and
two-fluid scenarios. Additionally, the tidal deformability
values under the two-fluid model are smaller than those
under the single-fluid model, implying that NSs under the
two-fluid model are less prone to distort in its companion
star tidal field than those under the single-fluid model.
Moreover, the differences between the two models are

more pronounced in the low-mass region. At 1.4M⊙, the
tidal deformability under the two-fluid model is approx-
imately 150, while the single-fluid model yields results
around 500. Around 2M⊙, both models produce Λ near 10

FIG. 7. (a) The tidal deformability of DM-mixed NS as a function of mass. Orange represents different DM mediator mass in the two-
fluid model, dark blue represents different Fermi momenta for single-fluid model, and the black solid line represents the tidal
deformability range extracted from the gravitational wave GW170817. (b) Relationship between tidal deformabilities Λ1 and Λ2 in the
GW170817 event calculated under two different DM models, with gray dashed lines representing 50% and 90% credible intervals. The
black dashed line represents the pure NS within the RMF parametrization of GM1, which is excluded by the GW170817 measurement.
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(as shown in the upper-right corner). Insights from Fig. 8
reveal that tidal deformability depends on the compactness
parameter C and the Love number k2. It can be observed
that the differences in the compactness parameter C
between the two models are minimal. However, there
is a substantial difference in k2 at 1.4M⊙, while the
differences at 2M⊙ are less pronounced. Although the
baryon component employs the same RMF model, tidal
deformability is highly sensitive to the EOS. Since the
results show that different DM models still have a consid-
erable impact on its values, and would lead to noticeable
tidal-related modifications in the gravitational wave emis-
sion during the inspiral phase (as discussed in Sec. III C).
Furthermore, in Fig. 7(b), we also calculate the indi-

vidual tidal deformability for two NSs in the GW170817
event. We consider the most credible chirp mass with
½ðm1m2Þ3=5�=½ðm1 þm2Þ1=5� ¼ 1.188M⊙ [96], where m1

and m2 represent the high-mass and low-mass NSs,
respectively. The gray dashed lines indicate the 50% and
90% credible intervals. Both classes of DM models fall
within the credible interval range, while leaving the pure
NS models outside.

B. Nonradial oscillation in DM-mixed NSs

As is well known, any nonaxisymmetric perturbation
within a NS interior could generate gravitational waves.
These perturbations can be classified into different oscil-
lation modes, such as the f mode, gravitational g mode,
pressure p mode, and rotational r mode, depending on the
specific restoring forces involved [97–99]. These distinct
modes are highly dependent on the internal structure and
composition of a NS. Among these modes, the nonradial f
mode is the most likely to produce gravitational radiation
and is expected to be detected by the third-generation
observatories like Cosmic Explorer and Einstein Telescope
[41–43], offering a novel perspective on deciphering the
NS internal structure.
In this study, we employed the Cowling approximation

method under both single-fluid and two-fluid models.

This approach neglects space-time metric perturbations
but retains density perturbations [100–102]. Extensive
research has shown that, in comparison to employing the
complete linearized general relativity, the Cowling approxi-
mation method introduces a deviation of approximately
20% when calculating f-mode properties and only a 10%
discrepancy for p modes [103], while the error for g modes
is even lower [104].
In the context of two different DM models, we have

computed the most typical quadrupole oscillations (l ¼ 2),
as illustrated in Fig. 9(a). The nonradial oscillation fre-
quency of the f mode as a function of DM-mixed NS mass
exhibits a striking similarity between these two DM
models, and at around 1.4M⊙, the f-mode frequencies
for both models are approximately around 2 kHz, while at
2M⊙, they are roughly situated near 2.7 kHz. However,
distinguishing between these two DM models solely based
on the f-mode frequencies appears to be a challenging task
due to their values being very close to each other, and even
these theoretical values hold promising prospects for
detection by third-generation gravitational wave detectors.
Gravitational wave asteroseismology also enables us to

establish a connection between the oscillation frequencies
and its timescales with NS bulk properties [105–110]. For
instance, the f-mode frequencies directly depend on the
star average density, as initially proposed by Andersson and
Kokkotas [111,112]. By incorporating realistic EOS, they
established this relationship as

fðkHzÞ ¼ aþ b

ffiffiffiffiffiffi
M
R̄3

s
; ð42Þ

where M̄=R̄3 stands for the average density with M̄ being
dimensionless mass (M̄ ¼ M=1.4M⊙) and R̄ being the
dimensionless radius (R̄ ¼ R=10 km). Another similar
universal relation is an excellent linear correlation between
ωM and M=R with ωM ¼ aðM=RÞ − b and has been used
to analyze the g mode, p mode, and f mode.
Figures 9(b) and 9(c), respectively, depict the fitting

relationships corresponding to these two DM models. In
the case of single-fluid one, strong linear correlations are
observed for both types of universal relations at different
DM Fermi momentum. Specifically, the fitting for the
f-mode frequency with average density is found to be
f0 ¼ 1.7277

ffiffiffiffiffiffiffiffiffiffiffiffi
M̄=R̄3

p
þ 0.86633, while the fitting for

ωM with the compact parameter C yields ωM ¼
208.1434ðM=RÞ − 6.6903. These results differ noticeably
from previous studies for pure NSs [105]. Furthermore, in
the two-fluid model, the linear fitting results for both the f
mode and ωM differ. This discrepancy arises from the
assumption that within the two-fluid model the DM-mixed
NS gravitational mass is the sum of DM and BM compo-
nents in both DM halo and DM core scenarios, while the
DM-mixed NS radius always adopts the BM radius.

FIG. 8. Left panel: the relationship between compactness
parameter C and NS mass in different DM models. Right panel:
the relationship between tidal Love number k2 and NS mass.
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Overall, NSs with mixed DM components exhibit differ-
ent linear relationships compared to those composed solely
of BM. This distinction can serve as an indicator to assess
whether DM components are within NSs, and moreover,
there are also noticeable differences between various DM
models.

C. Binary NS inspiral gravitational wave in
quasicircular orbits

The EOS for NSs plays a pivotal role not only in
determining bulk properties such as mass, radius, the
moment of inertia, and gravitational redshift but also leaves
a profound imprint on the gravitational waveforms asso-
ciated with binary NS system [113]. Recent observations of
binary NS mergers and NS-black hole mergers have been
tirelessly peeling away the layers of uncertainty surround-
ing the NS internal composition, making it imperative to
theoretically understand the EOS [38,39]. The binary NS
merger process is typically divided into three phases:
inspiral, merger, and ringdown [113]. The inspiral phase
can be effectively modeled using the post-Newtonian (PN)
approximation [114–117], which is an expansion of general
relativity assuming low-velocity and weak-field conditions,
and its validity has been firmly established [118,119]. In
the PN approximation, the inspiral phase treats the binary
system as a quasiperiodic orbit, necessitating the calcu-
lation of motion equations and correction terms in the
gravitational wave signal to high orders, i.e., expanded in
powers of v=c ∼ ðGM=rc2Þ1=2, where ð1=cÞn terms in the
expansion represent the n

2
PN expansion [114,115].

In this section, to compare the gravitational waves of
binary NS within different DM models, we adopt the
Taylor-T4 expanded PN method [115]. This approach is
theoretically well suited for characterizing the gravitational

waves emitted during the inspiral phase of dense binary star
mergers. In the quasistationary phase of binary radiation,
the system luminosity (L) should be in balance with the
time-dependent decay of energy (E),

L ¼ −
dE
dt

¼ −
dE=dx
dt=dx

; ð43Þ

where x¼ðMtot
dΦ
dt Þ2=3¼ðMtotΩÞ2=3 is a gauge-independent

PN parameter. Here, Mtot represents the total mass of
the binary star system, Φ denotes the orbital phase,
and Ω characterizes the orbital angular velocity. For a
binary star system with a total mass of Mtot ¼ M1 þM2

spiraling in a circular orbit with angular velocity Ω, its
gravitational energy is approximated at the 3.5PN order
as [114,120,121]

E¼−
Mtotηx

2

�
1þ

�
−
3

4
−

η

12

�
xþ

�
−
27

8
þ 19η

8
−
η2

24

�
x2

þ
�
−
675
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þ
�
34445

576
−
205π2

96

�
η−

155η2

96
−
35η3

5184

�
x3
�
;

ð44Þ

where η ¼ m1m2=M2
tot represents the symmetric mass ratio

for binary NSs. At distances far from the source, gravita-
tional perturbations are linear, and the luminosity can be
expressed in the following form [121]:

L ¼ r2

32π

Z
dΩhḣTTij ḣTTij i: ð45Þ

Under the 3.5PN order approximation, the luminosity L is
expressed as [115,121,122]

FIG. 9. (a) Nonradial oscillation frequency versus DM-mixed NS mass for different DM models. (b) Relationship between the
nonradial oscillation of different DM models with the NS effective density. (c) Relationship between ωM and M=R for different DM
models.
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where γE ≈ 0.5772 is the Euler-Mascheroni constant. The dominant (l ¼ 2,m ¼ 2) modes of the gravitational waveform
can be decomposed into spin-weighted spherical harmonics [123–125]

h22 ¼ −8
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whereD represents the distance between the source and the
observer, and in our calculations, we adopt a typical value
of 100 Mpc. The orbital phase Φ of the binary star system
can be obtained through the following integral equation:

dx
dt

¼ −
L

dE=dx
; ð48Þ

dϕ
dt

¼ x3=2

M
: ð49Þ

The solution to this integral equation is typically
achieved using the TaylorT1-TaylorT4 method, and in this

paper, we employ the TaylorT4 method. Furthermore,
during the binary star inspiral process, tidal interactions
have a significant impact on the dynamics. Therefore, it is
necessary to additionally account for the effects from tidal
interactions in the formulas [126–128]

dx
dt

¼ 64η

5Mtot
x5fFT4

3.5ðxÞ þ FT4
TidalðxÞg; ð50Þ

where FT4
3.5ðxÞ is the PN expansion expression given under

the TaylorT4 method,

FT4
3.5ðxÞ ¼ 1 −

�
743

336
þ 11

4
η

�
xþ 4πx3=2 þ

�
34103

18144
þ 13661

2016
ηþ 59

18
η2
�
x2 −

�
4159

672
þ 189

8
η

�
πx5=2

þ
�
16447322263

139708800
−
1712

105
γE −

56198689

217728
ηþ 541

896
η2 −

5605

2592
η3 þ π2

48
ð256þ 451ηÞ

−
856

105
lnð16xÞ

�
x3 þ

�
−
4415

4032
þ 358675

6048
ηþ 91495

1512
η2
�
πx7=2: ð51Þ

The tidal correction term FT4
TidalðxÞ accurate to 1PN, as

provided by Vines [94], is given by

FT4
TidalðxÞ ¼

32χ1λ2
5M6

tot

�
12ð1þ 11χ1Þx10 þ

�
4421

28
−
12263

28
χ2

þ 1893

2
χ22 − 661χ32

�
x11

�
þ ð1↔ 2Þ;

where x1 and x2 represent the binary NS mass ratios and λ1
and λ2 denote the respective tidal deformability values.

For equal-mass binary NS systems, the FT4
TidalðxÞ can be

expressed in the form [127]

FT4
TidalðxÞ ¼

52

5Mtot

k2
C5

x10
�
1þ 5203

4368
x

�
; ð52Þ

in which C and k2 characterize the compactness parameter
and tidal Love number, respectively. Although tidal inter-
actions only come into play at the fifth post-Newtonian
(5PN) order during the binary NS inspiral phase, their
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coefficients can reach magnitudes of 104, making tidal
interactions play a crucial role. In this section, we consider
the gravitational wave frequency and amplitude properties
of a typical 1.35M⊙ binary NS in the inspiral phase,
corresponding to a total systemmass ofMtot ¼ 2.7M⊙. The
initial values in the integral equation are taken at the
minimum gravitational wave frequency, f ¼ 371 Hz, cor-
responding to MtotΩ0 ¼ 0.0155. Observers calculate the
source using the retarded time tret, defined as tret ¼ t − r�,
with r� being the tortoise coordinate characterized by [127]

r� ¼ rA þ 2Mtot ln

�
rA

2Mtot
− 1

�
; ð53Þ

where rA ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
and A represents the proper sphere

surface area. Figure 10 illustrates the variation of frequency
with respect to inspiral time for different DM models.
In comparison to the pure NS with an inspiral time of
0.0566s, DM-mixed NSs can sustain the inspiral phase for a
longer duration. Furthermore, the two-fluid DM model
exhibits a longer inspiral time than the single-fluid one,
with an extension of approximately 2 ms. In the single-fluid
scenario, the duration of the binary NS inspiral process is
significantly influenced by the DM Fermi momentum, with
a longer duration observed as kF increases. For instance, a
Fermi momentum of kF ¼ 0.033 GeV corresponds to a
retarded time of 0.0578 s, while kF ¼ 0.037 GeV yields
a retarded time of 0.0582 s. This trend arises because a
higher DM component has a more pronounced impact on
the mass-radius relationship. Figure 1(b) reveals that for
larger DM Fermi momentum NSs with the same mass
have smaller radii, making it more challenging for the
occurrence of quadrupolar tidal deformability [as shown in
Fig. 7(a)]. Consequently, the impact of tidal deformability
during the binary NS inspiral process is less significant,
resulting in a longer duration time. In the case of two-fluid
models, a smaller mediator mass leads to a longer inspiral
time. With mϕ ¼ 10 MeV, the retarded time is 0.0595 s,
while mϕ ¼ 14 MeV results in a retarded time of 0.0591 s.

This outcome mirrors the behavior observed in single-fluid
models and is attributed to the same principle: a lower mϕ

leads to smaller NS radius [as indicated in Fig. 1(a)] and
make tidal interaction less likely to occur [see Fig. 7(a)],
hence prolonging the inspiral duration. As for the fre-
quency that increases as the binary NS system evolves,
various models also exhibit obvious differences. Figure 10
shows that in the final inspiral stage the binary stars in the
two-fluid model exhibit a shorter rotation period, resulting
in higher gravitational wave frequencies, approximately
around 2400 Hz. Following that is the frequency provided
by the single-fluid model, with the lowest frequency being
given by the pure NS model. It can be seen that the use of
features from the inspiral duration time and gravitational
wave frequency can clearly illustrate the discrepancy,
further verifying the significant role played by DM in
gravitational wave observations. To highlight the distinc-
tions between these two DM models and compare them
with pure NSs, we have compiled the retarded times and
frequencies in Table III.
Figure 11 illustrates the strain amplitude of the (2,2)

dominant mode with respect to the retarded time during the
inspiral process of the 1.35M⊙ binary NS system. The
upper panel shows waveforms for the two-fluid DMmodel,
with solid colored lines representing different mediator

FIG. 10. The relationship between the gravitational wave frequency during the inspiral phase and the retarded time tret for different
DM scenarios. The gray dashed line represents the frequency for the pure NS.

TABLE III. The frequencies and retarded times in binary NS
inspiral phase for three different NS models.

CASES Frequency (Hz) tretðsÞ
Pure NS 1715.925 0.0566

Single-fluid model kF ¼ 0.033 1891.079 0.0578
kF ¼ 0.035 1887.756 0.0579
kF ¼ 0.037 1900.486 0.0582

Two-fluid model mϕ ¼ 10 2462.231 0.0595
mϕ ¼ 12 2493.946 0.0593
mϕ ¼ 14 2473.811 0.0591
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masses. The gravitational wave strain amplitude and
frequency (see Fig. 10) increase continuously throughout
the inspiral phase, reaching their maximum values in the
final stages. Remarkably, the impact of different mediator
masses on the gravitational waveforms and amplitudes is
marginal, affecting primarily the duration of inspiral phase,
as shown in the upper-right corner. Specifically, smaller
mediator masses result in longer-lasting inspiral phases.
The lower panel presents results for a single-fluid model,
with colored solid lines denoting various Fermi momenta.
Analogous to the two-fluid model, the impact on the
waveforms and amplitudes remains modest, also predomi-
nantly affecting the inspiral duration, as demonstrated in
the bottom-right corner, and a higher Fermi momentum kF
for DM results in a longer duration. Nevertheless, based on
the gravitational waveforms and amplitude from Figs. 10
and 11, it remains challenging to separate these two
different DM types. Within the sensitivity range of
future-advanced gravitational wave detectors, there is
promising to identify and constrain the DM models from
the frequency and duration of inspiral phase. In contrast to
the scenario of pure NSs, as shown by the gray dash line in
both panels, significant differences in waveforms, frequen-
cies, and inspiral times are evident, especially in the final
stages. Although this study is limited to the GM1 param-
eter, we still have similar conclusions for the FSUGold
[68], BigApple [15], and IU-FSU sets [69]. As a conse-
quence, the DM plays a substantial role in the dynamical

processes during the binary NS inspiral phase, under-
scoring the imperative need to incorporate DM effects.
This not only facilitates an explanation for potentially
missed gravitational wave emissions during the inspiral
phase but also aids in achieving more stringent constraints
on DM models.

IV. SUMMARY

In this study, we introduce DM components within NSs
to construct DM-mixed NS models with two distinct
DM types. One type employs a single-fluid approach,
wherein DM interacts not only gravitationally with baryon
components but also through nongravitational interactions
involving Higgs boson exchange. Another type employs
a two-fluid approach, where DM interacts with baryon
component solely through gravitational interactions. In
both DM scenarios, the interactions among baryon matter
are described using the RMF theory. For the baryon model,
we adopt the GM1 parameter, as it can provide solutions
that well meet the constraints including the current 2M⊙
massive observation as well as the observation imposed by
NICER on the PSR J0740þ 6620 and PSR J0030þ 0451.
Our research reveals that the introduction of DM-admixed
NS model within GM1 not only well satisfies the current
various astronomical observations, including the 2M⊙
observation, PSR J0740þ 6620, PSR J0030þ 0451,
GW170817, and Rotation J1748 − 2446ad, but more

FIG. 11. Upper panel: in the two-fluid DM model, the relationship between the gravitational wave amplitude h22 and tret during the
inspiral phase of 1.35M⊙ binary NSs. Lower panel: in the single-fluid DM model, the relationship between the gravitational wave
amplitude h22 and tret during the inspiral phase of 1.35M⊙ binary NSs. The gray dashed line represents the waveform for the pure NS.
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importantly also provides successful explanations for the
small mass and radius observations of the central compact
object in the supernova remnant HESS J1731 − 347.
In the two-fluid model, we explore three scenarios for

DM distribution, (a) a fixed DM fraction fDM with varying
mϕ, (b) a fixed mϕ with varying fDM, (c) identical central
pressures for DM and BM components, and investigate
their potential formation of dark matter cores and halos. It is
found that in all three scenarios smaller mediator masses
and lower DM fractions in DM-mixed NSs tend to favor the
formation of DM halo structures. Furthermore, to avoid
giving an overly absolute conclusion that the mixed-
DM inside NSs can better meet the astronomical obser-
vations under only GM1 parameter in the paper, we
actually considered three other relativistic parameter sets
of FSUGold, BigApple, and IU-FSU. By incorporating
current observations, we further narrow down the param-
eter space values for two DM models, yielding a mediator
mass mϕ in the range of 10 ∼ 15 MeV and a DM Fermi
momentum kF in the range of 0.033 ∼ 0.038 GeV for
GM1. Employing the same computational procedure as
GM1, we obtain the ranges in mϕ (9 ∼ 14 MeV) and kF
(0.035 ∼ 0.036 GeV) for FSUGold, mϕ (10.5 ∼ 17 MeV)
and kF (0.030 ∼ 0.039 GeV) for BigApple, and mϕ

(11 ∼ 16 MeV) and kF (0.032 ∼ 0.037 GeV) for IU-FSU.
We also investigate the differences in gravitational wave

related properties between the two models. In terms of tidal
deformability, the RMF parametrization of GM1, which for
baryon matter is excluded by the gravitational wave
measurement of GW170817, can be reconciled with tidal
deformability measurement when considering DM mixed
models. Additionally, the tidal deformability values under
the two-fluid model are smaller than those under the single-
fluid model, implying that NSs under the two-fluid model
are less prone to distort in its companion star tidal field than
those under the single-fluid model. Regarding nonradial

oscillations for DM-mixed NSs within GM1, the f-mode
frequencies obtained from both DMmodels are remarkably
close; however, they exhibit significant differences in
universal relations. As for the gravitational wave generation
during NS inspiral phase, the presence of DM, in com-
parison to a pure NS scenario within GM1, leads to a
prolonged inspiral duration and higher gravitational wave
frequency. Additionally, two-fluid models exhibit longer
spindown timescales compared to single-fluid models.
The mediator mass and Fermi momentum have minimal
effects on the gravitational waveforms and amplitude
throughout the entire inspiral phase but primarily influence
its duration.
The above studies show that, although the search for DM

and the determination of its components are still unclear, in
any case, in a compact star such as a NS, in addition to the
microscopic many-body theory between particles, the
strong gravity will also make the internal coupling of
DM possible, and therefore the reasonable introduction of
DM components is beneficial. This allows for a better
explanation of current observational phenomena to some
extent and may be able to provide theoretical explanations
for future high-sensitivity detectors to shed light on the
possibilities of incorporating DM.
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