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We investigate the K;(1270) — K| (1400) mixing induced by the flavor SU(3) symmetry breaking.
The mixing angle is calculated in a purely theoretical manner, where it is expressed by a K14, — K transition
matrix element of the operators that break flavor SU(3) symmetry. The QCD contribution to this matrix
element is assumed to be dominated and calculated with QCD sum rules. A three-point correlation function is
defined and handled both at the hadron and quark-gluon levels. The quark-gluon level calculation is based on
operator product expansion up to dimension-five condensates. A detailed numerical analysis is performed to
determine the Borel parameters, and the obtained mixing angle is 0, = 21.4° £ 9° or 0, = 68.6° 4 9°.
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I. INTRODUCTION

The flavor SU(3) symmetry plays an important role in
the conventional quark model, which classifies hadrons into
various irreducible representations. Although the assump-
tion of perfect flavor SU(3) symmetry succeeds in most
phenomenological analyses of hadron decays and spec-
trums [1-8], its breaking effect still cannot be neglected.
One of the physical effects due to flavor SU(3) breaking is
the hadron mixing.

According to the quark model, the two axial-vector nonets
with J” = 17 are expected as the orbital excitation of the gq
system. There are two types of P-wave axial-vector mesons:
3P, and ' P, with the notation >*! L ,. Generally, in the flavor
SU(3) limit, these two nonets cannot be mixed since they
have distinct C parities, explicitly, J*¢ = 17+, 17~ for °P,,
1P, respectively. However, because of the mass difference
between the strange and light quarks, the kaon nonets
K,4(°P,) and K,z('P,) are distinguished from the mass
eigenstates K (1270) and K, (1400). As a result, there emer-
ges a mixing between these two sets of axial-vector kaons,
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where 0y is the mixing angle. 0k is an crucial input
parameter in the studies of exotic B meson decays
B — K, ["I~, which provides an ideal platform for searching
new physics [9-19].

Up to now, there have been quite a number of theoretical
studies on O, in the literature, with most of them based on
phenomenological analysis. An indirect method of measur-
ing O, in D meson decays was proposed in Ref. [20].
An approach to extract the mixing angle from the ratios
of partial wave amplitudes can be found in Ref. [21]. In
Ref. [22], with the use of early experimental information on
masses and the partial rates of K;(1270) and K,(1400),
the authors obtained 0, = 33° or 57° Refs. [23,24] phe-
nomenologically analyzed the 7 — K;(1270)v, and 7 —
K (1400)v, decays and obtained O, = 37° or 58°; Ref. [25]
studied the correlation of the f(1285) — f,(1420) mixing
angle 0sp with 0, and obtained O, = 31.7° or 56.3°. In
Ref. [26], the authors used the correspondence between O,
and the f1(1285) — f,(1420), h;(1170) — h;(1380) mixing
angles to rule out unreasonable € values and announced a
reasonable range as 28° < 0, < 30°.

In addition to the pure phenomenological analysis men-
tioned above, there are also studies on 0 referring to both
phenomenological inputs and theoretical calculations. In
Ref. [27], the authors obtained 34° < fx, < 55° with the non-
relativistic constituent quark model with inputs of the mass
difference between the a;(1260) and b(1235) mesons, as
well as the ratio of the constituent quark masses. In Ref. [28],
Ok, = 33° and 58° were obtained by perturbative QCD
(pQCD) calculation referring to the B — J/wK;(1270),
J/wK(1400) decays. Furthermore, a pure theoretical pre-
diction of g, was given with QCD sum rules (QCDSRs)
in Ref. [29]. The authors related 0 with a two-point
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correlation function, which is calculated with operator prod-
uct expansion and they obtained g =39°+£4°. However,
this QCDSR calculation is not perfect due to the missing
pseudoscalar kaon contribution at the hadron level.

In this work, we perform a purely theoretical calculation
of Ok, , which is independent of various decays referring
to K;(1270) and K (1400). The 0, can be extracted from
a K4 - K transition matrix element induced by SU(3)
breaking operators, with zero transferring momentum.
This method has been successfully applied to the studies
of E. — E. mixing [30,31]. The SU(3) breaking transition
matrix element is calculated with QCDSRs with a three-
point correlation function, a different method from that
used in Ref. [29]. Some introductions to QCDSRs and their
applications can be found in Refs. [32-39,40].

This paper is arranged as follows: In Sec. II, we
introduce the method to extract O . Section III gives the
hadron level calculation, and Sec. IV gives the quark-gluon
level calculation. Section V presents numerical results.
Section VI is a summary of this work.

IL K,(1270) - K, (1400) MIXING

There are two sources of the flavor SU(3) breaking. The
first one comes from the mass difference between s and u, d
(nearly massless) quarks, which only provides QCD con-
tribution to K;(1270) — K (1400) mixing. Another source
comes from the electric charge difference among the u, d, s
quarks, which involves the QED effect. In this work, we
will focus on the QCD contribution since the QED effect is
expected to be tiny, as shown by our previous work on the
E. — E. mixing [30,31]. The full QCD Lagrangian of the
quark sector contains both the terms conserving and
breaking the flavor SU(3) symmetry: Locp = Ly + AL,
where L, reads as

'CO = Z Q(ZD - mu)q? (2)

with D being the QCD covariant derivative, ¢ = u, d, s,
and m, = my = 0 is approximately assumed. The SU(3)
symmetry breaking term AL, which arises from the quark
mass difference, reads as

AL = 5(m, — my)s. (3)

Accordingly, the Hamiltonian is decomposed as H =

AH = /d3xAH(x) = —/d3xAC(X). (4)

The lowest axial-vector kaons K (1270) and K (1400)
are the mass eigenstates of the full Hamiltonian H,

H|K,(1270)) = my70|K,(1270)),
H|K,(1400)) = m400|K;(1270)). (5)

On the other hand, in the SU(3) symmetry limit, the
lowest axial-vector kaons are classified into K;z('P;)
and K4 (°P,) states, which are eigenstates of the SU(3)
conserved Hamiltonian H,

Hy|Kyp) = mip|K\p),

Ho|K ) = mia|Kia)- (6)
The mixing between the physical doublet |Kp) =
(|K1(1270)), |K,(1400)))" and the SU(3) doublet |K ) =

(|Kig), |Kia))T is described by a unitary transforming
matrix U with a mixing angle O,

cos O,
k= (55
—sin Ok,

sin HKI

)|1<F> UK. ()

cos Ok,

Here we consider the matrix element for the SU(3)
doublet |Kr): (Kp(p')|H|Kr(p)). Both the initial and final
states are set to be static p = p’ = 0 and on shell p{, =
mip, p? '+ = my. With the use of the unitary transformation
U defined in Eq. (7) and the physical masses defined in
Eq. (5), we obtain

<<K13(/1’)|H|K13(l)>
(Kia(4)|H|Ky5(4))
=2(27)35®(0)5,,
( m%mci + m%ztoosi
(

2 2
Miy70 = Mi400) Sk

(Kip(4)[H|K14(2)) >
(Kia(2)[H|K4(4))

2 2
(Miy70 — Mi400) CicSi
s a2, oo o ) (8)
Mi2705% T Mi400Ck

where s, = sinfg, and ¢, = cosf,. For simplicity, the
momentum dependence of the Kz 4 states are not shown
in the matrix element.

It can be found that the upper-right off-diagonal com-
ponent in Eq. (8) leads to the equation

(K1p(V)|H|K14(2))
= (27)*6%)(0)81 (1370 — M3 490) sim 20k, (9)
Therefore, the mixing angle 6, can be extracted as soon as
one calculates the matrix element on the left-hand side
above, which can be further expressed as
(Kip(4)|H|K14(2))
= (226 (0) (K 15(A)|AH(0)|K14(4)),  (10)

by integrating out the coordinate. Equating Egs. (9) and
(10), and setting A = 4’, we have

mg —nm,
2 2

sin 20k, =
Miy70 — Mig00

(K1p|5s(0)|K14).  (11)

Generally, the matrix element (K z(p,)|AH(0)|K14(p1))
with nonzero initial and final momentums can be para-
metrized as
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(K15(p2)|35(0)|K14(p1))

= €;(P2)

Fy
—zplfpli €D<P1),

F19””+Q€”mﬂp1 Dop +
M? o207 pp

(12)

where F,; are three transition functions of ¢>=
(p1 — p»)% and M? can be the mass of K4 or Kp.
Note that the matrix element we actually need in
Eq. (11) requires p; = p,. Thus, the F,, F3 terms in
Eq. (12) vanish and only F,(¢>=0) is relevant.
Accordingly, the mixing angle can be obtained as

. mg—m
sin 20k, = > ud

F1(0). (13)

2 2
Mi400 — M1270

ITII. HADRON LEVEL CALCULATION

In this section and the next, we will introduce a QCDSR
calculation for the matrix element in Eq. (12). We first
define a three-point correlation function,
|

H;wr)(plvl’2> = i2/d4xd4yeil’2'xg—i171'y

x (O[T{J, (x)35(0)J," () }|0).  (14)

where J!4 and J)B are the currents of K4(°P;) and
K,5('P,), respectively,

Jp]ul/; = C_]G/wS ]/]7A = qypySS' (15)
The correlation function defined in Eq. (14) should be
calculated both at the hadron level and the quark-gluon
level. At the hadron level, inserting the complete sets
with the same quantum number of Kz and K, into the
correlation function and using the following definition of
kaon decay constants:

(017, (0)IK 15(p. 4)) = if k€ mape”(P. )PP,

<0|J;1)A(0) |K1A(P7 /1)> = _ifK]Am1A€p<p7 /1),
(017,2(0)|K(p)) = if kP, (16)

one can express the correlation function as

P5 p 1 Fy
0, (p1.p2) = _mAfAfé_eymﬂpz ¢+ 22— |Fig + 2 €xepo P\ DS + —5 P1xP2e
P2 B M M

piP1 1
X _g;; + 2 £ 2 _ 2 + fof_Beﬂl/aﬂpgplp
miy / PY—Miy

COn}tl S1, 8 0 pconn) s ,P C]
/ dSl d 2 p;w/ 1:52,4 ) ) + /h dS lﬂp/( 1> P2 ) +
l Sl

(52 — D2

The last three terms above denote the contribution from
the excited and continuous spectrum, which begin at the
thresholds s and s¥. Tt should be noted that the axial-
vector current J},A can create both an axial vector and a
pseudoscalar kaon from the vacuum. Therefore, to obtain
Eq. (17), both the K, and K have been inserted between
55(0) and J}*(y), and we have used the parametrization for
the K — K,z matrix element,

2
Kis(p S5O () = sp)h S (18)

where G(q?) is the corresponding form factor.

Now the hadron level correlation function in Eq. (17)
depends on four form factors: Fy, F», 5, G. However, only
F is relevant to the mixing angle as shown in Eq. (13). To
remove the irrelevant form factors, we operate the follow-
ing projection on the correlation function:

piph).  (19)

I(p,., p,) is a newly defined scalar correlation function,
which at hadron level only depends on F,

D T, (pr pa) = T(py., pa) (P2 p% =

1 i Pzpz G<C]2) 1
> a2 |79 + Pix 2 2
p> — mlB mlB mg py—mg

o conti .S
/ d pZ;wp(pl 2,49 ) (17)
Pl s $2 _p2

[

2m1Af1Aff_B (qz)
(Pl - mlA)(pZ

m%B) - (20

ﬁH(plﬂ p2)

where the ellipse denotes the last three terms in Eq. (17)
with the projection defined in Eq. (19) being operated. In
principle, the I1(p,, p,) calculated at the hadron level and
the quark-gluon level should be equivalent,

117 (py., pa. ¢*) =11°P(py, p2. ¢?)
/ ds, szImZHQCD(sl ,52,q%)
min - J i PP (s2-p3)
(21)

where sT" = s7'" = (m, + m,)*, where ¢ = u or d are the
quark level thresholds. In the second equation above, we
have expressed the TP as its dispersive integration
form, with sT" and sT" being the quark level thresholds.
According to the quark-hadron duality, the continuous
spectrum contribution at hadron level is equivalent to that
at QCD level. In other words, the ellipse term in Eq. (20) is

equal to
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1 0 oo 00 slzh
- dS1 dS2 + dSl dSz
T Sllh Slzh s\lh Slzn'm

st © I 21:[QCD , S, 2
sinin s (s1 = p1)(s2 = p3)

Thus, the continuous spectrum contribution can be
canceled at both the hadron and QCD levels. After

BT,.TZ{IZIH}(‘IZ) = BT,,TZ{I:[QCD}(‘IZ)7

2

2
m

—p 1 [st
2m1AflAf1LBe e - Fl(qz) = ”2/
S

min

1

where T;, T, are the two Borel parameters corres-
ponding to p?, p3. Now it is clear that F| can be obtai-
ned through Eq. (23) if the imaginary part of TP is
calculated.

IV. QUARK-GLUON LEVEL CALCULATION

A. Perturbative diagram

In this section, we present the QCD level calculation for
Q€D and extract its imaginary part. In the deep Euclidean
region p?, p3, ¢* < 0, TI?°P can be analytically calculated
by operator product expansion (OPE).

The leading contribution to OPE is from the perturbation
diagram as shown by the left diagram in Fig. 1, with
amplitude

HE%(PD P2 q2)
N,
ST / ey d ey d* kS (py — ky — k)8 (py — ky — k)
(27)
% tr[ko';w(k2 + ms)(kl + ms)yp75]
k* (k3 —m3) (ki —m3)

(24)

The double imaginary part of the correlation function is
related with its double discontinuity as

q=PpP1—DP2

Borel transformation, we arrive at the sum rules
equation,
@ a
dsl/ ds, e "le 2Im’TICP (s, 5,. ¢), (23)
Smin
2

[
1 .
I (P12 ) = G DI (1. 2 )

1 N,

(21)2 (2”)4 (_2”i)3 / dq)A (pl > P2, M, Mg, O)

X tr[k%u(kz + ms)(kl + ms')7p75]v (25)

which is obtained by the cutting rules: Disc{1/(p? — m*+
ie)} = (=2zi)8(p* —m?). In the above expression, we
have introduced a three-body phase space integration
measure d®, for a triangle integration as shown by the
right diagram in Fig. 1,

/d‘I’A(PuPz’ml,mz’m)
- / d ey d ey d IS (k2 = m2)5( — m2)5(2 — m)

x 84 (py — ky — k)& (py — ky — k), (26)

where the three internal lines are set on shell. The scalar
triangle integration with unit integrand reads as

V4
Iy= [ d® ,Pa,my,my,m) - 1 =——
A / a(p1s P2 my,my, m) i
min]’

X O[sy, 55, g% my, my, mlfs; — sP"]0[s; — s

(27)

FIG. 1. The perturbative diagram contribution to the correlation function, where the lower two vertices denote the kaon currents
defined in Eq. (15) (left). A general triangle diagram corresponding to a three-point correlation function (right).
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where 1 = (s, + 55 — ¢%)? — 4515, with p? = 5, p5 = 55.
© is a @ function constraining the s, 5, ¢,
®[sl » 82, 5127 my,my, m]
= Ol—mjs, — mis, + m3[m?* (4> + 51 — 52)
+51(¢> = 51+ 52)]
2 Co2( 2
q°(m* + 5155 —m*(—=q" + 51 + 52))
+mi[(q* + 51 = 52)s2
+ (g2 =5+ 5) + mi(=* + sy + )l (28)
The rest of the two € functions ensure that s;, s, are above
the corresponding quark level thresholds, namely, s;, >
s = (my,+m)?. In Eq. (25), one has to set m; =
m, = my. The definitions and expressions of higher rank
triangle diagram integrations are given in Appendix A.

The analytical expression of Im*II*®"(p,, p,,¢?) is given
in Appendix B.

B. gq condensate diagrams

The dimension-three operator contribution to OPE
comes from the quark condensing diagrams as shown in
Fig. 2. It can be found that the amplitudes of the s quark
condensing diagrams are only proportional to 1/(p? — m?)
or 1/(p5 — m?), butnot 1/(p3 — m?)(p3 — m?). Therefore,
Figs. 2(b) and 2(c) will vanish under the double Borel
transformation which operates on p? and p3 simultane-
ously. The amplitude of Fig. 2(a) reads as

i (p1. p2cg?) = 72 / dixdly el
0 0
% [6,, D\ (x,0)D” (0, ¥)y,75]

% (0174 (x)q,(¥)10). (29)
(0)

where D;’ denotes the free s quark propagator. The
nonlocal gg condensing matrix element can be expanded
up to dimension-five local operators as [41]
(0174 (x)q;,()10)
_ 1
_5ba + <qGCI> T00

05 (= (30)

q=Dp1— P2

q=p1—D2

The contribution of the dimension-three operator, namely,
the gq condensate, only comes from the first term given
above. The Borel transformed 197 reads as

L 2 _ _ _
BT};TZ{qu}(pl » P2, q2) = §Ncms<qQ>e m?/T% m%/Tg‘

(31)

The second term in Eq. (30) provides a contribution from
the dimension-five operator gg,G,zq. The corresponding
amplitude reads as

HZVG/)q“)(pl » D2 q2)
N, _ o 0? o
<qu>(_1) < a + a +2 a >
19 ap2 apZa ap] aplaz apl ap2(1
X tr[aﬂl/<ﬂ2 + mx)(ﬂl + ms)}/pyS]
1 1

X ———s—a——, (32)
pt—m3 p3 —m;

where we have transformed x, y to —id/dp,,id/dp,
through the exponential terms in Eq. (29). To simplify
the calculation of Eq. (32), we can omit the terms sup-
pressed by m? and obtain

gGq(1
HZUﬂq< >(p17p27 q2)
N,

= _E <qGQ>mS€ﬂupa(p(f - pg) W
B
(Pt =M?)(p3 —m3) (Pt —m3)(p3 —M*)] |ype
NC = a a
- E <qu>mS€ﬂbp(X(pl + Pz)‘]z
ot =132
X (33)
oMToM5 | (pT = M7)(p3 = M3)] lvp—pz—m

To obtain the above expression, we have introduced
derivatives on auxiliary masses M, M, to lower the power
of the denominator, which means

1 01
(P%,z - m%,z)z om? P%,z -M?

(34)

2 2
M —mj,

q=p1—D2

p1
()

FIG.2. The gq condensate diagram contribution to the correlation function, where one of the quark lines is disconnected. The diagrams in
(b) and (c) will vanish under the double Borel transformation for p? and p3 simultaneously. Diagram (a) is the only nonvanishing diagram.
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p1

b1 P2 P2 b1

(d) ©

FIG. 3. The gGq condensate diagram contribution to the correlation function, where one of the quark lines emits a soft gluon, which
condenses with the other two disconnected quark fields. (b), (c), (e), (f) Diagrams vanish under double Borel transformation.
(d) Diagram vanishes under the projection introduced in Eq. (19). Diagram (a) is the only nonvanishing diagram.

Taking the imaginary part, using dispersive integration, and C. gGq condensate diagrams

conducting Borel transformation, we arrive at The quark-gluon condensing diagrams are shown in

Fig. 3, where a quark interacts with a background gluon

By, 1, {I12%4MY (¢%) = é N.my{(gGq) field that condensates with the other two disconnected light
) quark fields. These diagrams provide the dimension-five

x e~/ Ti=m? /T3 {L _ L + g9 } operator contribution in the OPE. The massive and mass-

T3 T3 T3T3|  less quark propagators in the background gluon field read

'k [ 8y 9.Gath e (k k+ mg)o
YRR e R
<2ﬂ) k_ms 4 (k —ms)
_ R GHGRI (k) + R + )]
4(k*> —m?2)? ’
is, % ig,Grh (X6 + oPX)
D, (x,0) = 4= _ bl . 36
o0 =5 32724 - (36)
where
ftlﬂ#l/(k) = (k + ms)ya(k + ms)yﬂ(k + ms)yﬂ(k + ms)yy(k + ms)? (37)

and we have only present the terms relevant to the OPE up to dimension-five operators in Eq. (36).

It can be found that the diagrams in Figs. 3(b), 3(c), 3(e), and 3(f) in vanish after the Borel transformation due to the same
reason as what happens in the gg condensate diagrams. The Fig. 3(d) vanishes after the projection introduced in Eq. (19).
Thus, Fig. 3(a) is the only nonvanishing diagram with amplitude

7 . . o dYy Ay,
HZUqu(z)(Pth,C]z) :12/d4xd4ye”’2'xe_”’"}/(2”)14 (271)24 elfivemit

—i\ 6% (ky + my) + (ky + my)o® i(k, + my) _ :
(7) et o] B0 E0HOGI0.  G8)

X [aﬂy
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<
<

(e) P2

p1 ® p2

FIG.4. The GG condensate diagram contribution to the correlation function, where two soft gluons are emitted from the internal quark
lines and condensate with each other. (d)—(f) Diagrams can be neglected in this calculation since (d),(e) are suppressed by m?2, while (f) is

suppressed by m?. Only the diagrams (a), (b), (c) contribute.

Using the quark-gluon condensate formula, keeping the
leading term

(012 (1)9:G25(0)4,(1)0) = <55 (4Ga) (gt +
(39)

and conducting the projection introduced in Eq. (19), we
can obtain

11994(2) (Pl, P2, qz)
1 0 1
24 oM? (pt — m3)(p3 — M?)

(40)

M?=m?

The Borel transformed form reads as

1 1

Br, AT Hq?) = —2m (qGaq) 5 e/ The /1o,
2

6
(41)

D. GG condensate diagrams

The gluon-gluon condensate diagrams are shown in
Fig. 4, where the internal quarks interact with two soft
background gluon fields that condensate in the vacuum.
These diagrams provide the dimension-four operator con-
tribution in the OPE. In Fig. 4(a), both the two s quarks
interact with the background gluons, and the corresponding
amplitude reads as

d*k, &'k, d'k

ngg(a)(l’hpz,qz) =/d4xd4ye"l’z‘xg—ipl-y/

T\ 2
iky-y ,—iky-x ,—ik-(y—x) [ _ i
RN LA ( 4)

—ik o™ (ky + my) + (ky + my)o® 7 (ky + my) + (k| + my)o*"
XA | =50y 6] N2 2 7\2 Yp¥s
k (k2 - ms) (kz - ms)
x tr[141%]g3 (0] G5 (0) GE-(0)[0). (42)
Using the gluon condensate formula
1
g% <O|G2/} (O)GET (0) |O> = % <GG>6AB (g(lKgﬁT - garﬁK)7 (43)

and extracting the imaginary part by cutting rules, we arrive at
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1 0
s« £} R — / dd M, M,,0
m° L., " (p1, P2, q°) 307271'6M%6M% alp1. P2, My, M,, 0]
X tr[ka/w(gaﬁ(kZ + ms) + (k2 + ms)gaﬁ)
x (67 (ky + my) + (ki + my)o )y ,rs] (44)
X <gal<gﬂf - ga‘rﬂK)|Mf:m%$M§:m?' (45)

Note that before doing the derivative on the auxiliary masses we must temporary change the invariant mass square of the ki,
k, lines to be M3, M3. The analytical result of Im*f1°¢(*1%2) is given in Appendix B.

In Figs. 4(b) and 4(c), one of the two condensing gluons comes from the massless quark. The massless quark propagator in
the background gluon field has been given by Eq. (36) with the use of coordinate space. The amplitude of Fig. 4(b) reads as

. . d*k, d*k, . . i i
HGGb iDyX —iD1 -y ik -y —ikoex
;wp( )(pl,pz,qz) = /d4xd4y€12 e~'P1y / (2 )14(2 )24€k‘ Ye ky <—3 2) <——>tr[tAtB}

oo

(y—x)*
x g:(0]G45(0)GZ(0)]0).

Redefining the coordinate: w = y — x and using the inte-
gration formula in the coordinate space,

. 1
dwe Pk = (Ag?)) ———— (47
/ e G W

we have the imaginary part as
m*(99®) (py, py, ¢*) (P} p§ = S Ph)
1 y 0 0 0
= (GG)eteV pt — <—ﬂ + 6)
Yom? \op§ ~ op3
X / dq)A [pl’ P2, Mlv mg, 0] [gal(g/}‘r - gargﬂk]

T 6l144x
x tr[(y°0*" + 6°7y°)0,, (6% (ky + my)
+ (kg + mg)o®) (k5 = m3)y,7s) v = (48)

where the linear term of w has been transformed to the
derivatives of p;, p,. The calculation of Fig. 4(c) is almost
the same, so it will not be presented here.

It can be found that the amplitude of Fig. 4(f) is
proportional to m?, which vanishes by ignoring the u, d
masses. On the other hand, the amplitudes of Figs. 4(d) and
4(e) are proportional to m2. Compared with Figs. 4(a)-4(c),
they only produce O(m?) suppressed contributions to
F(0) and thus can be neglected. On the other hand, in
Eq. (13) the expression of sin20g has already been
proportional to m2. Thus, ignoring the terms proportional
to m? in F(0) is reasonable since they only produce O(m3)
corrections to sin 26 . Therefore, Figs. 4(d) and 4(e) will
not be considered in this work. In Appendix B, we present
the analytical results of Figs. 4(a)—4(c), and take Fig. 4(e) as

124 2 2
k2

l(kZ + ms) Uaﬁ(kl + mx) + (kl + ms)aaﬁ
—m; (ki —mg3)? re

(46)

an example to show how Figs. 4(d)—4(f) are suppressed by
the quark mass square.

V. NUMERICAL RESULTS

The masses of K4, K;5 and their decay constants are
taken from Ref. [42]: m, = 1.31 £0.06, mp = 1.34 £
0.08, fi4 =0.25+0.013, and f;3=0.19+0.01 GeV. In
this work, we set m, =m;=0, and m; = (0.1 £
0.005) GeV at the energy scale p~m,p =13 GeV
[43]. The condensate parameters are taken as [44.,45]
(gq) = —(0.24 £0.01 GeV)?, (gGq) = m}(gqq) with m}=
(0.8+0.2) GeV?, and (GG) = (47?)(0.012+0.004) GeV*.

In terms of the threshold parameters, note that, since J },A
can create both pseudoscalar and axial-vector kaons, the
next excited states should begin from the pseudoscalar
K(1460). On the other hand, J,2 can only create axial-
vector kaons, thus the next excited states begin from the
axial vector K (1650). Generally, in QCDSRs the threshold
parameter is chosen slightly below the next excited state;
therefore, one has to set s and s in a region nearly below

m%((l 460) and m?((l 650+ Tespectively. For simplicity, we can

correlate st" and s¥ and parametrize them by the same
parameter 7y,

th _ .0 2 2
st = mis + T (M (1460) = Mia)
th _ 2 2 2
sy =mip+ Tth<mK(1(,50) mig), (49)

so that s and s¥ increase or decrease simultaneously when

varying 7y, in the region 0 < 7y < 1.0, and both reach the
: 2 2 _

next excited states M (1460) and m K(1650) At T = 1.0. The

region closely below the excited states corresponds to
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4.0
—_— 15 =10
— ;=08
3.+
= — 1y =06
|
Il — 1 =04
g 2 ‘
= THh =02
5
1.+
0+
1. 15 2. 25
77 [GeV?]
FIG. 5. F, as a function of T2 at ¢g> = —6 GeV with different

choices of si,.

74, < 1.0, which will be chosen as 0.6 < 7y, < 1.0 for the
following error analysis.

Then one has to check the behavior of F; as a function of
the Borel parameters when varying s‘f}z. Note that the mass
difference between the initial and final kaon is little, and the
Borel parameters are closely related with the corresponding
hadron masses; thus, one can simply choose 7| =T, =T.
Without loss of generality, g> can be chosen by an arbitrary
value in the deep Euclidean region when investigating the
T? dependence. Here we choose g> = —6 GeV?, and then
the F|(—6) as functions of 7% with different choices of 7,
are shown in Fig. 5. It can be found that the variation of
F,(T?) is small when adjusting zy,, especially at the region
nearly below the excited states: 7, < 1. On the other hand,
all the curves in Fig. 5 turn to be stable when T2 is large,
especially at the region 72 > 1.5 GeV?. However, since
there is no maximum or minimum point appearing in Fig. 5,
one has to use further reasonable requirements to seek the
feasible region of the Borel parameter.

125}

100+

75+

gconti [%]

50+

The determination of Borel parameters depends on two
criteria. First, the contribution from the continuous spec-
trum must be suppressed so that it is smaller than the pole
contribution. Quantitatively, this criterion can be expressed
by the constraint

s
fﬁ}? ds, f:u? dsye e T%ImanCD(Sl,Sz,qz)
fcontj : : _“_12 _‘% -
Jo dsy [ dsy e Tie RImPTIP (s, 55, )

<05,

(50)

where the numerator denotes the contribution from the
continuous spectrum, while the denominator denotes all the
spectrum contributions. We still choose g> = —6 GeV? and
present £, as a function of 72 in the left diagram of
Fig. 6, where the blue and red bands denote the errors
from the uncertainties of condensate parameters and
mg s f1as fig, respectively. The purple band shows the
uncertainty of 7y, in the region 0.6 < 7y, < 1.0, which as
shown by Eq. (49) describes the threshold parameters
closely below the excited states: mé(l 460) and mé(mso)' It

can be found that £,,,; increases with the increasing of 72.
Econii = 50% occurs at T? = 1.16-2.39 GeV?2, which gives
the range of the upper limit for the Borel parameter,

1.16 < T2, < 2.39 GeV2.

upper (5 1)

The second criterion demands the convergence of OPE.
First, we have to compare the perturbative contribution and
all the condensate contributions. The right diagram of Fig. 6
shows the fraction of the condensate and the perturbative
contribution,

N L e
7

(52)

Neond [%]

25
T?[GeV?]

T2[GeV?]

FIG. 6. &, as a function of T2 (left) and #,.,q as a function of T2 (right), with ¢g> = —6 GeV?. The blue and red bands denote the
errors from the uncertainties of condensate parameters and my ., fia, f 1, respectively. The purple band comes from the uncertainty of

7y, in the region 0.6 < 74 < 1.0.
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2.5

0.4

[FEC
|\ €| upper

|F IGG| lower

qu

I
|F{ | upper

|ququ lower |

15 2.0 25 3.0

T2[GeV?] T2[GeV?]
FIG. 7. Absolute F, contributed from various condensate diagrams at g> = —6 GeV? (left). A detailed comparison of the GG and

gGq condensate contributions to the absolute F'; (right), where the error bands denote the combined uncertainties from the condensates

(GG), (gGq), and the threshold 0.6 < 7y, < 1.0.

It can be found that #7,,,q < 1 is safely satisfied in a wide T
range. Next, we have to exam whether the F; contributed
from a higher dimension condensate is smaller than that
from a lower one. In other words, the following inequality
equation should be checked:

Y > [F{Y] > |F{O) > [F{7). (53)

The left diagram in Fig. 7 shows the absolute F; contributed
from various condensate diagrams with g> = —6 GeV?. Itis
obvious that the perturbative diagram contribution is larger
than all the other condensate contributions. Furthermore,
|F? is also larger than |[FSC| and |F?%Y| in the large T2
region. However, there seems to be an ambiguity when
comparing |F¢G| and |F?%Y|. Thus, a detailed comparison
between them is presented by the right diagram in Fig. 7,
where the error bands denote the combined uncertainties
from the condensates (GG), (gGq), and the threshold
0.6 < 7, < 1.0. Demanding |F¢¢| > |F°?| and consider-
ing the uncertainty band, one can obtain the range of the
lower limit for the Borel parameter,

1.17 < T?

lower

< 2.64 GeV?, (54)

which intersects with the upper limit range given by Eq. (51).
Therefore, combining Egs. (51) and (54), one can obtain the
window for 72 as

1.17 < T? < 2.39 GeV?2. (55)

According to Eq. (13), one can obtain 0, as a function
of T? directly by knowing the T2 behavior of F,(0) and
then determine the exact value of 0k in the T? window:
1.17 £ T? <2.39 GeV2. However, instead of the physical
region, with the QCDSR calculation, only the deep
Euclidean region result F,(g*> < 0) is known. Therefore,

F,(g* > 0) should be obtained by analytic continuation
from the deep Euclidean region. In this work, to realize the
analytic continuation, a single pole formula

F(0)

B 1- qz/mlz)ole

Fi(q?) (56)

is used to fit F; (¢*), where F(0) and m,. play the role of
fitting parameters. The fitting region is chosen as —10 <
g* < =3 GeV? so that the spectral integrals can be calcu-
lated safely by applying cutting rules. The mq. as a
function of 7 is shown in the left diagram of Fig. 8. Before
transforming F,(0) to €, by Eq. (13), it should be
mentioned that F(0) has sign ambiguity due to the sign
ambiguity of the decay constants f1, and f1, derived with
QCDSRs in Ref. [42]. The reason is that, when using a
two-point correlation in QCDSRs to calculate £, or fiz,
one can only determine their square and thus the exact
sign cannot be determined. Considering the sign ambiguity,
we present the absolute value of 0, as a function of T? in
the right diagram of Fig. 8. Including the effect of error
bands, we obtain the mixing angle as [0, | = 21.4° 4 9°.
Note that both g, and 90° — 60k are the solutions to
Eq. (13). Therefore, another possible mixing angle value
is [0 | = 68.6° £ 9°.
In Table I, we compare our result for |0 | with those
obtained in the literature by various methods:
(1) using early experimental information on masses and
the partial rates of K(1270) and K(1400) [22];
(2) phenomenologically analyzing the r weak decays:
7 — K;(1270)v, and 7 — K,;(1400)v, [23,24];
(3) analyzing the f,(1285)— f,(1420) mixing angle
0, and its correlation to Oy [25];
(4) analyzing both the mixing angle of f,(1285) —
f1(1420) and h(1170) — h,(1380) [26];
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6

Mpole [GeV]

40!

T2[GeV?]

1.0 1.5 2.0 2.5 3.0

FIG. 8.  mypg as a function of T2, where the blue band denotes the combined uncertainties of 7y, in the region 0.6 < 7, < 1.0 and the
condensate parameters (left). Absolute value of O, as a function of T? (right), which is calculated from Eq. (13), with F(0) being fitted
by Eq. (56) in the region —10> < ¢g> < =3 GeV?. The blue and red bands denote the errors from the uncertainties of the condensate
parameters and mg, ., f1a, fllB, respectively. The purple band shows the uncertainty of 7y, in the region 0.6 < 7 < 1.0.

(5) using nonrelativistic constituent quark model with
the inputs of the mass difference between the
a,(1260) and b, (1235) mesons, as well as the ratio
of the constituent quark masses [27];

(6) extracting the mixing angle from the B — J/
wK(1270), J/wK,(1400) branching fractions by
pQCD calculation;

(7) relating 0, with a two-point correlation function,
which is studied with QCDSRs [29].

It can be found that most of the |6, | values in the literature
are in the vicinity of either 33° or 57°. Our result,
|0k, | = 21° £ 9°, is slightly below this range but consistent
with that given by Ref. [26] within the error. In Ref. [26], to
determine @ , the authors found the correspondence
between g, and the f,(1285)— f,(1420), h;(1170) —
hy(1380) mixing angles and ruled out unreasonable Oy,
values in previous literature. In Ref. [29], a different
QCDSR program was performed to extract €k , where
the authors related 0f, with a two-point correlation
function [Eq. (2) in Ref. [29]] and calculated it with

TABLEIL Comparing the |f, | obtained in this work with those
from literature.

References |0k, | (deg)

This work 214+9 0r 68.6+9
(1) [22] 33 or 57

(2) [23,24] 37 or 58

(3) [25] (31.713%) or (56.3137)
@) [26] 28 < |6, | < 30
(5) [27] 34 < |6, | <55

(6) 28] 33 and 58

(7) [29] 39+4

OPE. However, when introducing the interpolation current
of K4, the authors missed the contribution from the
pseudoscalar K as illustrated in Sec. III and wrongly
extracted the longitudinal component of the two-point
correlation function.

VI. SUMMARY

In this work, we investigate the K;(1270) — K(1400)
mixing caused by the flavor SU(3) symmetry breaking.
The mixing angle is expressed by a K;4, — K;p matrix
element induced by the s quark mass operator that breaks
flavor SU(3) symmetry. We focus on the QCD contribution
to this matrix element and calculate it with QCDSRs, where
a three-point correlation function is defined and calculated
both at the hadron and quark-gluon levels. In the calcu-
lation at the quark-gluon level, the operator product
expansion is up to dimension-five condensates. A detailed
numerical analysis is performed to determine the Borel
parameters, and the obtained mixing angle is Og =
21.4°£9° or Ok, = 68.6° £ 9°, which is consistent with
the phenomenological analysis on the relation between 0,
and the mixing angle of strangeless axial-vector mesons.
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APPENDIX A: TRIANGLE DIAGRAM INTEGRATION

Here we present the rank one and two triangle diagram integrations. They are defined as

/d‘DA(Pl’szmlam%m)k” = (AP} + B py)la.

/dq’A(pl,pz,ml,mz,m)k”‘k"z = [A2p)' P + Baph' Py + Co(Ph' Py + Py py) + Daghie]ly, (A1)
where
A — —(m*(q* — 51+ 52)) + 52m} — ¢* — 51 + 55) + m3(q*> — 5 — 5,)
1 — 5
q* —2q*(s; + 52) + (51 — 52)?
B, = —(m*(¢* + 51 = 52) + mi(q* — 51 = 52) +512m3 — > + 51 — 55)
q* —2¢*(s; + s2) + (51 — 52)2 ’
1
Ay = 5 [m*(q* — 2¢°(s1 — 252) + (51 — 52)?)

(¢* + (51— 52)% = 2¢%(s1 + 52))
+ (6mf + g* + ¢*(4s) = 253) + (51 = 52)> = 6mi(g> + 51 = 52))55 + m5(q* + 57 + 4515, + 53 — 2¢° (51 + 52))
—2m355(q* = 257 + q* (s = 252) + 5152 + 83 + 3mi(=¢* + 51 + 52))
= 2m*(m3(q* + 57 4 5152 = 255 + ¢* (=251 + 7)) + 52(=2¢" + (51 = 52)> +3mi(q® = 51+ 52) + ¢* (51 + 52)))],
B = TP s ey M R =25 ¢ = )
+ 57(6m3 + g* =267 (51 = 252) + (51 = 52)> = 6m3(q* = 51 + 53)) + mi(q* + 57+ 4515, + 55 = 2¢° (51 + 52))
—2misy(g* + 57 4 5152 = 255 + @7 (=251 + 53) + 3m3(=¢* + 51 + 57))
—2m*(mi(q* = 257 + ¢* (s = 252) + 5152 + 53) + 51(=2¢" + (51 = 52)* +3m3(¢* + 51 = 52) + ¢*(51 + 52)))],
1
(¢* + (51 = 52)% = 2¢%(s1 + 52))?
—m*(=q® + q*sy + ¢*s7 = 51 + q*sy — 6q7s15y + 515y + @755 + 5155 — 53
+2m3(q* + ¢Ps; — 257 = 2g%sy + 5155 + 83) + 2m3(g* + 57+ 5155 — 283 + 2 (=251 + 53)))
+2mi(=s5(q" = 257 + ¢ (51 = 255) + 5152 + 53) +m3(q* + 57+ 45155 + 53 = 2¢° (51 + 57)))
—513m3(=q* + 51+ 52) +2m3(q* + 57+ 5150 — 255 + ¢* (=251 + 52))
+ 52(=2¢" + (51 = $2)* + ¢* (51 + 52)))].
_ 1
2(q* 4 (51 = 52)* =247 (51 + 52))
+ 52(=q> = 51+ 52)) + 51(m5 + ¢*s2 = m3(q* = 51 + 7))
—m?(m3(q* + 51— $2) + mi(q> =51 + 5) + ¢*(—=¢* + 51 + 52))]. (A2)

G = [3’"‘11(612 -8 - 52)52 + m4(2‘14 - (Sl - 52)2 - flz(sl + Sz))

[m*q* + misy + mi(m3(q* — 51 — 52)

APPENDIX B: ANALYTICAL RESULTS

Here we present the analytical results for the calculation of the perturbative diagram and GG condensate diagrams. The
imaginary part of the correlation function contributed by the perturbative diagram reads as

i N,
I’ (py, pr. ¢*) = EIA[mE(ZAI + 108 — 1) 4+ B (=3¢* — 51 + 55) + 5] (B1)

where A;, B; are taken from Eq. (A2) with m; = m, = my, m = 0. The imaginary parts of the correlation function
contributed by the GG condensate diagrams read as
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8 GG) & u M M
Im2[166(a )<P1,P2 q ) <48 >aMzaM2 IZ[MZ(ZA 12 +SB 12 _ 1)
+ B¥]'2(6M% +24m3 = 7q° = 51+ 57) + Sllvz=pz=m? (B2)
_ GG) 9 (GG) 9
Im*f1¢®) (py, py. ¢*) = (66) —— I (A + B = 1)y —
(P, p2.47) 4z oM> A ( ! st 96((—q* + 51 + 55)% — 4s5,)>/> OM?

X [Mi(q* = 551 +555) + m3(q* + 51 = 53) + ¢* (=3¢ + Ts1 + 35,)]
X O[(M7)*(=s3) + Mi(m3 (=g + 51 + 52) + 52(q* + 51 = 52))
— s1(m = m3(q* = 51+ 53) + ¢75,)]0(s, — M7)0(s, — m?)’M%:mﬁ
B (GG) 9
48((—q* + 51+ $2)> — 4s515,)>/2 OM7
+misy =2m3(q* = ¢*(s1 +252) + 52(50 = 1)) + ¢°(¢* = 247 (51 + 52) + 57 + 815y + 53)]
2) (1)

[(M3)%sy + M3 (q* — 51 — 52)(m? — ¢* + 51 — 52)

S, 02y (1) @) (GG) d
— 2 (555 — 550, ) — 6(52 — S50 )] a2 —
G = sl 2OTRMUTMT AR (=g + 5y + 52)% — dsy5,) 2 OM]

X [s1(M3(q* — 51+ 52) + m¥ (@ + 51— $2) + ¢*(—=¢* + 51 + 52))]
(2) (1)

N )
1.M, éi])Wl [6(51 - sgf[)wl) - (3(5'1 - Sf[)\dl)]|M%=m§7 (B3)
|S1.M, - Sl,Mll
Imzl:[GG<")(p p (]2) :@ 9 I (AMz + B2 _ Dy — (GG) 0
1> 72> 87[ aMZ 1 1 Mzzms 48((_q2 + S] + S2)2 _4SIS2)3/2 0M%

X BM3(q* + 51 = 53) = mi(q* + Tsy = Ts3) + ¢* (=3¢ + Tsy + 35,)]6[—(M3)*s
+mi(M3 (=g + 51+ 52) + 52(° + 51 = 52)) + M351(q” = 51+ 52)

(GG) P
24((=q% + 51+ 52)% = 4s152)Y/% OM3
X [(M3)*s) + M5(q* = 51 = 52)(m5 = q* = 51 + 53) + mis;
=2m3(q* = q* (251 + 52) + 51(51 = 52)) + ¢*(¢* = 247 (51 + 52) + 57 + 5155 + 53)]

+ m?(—sz) - q23182]9(sl - m?)g(sz - M%)|M§:m§ -

2) (1)
w 2 _S2Mz () @ (GG) P
[6(s2 = 5541,) = 6(52 = S5 30 ) a2 —

‘ O = S5, o PHTIEE2A((=g7 51+ 52) = ds152) OM3
X [M3(q* + 51— 85) + m3(q* — 51+ 82) + ¢*(—¢* + 51 + 5]

(11)14 _551124 (1) )
()—(bz[é(sl Sia) = 8(s1 = 7 )z (B4)
|s S1M, _sl,M2|

where

(12, AV BY"2) = (10 Ay Bl sty ity
(13 AT BY") = (Ia, Ay, By))|
(Ia* AV BY?) = (Ia, A1, B

sf’;éi)/ll =5 |m1:M1,m2:mX7

55’.’242 = ng)|m,:m.\,mz:M2, (B5)

my=M, ,my=my;,m=0>
1 1My =M

1)|m1:mx,m2:M2,m:0’
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()

with s;”" defined as
() _ mi(m3 + s5) + (m3 — s2) (V/mf = 2mi(m3 + ¢*) + (m3 — ¢)° —mi + ¢*)
1 Zm% ’
[0 _ mi(m3 + s5) = (m3 = 5)(v/mi = 2mi(m3 + ¢°) + (m3 = ¢°)° + m3 — ¢°)
1 2m2 9
s<1):_m411_m%m% miq’ —misy + (sy = mi)\/mi = 2mi(m3 + ¢*) + (m5 — ¢*)* = mds; + ¢’s,
2 2m1 s
[0 _ _mi—mimi —mig® —mis) + (m = s1)/m} —2mi(m3 + ¢°) + (m3 — ¢°)° — mis, + ¢’ (B6)
2 = 3 .
2my

It should be noted that, for the GG(a) diagram, before doing derivatives on M % and M %, the masses of the k, k,, k lines are
set as M|, M,, 0. For the GG(b) and GG(c) diagrams, before doing derivatives, the masses of the ki, k,, k lines are set as
M, mg,0 and mg, M,, 0, respectively.

Finally, we take Fig. 4(e) as an example to illustrate why the amplitudes of this diagram as well as Figs. 4(d) and 4(f) are
suppressed. The amplitude of Fig. 4(e) reads as

. : d*ky d*k, d*k . : i
0o (p1. P2 %) = / dxdtyeirre=ivey / 1 47k i1y gmikys ik (=) (L
HUp (pl P2 q ) Xxa-ye e (2”)4 (271_)4 (271_)4 e e & 4
—ik lkg [faﬂkr(kl) +fak[}’1(kl) +faxr/}(k1)]
o e e (= m?)? ot

x trfi 4152 (0] G2, (0)GL.(0)0). (87)

Calculating the complex trace as shown above and performing the projection defined in Eq. (19), one can obtain an
expression proportional to m2. Accordingly, the imaginary part is

_ GG) 0
Im?[19¢() 2y = 209 9 M} —m2)[M3 (241" + 8B} — 1
m (P1, P2.q%) = m; 167 oM Al m3) [M7( + 1)
+ By (2m2 = 3¢% = 51 + 52) + 1] e (BS)

which is proportional to m?. Therefore, compared with the amplitudes of Figs. 4(a)—4(c) and 4(e) is O(m?) suppressed so

that it can be neglected. The same reason also enables us to neglect Figs. 4(d) and 4(f).
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