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Crystalline materials are promising candidates as substrates or high-reflective coatings of mirrors to
reduce thermal noises in future laser interferometric gravitational wave detectors. However, birefringence
of such materials could degrade the sensitivity of gravitational wave detectors, not only because it can
introduce optical losses, but also because its fluctuations create extra phase noise in the arm cavity reflected
beam. In this paper, we analytically estimate the effects of birefringence and its fluctuations in the mirror
substrate and coating for gravitational wave detectors. Our calculations show that the requirements for
the birefringence fluctuations in silicon substrate and AlGaAs coating will be on the order of 10−8 and

10−10 rad=
ffiffiffiffiffiffi
Hz

p
at 100 Hz, respectively, for future gravitational wave detectors. We also point out that

optical cavity response needs to be carefully taken into account to estimate optical losses from
depolarization.

DOI: 10.1103/PhysRevD.109.022009

I. INTRODUCTION

The first detections of gravitational waves from binary
black holes [1] and binary neutron stars [2,3] by Advanced
LIGO [4] and Advanced Virgo [5] inaugurated gravita-
tional wave physics and astronomy. Improvements in the
sensitivity of these laser interferometric detectors in
recent years enabled routine detections and more precise
binary parameter estimation [6]. Further improvements
in the astrophysical reach of these detectors will allow
us to study the origin of massive black holes, the neutron
star equation of state, alternative gravity theories, and
cosmology.
The fundamental limitation to the sensitivity of these

detectors at the most sensitive frequency band is set by
thermal vibrations of mirror surface [7]. KAGRA [8,9] and
other concepts of future gravitational wave detectors plan
to utilize cryogenic crystalline test mass mirrors for thermal
noise reduction, instead of fused silica mirrors at room
temperature. KAGRA uses sapphire test masses and plan to
cool them down to 22 K [10]. Voyager is an upgrade plan of
LIGO to use 123 K silicon to increase the astrophysical
reach by a factor of 4–5 over Advanced LIGO design [11].
The next-generation detectors such as Einstein Tele-
scope [12,13] also plan to use silicon test masses at
cryogenic temperatures for the low-frequency detectors,

and Cosmic Explorer [14,15] considers using them for an
upgrade. In addition, crystalline coatings such as AlGaAs
coating [16] and AlGaP coating [17] are considered as
promising candidates to reduce coating Brownian noise,
instead of amorphous silica and tantala coating.
Although crystalline materials are promising to reduce

thermal noise, it has been pointed out that slight birefrin-
gence of mirror substrates and coatings could cause optical
losses due to depolarization of the light and cause degra-
dation of interferometric contrast [18]. The birefringence
and its inhomogeneity of sapphire input test masses of
KAGRA were found to be higher than expected [19,20],
and around 10% of power was lost on reflection due to
depolarization, when arm cavities are not on resonance [9].
Ideally, crystalline silicon is a cubic crystal and optically
isotropic but could have strain-induced birefringence from
crystal dislocations and due to support in the mirror sus-
pension system. Birefringence measurements in silicon
mirrors have revealed that the amount of the static
birefringence is Δn ∼ 10−7 or less at laser wavelengths
of 1.55 [21] and 2 μm [22] at room temperature, which
satisfies the optical loss requirements for future detectors.
Also, previous cavity experiments using AlGaAs coatings
reported birefringence at 1 mrad level [16,23,24].
These past studies have focused on the static birefrin-

gence and optical losses from the depolarization. However,
recent measurement of thermal noises in crystalline
mirror coatings at cryogenic temperatures reported excess*yuta@caltech.edu
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birefringent noise, which could limit the sensitivity of future
gravitationalwave detectors [25]. Theoretical calculations on
thermal fluctuations of birefringence in crystalline mirror
coatings have also revealed that the noise from these
fluctuations could be similar to Brownian noise [26]. It is
also worth noting that experiments to search for vacuum
magnetic birefringence, such as PVLAS (Polarizzazione del
Vuoto con LASer) and OVAL (Observing VAcuum with
Laser), have been suspected to be limited by thermal
birefringence noise of mirrors [27–31]. These temporal
birefringence fluctuations could also limit optical cavity-
based axion dark matter searches using the birefringence
effect from axion-photon coupling [32–36].
In this paper, we study the effects of birefringence and its

fluctuations to gravitational wave detectors based on the
Fabry-Pérot-Michelson interferometer. We show that the
polarization axis and the crystal axes of arm cavity mirrors
need to be aligned to avoid optical losses and to reduce
noises from birefringence fluctuations. We also show that
the cavity response to birefringence needs to be correctly
taken into account for estimating the noises and the optical
losses of arm cavities. We start by analytically describing
the cavity response to birefringence in Sec. II. In Sec. III,
we focus on noises from substrate birefringence and
coating birefringence and derive requirements for their
fluctuations for future gravitational wave detectors. In
Sec. IV, we expand our formulation to include spatial
higher order modes and discuss power losses from inho-
mogeneous birefringence of the substrate and the coating.
Our conclusions and outlook are summarized in Sec. V.
Throughout the paper, we use 0.1% as a requirement

threshold for the optical losses from polarization. In this
way, the optical losses from polarization will be small
enough, as future gravitational wave detector designs
require total optical loss to be less than 10% [37].

II. CAVITY RESPONSE TO BIREFRINGENCE

Let us consider a Fabry-Pérot cavity formed by an input
test mass (ITM) and an end test mass (ETM) mirrors
as shown in Fig. 1. We consider birefringence of ITM

substrate, ITM high-reflective coating, and ETM high-
reflective coating. The ordinary axis of the ETM coating is
rotated by θ with respect to that of ITM. The input beam is
linearly polarized, and its polarization is rotated by θpol
with respect to the ordinary axis of ITM. We assume that
the crystal axes of ITM substrate are aligned with those of
its coating. This will not affect the results of this paper, as
we will treat the substrate birefringence and the coating
birefringence independently in the following sections.
For calculating the cavity response to birefringence,

we can use the Jones matrix formalism [38]. In the basis
of ITM crystal axes, the electric field of the input beam can
be written as

E⃗in ¼ ðv1e⃗o þ v2e⃗eÞEin ¼ ð e⃗o e⃗e Þv⃗inEin; ð1Þ

where e⃗o and e⃗e are the unit vectors along with the
ITM ordinary and extraordinary axes, respectively, and
v⃗in ≡ ðv1 v2ÞT is the unit vector representing the input
polarization.
We suppose the ITM substrate is lossless, and the

amplitude reflectivity and the amplitude transmission of
the whole ITM is determined by the high-reflective coating.
Then the amplitude transmission of ITM can be written as

T1 ¼
�
t1 0

0 t1e
−i1

2
Δϕt1

�
; ð2Þ

where Δϕt1=2 is the phase difference between the ordinary
and extraordinary axes in the ITM transmission from both
the substrate and the coating birefringence and t1 is the
amplitude transmission of ITM. Here, we assumed that the
amplitude transmission is the same for both axes. Similarly,
the amplitude reflectivity of ITM and ETM from the high-
reflective coating side can be written as

Rj ¼
� rj 0

0 rje
−iΔϕrj

�
; ð3Þ

where Δϕrj is the phase difference between the ordinary
and extraordinary axes in ITM and ETM reflection and rj is
the amplitude reflectivity of ITM and ETM. j ¼ 1 is for
ITM and j ¼ 2 is for ETM. Also, the amplitude reflectivity
of ITM from the substrate side can be written as

S1 ¼
�−r1 0

0 −r1e−iΔϕs1

�
; ð4Þ

where Δϕs1 is the phase difference between the ordinary
and extraordinary axes in the ITM reflection from the
substrate side. From the energy conservation and the time-
reversal symmetry, Δϕt1 ¼ Δϕr1 þ Δϕs1 . Here, we use the
convention that rj and t1 are real, and the sign is flipped
for reflection from the ITM substrate side. We keep the

ITM

input
polarization

ETM

extraordinary
axis

ordinary
axis

ordinary
axis

extraordinary
axis

Faraday
isolator

FIG. 1. The schematic of a Fabry-Pérot cavity with mirror
crystal axes and input beam polarization axis illustrated. With
respect to the ITM ordinary axis, the input polarization is rotated
by θpol and the ETM ordinary axis is rotated by θ.
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coordinate axis to be the same even if the propagation
direction flips on mirror reflections, so that the sign for both
polarizations will be the same.
For arm cavities in gravitational wave detectors, r1 and

r2 are designed to be r2 ≃ 1, and r1 < r2, such that almost
all the light is reflected back. From the phase of the cavity
reflected beam, cavity length changes from gravitational
waves are read out. In the following subsections, we cal-
culate the polarization eigenmodes in the cavity and the
phase of the cavity reflected beam.

A. Polarization eigenmodes in the cavity

The electric field inside the cavity that propagates from
ITM to ETM can be written as

E⃗cav ¼ ðI − AÞ−1T1E⃗in; ð5Þ
with I being the identity matrix. Here,

A≡ R1Rð−θÞR2RðθÞe−iϕ; ð6Þ
where ϕ ¼ 4πL=λ is the phase acquired in the cavity round-
trip, with L and λ being the cavity length and the laser
wavelength, respectively, and

RðθÞ≡
�
cos θ − sin θ

sin θ cos θ

�
; ð7Þ

with the derivation described in Appendix A. Note that ϕ
includes phase acquired in the ITM and ETM reflection for
their ordinary axes. The resonant polarization mode is the
eigenvectors of

Mcav ≡ ðI − AÞ−1T1: ð8Þ
The cavity enhancement factors for each mode will be the
eigenvalues of Mcav.
When θ ¼ 0, the ITM axes and the ETM axes are

aligned, and the eigenvectors will be

v⃗a ¼
�
1

0

�
; v⃗b ¼

�
0

1

�
; ð9Þ

which means that the resonant modes are linear polar-
izations along the ITM ordinary axis e⃗o and the extraor-
dinary axis e⃗e. The cavity enhancement factors will be

wa ¼
t1

1 − r1r2e−iϕ
; wb ¼

t1e
−i1

2
Δϕt1

1 − r1r2e
−iðϕþΔϕr1

þΔϕr2
Þ :

ð10Þ
The resonant frequency difference between two eigenm-
odes therefore will be

Δν ¼ Δϕr1 þ Δϕr2

2π
νFSR; ð11Þ

where νFSR ¼ c=ð2LÞ is the free spectral range of the
cavity.
When θ ¼ π=2, the ITM ordinary axis and the ETM

extraordinary axis are aligned, and the eigenvectors again
will be the same as the ones given in Eq. (9). The cavity
enhancement factors will be

wa ¼
t1

1 − r1r2e
−iðϕþΔϕr2

Þ ; wb ¼
t1e

−i1
2
Δϕt1

1 − r1r2e
−iðϕþΔϕr1

Þ :

ð12Þ

The resonant frequency difference between two eigenm-
odes therefore will be

Δν ¼ Δϕr1 − Δϕr2

2π
νFSR: ð13Þ

Since we defined the ITM and ETM axes such that Δϕri
have the same sign for ITM and ETM, when θ ¼ 0, the
phase difference between the axes are added and the resonant
frequency difference is maximized. When θ ¼ π=2, it is
minimized, as the phase difference is canceled. When
0 < θ < π=2, the resonant frequency difference will be in
between the maximum and the minimum.
When the resonant frequency difference is smaller than

the cavity linewidth, i.e., Δϕri ≪ 2π=F , and when the
effect from the ITM substrate birefringence is small, i.e.,
Δϕt1 ≪ Δϕr1F=π, the resonant frequency difference can
be calculated with

Δν ≃
2πðargwa − argwbÞ

F
νFSR
2π

; ð14Þ

at ϕ ¼ 0, where

F ¼ π
ffiffiffiffiffiffiffiffiffi
r1r2

p
1 − r1r2

ð15Þ

is the finesse of the cavity. This can be further approxi-
mated as [39]

Δν ≃
δEQ
2π

νFSR; ð16Þ

where

δEQ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕr1 − Δϕr2Þ2 þ 4Δϕr1Δϕr2cos

2θ
q

; ð17Þ

when δEQ ≪ 1, with the derivation described in
Appendix B. Also, the cavity eigenmodes are linear
polarizations approximated as

v⃗a ¼
�
cos θEQ
sin θEQ

�
; v⃗b ¼

�− sin θEQ
cos θEQ

�
; ð18Þ
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where the polarization angle is defined by

cos 2θEQ ¼
Δϕ0

r1
Δϕr2

þ cos 2θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δϕ0

r1
Δϕr2

− 1
�
2 þ 4

Δϕ0
r1

Δϕr2
cos2θ

r ; ð19Þ

with

Δϕ0
r1 ≡ Δϕr1 þ

π

F
Δϕt1 : ð20Þ

When Δϕ0
r1 ≫ Δϕr2 , θEQ is equal to zero; when

Δϕ0
r1 ¼ Δϕr2 , θEQ is equal to θ=2; and when

Δϕ0
r1 ≪ Δϕr2 , θEQ is equal to θ. Note that the polarization

state resonating inside the cavity are elliptic polarizations
given by R1T1v⃗a;b=ðr1t1Þ and are different from linear
polarizations given by Eq. (18).
The mismatch between the cavity polarization mode and

the input beam polarization can be calculated with

Λ2 ¼ 1 − jv⃗a · v⃗inj2: ð21Þ

When the input beam is linearly polarized with the
polarization angle of θpol such that

v⃗in ¼ RðθpolÞ
�
1

0

�
¼

�
cos θpol
sin θpol

�
; ð22Þ

Eq. (21) reduces to

Λ2 ¼ sin2ðθEQ − θpolÞ: ð23Þ

The mismatch will be less than 0.1% when jθEQ − θpolj is
smaller than 1.8°. For gravitational wave detectors, this is
required for both arm cavities. This means that the axes of
two arm cavities need to be aligned to the same degree.
Note that mismatch do not directly mean that there is a
same amount of power loss. The actual power loss also
depend on the amount of birefringence, as we will discuss
in Sec. IV.
Figure 2 shows the polarization eigenmodes of the cavity

as a function of ETM rotation angle θ, calculated using
Eqs. (16) and (19). As we have discussed earlier, the
resonant frequency difference will be the maximized at
θ ¼ 0 and minimized at θ ¼ π=2. When θ ¼ π=2 and
Δϕr1 ¼ Δϕr2 , the phase difference between ordinary and
extraordinary axes is completely canceled, and two modes
will be degenerate. In this case, two linear polarizations and
two circular polarizations will be cavity eigenmodes, since
two modes have the same resonant frequency.
The bottom panel in Fig. 2 shows the mismatch

calculated using Eq. (21), assuming the input polarization
is linear and aligned with either of the ITM axes. The
mismatch is nulled at θ ¼ 0 and θ ¼ π=2. To minimize the

mismatch and to make the resonant frequency difference
large, aligning the ETM rotation such that θ ¼ 0 and
aligning the input polarization to one of the ITM axes
will be the optimal choice. The requirement on the align-
ment will be not severe, since the dependence on the ETM
rotation angle goes with θ2 at θ ¼ 0.
For deriving the cavity reflected beam, we need to

calculate the electric field inside the cavity that propagates
from ETM to ITM. This can be written as

E⃗0
cav ¼ Rð−θÞR2RðθÞe−iϕMcavE⃗in ð24Þ

≡M0
cavE⃗in: ð25Þ

The eigenvectors of M0
cav are the same as those of Mcav

within our approximations discussed above, but the cavity
enhancement factors will be slightly different. When θ ¼ 0,
the cavity enhancement factors will be

w0
a ¼

t1r2e−iϕ

1 − r1r2e−iϕ
; w0

b ¼
t1r2e

−iðϕþ1
2
Δϕt1

þΔϕr2
Þ

1 − r1r2e
−iðϕþΔϕr1

þΔϕr2
Þ ;

ð26Þ

FIG. 2. The polarization eigenmodes of a Fabry-Pérot cavity as
a function of ETM rotation angle θ. The top panel shows the
round-trip phase difference between the eigenmodes in the unit
of Δϕr1 , i.e., 2πΔν=ðνFSRΔϕr1Þ, which is proportional to the
resonant frequency difference. The middle panel shows the
polarization angle of the eigenmodes θEQ calculated using
Eq. (19). The bottom panel shows the mismatch of the input
beam polarization to the eigenmodes, when it is linear and
aligned with ITM axes, calculated using Eq. (21). Different colors
of the lines correspond to different Δϕr2=Δϕr1 ratios. Blue lines
for Δϕr2 ¼ 0 case in the bottom two plots are zero.

YUTA MICHIMURA et al. PHYS. REV. D 109, 022009 (2024)

022009-4



and when θ ¼ π=2, those will be

w0
a ¼

t1r2e
−iðϕþΔϕr2

Þ

1 − r1r2e
−iðϕþΔϕr2

Þ ; w0
b ¼

t1r2e
−iðϕþ1

2
Δϕt1

Þ

1 − r1r2e
−iðϕþΔϕr1

Þ :

ð27Þ

Compared with wa and wb, those have extra phase ϕ from
the cavity round-trip and extra phase Δϕr2 for the corre-
sponding axis for one additional reflection from ETM.

B. Phase of cavity reflected beam

The noises due to temporal fluctuations of birefringence
will be imprinted in the phase of the cavity reflected beam.
The electric field of the cavity reflection can be written as

E⃗refl ¼ MreflE⃗in; ð28Þ

where

Mrefl ≡ S1 þ T1M0
cav: ð29Þ

The first term corresponds to the prompt reflection from
ITM, and the second term is the ITM transmitted beam
from the cavity circulating beam. In general, when the input
beam polarization component is

v⃗in ¼ av⃗0a þ bv⃗0b; ð30Þ

the polarization component of the reflected beam is

Mreflv⃗in ¼ aðS1 þ w0
aT1Þv⃗0a þ bðS1 þ w0

bT1Þv⃗0b: ð31Þ

Since the resonant condition of each eigenmode is gen-
erally different, it is generally jw0

aj ≠ jw0
bj. Therefore, the

polarization component of the cavity reflected beam will be
different from the input polarization.
When we use a Faraday isolator to extract the cavity

reflection, we extract the polarization component which is
the same as the input polarization. Therefore, the phase of
the cavity reflected beam can be calculated with

argðEoutÞ ¼ argðEreflkÞ ¼ arg ðEinMreflv⃗in · v⃗inÞ: ð32Þ

In the case when the input beam polarization is aligned to
the ITM ordinary axis, this reflected phase is the phase
of the (1,1) component of Mrefl, and that for the ITM
extraordinary axis is the (2,2) component of Mrefl.
Let us first consider the effects from ITM. If we set

Δϕr2 ¼ 0 and the input beam is linearly polarized with the
polarization angle of θpol as shown in Eq. (22), the reflected
electric field in the polarization parallel to v⃗in and in the
orthogonal polarization will be

Ereflk
Ein

¼ Mreflv⃗in · v⃗in

¼ ð−r1 þ w0
at1Þcos2θpol

þ �
−r1e−iΔϕs1 þ w0

bt1e
−i1

2
Δϕt1

�
sin2θpol; ð33Þ

Erefl⊥
Ein

¼ Mreflv⃗in · RðθpolÞ
�
0

1

�

¼ 	ð−r1 þ w0
at1Þ −

�
−r1e−iΔϕs1 þ w0

bt1e
−i1

2
Δϕt1

�

×
sin ð2θpolÞ

2
: ð34Þ

These are similar to the electric fields of the bright
reflection port and the dark antisymmetric port for a
Fabry-Pérot-Michelson interferometer that has an unbal-
anced beam splitter.
The effects from the ETM birefringence can be calcu-

lated by setting Δϕs1 ¼ Δϕt1 ¼ 0 and replacing Δϕr1 with
Δϕr2 and θpol with θ þ θpol. If we combine the effects from
ITM and ETM, the phase of the reflected beam around the
resonance can be approximated as

arg

�
Ereflk
Ein

�
¼ ðΔϕs1 − 2Δϕt1Þsin2θpol

−
F
π

	
ϕþ Δϕr1sin

2θpol

þ Δϕr2sin
2ðθ þ θpolÞ



; ð35Þ

with the approximation that Δϕri ≪ 2π=F and r2 ¼ 1. It is
clear that both the ETM rotation angle θ and the input
beam polarization angle θpol change the phase of the cavity
reflected beam and will contribute to the phase noise,
unless θpol and θ þ θpol are either 0 or π=2, where the
effects are quadratic to these angles. The fluctuations of
phase differences between ordinary and extraordinary axes
also create phase noises, unless θpol and θ þ θpol are both 0.
It is worth noting that, even if we use this phase to lock the

cavity, this does not generally mean that the cavity is locked
on resonance to one of its polarization eigenmodes, as the
cavity reflected beam contains the phase fluctuations from
both polarization eigenmodes. To avoid the mixing of
phase noises from two polarization eigenmodes, it is actually
better to have higher static coating birefringence, i.e.,
Δϕri ≫ 2π=F . If the static coating birefringence is high
such that one of the eigenmodes is out of resonance when the
other is resonant, only Δϕs1 and ϕ terms remain in Eq. (35).

III. NOISES FROM BIREFRINGENCE

In this section, we calculate the phase noises from
temporal fluctuations of birefringence and derive the
requirements for the current and future gravitational wave
detectors. For calculating the requirements, we have used
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the interferometer parameters summarized in Table I and
the displacement sensitivity curves shown in Fig. 3. At the
last part of this section, we also discuss the noise from
the amplitude fluctuations in the orthogonal polarization
at the antisymmetric port of the Fabry-Pérot Michelson
interferometer. Although different interferometers plan to
use different materials for the mirrors, discussions pre-
sented here do not depend on the choice of materials.

A. Phase noises from substrate birefringence

The phase changes from the ITM substrate birefringence
can be calculated from Eq. (35) by settingΔϕr1 ¼ Δϕr2 ¼ 0

and Δϕs1 ¼ Δϕt1 . In this case, Eq. (35) reduces to

arg

�
Ereflk
Ein

�
¼ −Δϕs1sin

2θpol −
F
π
ϕ: ð36Þ

Therefore, the length noise couplings from the fluctuations
of θpol and Δϕs1 can be calculated as

δL
δθpol

¼ λ

4π

δ½argðEreflkÞ�
δθpol

�
δ½argðEreflkÞ�

δϕ

�−1

¼ λ

4F
Δϕs1 sin 2θpol; ð37Þ

δL
δðΔϕs1Þ

¼ −
λ

4F
sin2θpol: ð38Þ

B. Phase noises from coating birefringence

Next, we consider the phase changes from the coating
birefringence. From Eq. (35), it is clear that the second term
from Δϕr1 and Δϕr2 contributes more to the phase of the
reflected beam, compared with the first term from Δϕs1 and
Δϕt1 , since the phase acquired inside the cavity is enhanced
by a factor of F=π. The length noise couplings from the
fluctuations of θpol, θ, and Δϕri can be calculated as

δL
δθpol

¼ λ

4π

	
Δϕr1 sin 2θpol þ Δϕr2 sin ½2ðθ þ θpolÞ�



; ð39Þ

δL
δθ

¼ λ

4π
Δϕr2 sin ½2ðθ þ θpolÞ�; ð40Þ

δL
δðΔϕr1Þ

¼ −
λ

4π
sin2θpol; ð41Þ

δL
δðΔϕr2Þ

¼ −
λ

4π
sin2ðθ þ θpolÞ: ð42Þ

C. Requirements on birefringence fluctuations

Noise couplings discussed above are nulled when
θpol ¼ 0 and θ ¼ 0. For KAGRA test masses, the sapphire
c axis was aligned to the cylindrical plane of the test mass
within 0.1° [20]. For deriving the requirements to birefrin-
gence fluctuations for the substrate and the coating,
we assume that the input beam polarization and the ETM
axes are aligned to the ITM axes to θpol ¼ 1° and θ ¼ 1°,
respectively.
The solid lines in Fig. 4 show the derived requirements

for the substrate birefringence fluctuations. We assumed
that the ITM substrate has uniform birefringence Δn, and
Δϕs1 can be written using the mirror thickness t as

Δϕs1 ¼
4π

λ
Δnt: ð43Þ

We used the static birefringence value of Δn ¼ 10−7,
which is a typical measured value for silicon [21,22].
The dashed lines in Fig. 4 show the derived requirements
for the coating using the static birefringence value of
Δϕri ¼ 1 mrad, which is a typical measured value for

FIG. 3. The designed displacement sensitivity for different
gravitational wave detectors. The strain sensitivity data are taken
from Refs. [40–42] and corrected to displacement sensitivities
by removing frequency-dependent responses to gravitational
waves [43].

TABLE I. Interferometer parameters of Advanced LIGO
(aLIGO), Aþ, Voyager, Cosmic Explorer (CE), Einstein Tele-
scope Low Frequency (ET-LF), and ET High Frequency (ET-HF)
used for calculating requirements. L, arm length; F , arm finesse;
t, ITM thickness; λ, laser wavelength.

L F t λ Reference

aLIGO 4 km 450 20 cm 1064 nm [4]
Aþ 4 km 450 20 cm 1064 nm [44]
Voyager 4 km 3000 55 cm 2050 nm [11]
CE 40 km 450 27.3 cm 2050 nm [15]
ET-LF 10 km 900 57 cm 1550 nm [13]
ET-HF 10 km 900 30 cm 1064 nm [13]
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AlGaAs coating [16,23,24]. The requirements do not
change for other materials when they have the same amount
of static birefringence. For deriving the requirement for
Δϕrj , we used Eq. (42), as this gives more stringent
requirement than Eq. (41). All the requirements are divided
by

ffiffiffi
2

p
to take into account of birefringence noises between

two arm cavities to be incoherent, assuming both cavities
have a similar level of birefringence. The requirements will
be relaxed for common effects in two arms, such as the
fluctuations in the input beam polarization angle and
birefringence induced by laser intensity fluctuations.
The requirements on the axis rotations for future gravi-

tational wave detectors is on the order of 10−10 rad=
ffiffiffiffiffiffi
Hz

p
.

We note that the requirements on θpol and θ presented here
are also the requirements for the polarization fluctuation
requirement for the input beam and the roll motion of the
mirrors. As for the roll motion of the mirrors, the vertical
seismic motion create less than 10−11 rad=

ffiffiffiffiffiffi
Hz

p
level of roll

motion above 10 Hz for the Advanced LIGO suspensions,
if we conservatively assume that the coupling from vertical
to roll motion is unity [35,45]. Therefore, the birefringence
noise from the roll motion of the mirrors is small enough.
The requirements on the phase differences between

ordinary and extraordinary axes for future gravitational
wave detectors are on the order of 10−8 rad=

ffiffiffiffiffiffi
Hz

p
for

the substrate and 10−10 rad=
ffiffiffiffiffiffi
Hz

p
for the coating. Bire-

fringence at 10−8 rad=
ffiffiffiffiffiffi
Hz

p
level can be feasibly evaluated

with shot noise limited interferometry at the laser power of
P ¼ 10 mW level, as the shot noise limited phase sensi-
tivity of a Michelson interferometer is given by

ϕshot ¼
ffiffiffiffiffiffiffiffi
hc
2λP

r
; ð44Þ

where h is the Planck constant and c is the speed of light.
Evaluation of birefringence at 10−10 rad=

ffiffiffiffiffiffi
Hz

p
level requires

10-W class laser or cavity enhancements. Measurements can
be done at relatively lower power compared with gravita-
tional wave detectors, as the phase noise from birefringence
is attenuated by sin2 θ and sin2 ðθ þ θpolÞ, by aligning the
polarization axis and the mirror crystal axes. In the evalu-
ation setup, the phase noise can be enhanced by intentionally
misaligning the axes.
One of the possible sources of birefringence fluctuations

is magnetic field fluctuations due to Faraday effect.
Measured magnetic field fluctuations at various gravita-
tional wave detector sites are on the order of 10−12 T=

ffiffiffiffiffiffi
Hz

p
at 10 Hz [46], and the Verdet constant for silicon is
15 rad=ðT · mÞ [47]. These give 10−11 rad=

ffiffiffiffiffiffi
Hz

p
level of

Δϕs1 for mirror thicknesses in Table I, which is below the
requirements given above.
We note that, when deriving the requirements shown in

Fig. 4, no safety margin was considered. This means that

FIG. 4. The requirements on birefringence fluctuations from
the axis rotations (top) and from the phase difference between
ordinary and extraordinary axes (middle) for different gravita-
tional wave detectors. The bottom plot shows the requirement on
the substrate birefringence converted from the phase difference
requirements on Δϕs1 in the middle plot, assuming uniform Δn,
using Eq. (43). The solid lines are for the substrate that have a
static birefringence ofΔn ¼ 10−7, and the dashed lines are for the
coating that have a static birefringence of Δϕri ¼ 1 mrad. For
deriving these requirements, we assumed that the input beam
polarization and the ETM axes are aligned to the ITM axes to
θpol ¼ 1° and θ ¼ 1°, and no safety margin is considered.
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the designed sensitivity will be fully limited by one of
the noises when that noise spectrum is the same as the
requirement curve, and all the other noises are negligibly
small. To achieve the design sensitivity, each noise should
be negligibly smaller than the requirement, e.g., by a
factor of 10.

D. Amplitude noise at the antisymmetric port

So far, we have considered the phase noise in the arm
cavity reflected beams in gravitational wave detectors. In
gravitational wave detectors, the differential arm length
caused by gravitational waves will be read out as the
interference fringe changes at the antisymmetric port.
Birefringence fluctuations will also create power fluctua-
tions in the orthogonal polarization, and it will be a noise
source when the output Faraday isolator has a finite
extinction ratio ϵ and the orthogonal polarization is not
completely rejected. A slight misalignment of the axes
between the input Faraday isolator and the output Faraday
isolator would also cause a finite extinction ratio.
From Eq. (34), the power of the cavity reflected beam in

the orthogonal polarization from the birefringence in ITM
can be written as

Prefl⊥jres
Pin

≃
1

4

�
Δϕs1 − 2Δϕt1 −

F
π
Δϕr1

�
2

sin2ð2θpolÞ; ð45Þ

when the cavity is on resonance. Here, Pin ¼ jEinj2 is the
input power to the cavity, and we used that r2 ¼ 1, r1 ≃ 1,
and t21 ¼ 1 − r21, which are good approximations for arm
cavities of gravitational wave detectors. We also assumed
that the amount of birefringence is uniform and small, i.e.,
Δϕri ≪ 2π=F , Δϕs1 ≪ 1, and Δϕt1 ≪ 1.
As we can see from Eq. (34), the orthogonal polarization

is vanished when there is no birefringence or θpol is not 0 or
π=2. The orthogonal polarization component is generated
from the reflected electric field unbalance between two
eigenmodes. Therefore, when the amount of birefringence
is small, the phase of Erefl⊥ is always around π=2 away
from the phase of Ereflk. This means that the orthogonal
polarization in the cavity reflection is always in the quad-
rature phase with respect to the gravitational wave signal,
independent of the resonant condition of the cavity.
In the case of gravitational wave detectors, the antisym-

metric port therefore will be at either the bright or the dark
fringe for the orthogonal polarization, when it is at the dark
fringe for the main polarization. When the both arms are
completely symmetric and the amount of birefringence is
the same, the antisymmetric port will be at the bright fringe
for the orthogonal polarization. This is the same as the
reason why the polarization signal from axion dark matter
is present at the antisymmetric port, as discussed in
Ref. [35]. In reality, the beam splitter in the Fabry-Pérot-
Michelson interferometer adds extra phase difference

between two polarization axes due to ∼45° incident angle,
and the fringe will be slightly shifted.
To derive the requirements for the extinction ratio ϵ of

the output Faraday isolator, let us assume that the power of
the orthogonal polarization component at the antisymmet-
ric port can be roughly estimated from the power from one
of the arms. By requiring the power fluctuation from the
orthogonal polarization from one of the arms to be less than
the shot noise of the local oscillator beam in the main
polarization, we can require

ϵ <
1

Prefl⊥jres

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hcPLO

λ

r
; ð46Þ

where PLO is the power of the local oscillator beam at the
antisymmetric port. When the requirements for the bire-
fringence fluctuations derived in the previous subsections
are met, the noise from the birefringence fluctuations are
lower than the shot noise of the gravitational wave detector.
Therefore, the requirement can be rewritten as

ϵ≲
ffiffiffiffiffiffiffiffi
PLO

Pin

s �
Δϕs1 − 2Δϕt1 −

F
π
Δϕr1

�
−1
: ð47Þ

For gravitational wave detectors operating with dc readout
scheme [48], PLO and Pin are on the order of 10 mW and
10 kW for the power-recycled case, respectively. Assuming
that the birefringence terms Δϕs1 , Δϕt1 , and Δϕr1F=π are
on the order of 1 rad, the requirement to the extinction ratio
will be ϵ≲ 0.1%. This means that the input Faraday
isolator and the output Faraday isolator have to be aligned
within 1.8°.

IV. OPTICAL LOSSES FROM INHOMOGENEOUS
BIREFRINGENCE

Birefringence and its inhomogeneity in cavities create
power losses from depolarization. The mode content of the
cavity reflected beam in the orthogonal polarization will
be different depending on the locations of birefringence
and the resonant condition of the cavity. In this section, we
discuss the power of cavity reflected beam in the orthogo-
nal polarization to estimate the optical loss.
To show that the different locations of birefringence

create different mode content, we first consider the effects
from ITM, as we have considered in Eqs. (33) and (34).
From Eq. (34), the power losses to orthogonal polarization
when the cavity is out of resonance will be

Prefl⊥joff
Pin

≃
1

4
ðΔϕs1Þ2sin2ð2θpolÞ; ð48Þ

under the same approximations used to derive Eq. (45).
So far, we have considered only the birefringence uni-

form over the substrate and the coating. When there is a
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perturbation from a uniform birefringence, spatial higher
order modes are generated. The amount of the higher order
modes in the orthogonal polarization can be estimated from
inhomogeneous birefringence ΔϕHOM

s1 . The power in the
higher order modes when the cavity is on resonance and out
of resonance will be

PHOM
refl⊥ jres
Pin

≃
1

4

�
ΔϕHOM

s1 − ΔϕHOM
t1

�
2sin2ð2θpolÞ; ð49Þ

PHOM
refl⊥ joff
Pin

≃
1

4

�
ΔϕHOM

s1

�
2sin2ð2θpolÞ; ð50Þ

respectively. Note that the coefficient for ΔϕHOM
t1 is 1, as

opposed to 2 for Δϕt1 in Eq. (45), since higher order modes
do not resonate in the cavity and higher order modes are
generated in the ITM transmission of the intracavity beam.
For considering the effect from the ITM substrate

birefringence, we can set Δϕr1 ¼ 0, Δϕs1 ¼ Δϕt1 , and
ΔϕHOM

s1 ¼ ΔϕHOM
t1 . In this case, the amount of the funda-

mental transverse mode in the orthogonal polarization
stays the same when the cavity is out of resonance or on
resonance. However, the amount of higher order modes
in the orthogonal polarization is suppressed to the second
order, as we can see from Eq. (49). This is similar to the
Lawrence effect for the thermal lensing of ITM [49]. It is
worth noting that the cavity reflected power in the main
polarization Preflk could increase when the cavity is on
resonance due to this effect, if the optical loss in the cavity
is small compared with the optical loss from inhomo-
geneous birefringence.
For KAGRA sapphire ITM, the transmission wave-front

error difference between two polarizations was measured to
be around 60 nm in rms [19,20], which corresponds to the
round-trip phase difference ΔϕHOM

s1 of 0.7 rad in rms. If we
attribute this all to inhomogeneous refractive index differ-
ence using Eq. (43), this corresponds toΔnHOM of 2 × 10−7

in rms, using the KAGRA sapphire mirror thickness being
15 cm and laser wavelength being 1064 nm. For sapphire,
the amount of birefringence along the c axis can be
calculated with [50]

Δn ¼ noðn2o − n2eÞψ2

n2e
; ð51Þ

where ne ¼ 1.747 and no ¼ 1.754 are the refractive indices
in the c axis and in axes orthogonal to the c axis,
respectively, and ψ ≪ 1 is the inclination of the light
propagation direction with respect to the c axis. Using
this equation, the amount of birefringence observed in
KAGRA can be explained by ψHOM being 0.2° in rms.
This is larger than nominal orientation of the beam
propagation axis with respect to the c axis, which was

aligned within 0.1° [20]. This suggests that θpol is also
inhomogeneous and uncontrolled.
Using Eq. (50), this inhomogeneous birefringence create

power loss to orthogonal polarization of around 10% when
the arm cavity is out of resonance, if θpol is around π=4.
This is consistent with the measured value in KAGRA, as
reported in Ref. [9]. The reduction of the power loss to
orthogonal polarization on resonance was also observed,
which is consistent with the Lawrence effect described
above. In the KAGRA case, the power of the orthogonal
polarization inside the power recycling cavity was reduced
by a factor of 3 when the arm cavity was locked on
resonance.
To make the optical loss due to inhomogeneous bire-

fringence of ITM substrate always smaller than 0.1%,
Δϕs1 and ΔϕHOM

s1 need to be smaller than 0.06 rad in rms.
Achieving this with surface figuring alone could be
challenging, as surface figuring cannot compensate for
the phase difference between two axes. This requirement
can be eased by aligning the input polarization axis to
θpol ¼ 0 or π=2.
When considering the effect from the ITM coating

birefringence, we can set Δϕs1 ¼ Δϕr1 . However, Δϕs1
is not exactly Δϕt1, as the penetration length for the coating
is different from the coating thickness. Therefore, the
Lawrence effect does not completely suppress the higher
order modes. If we can set Δϕs1 ¼ lΔϕt1 , where 0 < l < 1

is the ratio of the penetration length over the coating
thickness, the higher order modes in the orthogonal
polarization increase when the cavity is locked on reso-
nance, for l < 0.5. The fundamental transverse mode in the
orthogonal polarization increases for high finesse cavities
with F=π ≫ 1.
The mode content in the orthogonal polarization from

the ETM coating birefringence can be obtained by replac-
ingΔϕr1 with Δϕr2 and θpol with θ þ θpol in Eqs. (45), (48),
(49), and (50) and by setting Δϕs1 ¼ Δϕt1 ¼ 0, as

Prefl⊥jres
Pin

≃
1

4

�
F
π
Δϕr2

�
2

sin2½2ðθ þ θpolÞ�; ð52Þ

Prefl⊥joff
Pin

≃ 0; ð53Þ

PHOM
refl⊥ jres
Pin

≃ 0; ð54Þ

PHOM
refl⊥ joff
Pin

≃ 0: ð55Þ

Therefore, as for the effects from the ETM coating
birefringence, the power in the orthogonal polarization
increases when the cavity is locked on resonance, and the
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fundamental transverse mode dominates, because the
higher order modes are suppressed in the cavity.
The discussions above highlights the fact that the optical

losses from birefringence needs to be correctly taken into
account to measure the optical losses in the arm cavity. It
also suggests that, by measuring the mode content of the
beam in the orthogonal polarization when the cavity is out
of resonance and on resonance, we can estimate where the
optical losses from birefringence are mainly coming from.
Future gravitational wave detector designs call for 10 dB

of detected squeezing, requiring that the total optical loss
be less than 10% [37]. From Eqs. (45) and (52), jθj and
jθ þ θpolj needs to be less than 1.8°, requiring the optical
loss from birefringence be less than 0.1%, when the
birefringence terms Δϕs1 , Δϕt1 , and ΔϕrjF=π are on the
order of 1 rad. Similar to the discussions around Eq. (23),
the polarization of the injected squeezed vacuum also needs
to be aligned to less than 1.8° to achieve the optical loss of
less than 0.1%.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the effects of birefrin-
gence and its fluctuations in the mirror substrate and
coating for laser interferometric gravitational wave detec-
tors. We have shown that the polarization axis of the beam
and the crystal axes of mirrors need to be aligned to
minimize the optical losses and the noises from birefrin-
gence fluctuations. The optical losses from birefringence
can be feasibly reduced to less than 0.1%, when the axes
are aligned within a few degrees. We have also shown that
the requirements for the birefringence fluctuations in the
substrate and the coating will be on the order of 10−8 and
10−10 rad=

ffiffiffiffiffiffi
Hz

p
at 100 Hz, respectively, for future gravi-

tational wave detectors with mirrors that have Δn ¼ 10−7

level of substrate birefringence and Δϕri ¼ 1 mrad level of
coating birefringence. When the static coating birefrin-
gence is large such that the resonant frequency difference
between two polarization eigenmodes is larger than the
cavity linewidth, the requirements on the coating birefrin-
gence fluctuations will be relaxed. In addition, we have
derived the equations for estimating the amount of optical
losses due to depolarization from inhomogeneous birefrin-
gence of mirror substrates and coatings. Our results provide
the basic theory to study the noises and optical losses from
birefringence fluctuations of mirrors in gravitational wave
detectors.
In our model, we assumed the amount of birefringence

and misorientation of axes to be small. We also assumed
two interferometer arms of gravitational wave detectors to
be close to symmetric. Detailed interferometer modeling
will be necessary to treat larger birefringence, misorienta-
tion of axes, inhomogeneity of birefringence and axes
orientations, and asymmetry between two arms including
birefringent beam splitter effects. These effects would

create classical radiation pressure noise, as intracavity power
fluctuates from birefringence fluctuations. Including the
power and signal recycling cavities to the model would
also be important when these effects are not negligible and
the resonant condition in the recycling cavities is different
between polarizations. We leave these studies to future work.
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APPENDIX A: DERIVATION OF ELECTRIC
FIELDS

Here we derive the electric field inside the cavity in
Eqs. (5) and (25) and the electric field of the cavity reflec-
tion in Eq. (28).
In the basis of ITM crystal axes, the amplitude reflec-

tivity of ETM can be written as Rð−θÞR2RðθÞ [38]. The
rotation matrix RðθÞ is necessary to take into account of the
axes rotation between ITM and ETM. Therefore, the Jones
matrix for the cavity round-trip can be written as a product
of ITM reflection, ETM reflection, and the phase shift
accumulated in the round-trip as

A ¼ R1Rð−θÞR2RðθÞe−iϕ: ðA1Þ
The electric field inside the cavity that propagates from
ITM to ETM is a sum of the ITM transmitted field and
its multiple reflections inside the cavity, which can be
written as

E⃗cav ¼ T1E⃗in þ AT1E⃗in þ A2T1E⃗in þ � � � ðA2Þ

¼
X∞
n¼1

An−1T1E⃗in: ðA3Þ

This is a sum of an infinite geometric series, and Eq. (5) can
be derived.
The electric field inside the cavity that propagates from

ETM to ITM has an additional reflection from ETM and
phase ϕ from a cavity round-trip, which lead to Eq. (25).
The electric field of the cavity reflection is the sum of
the field reflected from ITM substrate side and the intra-
cavity field transmitted through ITM. Therefore, it can be
written as

E⃗refl ¼ S1E⃗in þ T1E⃗
0
cav; ðA4Þ

and Eq. (28) can be derived.
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APPENDIX B: DERIVATION OF EQUIVALENT
PHASE ANISOTROPY

Here we derive the equivalent phase anisotropy in
Eq. (17). We consider the situation described in Ref. [39],
where the phase anisotropy and relative orientation of the
birefringent cavity are captured by a single equivalent Jones
transformation. To simplify the notation, we write the Jones
operators in the Pauli basis spanned by I and σ⃗, where I is
the identity matrix and σ⃗ ¼ σoe⃗o þ σee⃗e þ σze⃗z is the Pauli
vector used to map rotations along the ordinary, extraor-
dinary, and cavity axis unit vectors, respectively. For
example, the Jones operator for a half-wave plate with
phase anisotropy δ oriented at an angle θ away from the
ordinary axis e⃗o may be written in this representation as

W⃗ðδ; θÞ · σ⃗ ¼ cos
�
δ

2

�
I − i sin

�
δ

2

�
ðsin 2θσo − cos 2θσzÞ

ðB1Þ

and reduced to cosðδ
2
ÞI þ i sinðδ

2
Þσz when aligned with e⃗o

(i.e., θ ¼ 0).
Following Ref. [39], the equivalent wave plate aniso-

tropy δEQ comprises two wave plate operators with phase
anisotropies δ1 and δ2 oriented at θ1 ¼ 0 and θ2 ¼ θWP,
respectively. Then, the total operator

W⃗ðδEQ; θEQÞ · σ⃗ ¼ 	
W⃗ðδ1; 0Þ · σ⃗


	
W⃗ðδ2; θWPÞ · σ⃗


 ðB2Þ

can be constructed by the individual operators. After some
manipulation, we obtain an equation for each component
beginning with

cos

�
δEQ
2

�
¼ cos

�
δ1
2

�
cos

�
δ2
2

�

− sin

�
δ1
2

�
sin

�
δ2
2

�
cos 2θWP ðB3Þ

from terms along I and then

sin 2θEQ sin

�
δEQ
2

�
¼ cos

�
δ1
2

�
sin

�
δ2
2

�
sin 2θWP ðB4Þ

for terms along σo,

sin

�
δ1
2

�
sin

�
δ2
2

�
sin 2θWP ¼ 0 ðB5Þ

from terms along σe, and

sin

�
δEQ
2

�
cos 2θEQ ¼ sin

�
δ1
2

�
cos

�
δ2
2

�

þ cos

�
δ1
2

�
sin

�
δ2
2

�
cos 2θWP ðB6Þ

for terms along σz.
Letting δEQ ≪ 1, δ1 ≪ 1, and δ2 ≪ 1, we may expand

Eqs. (B3)–(B6) to second order in δEQ, δ1, and δ2, keeping
terms only of up to Oðδ2Þ. Then, Eq. (B3) becomes

1 −
δ2EQ
8

≈ 1 −
δ21
8
−
δ22
8
−
δ1δ2
4

cos 2θWP; ðB7Þ

from which Eq. (17) may be easily derived and applied for
the cases discussed in the text when δi ¼ Δϕri . Finally,
inserting (17) back into (B6) gives

cos 2θEQ ≈
δ1 þ δ2 cos 2θWPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ21 − δ22 þ 4δ1δ2 cos 2θWP

p ; ðB8Þ

from which Eq. (19) may be easily derived and applied for
the cases described in text when δi ¼ Δϕri .
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