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We evaluate the entanglement entropy and entropic function of massive two dimensional quantum
electrodynamics (Schwinger model) at finite temperature, density, and θ-angle. In the strong coupling
regime, the entropic function is dominated by the boson mass for large spatial intervals, and reduces to the
conformal field theory result for small spatial intervals. We also discuss the entanglement spectrum at finite
temperature and a finite θ-angle.
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I. INTRODUCTION

Quantum entanglement is the central tenet in the
quantum description of all physical processes. In essence,
quantum many-particle states are superposition states,
which remarkably can lead to quantum correlations even
when no explicit interaction is present. A quantitative way to
capture this correlation is through the entanglement entropy.
Recently, there has been a renewal of interest in many

aspects of quantum entanglement ranging from quantum
many-body systems to field theory [1–4], with new appli-
cations in quantum information science [5]. Of particular
interest is the concept of quantum entanglement flow,
and its relation to quantum information flow, storage and
encryption [6].
In nuclear and particle physics, quantum entanglement is

inherent, yet the use of the entanglement entropy and its
measurement has only started to receive attention recently.
The quantum entanglement entropy encoded in the proton-
proton (pp) interaction amplitude may be responsible for
multiparticle production observed at collider energies [7].
Also, the quantum entanglement entropy may be directly
measurable in both pp and ep collisions at high energies [7,8].

Quantum entanglement in two-dimensional non-
conformal gauge theories with fermions has been inves-
tigated recently, with particular focus on QED2 [9] and
QCD2 [10]. QED2 or the Schwinger model [11] has been
widely studied also as a test bed for quantum computation
[12–15]. It has achieved remarkable notoriety given its
solvability (in the massless case), and the nonperturbative
aspects of its vacuum structure. Much like QCD4, the
vacuum of QED2 exhibits a chiral anomaly, confines by
generating a mass gap, exhibits a chiral condensate, theta-
vacua and instantons.
In this work, we address the bosonized form of the

Schwinger model in matter at a finite θ-angle, in the strong
coupling regime. We will use it to address the features of
spatial entanglement,with a particular emphasis on the entro-
pic function. We will first discuss the case of cold matter in
detail, and then show how to introduce finite temperature.
The organization of the paper is as follows: In Sec. II,

we briefly review the bosonized form of QED2 in matter
with a finite vacuum θ-angle. The vacuum solutions for
different fermion masses and vacuum angles exhibit modu-
lated chiral waves. In Sec. III, we derive the explicit form
of the entropic function, which captures the UV-finite
part of the spatial entanglement for a single spatial cut.
The entropic function is a universal function of the boson
mass in QED2 shifted by the temperature and vacuum
angle, with no effect from the finite density. It reduces
to the known central charge in the CFT limit. In Sec. IVA,
we carry a numerical analysis of the entanglement
entropy in QED2 at strong coupling, using the bosonized
Hamiltonian. The eigenvalue spectrum of the entangled
density matrix, is dominated by a collective eigenmode
that is sensitive to the boson mass. Our conclusions are in
Sec. V. Some details are given in the appendices.
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II. MASSIVE QED2 AT FINITE DENSITY

The Schwinger model with fermions of mass m at finite
chemical potential μ is defined by [11]

S ¼
Z

d2x

�
1

4
F2
μν þ

θF̃
2π

þ ψ̄ði=D −mþ μγ0Þψ
�

ð1Þ

with =D ¼ ∂ − ig=A. The coupling g has dimension of
mass. The extensive interest in QED2 stems from the fact
that it bears much in common with two-dimensional QCD

(QCD2) and possesses confinement. As a result, the QED2
spectrum involves only chargeless composite excitations.
Remarkably, the vacuum state is characterized by a non-
trivial chiral condensate, and even topological tunneling
configurations much like in QCD2. QED2, unlike QCD2,
is exactly solvable in the massless case, a huge advantage in
understanding its nonperturbative structure.
Shifting the vacuum angle to the mass term and using

the standard bosonization rules recalled in Appendix A, the
bosonized form of (1) is readily obtained for small current
masses:

S ¼
Z

d2x

�
1

2
ð∂μϕÞ2 −

1

2
f2m2

S

�
ϕ

f
− 2μx

�
2

þ f2m2
πNg cos

�
ϕ

f
− 2μx − θ

�
þ μ2

2π

�
ð2Þ

with the chirally shifted pseudoscalar mass

m2
S ¼

g2

π
m2

π ¼ −
mhψ̄ψi0

f2
ð3Þ

and manifest periodicity in the vacuum angle. The
x-dependent chemical potential in (2) follows from the
bosonization rule

1

2
ð∂μϕÞ2 − 2μf∂xϕ ¼ 1

2
ð∂μðϕþ 2fμxÞÞ2 þ μ2

2π

followed by the shift ϕþ 2fμx → ϕ. The origin of mS is
anomalous (Schwinger UAð1Þ anomaly), and the chiral
mass shift mπ originates from the emergent vacuum chiral
condensate. Note that there is no Goldstone mode, owing to
the Mermin-Wagner theorem. The shifting of the vacuum

angle to the mass term follows from the Fujikawa con-
struction, and dependence on θ disappears in the chiral
limit. The vacuum chiral condensate hψ̄ψi0 ¼ − eγ

2πmS is
fixed using functional techniques (for example, using a
torus as a regulator); γ is the Euler constant [16,17]. Like
in QCD4, the chiral condensate is finite in the chiral limit.
In Appendix B, we discuss some subtleties of the chiral
condensate on the light front.
The effective potential following from (2) is

Vðϕ;θ;μÞ ¼ 1

2
m2

S

�
ϕ

f
− 2μx

�
2

−m2
πNg cos

�
ϕ

f
− 2μx− θ

�
:

ð4Þ

The vacua are fixed by the minima solutions to the
transcendental equation

sin

�
ϕv

f
− 2μx − θ

�
¼ −

1

α

�
ϕv

f
− 2μx

�
ð5Þ

with the dimensionless chiral parameter α ¼ m2
π=m2

S.
The vacua solutions to (5) are shown in Fig. 1. For
θ ¼ π, the vacuum is doubly degenerate for m

g > m�
g ¼ 1=

ð2 ffiffiffi
π

p
eγÞ ≈ 0.158,1 where

m� ¼ m2
S

jhψ̄ψi0j
:

This critical value deduced from a mean field analysis in the
strong coupling regime is smaller than the numerical value
of approximately 0.33 reported in [20].

FIG. 1. Heatmap of the general vacuum solution ϕv at zero
temperature solution to (5). For θ ¼ π and m

g > 0.158, the vacuum
solution is degenerate, with a positive and negative solution. Only
the positive solution is shown.

1Our result differs by a factor of 1=2 from the result in [18,19]
which estimates the mass of a single boson excitation semi-
classically by fitting a harmonic oscillator to the effective
potential at ϕ ¼ 0 and then linearly extrapolates to a vanishing
boson mass.
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For the case θ ¼ 0 and μ ≠ 0, the vacuum solution is
inhomogeneous in space, with ϕv=f ¼ 2μx. The fermion
density per length is

nF ¼ hψ†ψðxÞiμ ¼
1ffiffiffi
π

p ∂
1ϕv ¼

μ

π
≡ 2

Z
kF

0

dk
2π

ð6Þ

with the Fermi momentum kF ¼ μ and pressure P ¼ k2F
2π as

expected. Using the bosonization rules, this inhomo-
geneous solution gives rise to standing chiral waves in
two-dimensions,

hψ̄ψðxÞiðμ; 0Þ ¼ hψ̄ψi0 cosðϕv=fÞ ¼ hψ̄ψi0 cosð2μxÞ;
hψ̄iγ5ψðxÞiðμ; 0Þ ¼ hψ̄ψi0 sinðϕv=fÞ ¼ hψ̄ψi0 sinð2μxÞ:

ð7Þ
The particle-hole (Overhauser) pairing dominates over

the particle-particle (BCS) pairing since the Fermi surface
is reduced to two disjoint points located 2kF apart. This is
captured by the oscillations in (7) with wave-number
2kF ¼ 2μ. The same observations were made for QCD2
[21], and QCD4 at strong coupling [22,23].
For the case θ ≠ 0; π, the general vacuum solution

follows by shifting away the x-dependence ϕv=f≡ 2μxþ
φv=f in (5), with φv solution to

sin

�
φv

f
− θ

�
¼ −

1

α

φv

f
ð8Þ

For small α near the massless limit,

φv

f
¼ α sin θ þOðα2Þ ð9Þ

with no effect on the fermionic density (6). However, the
underlying chiral wave (7) threading the Fermi surface
from the Overhauser pairing, is modified

hψ̄ψðxÞiðμ; θÞ ∼ hψ̄ψi0 cosð2μxþ α sin θÞ
hψ̄iγ5ψðxÞiðμ; θÞ ∼ hψ̄ψi0 sinð2μxþ α sin θÞ ð10Þ

In general, there are multiple vacua. For θ ¼ π the
vacuum is doubly degenerate. The general vacua solutions
to (8) for finite θ are shown in Fig. 1. The sign of the
vacuum solution changes around the phase transition line at
θ ¼ π. In the weak coupling phase with m

g ≫ 1, the QED2
vacuum breaks C-symmetry or φv → −φv symmetry. In the
strong coupling phase with m

g ≪ 1, the QED2 vacuum is
C-symmetric with φv ¼ 0.

III. ENTROPIC FUNCTION

We now consider space to be of length L with a single
cut of l < L, and study the spatial entanglement of l with
L − l. The space L can be either periodic (close chain) or

open (open chain). For a single cut of length l, the spatial
entanglement entropy can be analyzed using the replica
construction [2]. The UV insensitive entropic function is
given by

CðlÞ ¼ dSEE
d ln l

: ð11Þ

A. Weak coupling regime: m
g ≫ 1

In the weak coupling regime, the pseudo-scalar mass is
tachyonic, m2

θ ∼m2
S −m2

π < 0. The normal ordering with
respect to the pseudo-scalar mass mS ≪ m is no longer
justified for heavy fermions. In this regime, we revert to the
case of free massive fermions in a screened phase, and
use the newly developed field theoretical approach to the
entanglement in [24] using replicated fermions.
In the absence of gauge interactions or screening, the

entropic function is given in closed form by that of free
massive fermions [24]

CðmlÞ ¼ ml
3

Z
1

0

dx
K1

�
mlffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ð12Þ

which is seen to reduce to Cðml ≪ 1Þ ∼ 1
3
in the conformal

limit, and asymptote

Cðml ≫ 1Þ ∼
ffiffiffiffiffiffiffiffi
πml
6

r Z
1

0

dx
e
− mlffiffiffiffiffiffiffiffi

xð1−xÞ
p

ðxð1 − xÞÞ14

∼
ffiffiffiffiffiffiffiffi
πml
3

r
e−2ml: ð13Þ

(13) is consistent with the asymptotic form derived in [25]
using a Painleve V equation for the Renyi entropy,
following from the bosonization of free massive fermions
and also [26]. In Fig. 2 (left) we compare the central charge
for the closed chain (12) (solid red curve) to the exact
numerical solution to the Painleve V analysis of the free
massive fermion in [25] (dotted blue curve). The agreement
for the fermionic case is remarkable.
In the presence of gauge interactions, the Renyi entropy

and the ensuing entropic functions can be organized using
standard Feynman graphs with n replicated massive fer-
mions. In the planar approximation, the resummed rainbow
diagrams amounts to a shift in the massive free fermion
mass for QCD2 [24].
A rerun of these arguments for QED2 shows that the

dressing of the free massive fermion lines with rainbow
diagrams yields also a shift

m → m̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

S

q
ð14Þ

although the planar approximation is only valid for large
replicas in QED2. The ensuing entropic function is still
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given by (12), but with m → m̃. In particular, it reduces to
the CFT value of 1

3
for small intervals. For larger intervals, it

asymptotes e−2m̃l with a range

l ≈
1

2m̃
< lS ≈

1

mS

smaller than the screening range at weak coupling, thereby
resolving the fermionic structure.
For m < mS the shifted mass is tachyonic, a signal that

the weakly interacting phase undergoes a transition to a
strongly interacting phase with bound fermions, with a
critical value m�

g ¼ 1ffiffi
π

p > 1
π in the rainbow approximation.

In general, the effects of temperature in QED2 on a
heavy fermion have been analyzed using the invariant
fermion propagator in [17]. For timelike propagation, the
bare fermion mass is shifted by the Coulomb self-energy
m → mþ πmS

4
. The temperature correction drops out in the

large time limit. For spacelike propagation, the fermion is
screened with a screening mass πT

2
. We conclude that for a

heavy fermion, the result for the entropic function at finite
temperature remains (12) after the substitutionm → mþ πT

2

(spacelike cut) and m → mþ πmS
4

(timelike cut).

B. Strong coupling regime: m
g ≪ 1

1. No matter: μ= 0, T = 0

At strong coupling, the vacuum is C-even and the
screening is best captured in the bosonized form of
QED2. The case of a free massive bosons of mass mB
was addressed using the Painleve V analysis, with an
entropic function that asymptotes [27]

CðmBlÞ ∼
mBl
4

K1ð2mBlÞ; mBl ≫ 1: ð15Þ

For small intervals, the entropic function converges to
the CFT value of 1

3
, in support of the boson-fermion duality

in 2-dimensions.

In Fig. 2 (right) we compare the central charge for a
closed chain as given by half of (12) (solid red curve), to
the exact numerical solution to the Painleve V analysis for
the free massive boson in [27] (dotted blue curve). The full-
Dirac result (12) (dashed-red curve) is shown for compari-
son. The overall agreement of the 1

2
-Dirac fermion with the

boson is also remarkable, except near the origin, where the
massless bosonic fluctuations become dramatically large
for small intervals.
A transition between the weak coupling regime with

resolved fermions within the screening cloud, and the
unresolved screened fermion as a boson in the strong
coupling regime, can be differentiated by the entropic
function.

2. Finite density

Using the decomposition ϕ ¼ ϕv þ ξ around the vacuum
solution (5) in the bosonized form (2), we can infer the
pertinent bosonic mass for the entropic function. More
specifically, the small pseudoscalar and axion fluctuations
of (4) with fixed boundary variations δBξ ¼ δBϑ ¼ 0, are
coupled both in vacuum and matter,

ð□þm2
SÞ

ξ

f
þm2

πðTÞ cos
�
ϕv

f
þ θ

��
ξ

f
þ ϑ

�
¼ 0;

□ϑþm2
πðTÞ cos

�
ϕv

f
þ θ

��
ξ

f
þ ϑ

�
¼ 0: ð16Þ

For α ≪ 1, the pseudoscalar field carries a squared mass

m2
θ ∼m2

S þm2
π cos θ ð17Þ

that is independent of μ. The pseudoscalar meson disperses
relativistically, despite the underlying inhomogeneous chi-
ral wave! The Fermi surface consists only of two points
�kF in phase space, with minor distortions in the vacuum
pairing in the pseudoscalar channel. This is also manifest
from the sizeless light front wave function of the pseudo-
scalar meson given in appendix B. With this in mind, the

FIG. 2. Left: entropic function for a massive fermion for periodic boundary conditions. Right: entropic function for a massive boson
for periodic boundary conditions. See text.
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asymptotic of the entropic function follows from (15) with
mB → mθ or CðmθlÞ.

3. Finite temperature

The net effect of the temperature in the massive
Schwinger model can be captured by an overall shift of
the boson mass through the chiral condensate. Near the
massless limit, the boson mass is temperature-dependent,
through the chiral condensate

m2
θ → m2

θðTÞ ∼m2
S þm2

πðTÞ cos θ ð18Þ
with the thermal chiral condensate [16,17,28–31]

hψ̄ψiT ¼ hψ̄ψi0e−2πΔ̃T ðx¼0Þ ð19Þ
The vacuum-subtracted thermalmassive boson propagator is

Δ̃ðxÞ ¼
Z

d2k
ð2πÞ2 e

−ikx
�
2πδðk2 −m2

θÞ
e
jk0 j
T − 1

�
: ð20Þ

Note that (19) can also be regarded as the resummed finite
temperature tadpole contribution to the fermionic conden-
sate, stemming from the subsumed normal ordering of the
cosine in the bosonized form in (2).
From (19), we conclude that the entropic function for

QED2 in dense matter both at finite temperature and
density is

lmθðTÞ
4

K1ð2lmθðTÞÞ lmθðTÞ ≫ 1 ð21Þ

with the low temperature T=mθ ≪ 1 behavior

m2
θðTÞ ∼m2

S þm2
π cos θ

 
1 −

ffiffiffiffiffiffiffiffiffi
2πT
mθ

s
e−

mθ
T

!
ð22Þ

and the high temperature T ≫ g2=π behavior

m2
θðTÞ ∼m2

S −
m
f2

cos θ2Te−
πT
mθ : ð23Þ

Note that the chiral condensate has melted.
In Fig. 3 (left) we show the entropic function for a boson

as 1
2
-Dirac fermion (12), as a function of the vacuum angle

θ, for increasing temperatures from bottom purple to top
red. The dependence on the vacuum angle disappears at
high temperature, following the vanishingly small chiral
condensate. The interval size is set to l ¼ 1 in units where
g ¼ 1, in the strong coupling regime m

g ¼ 0.0589. The high
temperature limit CðmSlÞ ∼ 0.070 corresponds to a “large
interval” as per the right panel of Fig. 2. Figure 3 (right) is
an enlargement in the high temperature limit, where the
dependence on the vacuum angle disappears following the
vanishing of the vacuum chiral condensate at high temper-
ature. For θ ¼ π

2
; 3π
2
, there is no dependence on the vacuum

FIG. 3. Entropic function in QED2 at strong coupling. Left: as a function of the vacuum angle θ, with increasing temperatures from
bottom purple to top red; Right: as a function of temperature, with increasing vacuum angle θ ¼ π

20
bottom purple, to θ ¼ π top red. We

have set m=g ¼ 0.0589 with l ¼ 1 in units g ¼ 1.

FIG. 4. Entropic function versus the current quark mass m
m� for increasing temperatures in the strong coupling phase of QED2: top

purple to bottom red with θ ¼ π (left), and bottom purple to top red with θ ¼ 0 (right). The interval length is l ¼ 1 in units with g ¼ 1.
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angle, as the thermal chiral condensate drops out (the “pion
mass” contribution vanishes).
In the right panel of Fig. 3 we show the same entropic

function versus temperature, with the vacuum angle
increasing from θ ¼ π

20
(bottom purple) to θ ¼ π (top

red). For θ ¼ π
2
the entropic function is independent of

the temperature since the vacuum chiral condensate
vanishes.
In Fig. 4 we show again the entropic function versus the

current quark mass m
m� with fixed vacuum angle θ ¼ π (left)

and θ ¼ 0 (right), for increasing temperatures from T ¼ 0
(upper purple) to high temperature (bottom red). The
critical mass m� is set by the tachyon condition or
vanishing of the η0 mass at θ ¼ π

m2
S þm�jhψ̄ψij cos π ¼ 0:

At θ ¼ 0, the entropic function dependence on the current
mass ratio m

m� drops out as the “pion mass” vanishes
exponentially. At θ ¼ π and zero temperature, the entropic
function reaches the CFT limit of 1

6
at m ¼ m�. With

increasing temperature, the CFT limit is never reached at
m ¼ m�, which is a high temperature point whatever T
since the pseudoscalar mass mθ (η0 mass) vanishes. The
entanglement entropy is maximal at the quantum critical
point with θ ¼ π and m�

g as shown in Fig. 5 (CFT point with
a massless boson), as noted initially in [9].

IV. ENTANGLEMENT DENSITY MATRIX
AT FINITE TEMPERATURE

The entropic function indicates that in the regime of large
lmθ ≫ 1, massive QED2 in matter behaves like that of a
free massive boson, while in the regime of small lmθ ≪ 1,
it resembles a CFT. To characterize the spectral properties
of the entangled density it is then sufficient to analyze the
quadratic Hamiltonian from bosonized QED2.

A. Chain Hamiltonian

The small fluctuation Hamiltonian following from (4) is
given by

H ¼
Z

dx
1

2
ðΠ2 þ ξ02 þm2

θðTÞξ2Þ: ð24Þ

The boson mass is temperature and vacuum angle depen-
dent from QED2. The discretized form of (24) is

H →
1

2

XN
i¼1

ðΠ2
i þ ðξiþ1 − ξiÞ2 þ a2m2

θðTÞξ2i Þ ð25Þ

with the chain spacing a for large l ¼ na; L ¼ Na but
fixed ratio l=L. (25) describes a discrete chain of coupled
oscillators with nearest neighbor couplings, with either
open (ξNþ1 ¼ ξ1 ¼ 0) or closed (ξNþ1 ¼ ξ1) boundary
conditions. (25) can be recast as

1

2

XN
i¼1

Π2
i þ

1

2

XN
i;j¼1

ξiKijξj ð26Þ

with the real, symmetric, and banded matrix

Kij ¼ ð2þ a2m2
θðTÞÞδij − δi;jþ1 − δi;j−1: ð27Þ

The ground state of the chain (25) and (26) is

Ψ½ξ� ¼
�jΩj
πN

�1
4

e−
1
2

P
N
i;j¼1

ξiΩijξj ð28Þ

with energy E ¼ 1
2
TrΩ. The covariance matrix Ω can

be regarded as the square root of K under orthogonal
rotations. The details of the diagonalization of Ω are given
in Appendix C.

B. Entanglement density matrix

The pure density matrix of the ground state of the open
chain is given by

ρ½ξ; ξ0� ¼ Ψ½ξ�ΨT ½ξ0�: ð29Þ

The entanglement density matrix can be obtained by
subdividing the chain ½ξ� → ½ξ; ξ̄�

ρE½ξ̄; ξ̄0� ¼
X
ξ

Ψ½ξ; ξ̄�ΨT ½ξ; x̄0�: ð30Þ

The positive eigenvalues follow by diagonalizing (30)

X
ξ̄0
ρE½ξ̄; ξ̄0�ψ l½ξ̄0� ¼ plψ l½ξ̄� ð31Þ

FIG. 5. Entanglement entropy for the open chain versus the
boson mass mθ in units of g ¼ 1.
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with the entanglement entropy

SE ¼ −
X∞
l¼0

pl lnpl: ð32Þ

The implicit form of pl from the blocking of the covariance
matrix Ω for the open and closed chains are given in
Appendix C.

C. Entanglement spectrum

We consider the Gram–Schmidt orthonormalization of
the ground state

Ψ½ξ� ¼
X
i¼1

ciΨA
i ½ξ�ΨB

i ½ξ�; ð33Þ

where A and B denote the nonempty disjoint subspaces
such that A ∪ B ¼ f1;…; Ng. The entanglement spectrum
is defined by the set of the coefficients fcig. In our previous
paper [9], we showed numerically that the gaps in the
entanglement spectrum close around the critical point.

D. Numerical results

For the blocked chain Hamiltonian, the explicit eigen-
values are given by (C18), hence

SEðn;NÞ ¼ −
Xn
i¼1

X∞
l¼0

pl½N; n; i� lnpl½N; n; i� ¼ −
Xn
i¼1

�
lnð1 − λN;n;iÞ þ

λN;n;i

1 − λN;n;i
ln λN;n;i

�
ð34Þ

In Fig. 6-left, we show the entanglement entropy results
for the massless and open chain in mθ ¼ 0 (black). The
green dashed line is (C23) with mθ → 0 shifted by
þ0.01ð1Þ. The curve can also be fitted with

0.0108þ 0.1666 logðnÞ

with the slope converging to the continuum limit of 1
6
.

The rainbow colored lines are for a massive open chain
with fixed a ¼ 1 and increasing masses mθ ¼ f7× 10−4;
10−3;2× 10−3;3× 10−3;4× 10−3;5× 10−3;7× 10−3;10−2;
5× 10−2;10−1g (rainbow from red top to purple bottom).
They may be fitted by the continuum result (C23) by
choosing the parameters indicated in Table I. The masses
are approximately related by mc

θ ∼m1.2
θ and the shift scales

approximately like 0.0044 logð12.20þ 9810mθÞ.
In Fig. 6-right, we show the numerical results for the

corresponding central charge versus the interval length
na≡ n for the open chain at different temperatures,
following from Fig. 6 (left) according to Eq. (11) (the
color coding of the curves corresponding to varying the

mass is identical to Fig. 6-left). For small intervals, the
central charge is 1

6
as expected from CFT, whatever the

temperature. For large intervals, the central charges is seen
to increase from low temperature (solid purple) to high
temperature (solid red) as the η0 mass becomes lighter.
The black solid curve is the CFT limit.

FIG. 6. Left: entanglement entropy SEðn; N ¼ 2nÞ for the open chain with different masses; Right: central charge for different masses,
with the massless CFT limit 1

6
shown in solid black. See text.

TABLE I. Relation of mass (24) used in numerics to continuum
formula (C23) in units of a ¼ 1.

Parameters Eq. (C23)

mθ [Eq. (24)] mc
θ shift Λ0

7 × 10−4 0.00020 0.013
10−3 0.00031 0.014
2 × 10−3 0.00063 0.015
3 × 10−3 0.001 0.0165
4 × 10−3 0.00139 0.0174
5 × 10−3 0.00175 0.0185
7 × 10−3 0.00245 0.019
10−2 0.0037 0.021
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In Fig. 7, we show the EE for an open chain (left) and a
closed chain (right) with fixed interval size n, in QED2 at
strong coupling, as a function of the massmθ. The inset is a
double logarithmic plot. The large logarithmic enhance-
ment at small mθ, reflects on the CFT limit. In the large
mass limit, the fall off is exponential.

V. CONCLUSIONS

We have used the bosonized form of QED2 with a finite
vacuum angle, to understand quantitatively the nature
and aspects of quantum entanglement in space. At weak
coupling the QED2 vacuum breaks C-symmetry and chiral
symmetry, with C-symmetry restored at strong coupling.
When matter is added, a spatially inhomogeneous chiral

density wave threading the Fermi-surface by Overhauser
(particle-hole) pairing forms. The chiral condensate is
depleted by thermal effects. The massive boson of the
interacting theory carries a thermal mass that is only
sensitive to the chiral condensate.
To quantify the spatial entanglement in QED2, we have

traced out a spatial interval. The spatial entanglement
entropy is a function of the length of this spatial interval,
the temperature and the vacuum angle. For fixed temper-
ature, the central charge increases with vacuum angle. At
high temperature, the central charge is insensitive to the
vacuum angle, as the chiral condensate becomes exponen-
tially suppressed.
To check our mean field results numerically in the strong

coupling regime, we have made use of the bosonized
Hamiltonian for QED2. The discretized Hamiltonian is a
massive chain of coupled oscillators, with the mass
encoding the combined effects of temperature and vacuum
angle. For open chains, the spatially entangled density
matrix is characterized by an eigenspectrum, which is
dominated by a large collective eigenvalue. The entangle-
ment entropy asymptotes its CFT limit for small intervals
whatever the mass. For large intervals, the entanglement
entropy flattens out with increasing mass. The correspond-
ing central charge for short intervals is independent of the
mass. For large intervals, it falls exponentially fast with the
mass. This behavior is supported by our analytical analysis.

QED2 is characterized by an axial anomaly and a chiral
condensate, and could be regarded as a model for under-
standing the interplay of the chiral breaking and the axial-
anomaly in QCD4 in vacuum and at finite temperature. Our
analysis of the central charge in QED2 at finite temperature
and density shows that for large intervals, the central charge
is very sensitive to the temperature and vacuum angle. At
high temperature, the central charge is totally controlled by
the anomalous mass contribution to the η0 mass in the
strong coupling regime. This observation may be used to
disentangle the chiral and UAð1Þ restoration in QCD4.
One natural extension of our results is to discuss the case

of multiple flavors along the lines of [32–35]; wewill report
on it in a forthcoming publication.
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APPENDIX A: BOSONIZATION RELATIONS

Our conventions for the bosonizations are those in [36]

ψ̄γμψ ¼ 1ffiffiffi
π

p ϵμν∂νϕ

ψ̄γ5γμψ ¼ 1ffiffiffi
π

p ∂
μϕ

ψ̄ψ ¼ hψ̄ψi0Ng cosðϕ=fÞ
ψ̄iγ5ψ ¼ hψ̄ψi0Ng sinðϕ=fÞ ðA1Þ

with f ¼ 1ffiffiffiffi
4π

p the analog of the meson decay constant,

hψ̄ψi0 the chiral condensate following from the normal
ordering Ng with respect to the mass mS.

FIG. 7. Left: EE for an open chain of size n versus mθ. Right: EE for a closed chain of size n versus mθ. Both insets are double
logarithmic plots.
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APPENDIX B: MASS SHIFT
ON THE LIGHT-FRONT

The mass contribution in (17) is expected, but with a
naive “mass dependent condensate” on the light-front.
Indeed, in the massless limit QED2 bosonizes to a massive
boson of mass mS. Its normalized partonic light-front wave
function ψ0ðxÞ ¼ θðxÞ defines the normalized Fock state

jBðpÞi ¼
Z

1

0

dxffiffiffiffiffiffiffiffi
2xx̄

p ψ0ðxÞaþðkÞb†ðp − kÞj0i ðB1Þ

with x referring to parton-x here. The mass term shifts the

boson mass g2

π in first order perturbation theory by

hBðpÞjHmjBðpÞi
hBðpÞjBðpÞi ¼

Z
1

0

dx
m2 cos θ

xx̄
jψ0ðxÞj2 ðB2Þ

Now we note that the vacuum fermion condensate on the
light-front is

hψ̄ψi0 ¼ −m
Z

dkþ

2π

ϵðkþÞ
kþ

¼ −
m
4π

Z
1

0

dx
xx̄

ðB3Þ

Inserting (B3) into (B2) yields

hBðpÞjHmjBðpÞi
hBðpÞjBðpÞi ¼ −

mhψ̄ψi0
f2

cos θ ðB4Þ

in agreement with (17). Note that both (B2) and (B3) are IR
sensitive and only defined modulo an IR regulator.
However, the identity (B4) is independent of the regulator.
This observation implies that the fermion condensate
after proper IR regulator is m-independent, as per the IR
regulated QED2 on the light front [24], and the invariant
torus regularization in [16,17].

APPENDIX C: BLOCK DIAGONALIZATION

The covariance matrix Ω ¼ UT ffiffiffiffiffiffiffi
KD

p
U is the square

root of K ¼ UTKDU, which is real symmetric, with KD
referring to its diagonalized form. The eigenvalues and
eigenvectors of K follow from Bloch’s theorem

λkðθ; TÞ ¼ 2þ a2m2
θðTÞ − 2 cos

�
πk

2pþ 1

�

αlk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2pþ 1

s
sin

�
πkl

2pþ 1

�
ðC1Þ

The eigenvalues are labeled by k, and the eigenvectors
by k; l ¼ 1; 2;…; 2p ¼ N for a chain with even links for
simplicity. In particular for an open chain, the orthogonal
matrix U and the covariance matrix Ω are respectively
Uml ¼ αlm and

Ωml ¼
�

2

2pþ 1

�X2p
k¼1

sin

�
πmk

2pþ 1

��
2þ a2m2

θðTÞ − 2 cos

�
πk

2pþ 1

��1
2

sin

�
πkl

2pþ 1

�
ðC2Þ

For a periodic or closed chain with N ¼ 2p

αlk ¼
1ffiffiffiffi
N

p e−i
2πkl
N ðC3Þ

and

Ωml ¼
1

N

XN
k¼1

ei
2πmk
N

�
2þ a2m2

θðTÞ − 2 cos
�
2πk
N

��1
2

e−i
2πkl
N ðC4Þ

For mθ ¼ 0 the sum can be unwound, with the result at
large N

Ωml →
1

N

sin π
N

cos 2πN ðm − lÞ − cos π
N

ðC5Þ

To construct the entangled density matrix and ensuing
entanglement entropy we follow the original construction
in [1] with the recent application in [37]. For an open chain,
we fix the end points to ξNþ1 ¼ ξ1 ¼ 0. Without loss of
generality, we set N ¼ 2p and subdivide the chain by using
the labels

½N� ¼ ½n� ∪ ½N − n� ðC6Þ
The entanglement between the split chain of size [n] and
the one with size ½N − n�, can be calculated by blocking the
covariance matrix Ω in (C2)

Ω ¼
�

A B

BT C

�
ðC7Þ

with the rectangular matrix

BN;n ¼ Ωmm̄; m∈ ð1;…nÞ; m̄ ∉ ð1;…nÞ ðC8Þ
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1. Case n= 1

We now consider the simplest case of a periodic chain
with n ¼ 1. The ground state wave function is

e−
1
2
xTΩN−1x−x1βTx−x21

1
2Ncotan

π
2N ðC9Þ

with the vector entries xa¼1;…;N−1 and βm¼2;…;N

βm ¼ 1

N

sin π
N

cos 2πN ðm − 1Þ − cos π
N

ðC10Þ

The bivariate density matrix is then

ρ½xa; xb� ¼ e−
1
2
xTaΩN−1xa−1

2
xTbΩN−1xb−N

4
tan π

2NðβTxaþβTxbÞ2 ðC11Þ

or in terms of x ¼ Ω−1=2
N−1 z,

ρðza; zbÞ ¼ e−
1
2
jzaj2−1

2
jzbj2−1

4
ðzaþzbÞTβ1ðzaþzbÞ ðC12Þ

with

β1 ¼
�
N tan

π

2N

��
Ω−1

2

N−1ββ
TΩ−1

2

N−1

�
ðC13Þ

To obtain the entanglement entropy for this simple case, we
need to diagonalize β1. The result is one finite eigenvalue
χ1 ¼ N tan π

2N × βTΩ−1
N−1β and N − 2 zero eigenvalues.

Since

βTΩ−1
N−1β ¼ −

1

N

XN
m¼2

βm ¼ 1

N
β1 ¼

1

N
cot

π

2N
ðC14Þ

it follows that χ1 ¼ 1. Therefore, the density matrix (C12)
simplifies

e−
y2
1
2
−
y2
2
2
−
χ2
1
ðy1þy2Þ2

4 → e−
1
2
ðy1−y2Þ2 ðC15Þ

as expected from translational invariance. This case should
therefore subtracted, with the (subtracted) entanglement
entropy SEðn ¼ 1; NÞ ¼ 0, whatever N.

2. General case

For general n > 1, we define the square matrix β̃
associated to (C8)

Ω−1
2

N;nβ̃N;nΩ
1
2

Nn ≡Ω−1
2

N;nBN;nΩ−1
N;N−nB

T
NnΩ

−1
2

N;n ðC16Þ

with the formal eigenvalue spectrum

β̃N;nVi
N;n ¼ χN;n;iVi

N;n ðC17Þ

and i ¼ 1;…; n. In terms of (C17) the eigenvalues of the
entangled density matrix (C16) are

pl½N; n; i� ¼ ð1 − λN;n;iÞλlN;n;i ðC18Þ

with

λN;n;i ¼
χN;n;i=2

1 − χN;n;i=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χN;n;i

p ðC19Þ

3. Spectral flow of the largest eigenvalue

Most of the eigenvalues of the entangled density matrix
except one λN;n;1, are exponentially small and randomly
distributed following a Poisson distribution. This observa-
tion is consistent with the results in [37] for the massless
case. The exception is a large and collective eigenvalue,

λN;n;1 ≈ ð1 − e−SðamθðTÞ;nÞÞ ðC20Þ

or equivalently

pl½N; n; 1� ≈ e−SðamθðTÞ;nÞð1 − e−SðamθðTÞ;nÞÞl ðC21Þ

To derive (C21), we retained the largest eigenvalue in (34)
only, and assumed that SE is large, i.e.

�
lnð1 − λN;n;1Þ þ

λN;n;1

1 − λN;n;1
ln λN;n;1

�
¼ SE þ ðeSE − 1Þ logð1 − e−SEÞ ≈ SE:

The largest eigenvalue (C21) obeys the cascade equation

dpl

d ln n
¼ 1

2
CðmθðTÞnaÞð−pl þ lpl−1Þ ðC22Þ

with a rate fixed by the entropic function of 1
2
-Dirac massive

fermion in (12).
The exact form of the bosonic entropy SðamθðTÞÞ in the

continuum is not known analytically, although its entropic
derivative (15) for large or small cuts is. It is also UV
sensitive. As we suggested earlier, the central charge for
free massive bosons, is to a good approximation analogous
to the central charge of 1

2
-Dirac (Majorana) massive

fermions as derived in [24]. Modulo a shift Λ0, we have

SðamθðTÞ; nÞ ≈
1

6

Z
1

0

dx

�
K0

�
amθðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp �

− K0

�
namθðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ��

: ðC23Þ
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In Fig. 8 top left, we show the results for the lowest
eigenvalue of the open and massless chain, with
N ¼ 75000. The red dashed line is a fit to

λN;n;1 ¼ c1

�
1 − exp

�
−c2 log

�
N sinðπnN Þ

π

���
ðC24Þ

with c1 ¼ 0.829 and c2 ¼ 0.081. Even though the result
converges toward c2 ¼ 1=6, N is still not large enough to
be in the asymptotic regime, see Fig. 6. In Fig. 8 top

right, we show the results for the lowest two eigenvalues
of an open and massive chain, with N ¼ 5500 and
mθ ¼ 0.001.
In Fig. 8 bottom left, we show the results for the massless

and closed chain, with N ¼ 75000. The red dashed line is a
fit to (C24) with N ¼ 50000, c1 ¼ 1.819 and c2 ¼ 0.02786.
In Fig. 8 bottom right, we show the two lowest eigenvalues
for a closed and massive chain with N ¼ 5500 and
mθ ¼ 0.001. The spurious translational eigenvalue detailed
in Appendix C, has been removed.
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