
Using gravitational light deflection in optical cavities
for laser frequency stabilization

S. Ulbricht ,1,2,* J. Dickmann ,3,† and A. Surzhykov 1,2

1Fundamentale Physik für Metrologie FPM, Physikalisch-Technische Bundesanstalt PTB,
D-38116 Braunschweig, Germany

2Institut für Mathematische Physik, Technische Universität Braunschweig,
D-38106 Braunschweig, Germany

3LENA Laboratory for Emerging Nanometrology, Technische Universität Braunschweig,
D-38106 Braunschweig, Germany

(Received 3 April 2023; accepted 14 December 2023; published 18 January 2024)

We theoretically investigate the propagation of light in the presence of a homogeneous gravitational
field. To model this, we derive the solutions of the wave equation in Rindler spacetime, which account for
gravitational redshift and light deflection. The developed theoretical framework is used to explore the
propagation of plane light waves in a horizontal Fabry-Pérot cavity. We pay particular attention to
the cavity output power. It is shown that this power depends not only on the input frequency but also on the
vertical position of a detector. We state that the height-dependent detector signal arising from the cavity
internal light deflection effect also opens a new alternative way to frequency stabilization in Earth-based
laser experiments and to study gravitational light deflection at laboratory scales.
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I. INTRODUCTION

The effect of gravitational light deflection is commonly
observed at large scales. For instance, the light of distant
stars is known to be bent by the sun’s gravitational
potential. As viewed from Earth, this results in a shift of
the apparent position of stars close to the sun, which
naturally can only be observed when the solar disk is
obscured. The first observation of this phenomenon was
made by Eddington during a solar eclipse in 1919,
confirming one of the groundbreaking predictions of
Einstein’s theory of general relativity [1–3]. Since then,
further observations of gravitational lensing [4], micro-
lensing [5,6], and the direct imaging of black holes [7,8]
confirmed the existence of gravitational light deflection at
galactic up to cosmological scales.
Despite these astrophysical observations, there is still no

small-scale verification of the gravitational light deflection
effect. However, advances in optical instruments such as
gravitational wave detectors [9–13] and highly stable
optical resonators [14,15] can provide a way to study light
deflection in laboratory experiments. Recently we have
proposed to investigate this effect by employing high-
finesse optical cavities, as used for frequency stabilization
in state-of-the-art optical experiments [16–18]. In such a
cavity, light oscillates between two highly reflective mirrors
and remains confined for several milliseconds. For this time

the light is exposed to the Earth’s gravitational field and
literally falls down into vertical direction. The signatures of
this cavity internal light deflection effect (CILD-effect) can
be seen in the cavity output signal.
The experimental verification of the CILD-effect would

be of great value for research in fundamental physics, since it
would allow one to study the interaction of Earth’s gravity
and light in a reproducible way and under well-controlled
laboratory conditions. In this work, we present a measure-
ment scheme that allows one not only to verify the effect but
also to consider its possible applications. This scheme relies
on the application of a vertically segmented detector that
analyzes the cavity output signal at two different heights. For
such a detector the CILD-effect generates a signal that is
highly sensitive to frequency variations near the cavity
resonance. This implies that such a signal could be used
as the basis for a new laser frequency stabilization method
that makes advantage of the Earth’s gravitational potential.
To investigate light deflection in an optical cavity, we

first have to describe the propagation of light in the Earth’s
gravitational field. In Sec. II we show how this field at
laboratory scales can be approximated by Rindler space-
time, i.e., the spacetime of homogeneous acceleration. The
covariant Maxwell equations in this spacetime are used in
Sec. III to obtain a wave equation, which accounts for
gravitational redshift and light deflection as the leading
order gravitational effects. The obtained equations are used
in Sec. IV to study the propagation and reflection of light
between the two highly reflective mirrors of a Fabry-Pérot
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cavity. In particular, we analyze how the cavity output
signal depends on the input laser frequency and the vertical
position of a detector. Based on the result of our analysis we
propose in Sec. V to use a segmented detector which
compares the cavity output signal in its upper and lower
segments. We argue that the power difference at the
detector segments is highly sensitive to frequency varia-
tions near the cavity resonance frequency and, thus, can
open new ways toward the development of novel frequency
stabilization techniques, as well as to explore gravitational
light deflection at laboratory scales.

II. MAXWELL EQUATIONS
IN RINDLER SPACETIME

In the present work, we will investigate the effect of
gravity on the propagation of light in optical cavities.
Theoretical basis of this study is given in terms of Maxwell
equations, formulated in a gravitationally distorted space-
time. Since we discussed this theoretical framework in
detail in our former publications [16,17], here we restrict
ourselves to a brief compilation of the basic formulas and
ideas, formulated in the language of general relativity.
For typical laboratory experiments on Earth, spacetime

can be described by the Rindler line element

ds2 ¼ gμνdxμdxν ¼
�
1þ gz

c2

�
2

dðctÞ2 − dr2 ð1Þ

to good approximation. This line element accounts for
the approximately homogeneous gravitational acceleration
g¼−gezwith g¼ 9.81m=s2 on our planet’s surface [19,20].
Additional effects according to the Earth as a spherical
body can be neglected in a small region around an
observer’s position. In the expression above c is the
speed of light and gμν is the metric tensor with the sign
convention ð1;−1;−1;−1Þ in Cartesian coordinates with
r ¼ ðct; x; y; zÞ. As usual in relativistic physics, we use the
Einstein notation in which a summation from 0 to 3 is
performed when paired Greek letters appear.
The Maxwell equations in Rindler spacetime can be

written in the covariant form

∇μFμν ¼ 0; ð2Þ

where Fμν is the electromagnetic field strength tensor,
whose components are related to the usual electric and
magnetic fields [3,21]. For our further theoretical analysis,
it is convenient to construct this tensor Fμν ¼ ∂μAν − ∂νAμ

from the partial derivatives of the four-potential
Aμ ¼ ðΦ=c;AÞ. Here A and Φ are the electromagnetic
vector and scalar potentials of the electromagnetic
fields. Moreover, in Eq. (2) the covariant derivative
∇μ ¼ ∂μ þ Γρ

μρ is constructed from the partial one ∂μ and
from the Christoffel symbol Γρ

μρ ¼ g=c2ð1þ gz=c2Þ−1δ3μ,

which contains the geometric information about Rindler
spacetime.
By inserting the four-potential Aμ into the field strength

tensor Fμν and employing Eq. (2) we can derive the
covariant wave equations

∇μ∇μA ¼ 0; ∇μ∇μΦ ¼ 0; ð3Þ

where the Lorentz gauge condition ∇μAμ ¼ 0 is assumed.
For propagating electromagnetic fields this condition
implies that the scalar potential Φ can be derived from
the vector potential using the relation

∂tΦ=c ¼
�
1þ gz

c2

�
∇ ·

��
1þ gz

c2

�
A

�
: ð4Þ

In the next section, therefore, we will restrict our analysis to
the vector potential A, which will be utilized to describe the
propagation of light in the homogeneous gravitational field.

III. LIGHT PROPAGATION IN A HOMOGENEOUS
GRAVITATIONAL FIELD

In order to proceed with our theoretical analysis, we need
to simplify the wave equation for the vector potential A,
given in Eq. (3). In particular, we want to account for the
leading order effects of gravity on light propagation on
Earth. For that purpose, in Eq. (3) we use the explicit form
of the covariant derivatives and perform an expansion in the
small parameter ϵ ¼ gL=c2, where L is a typical length
scale of the experiment. The resulting wave equation then
has the form

1

c2
∂
2

∂t2
A −

��
1þ gz

c2

�
∇
�
2

A ¼ 0þOðϵ2Þ; ð5Þ

which looks quite similar to the conventional wave equa-
tion, but differs from that by the prefactor ð1þ gz=c2Þ in
front of the usual nabla operator ∇ ¼ ð∂x; ∂y; ∂zÞ. This
prefactor will give rise to various effects, such as gravita-
tional redshift and light deflection. In what follows, we will
use the solutions to Eq. (5) to discuss the impact of Earth’s
gravity on freely propagating light in the homogeneous
gravitational field.

A. A set of basis functions for the electromagnetic
vector potential

As in the case of the conventional wave equation, the
solution of Eq. (5) can be found in terms of a superposition
of basis functions. In what follows, we will choose a basis
set of paraxial solutions for which the momentum of light is
concentrated along the x-axis, i.e., ky; kz ≪ kx. In this
regime, the amplitude and polarization degrees of freedom
decouple and the full vector potential can be expressed by
the superposition
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Aðr; tÞ ¼
ZZZ

eÃkψ
k
δkz
ðr; tÞdðk2zÞdkydkx: ð6Þ

Here, e is a constant polarization vector and ψk
δkz
ðr; tÞ are

the scalar basis functions, solving the wave equation (5) for
any chosen parameter vector k ¼ ðkx; ky; kzÞ, which obeys
the dispersion relation k2 ¼ ð2πνÞ2=c2. These basis func-
tions, whose derivation has been discussed in detail in
Ref. [17], are given by

ψk
δkz
ðr; tÞ ¼ 1

2π

1ffiffiffiffiffiffiffi
δkz

p e−
gz

2c2Ai

�
−

k2z
δk2z

þ δkzz

�
eikxxeikyye−2πiνt;

ð7Þ
where δkz ¼ 2ðgπ2ν2=c4Þ1=3 is a small parameter and AiðxÞ
is the Airy function [22] that arises from the properties of
the wave equation (5) along the vertical direction.
One can recognize the unconventional parameter space

dðk2zÞdkydkx used in the superposition integral Eq. (6). This
is due to the fact that the basis functions in Eq. (7) satisfy
the completeness relationZZZ

ψk
δkz
ðr; tÞψ�k

δkz
ðr0; tÞdðk2zÞdkydkx

¼
�
1þ gz

c2

�
−1
δð3Þðr − r0Þ; ð8Þ

cf. Ref. [23], where the prefactor ð1þ gz=c2Þ−1 of the delta
function compensates the gravitational modifications to
the infinitesimal volume ð1þ gz=c2Þdxdydz of Rindler
spacetime. In the next section, we will use this complete set
of basis functions to calculate the vector potential of a
gravitationally distorted plane wave.

B. Plane waves in Earth’s gravity

In order to make use of the basis functions from Eq. (7)
and to describe light propagation in the homogeneous
gravitational field, we have to specify the properties of light
by a proper boundary condition. In the present study, we
will consider a monochromatic plane wave, initially enter-
ing a horizontal Fabry-Pérot cavity at x ¼ 0. The relation
between this model and the usage of laser beams of finite
size, such as Gaussian beams and Bessel beams, is
discussed in Appendix A. The chosen geometry implies
the boundary condition

Ainðz; tÞ ¼ A0

�
1þ gz

c2

�
α−1=2

exp

�
−2πiνt

�
1þ gz

c2

�
−β
�
;

ð9Þ

with a constant amplitudeA0 and a constant frequency ν. For
vanishing gravitational acceleration, i.e., g → 0, this boun-
dary condition becomes A0 expð−2πiνtÞ, resembling the
familiar expression for a planewave at x ¼ 0. In the presence

of gravity, however, both the amplitude and the phase of
the plane wave are modified by the factor ð1þ gz=c2Þ to
certain powers α − 1=2 and −β, respectively. While the
parameter α can be used to introduce a height-dependent
intensity damping as mentioned in Appendix B, the param-
eter β accounts for the initial gravitational frequency redshift
of the used laser light.
For the further analysis of light propagation in the

homogeneous gravitational field it is practical to expand
the boundary condition Eq. (9) in terms of the basis
functions (7). This expansion reads

Ainðz; tÞ ¼
ZZZ

Ãb
kψ

k
δkz
ðr; tÞdðk2zÞdkydkx; ð10Þ

where the expansion coefficients are given by

Ãb
k ¼

Z
Ainðz0; tÞψ�k

δkz
ðr0; tÞ

�
1þ gz0

c2

�
dx0dy0dz0 ð11aÞ

¼ 2πA0δðkxÞδðkyÞ

×
1ffiffiffiffiffiffiffi
δkz

p Z
dz0egz0bðα;βÞ=c2Ai

�
−

k2z
δk2z

þ δkzz0
�
: ð11bÞ

Here, Eq. (11b) arises from the explicit form ofAinðz; tÞ and
ψ�k
δkz
ðr; tÞ after performing the x0; y0-integration, while the

z0-integral is kept for a later treatment. Moreover, we
introduced the notation bðα; βÞ ¼ αþ 2πiβνt for the boun-
dary condition.
The expressions (10) and (11) describe the boundary

condition at x ¼ 0. In what follows, however, we want
to analyze the propagation of light in an arbitrary point
r ¼ ðx; y; zÞ with x > 0. As we discussed in detail in
Ref. [17], the vector potential Aðr; tÞ at position r can be
obtained by the replacement

δðkxÞ → δ

�
kx −

2πν

c
þ c
4πν

ðk2y þ k2zÞ
�
; ð12Þ

in Eqs. (10) and (11). This implements the dispersion

relation 2πν=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
in the paraxial regime,

where ky; kz ≪ kx. Making use of relation (12), the
expansion coefficients Ãb

k are replaced by their counterparts
Ãk of the vector potential Aðr; tÞ at an arbitrary position.
Thus, we obtain

Aðr; tÞ ¼
ZZZ

Ãkψ
k
δkz
ðr; tÞdðk2zÞdkydkz ð13aÞ

¼A0

�
1þgz

c2

�
−1=2

e−2πiνðt−x=cÞeSg þOðϵ2Þ; ð13bÞ

where the integration over kx and ky can easily be per-
formed employing the delta function (12). The remaining
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integrals over z0 and k2z in Eq. (13b) are collected in the
complex exponential

eSg ¼
Z

dz0egz0bðα;βÞ=c2fðx; z; z0Þ ð14Þ

and the kernel function

fðx; z; z0Þ ¼
Z

dðk2zÞ
1

δkz
e−i

k2z cx

4πνAi

�
−

k2z
δk2z

þ δkzz

�

× Ai

�
−

k2z
δk2z

þ δkzz0
�

ð15aÞ

¼
ffiffiffiffiffiffiffi
ν

icx

r
exp

�
i
πν

cx
ðz − z0Þ2 − i

gx
c2

πν

c
ðzþ z0Þ

�
þOðϵ2Þ: ð15bÞ

Here, the integral (15a) can be reformulated and solved in
terms of standard Gaussian integrals using the cosine
representation of the Airy function [22,23]. We note,
moreover, that in Eq. (15b) only the linear order in
ϵ ¼ gL=c2 is considered.
By inserting the kernel function (15b) into Eq. (14) we

finally obtain the complex exponent

Sg ¼
gz
c2

bðα; βÞ − i
gz
c2

2πν

c
x: ð16Þ

While the first term in this expression contains information
about the boundary condition, the second term is propor-
tional to the product zx of the coordinates into the
directions of gravity and light propagation. Due to that,
the phase fronts of the light wave are deformed and bent
downwards with increasing propagation distance. This is an
expression of the gravitational deflection of the vector
potential, as visualized in Fig. 1.
By inserting the complex exponent (16) into Eq. (13b),

the vector potential of the plane light wave in a homo-
geneous gravitational field can be finally written as

Aðr; tÞ ¼ A0

�
1þ gz

c2

�
−1=2

exp

�
gz
c2

αþ iϕðx; z; tÞ
�

ð17Þ

with the phase

ϕðx; z; tÞ ¼ 2πν

c

�
x − ct −

gz
c2

xþ gz
c2

βct

�
: ð18Þ

Comparing this result to Eq. (9), we find that expressions
(17) and (18) can be written as the product of the initial
vector potential and a phase exponential term

Aðr; tÞ¼Ainðz;tÞexp
�
2πiν
c

�
1þgz

c2

�
−1
x

�
þOðϵ2Þ; ð19Þ

where we made use of expansions for expðgz=c2Þ ¼
ð1þ gz=c2Þ þOðϵ2Þ and ð1−gz=c2Þ¼ ð1þgz=c2Þ−1 þ
Oðϵ2Þ. The exponential term in Eq. (19) describes the
propagation of light in the x-direction. The z-dependence
in this expression leads to a deformation of the vertical wave
fronts and gives rise to a height-dependent length scale,
namely the redshifted wave length λgðzÞ ¼ ð1þ gz=c2Þc=ν
that accounts for the effect of gravitational light deflection.
We mention, moreover, that the exponential term in Eq. (19)
depends on the properties of Rindler spacetime and is
independent of the initial frequency redshift in Eq. (9).

IV. OUTPUT SIGNAL OF A FABRY-PÉROT
CAVITY IN GRAVITY

A. Vector potential at the cavity output

In the previous section we reviewed a theory for the
propagation of a plane monochromatic light wave in the
presence of a homogeneous gravitational field. Now, we are
ready to employ this theory to investigate how gravity
affects the measurable outcome of optical cavity experi-
ments. In the present work, we consider the particular case
of a horizontal Fabry-Pérot cavity consisting of two plane-
parallel mirrors at x ¼ 0 and x ¼ L, as shown in Fig. 2.

FIG. 1. A horizontal propagating monochromatic wave (a) in
the homogeneous gravitational field in comparison to the case (b)
of plane waves in the absence of gravity. We find that in the
presence of gravity the light initially starts as a plane wave at
x ¼ 0 and is bent downwards while its propagation is in positive
x-direction.

FIG. 2. Geometry of the horizontal Fabry-Pérot cavity consist-
ing of two plane-parallel mirrors of reflectivity R ¼ ð1 − ξ2Þ. The
laser initially enters the cavity at the plane mirror at x ¼ 0. The
cavity output signal is investigated behind a second plane mirror
located at x ¼ L.
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The choice of two plane-parallel mirrors is essential to
obtain a visible effect of gravity on the output signal of the
cavity resonator. While the use of high-finesse free space
coplanar cavities is exotic in the field of high-precision
optics, experiments, e.g., by Bernardini et al. have dem-
onstrated systems with a finesse of 5400 and expected
much higher finesses of 68,000 with the existing Virgo
mirrors [24]. Moreover, state-of-the-art mirror coatings
would allow for even higher finesses. As we pointed out
in a previous publication [17], a different cavity configu-
ration, e.g., including a spherical mirror, would hinder the
beam from being deflected in the vertical direction.
The cavity mirrors are assumed to transmit only a small

fraction ξ ≪ 1 of light, while the major part of light is
reflected with an amplitude ð1 − ξÞA0. In an idealized
scenario, where scattering and absorption of light can be
neglected, the amplitude transmittance parameter ξ is directly
connected to the common reflectivity R ¼ ð1 − ξÞ2 [25].
Having briefly discussed the cavity model, we will now

describe how light evolves in this optical device. For this
purpose we use the round trip calculation method, which
we discussed for general mirror surfaces in [17]. The plane
wave with the vector potential (19) enters the cavity at
x ¼ 0 and propagates toward the second mirror at x ¼ L.
When the light reaches this second mirror, a small fraction
of light is transmitted and constitutes the first contribution
to the cavity output signal

Að0Þðz; tÞ ¼ ξAinðz; tÞ exp
�
2πiν
c

�
1þ gz

c2

�
−1
L

�
: ð20Þ

For the other fraction of light that remains in the cavity the
amplitude is reduced by a factor (1 − ξ) and the propaga-
tion direction is changed from x to −x by reflection. Thus,
the light propagates back to the first mirror at x ¼ 0, where
it is once again reflected and returns to the output mirror at
x ¼ L. Back there, the next fraction of light

Að1Þðz; tÞ ¼ Að0Þðz; tÞð1 − ξÞ2 exp
�
2πiν
c

�
1þ gz

c2

�
−1
2L

�
ð21Þ

leaves the cavity and adds to the cavity output signal.
This expression differs from output of the former round trip
only by a prefactor ð1 − ξÞ2, which accounts for the two
reflections, and a phase that depends on the increase of the
propagation distance by 2L and the corresponding gravi-
tational redshift. By continuation of this procedure we find
that the contributions of the nth round trip to the cavity
output signal reads

AðnÞðz;tÞ¼Að0Þðz;tÞ

×

�
ð1−ξÞ2exp

�
2πiν
c

�
1þgz

c2

�
−1
2L

��
n
: ð22Þ

The contributions of all round trips can finally be summed
up to obtain the vector potential at the cavity output

Aoutðz; tÞ ¼
X∞
n¼0

AðnÞðz; tÞ ð23aÞ

¼
ξ exp

h
2πiν
c

	
1þ gz

c2



−1
2L

i
Ainðz; tÞ

1− ð1− ξÞ2 exp
h
2πiν
c

	
1þ gz

c2



−1
2L

i ; ð23bÞ

where we utilized the geometrical series
P∞

n¼0 q
n ¼

1=ð1 − qÞ for jqj < 1 to perform the summation. We find
that the vector potential at the cavity output is related to the
vector potential of the incident light by a proportionality
factor that depends on both parameters of the laser-cavity
system (ν, L, and ξ) and the properties of spacetime (g and
z). This suggests that the cavity output signal carries
information about the effect of light deflection and can
be used to investigate gravity in an optical experiment on
Earth, as we will discuss in the next section.

B. Output intensity and power of a Fabry-Pérot
cavity on Earth

In the last section, we obtained the vector potential at
the output of a horizontal Fabry-Pérot cavity, as it is
displayed in Fig. 2. In a typical cavity experiment not
the vector potential Aoutðz; tÞ but the output intensity, which
is proportional to jAoutðz; tÞj2, is measured. Utilizing
Eq. (23b) we find this intensity as

Ioutðν; zÞ ¼
FI0=4

1þ Fsin2
h
2πν
c

	
1þ gz

c2



−1
L
i ; ð24Þ

where I0 ¼ ε0cð2πνÞ2jA0j2=2 is the constant intensity of
the plane wave, initially entering the cavity. We further
introduced the parameter F ¼ 4R=ð1 − RÞ2 which, for our
metastable resonator [26], consisting of plane waves enter-
ing a plane-parallel mirror configuration, serves the same
purpose as the cavity finesse F ¼ π

ffiffiffiffi
F

p
=2 commonly used

to characterize an optical cavity [27,28]. For a careful
discussion of the definition of intensity in Rindler space-
time, see Appendix B.
We can see from Eq. (24) that the output intensity not

only is sensitive to the variation of the cavity length and the
laser frequency but also depends on the vertical position z
at which the output signal is detected; see Ref. [29] for
further discussion.
Integrating the intensity Eq. (24) over the surface of a

rectangular detector with height 2a and width 2b, where the
center is located in a specific height h, we obtain the
collected output power
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Poutðν; hÞ ¼
Z

hþa

h−a

Z
b

−b
Ioutðν; zÞdydz ð25aÞ

¼ AFI0=4

1þFsin2
h
2πν
c

	
1þ gh

c2



−1
L
iþOðϵ2Þ; ð25bÞ

where A ¼ 4ab is the detector surface. Together with
Eq. (24) this expression implies that the power collected
by the detector is proportional to the intensity measured by
a pointlike detector at a position h in the center of the
detector surface:

Poutðν; hÞ ¼ AIoutðν; hÞ: ð26Þ

In the next section, we will use these findings and the
expression (25b) for the output power to discuss a detector
scheme that is suitable to measure the impact of gravity on
the laser-cavity setup and enables new possibilities for laser
frequency stabilization.

V. USING EARTH’S GRAVITY FOR LASER
FREQUENCY STABILIZATION

Thanks to state-of-the-art highly reflective mirrors,
optical cavities with finesses of F ∼ 3 × 105 and beyond
can be employed in modern high precision experi-
ments [14,15,30]. One of the major applications for such
optical devices is the stabilization of laser frequency. To
shortly recall the concept of laser stabilization we consider
Eq. (25b) in the case of zero gravity, i.e., g ¼ 0. As seen
from this equation the output power of a high-finesse cavity
decreases rapidly, when the light frequency ν is off the
cavity resonance at ν0 ¼ nc=2L, where n is the integer
mode number. It implies that even only small variations of
the frequency lead to big changes of the cavity output
power, which can be experimentally observed. This effect
is a corner stone of the side-of-fringe locking technique as
one of the established ways to study and compensate laser
frequency fluctuations in order to stabilize lasers for high
precision applications [31–33]. Another common method,
the sideband stabilization technique, can be found in
Refs. [34,35]. In this work we propose yet another
approach to frequency stabilization that employs the effect
of gravity on a Fabry-Pérot cavity. In particular, we will use
the fact that the cavity output signal depends on the height h
in the gravitational field, as discussed in the previous
section. In the simplest approach this effect can be analyzed
by a detector consisting of two, upper and lower, segments,
as shown in Fig. 3. In an experiment, such a detector can be
realized on the basis of a common quadrant detector [36].
Based on Eq. (25b) we find that the different vertical
positions of the segments’ centers translates into their
different output signals P�ðνÞ ¼ Poutðν;�a=2Þ. In order
to quantify this difference we introduce the parameter

χðνÞ ¼ PþðνÞ − P−ðνÞ
PþðνÞ þ P−ðνÞ

¼ ga
c2

πνL
c

F sin ð4πνc LÞ
1þ F sin2 ð2πνc LÞ þOðϵ2Þ; ð27Þ

where we made use of Eq. (25b) to obtain the explicit
frequency dependence. As seen from Eq. (27) and Fig. 4,
this χ-parameter is zero at resonance frequency ν0 but
changes rapidly for frequencies ν ¼ ν0 þ δν close to
resonance. In the case of small frequency offsets δν,
which is of main interest for frequency stabilization, the
χ-parameter can be linearized as

χðν0 þ δνÞ ¼ 4π2
ga
c2

FL2ν0
c2

δνþOðδν2Þ; ð28Þ

which allows us to quantify the capacity of the proposed
method for frequency stabilization. In order to illustrate

FIG. 3. Geometry of a segmented detector with two rectangular
segments, each of area 2a2, on top of each other. The detector
behaves as two pointlike detectors located at heights �a=2,
collecting the light from the upper and the lower segments,
respectively.

FIG. 4. The χ-parameter (27) as a function of frequency offset δν
with respect to the resonance frequency ν0 ¼ 2.8 × 1014 Hz of a
L ¼ 21 cm cavity. The signal for a detector geometry with
a ¼ 1.5 cm (cf. Fig. 3) is given for mirror reflectivities of R ¼
1–3 × 10−5 (dotted line), R ¼ 1–2 × 10−5 (dashed line), and R ¼
1 − 10−5 (solid line), respectively. In the latter case, regarding
Eq. (30), the signal-to-noise ratio can be estimated by χ=Δχ ∼ 200.
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this, let us calculate the linearized χ-parameter for a typical
laser-cavity setup. We consider a L ¼ 21 cm cavity with
mirrors of reflectivity R ¼ 1 − 10−5 coupled to a Nd:YAG-
laser, which is widely used for instance in gravitational
wave detectors. The wavelength of light produced by this
laser is λ ¼ 1064 nm, corresponding to a frequency of
ν0 ¼ c=λ ¼ 2.8 × 1014 Hz. Moreover, we assume that the
cavity output signal is recorded by a segmented detector as
shown in Fig. 3 with a ¼ 1.5 cm. For such a system, the
linearized χ-parameter takes the value

χðν0 þ δνÞ ≈ δν

3 Hz
× 10−9: ð29Þ

To deduce the method’s capability for frequency stabiliza-
tion from this numerical example, one has to know how
precisely the χ-parameter can be measured. Under ideal
experimental conditions, such as optimized measurement
frequencies, seismic decoupling, and the usage of optical
mirror coatings [11,37,38], the sensitivity of the proposed
experiment is only limited by the detector photon shot noise

Δχ ¼ 0.86 × 10−9
�
Pdet

W

�
−1=2

; ð30Þ

where we considered a common measurement band width
of 1 Hz [39]. Moreover, Pdet ¼ PþðνÞ þ P−ðνÞ is the total
detector input power. Assuming typical laser powers of a
few watts, Eq. (30) implies a limit of Δχ ≈ 10−9. This,
together with Eq. (29), implies for the given example that
frequency variations up to 3 Hz can be resolved.
Comparing this result to the used laser frequency of about
3 × 1014 Hz, a relative frequency stabilization in the range
of δν=ν ≈ 10−14 can be achieved. We notice that this is still
below the value of 4 × 10−17 provided by nowadays best
frequency stabilization procedures [14,15]. However,
the achievable frequency stability can be tremendously
improved, when in place of the assumed common optical
components an optimized experimental setup is used. In
particular, since the linearized χ-parameter (28) linearly
depends on F ¼ 4R=ð1 − RÞ2, the signal can be enhanced
by using higher mirror reflectivities. Taking into account
the ongoing research in advanced mirror technologies, such
as crystalline coatings [40–42] or etalons [43–46], one can
consider hypothetical future cavities with R ∼ 1–3 × 10−7,
corresponding to F ¼ π

ffiffiffiffi
F

p
=2 ¼ 1 × 10−7. In this param-

eter regime a stabilization procedure based on the CILD-
effect can be used to stabilize a laser frequency to the level
of 10−17, as displayed in Table I.
The frequency stabilization method presented in this

work has some advantages compared to the previous
approaches. In particular, the observed χ-parameter does
not depend on the laser intensity and, hence, is not sensitive
to intensity fluctuations. This insensitivity is a common
feature of our approach and the sideband stabilization

technique which constitutes a great advantage over the
side-of-fringe stabilization method. Furthermore, thanks to
the asymmetry of the detector signal (27), the proposed
method allows one to distinguish whether the laser fre-
quency has to be increased or decreased in order to bring it
to the cavity resonance frequency ν0. In turn, this is an
advantage over the side-of-fringe stabilization technique,
which is based on the analysis of a symmetric signal output.
Finally, the presented approach allows one to stabilize the
laser frequency to ν0 directly and without the need for
frequency modulation, while the other two procedures
evaluate either sideband signals or the changes in intensity
far off the resonance frequency. Together with the relatively
simple experimental setup, the advantages mentioned
above can make a laser frequency stabilization method
based on the CILD-effect suitable for practical applications,
especially for large laser powers as used, e.g., in gravita-
tional wave detection.

VI. SUMMARY AND OUTLOOK

In this paper we presented a theoretical analysis for the
propagation of light within a homogeneous gravitational
field. The analysis is based on the covariant formulation of
Maxwell equations for free electromagnetic fields in a
gravitationally distorted (Rindler) spacetime. While the
developed theory can be applied for various scenarios, here
we focus on the propagation of plane waves in a Fabry-
Pérot cavity, located in a laboratory on Earth. We found that
the output intensity of the cavity resonator is affected by the
gravitational field. In particular, it is shown that, due to the
CILD-effect the cavity output intensity depends not only on

TABLE I. Properties of χðν0 þ δνÞ for a segmented detector
with a ¼ 1.5 cm used to analyze the output intensity of
L ¼ 21 cm cavity with hypothetically high mirror reflectivities
of R ¼ 10−5…10−7 coupled to a laser with ν0 ¼ 2.8 × 1014 Hz
(λ ¼ c=ν0 ¼ 1064 nm). The maximum χmax ≈ 16

3
ga
c2

Lν0
c

1
1−R could

be measured at a frequency ν0 � δνðχmaxÞ off the cavity reso-
nance, where the offset can be estimated δνðχmaxÞ ≈ 1

4π
c
L ð1 − RÞ.

The inverse steepness of the χ-parameter at resonance

δνmin ¼ δν=χðν0 þ δνÞjδν¼0 ≈
δνðχmaxÞ
2χmax

Δχ gives the limit for
resolvable frequency variations. Calculating the ratio of this
value and the resonance frequency ν0 we obtain an estimate for
the relative sensitivity δν=ν ≈ δνmin=ν0. We remark that these
values linearly depend on the quadrant detector sensitivity Δχ,
that is in the range of ppb (10−9).

1 − R χmax ½ppb� δνðχmaxÞ ½Hz� δνmin ½Hz=ppb� δν=ν

1 × 10−5 172 1137 3 1 × 10−14

3 × 10−6 573 238 0.2 7 × 10−16

1 × 10−6 1.7 × 103 114 3 × 10−2 1 × 10−16

3 × 10−7 5.7 × 104 24 2 × 10−3 7 × 10−18

1 × 10−7 1.7 × 104 11 3 × 10−4 1 × 10−18
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the frequency of the used laser light but also on the vertical
position in the gravitational field. Based on this effect, we
proposed a detector scheme that can be used to stabilize a
laser to the cavity resonance frequency. More specifically, a
vertically segmented detector is proposed to be applied to
generate a steep asymmetric output signal close to the
cavity resonance. The investigation of this effect becomes
possible due to the nowadays available highly reflective
mirrors, which now also reach achievable prices, thanks to
the ongoing successful research in (meta)mirror design.
Using nowadays state-of-the-art optical components, such
as highly reflective mirrors and monocrystalline silicon,
sapphire, or diamond cavities, this method could be
competitive with recent approaches to frequency stabiliza-
tion methods in the range of δν=ν ¼ 10−15…10−17. While
the best results are achieved for high mirror reflectivities, in
Table I we show that also with common laboratory equip-
ment a frequency stabilization of 10−14 can be achieved that
is suitable for a wide range of practical applications [47].
Thus, the CILD-effect would not only enable the verifica-
tion of gravitational light defection at the laboratory scale
but also open a new alternative way to frequency stabiliza-
tion which could be applied in modern high precision
experiments. Thanks to the relatively simple experimental
setup, this new approach can give rise to applications
wherever compact, miniaturized, integrated, and/or port-
able solutions for laser stabilization are needed, such as low
noise microwave generation, stable lasers operating mobile
optical atomic clocks, or environmental sensing [48]. For
the purpose of miniaturization, the experiment could be
realized with Bessel beams [49,50], providing plane phase
fronts and a divergence-free propagation.
The presented work is a theoretical consideration,

providing an idealized model used to investigated the
CILD-effect. It is clear that the realization of the setup
would be subject to experimental limitations and chal-
lenges, needed to be overcome. Modern experimental
techniques can be used to calibrate coplanar cavities down
to the monoatomic layer regime. For instance, the usage of
a nanometer-comparator is a well-established procedure to
calibrate such systems to nanometer scale [51,52], and even
subnanometer precision was demonstrated recently by one
of the authors [53].
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APPENDIX A: ON FINITE BEAM SIZE EFFECTS

The calculations in this paper are performed for plane
waves as an idealized model of light propagation. However,

in real experiments, the radius of a laser beam is necessarily
finite. This fact can be accounted for by using a Gaussian
beam with beam waist b0 to model the propagation of light.
We refer to our previous work [16,17] for details about
Gaussian beam propagation in a homogeneous gravita-
tional field.
While additional side effects may occur for differed

choices of b0, their analysis is beyond the scope of this
paper. Here, we want to estimate and briefly discuss the
necessary conditions for the beam waist b0, the detector
size a, and the detector position δhwith respect to the beam
center, such that the gravitational effects on light propa-
gation in the cavity are sufficiently described in the plane
wave regime.
According to our findings in [17], the equal time phase

fronts ϕðr; tÞ ¼ 2πνðl=c − tÞ of a gravitational modified
Gaussian beam are given by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xþ x2R

x

�
þ
�
z −

g
c2

�
x2R þ x2

2

�
2
�s
−
x2R
x
; ðA1Þ

where xR ¼ 2πb20=λ is the Rayleigh length of the Gaussian
beam. For small z ≪ x and to linear order in ϵ ¼ gL=c2 we
find

l ¼ x −
gzx
c2

�
x2R þ x2=2
x2R þ x2

�
þ z2x=2
x2R þ x2

: ðA2Þ

For xR → ∞ we recover the plane wave case
l ¼ xð1þ gz=c2Þ−1 þOðϵ2Þ, as used in the main part of
this publication.
In order not to overshadow the effect of gravity, the finite

beam size contributions have to fulfill

g
c2

ðx2R þ x2=2Þ > z ðA3Þ

for every propagation distance x ¼ 2Ln, with n∈N, in the
cavity. Expressing xR by b0 and the wave length λ, we end
up with the condition

ð2πÞ2 g
c2

b40
λ2

> z: ðA4Þ

Assuming detector sizes in the regime of a∼1mm…1 cm
and a wavelength of λ ¼ 1064 nm, as in the main text of
this paper, we find a beam waist of b0 ∼ 0.7…1.3 m.
Moreover, the displacement of the detector with respect to
the beam center should satisfy δh < a to not mimic the
effect of gravity on the cavity system.
Comparing the Rayleigh length xR for ∼m sized beam

waists with the average propagation length of light in the
cavity x̄ ≈ L=ð1 − RÞ, we find x̄≲ xR, such that the
divergence of the beam waist bðxÞ ¼ b0ð1þ x2=x2RÞ−1=2
and the intensity loss ∼1=ð1þx2=x2RÞ2 is highly suppressed
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during the propagation. Nevertheless, these aperture losses
in the cavity can be accounted for by introducing the
intensity drop in Eq. (23) for the fraction AðnÞ of the vector
potential that leaves the cavity with every round trip:

AðnÞ ∼ Rn

�
1þ

�
2Ln
xR

�
2
�
−1=2

¼ R̃nðnÞ: ðA5Þ

At this level we can absorb the effect into the definition of a
round trip dependent effective reflectivity, which reads

R̃ðnÞ ¼ R
�
1þ

�
2Ln
xR

�
2
�
−1=2n

: ðA6Þ

This function holds R̃ð0Þ ¼ R̃ð∞Þ ¼ R and has a minimum
at n ≈ xR=L, where R̃ðnÞ is not smaller than Re−L=xR . This
implies no significant changes to the reflectivity R̃ ≈ R in
the regime xR ≳ L=ð1 − RÞ in which our plane wave model
is discussed. For instance, not even high reflectivities of
R ¼ 99.999% ¼ Re−L=xR differ from the effective reflec-
tivity within the significant digits of their numerical values,
such that the assumptions of plane wave superposition, as
used in Eq. (23), holds.
While Gaussian beams with b0 ∼m can be realized, e.g.,

in modern gravitational wave detectors [13], for practical
reasons it may be appropriate to aim for smaller beam sizes.
One way to achieve this is the usage of zeroth order Bessel
beams, providing a divergence-free propagation while the
plane wave assumption holds valid [49,50]. For these
beams the cavity output intensity is just modified by an
overall prefactor ∼½J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
=b0Þ�2. In result, no

restrictions to the detector or beam size are given up to
the fact that the detector must collect enough light and
should be calibrated to the beam center with common
methods. Thus, the beam and the detector can be of
comparable size a ∼ b0 ∼mm…cm.

APPENDIX B: POWER AND INTENSITY
OF LIGHT IN RINDLER SPACETIME

1. The general case

To study how light behaves in the homogeneous gravi-
tational field, we need to investigate observables such as
energy, power, and intensity. These quantities can be
obtained elegantly by using the covariant conservation law

∇μTμ0 ¼ 0 ðB1Þ

for the 0-components of the electromagnetic energy
momentum tensor

Tμν ¼ 1

μ0

�
FμρFν

ρ −
1

4
gμνFρσFρσ

�
ðB2Þ

(cf., e.g., [21]). By using the definition of the Christoffel
symbols in terms of the derivatives of the spacetime metric
(1), we can rewrite Eq. (B1) in the form

∂0T00 þ 1ffiffiffiffiffiffi−gp ∂ið
ffiffiffiffiffiffi
−g

p
T0iÞ ¼ 0; ðB3Þ

where
ffiffiffiffiffiffi−gp ¼ ð1þ gz=c2Þ is the metric determinant. The

resulting expression constitutes a continuity equation
∂twðr; tÞ ¼ −∇ · Sðr; tÞ for the energy density and the
Pointing vector. Thus, these two quantities are related to
the energy momentum tensor by wðr; tÞ ¼ ffiffiffiffiffiffi−gp

T00 and
Siðr; tÞ=c ¼ ffiffiffiffiffiffi−gp

Ti0.
By integrating the continuity equation over space, we

obtain a conservation law in the form dE=dt ¼ P relating
energy and power in their integral representation:

E ¼
Z
V
dr3

ffiffiffiffiffiffi
−g

p
T00 ¼

Z
V
dr3wðr; tÞ; ðB4aÞ

P ¼ −c
Z
V
dr3

ffiffiffiffiffiffi
−g

p 1ffiffiffiffiffiffi−gp ∂ið
ffiffiffiffiffiffi
−g

p
T0iÞ

¼ −
Z
V
dr3∇ · Sðr; tÞ ¼

Z
∂V¼Σ
Sðr; tÞ · dΣ: ðB4bÞ

Using Gauss’ integration law in Eq. (B4b), we can write
the power as an integral over a closed surface Σ.
The resulting statement also holds true for nonclosed
surfaces, such as detector planes used to analyze
the intensity of electromagnetic waves. The integrand
Sðr; tÞ · dΣ ¼ Iðr; tÞdΣ relates the Pointing vector to the
intensity Iðr; tÞ on the surface Σ.

2. Application to a vertical detector surface
in homogeneous gravity

The expression (B4b) from Appendix B 1 gives the
definition of power, which is determined by integrating the
Pointing vector Siðr; tÞ=c ¼ ffiffiffiffiffiffi−gp

Ti0 over a specific sur-
face. This surface, representing a detector in experiment,
can be chosen as x ¼ const and proper limits for the
y, z-integration. For this particular scenario, the infinitesi-
mal surface vector is represented by dΣ ¼ exdydz, and the
integrand of the power integral

P ¼
Z

z2

z1

Z
y2ðzÞ

y1ðzÞ
S1ðr; tÞdydz ðB5Þ

¼
Z

z2

z1

Z
y2ðzÞ

y1ðzÞ

ffiffiffiffiffiffi
−g

p
cT10dydz ðB6Þ

can be identified as the intensity Iðr; tÞ ¼ ffiffiffiffiffiffi−gp
cT10. When,

for instance, a y-polarized plane wave vector potential
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Aðr; tÞ from Eq. (19) is assumed, the intensity can be
further simplified:

Iðr; tÞ ¼ −
1

2
ε0c2

�
1þ gz

c2

�
−1
Re½∂tAðr; tÞ · ∂xA�ðr; tÞ�

¼ 1

2
ε0cð2πν0Þ2

�
1þ gz

c2

�
2α−β−3

jA0j2: ðB7Þ

The appearance of the term ð1þ gz=c2Þ in the equation
indicates that an height-dependent intensity damping may
occur depending on the initial conditions of the experiment.

In our ansatz the parameter α can be used to model a
specific intensity damping ð1þgz=c2Þγ by 2α ¼ γ þ β þ 3.
However, such a damping only becomes relevant when
intensities are measured with a relative precision of
gL=c2 ∼ 10−18 for L ∼ 1 cm, which exceeds the precision
of current intensity measurements techniques by 9 orders of
magnitude [39]. We, therefore, can assume a constant
intensity profile I0 ¼ ε0cð2πν0Þ2jA0j2=2, i.e., γ ¼ 0,
for plane waves along a detector surface at x ¼ const
within the technical capabilities of current experimental
equipment.
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