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We investigate the different decompositions of the angular momentum in QCD for a relativistic spin 1=2
composite state, namely a quark dressed with a gluon. We use light-front Hamiltonian perturbation theory,
and in the light-front gauge, use the two-component framework by eliminating the constrained degrees
of freedom. We also investigate the different decompositions of the angular momentum at the level of
two-dimensional densities in the front form, including the effect of the so-called potential term. In this
work, we consider the contribution coming from the quark part of the energy-momentum tensor. We
contrast the different decompositions and also compare with other calculations in the literature. We also
present the gravitational form factor related to the antisymmetric part of the energy-momentum tensor.
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I. INTRODUCTION

Experimental results have established that only one-third
of the proton spin comes from the quark’s intrinsic spin
[1–4]. Recently, RHIC spin experiments have provided
important constraints on the contribution of gluon’s helicity
to the proton spin [5,6]. Since the contributions from the
intrinsic spin of quarks and gluons do not account for the
total nucleon spin, orbital angular momentum (OAM)1 is a
good candidate. It is anticipated that future experiments like
JLab 12 GeV [7] and Electron-Ion Collider (EIC) at BNL
[8] will provide high-precision measurements of the orbital
angular momentum contribution of quarks and gluons,
respectively [9]. On the theory hand, the decomposition of
the nucleon spin into intrinsic components and OAM of its
constituent quarks and gluons has been discussed exten-
sively in the literature in the past few years [10]. The main
issue for a long time was the fact that the total spin, in
particular, the angular momentum of the gluons cannot be
separated further into intrinsic and orbital parts in a gauge-
invariant manner. In contrast, polarized electron-proton and
proton-proton scattering experiments have since measured

spin asymmetries that are sensitive to gluon helicity
distribution, or to the intrinsic spin of the gluons in the
nucleon. Hence, one needs to identify a gauge-invariant
observable with the one that has been probed in the
experiments. It has later been shown that, indeed, a
gauge-invariant decomposition of gluon angular momen-
tum is possible. The procedure used to achieve this gauge-
invariant decomposition as shown in [11–14] adds another
term to the decomposition called the “potential angular
momentum” [15]. The potential angular momentum, being
gauge invariant in itself, can be added to the OAM of the
quark or the OAM of the gluon; thus, there is an ambiguity
even in the definition of the total angular momentum of
quarks/gluons. In fact, infinitely many decompositions of
the nucleon spin can be theoretically possible, although
only a few of them give meaningful physical insight into
the spin structure of nucleons, namely Belinfante [16],
Ji [17], Jaffe-Manohar [18], Chen et al. [11,12], and
Wakamatsu decompositions [13]. A comprehensive review
of all these decompositions, the theoretical issues in this
line, and how they are addressed can be found in Ref. [10],
and we will also discuss them briefly in Sec. II.
The different angular momentum decompositions give

the same expression for total angular momentum at the
integrated level but not at the density level [19]. This is
because these decompositions differ from each other by
superpotential (surface) terms that vanish after integra-
tion [10]. So, the total angular momentum density cannot
be interpreted as a sum of the OAM and spin density
only, and it becomes interesting to investigate the spin
and OAM of the quarks and gluons at a density level
and explore how the different decompositions affect
these densities. As shown by Burkardt [20,21], generalized
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1Assuming the Jaffe-Manohar decomposition in light-cone
gauge, see Sec. II.
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parton distributions (GPDs) contain information about the
spatial distribution of quarks and gluons, as the Fourier
transformation of the GPDs gives the parton distributions in
the transverse impact-parameter space, which have density
interpretation in the frame where the momentum transfer
is purely in the transverse direction. GPDs can be extracted
from the exclusive processes such as deeply virtual
Compton scattering and deeply virtual meson production
[22–27]. The gravitational form factors, which are related
to the GPDs through a moment, give the pressure, shear,
and energy distributions due to the quarks and gluons in the
nucleon [28–31]. Similarly, the angular momentum dis-
tributions inside the nucleon can be obtained [32]. Such
distributions in the literature are usually constructed in the
following two different approaches; in the Breit frame, one
calculates the three-dimensional (3D) distributions [33,34];
however, such distributions need relativistic corrections
unless the nucleon is considered to be infinitely massive.
On the other hand, one can construct two-dimensional (2D)
distribution in the light-front framework. Because of the
transverse Galilean symmetry on the light front, these are
free from relativistic corrections. The presence of surface
terms that connect various decompositions affects the
relationship between the Fourier transform of the GPDs
in the impact-parameter space and the angular momentum
distributions in the transverse plane. Different definitions of
the angular momentum distributions were investigated in
Refs. [19,32] using a scalar-diquark model (SDQM), and it
was shown that when all the surface terms are included, the
total angular momentum distribution is the same for
Belinfante and Ji decompositions. Distributions of quark
angular momentum in a light-front quark-diquark model
using soft wall AdS/QCD have been studied in [35]. The
role of surface terms in the nucleon spin decomposition
problem at the integrated and density level has also been
discussed in [36]. The term responsible for the difference
between Ji and Jaffe-Manohar decompositions of quark and
gluon OAM is the potential angular momentum [15,37].
This term gives a nonvanishing contribution to the nucle-
on’s spin as suggested by lattice QCD studies [38,39]. A
numerical analysis of the renormalization scale dependence
of potential angular momentum in Ref. [40] also points to
the nonzero contribution of the potential AM. In Ref. [32],
it was shown that the Ji and Jaffe-Manohar definitions of
angular momentum coincide in SDQM, as expected in a
system without gauge bosons, due to the vanishing of the
potential angular momentum. This observation has also
been confirmed more recently in Ref. [41] at the two-loop
level in SDQM. The authors proposed that since the
potential AM is related to the torque acting on the quark,
just the sole presence of a gauge boson is not enough for its
measurement. In a two-body system, there cannot be
classically any Lorentz torque exerted by the spectator
on the struck constituent despite the presence of a Lorentz
force. The potential term is also found to be zero for an
electron in QED at the one-loop level [42].

In this work, we investigate the different decompositions
of the angular momentum and their contribution to the
intrinsic spin and orbital angular momentum distributions.
Following the approach of [32] we calculate the spatial
distributions on the light front using overlaps in terms of the
light-front wave functions in the light-front Hamiltonian
perturbation theory. In this analysis, insteadof a nucleon state
inwhich it is highly nontrivial to include gluons, we consider
a relativistic spin-1=2 composite state of a quark dressedwith
a gluon at one-loop in QCD. In comparison to a nucleon, it is
a simple state with a gluonic degree of freedom [43,44]. We
have recently used such a state to investigate the pressure and
shear distributions [45,46] related to the gravitational form
factors. The advantage is that the light-front wave functions
(LFWFs) for such a state can be calculated analytically using
the light-front QCDHamiltonian, and it incorporates the full
quark-gluon interactions up to one-loop [47]. These LFWFs
are boost invariant because they can be written in terms of
relativemomenta that are frame independent [48].We use the
two-component formalism developed in [49], where in the
light-front gauge the constrained degrees of freedom are
removed using equations of constraint. This allows for an
analytical calculation of matrix elements for all components
of the energy-momentum tensor (EMT) relevant to the
angular momentum distributions. Also, the transverse boost
invariance in light-front dynamics makes it possible to
separate the dynamics associated with the center of mass
and the internal dynamics in the calculation of the longi-
tudinal component of angular momentum [50]. Thus, using
the LFWFs of the dressed quark state, we analyze different
decompositions of angular momentum at the density level,
terms responsible for the difference between them, namely
superpotential and potential AM. We also investigate the
observables corresponding to these distributions, such as the
form factors of the EMT called the gravitational form factor
(GFF). TheD form factor is related to the antisymmetric part
of the EMT: this corresponds to the spin density. In thiswork,
we investigate the contributions to the angular momentum
distributions coming from the quark part of the EMT,
explicitly taking into account the quark-gluon interaction.
Contributions coming from the gluon part of the EMTwill be
presented in a separate publication.
The paper is arranged in the following manner: in Sec. II,

we discuss the different decompositions of angular momen-
tum density in the literature; in Sec. III we describe the
two-component formalism in the light-front Hamiltonian
approach; in Sec. IV we present the angular momentum
densities in the front form; and in Sec. V we present the
extraction of the D form factor. Numerical results are given
in Sec. VI and the conclusion in Sec. VII.

II. DIFFERENT DECOMPOSITIONS OF ANGULAR
MOMENTUM DENSITY

We start off by writing the generalized form of the
angular momentum tensor
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Jμνρ ¼ xνTμρ − xρTμν þ Sμνρ ¼ Lμνρ þ Sμνρ; ð1Þ

where Tμν is the EMT and the second term is the intrinsic
part of the total angular momentum. One can get multiple
decompositions of Tμν and Jμνρ from the QCD Lagrangian

LQCD ¼ ψ̄

�
i
2
γμ∂

μ
↔

−m

�
ψ þ gψ̄γμAμψ −

1

2
Tr½GμνGμν�;

ð2Þ

where ∂
μ

↔ ¼ ∂⃗
μ − ∂⃖

μ and the field strength is GμνðxÞ ¼
∂
μAν

aðxÞ − ∂
νAμ

aðxÞ − ig½Aμ
aðxÞ; Aν

bðxÞ�. The canonical EMT
and generalized angular momentum densities are derived
through the application of Noether’s theorem, which
establishes a connection between conserved currents and
global spacetime symmetries. They are given as

TμνðxÞ ¼ 1

2
ψ̄ðxÞγμi∂ν↔ψðxÞ − 2Tr½Gμα

∂
νAα� − gμνLQCD;

ð3Þ

JμνρðxÞ ¼ 1

2
ψ̄ðxÞγμx½νi∂↔ ρ�ψðxÞ þ 1

2
ϵμνρσψ̄ðxÞγσγ5ψðxÞ

− 2Tr½Gμ½νAρ��− 2Tr½Gμαx½ν∂ρ�Aα�− x½νgρ�μLQCD:

ð4Þ

This is referred to as the Jaffe-Manohar (JM) decomposi-
tion [18]. In this decomposition, the total angular momen-
tum density of both the quark and the gluon is separable
into orbital and intrinsic parts. As stated in the Introduction,
in this work, we calculate the quark contribution to the
angular momentum densities. The analysis of gluon angu-
lar momentum densities will be the subject of a future
publication. Thus, Eqs. (3) and (4) reduce to

Tμν
q ðxÞ ¼ 1

2
ψ̄ðxÞγμi∂ν

↔
ψðxÞ; ð5Þ

Jμνρq ðxÞ ¼ Lμνρ
q ðxÞ þ Sμνρq ðxÞ

¼ 1

2
ψ̄ðxÞγμx½νi∂↔ ρ�ψðxÞ þ 1

2
ϵμνρσψ̄ðxÞγσγ5ψðxÞ:

ð6Þ

Tμν
q is neither gauge invariant nor symmetric. So a

superpotential term (a total divergence term) is added to
both EMT and generalized angular momentum tensors to
form Belinfante-improved tensors [16,51,52]. We write the
Belinfante-improved form as

Tμν
Bel;qðxÞ ¼ Tμν

q ðxÞ þ ∂αGαμνðxÞ

¼ 1

4
ψ̄ðxÞ½γμiD↔ ν þ γνiD

↔
μ�ψðxÞ; ð7Þ

JμνρBel;qðxÞ ¼ Jμνρq ðxÞ þ ∂σ½xνGσμρðxÞ − xρGσμνðxÞ�

¼ 1

4
ψ̄γμx½νiD

↔
ρ�ψ þ 1

4
x½νψ̄γρ�iD

↔
μψ ; ð8Þ

where Dμ ¼ ∂
μ − igAμ is the covariant derivative acting on

the quark fields. The superpotential is given by

Gμνρ ¼ 1

4
ϵμνρσψ̄ðxÞγσγ5ψðxÞ ð9Þ

and

GμνρðxÞ ¼ 1

2
½Sμνρq ðxÞ þ Sνρμq ðxÞ þ Sρνμq ðxÞ� ¼ −GνμρðxÞ:

ð10Þ

It is antisymmetric under the exchange of the first two
indices. The Belinfante-improved tensors are gauge invari-
ant and symmetric, and it can be seen that

JμνρBel;qðxÞ ¼ xνTμρ
Bel;qðxÞ − xρTμν

Bel;qðxÞ; ð11Þ

i.e., the Belinfante-improved total angular momentum
density has the form of the orbital angular momentum,
and it is not separated into spin and orbital components.
Whereas, in the case of canonical total AM, it can be shown
from the conservation of Tμν and Jμνρ that

Tνρ − Tρν ¼ −∂μSμνρ; ð12Þ

i.e. the antisymmetric part of the EMT is related to the spin
density.Although the Belinfante-improvement method
gives a gauge-invariant and symmetric EMT from the
canonical EMT, it involves adding a superpotential term
to the canonical EMT in an ad hocmanner. A standard way
to obtain a symmetric and gauge-invariant Belinfante EMT
is through functional variation of an action of QCD coupled
to a weak external gravitational field with respect to the
metric [31,53]. Another rigorous method has been pro-
posed in Ref. [54] to obtain an expression of symmetric and
gauge-invariant EMT by taking into account the symmetry
of action under local spacetime translations instead of
global spacetime translations.
Another decomposition that was proposed by Ji [17],

also known as kinetic EMT [10,55], is given as

Tμν
kin;qðxÞ ¼

1

2
ψ̄ðxÞγμiD↔ νψðxÞ: ð13Þ

Unlike Jaffe-Manohar’s decomposition, it is gauge invari-
ant, but it is also asymmetric and thus contributes to the
quark’s spin density. The kinetic generalized angular
momentum tensor reads

Jμνρkin;qðxÞ ¼ Lμνρ
kin;qðxÞ þ Sμνρq ðxÞ; ð14Þ
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with

Lμνρ
kin;qðxÞ ¼

1

2
ψ̄γμx

½ν
iD
↔ ρ�

ψ ; ð15Þ

Sμνρq ðxÞ ¼ 1

2
ϵμνρσψ̄ðxÞγσγ5ψðxÞ: ð16Þ

The kinetic and Belinfante-improved tensors in QCD are
related as [32]

Tμν
kin;qðxÞ ¼ Tμν

Bel;qðxÞ −
1

2
∂αS

αμν
q ðxÞ; ð17Þ

Lμνρ
kin;qðxÞþSμνρq ðxÞ¼ JμνρBel;qðxÞ−

1

2
∂σ½xνSσμρq ðxÞ−xρSσμνq ðxÞ�:

ð18Þ

It is clear that the canonical, Belinfante-improved, and
kinetic tensors give the same conserved charges since
they differ by the total derivative of the superpotential.
So at the total integration level, they give the same results.
Still, at the level of densities or distributions, where the total
divergence terms do not vanish, these decompositions give
different results.
As previously mentioned, in the JM decomposition, the

total angular momentum of the gluon is split into spin and
orbital angular momentum. Thus, the decomposition is
complete; but except for the quark spin, all the other
contributions are gauge noninvariant. This is remedied by
the decomposition of Chen et al. [11,12]. It is done by
separating the gauge field into two parts, longitudinal and
transverse. The former is the pure-gauge part that is related
to gauge symmetry and unphysical gauge degrees of
freedom, and the latter is related to the physical degrees
of freedom, namely the two physical polarizations.

A ¼ Apure þ Aphys: ð19Þ

These terms are constrained as follows:

∇ × Apure ¼ 0; ∇ · Aphys ¼ 0: ð20Þ

These constraints imply that Apure ¼ −∇αpure, where
αpure is some scalar function. Also the magnetic field
B ¼ ∇ × Aphys. Although gauge invariant, the fields
involved are nonlocal, e.g.,

Aphys ¼ A − ∇
1

∇2
∇ · A;

1

∇2
fðxÞ ¼ −

1

4π

Z
d3x0

fðx0Þ
jx − x0j ;

ð21Þ

where 1
∇2 is an integral operator. This nonlocality vanishes if

one works in the Coulomb gauge, ∇ · A ¼ 0, or in any other
gauge where A ¼ Aphys and Apure ¼ 0. With this gauge

fixing, this decomposition coincides with the JM decom-
position. Another issue with this decomposition is that
it is defined in a specific Lorentz frame. Therefore, for
our analysis, we consider the covariant version of the
decomposition of Chen et al. that was given by Wakamatsu
[13,14]. This is called gauge-invariant canonical (gic)
decomposition. The potential angular momentum term is
added to the quark OAM part in this gauge-invariant
extension and one arrives at

Tμν
gic;qðxÞ ¼

1

2
ψ̄ðxÞγμiDν

pure

↔
ψðxÞ; ð22Þ

Jμνρgic;qðxÞ ¼
1

2
ψ̄ðxÞγμx½νiD↔ ρ�

pureψðxÞ þ
1

2
ϵμνρσψ̄ðxÞγσγ5ψðxÞ;

ð23Þ

where Dpure
μ ¼ ∂μ − igApure

μ for quark fields. The EMT
and the AM densities of canonical and gauge-invariant
canonical decomposition differ by a superpotential term
that vanishes in a suitable gauge:

TμνðxÞ ¼ Tμν
gicðxÞ − 2∂αTr½GμαðxÞAν

pureðxÞ�; ð24Þ

JμνρðxÞ ¼ Jμνρgic ðxÞ − 2∂αTr½GμαðxÞx½νAρ�
pureðxÞ�: ð25Þ

Wakamatsu also proposed another gauge-invariant
decomposition that is similar to Ji’s decomposition with
the advantage that the gluon total angular momentum is
split into spin and orbital parts. The potential angular
momentum is associated with the gluon OAM part in this
decomposition. Hence, the quark part is exactly the same as
Ji’s decomposition. It is called the gauge-invariant kinetic
(gik) decomposition and is given as

Tμν
gik;qðxÞ ¼

1

2
ψ̄ðxÞγμiDν

↔
ψðxÞ; ð26Þ

Jμνρgik;qðxÞ ¼
1

2
ψ̄ðxÞγμx½νiD↔ ρ�

ψðxÞ þ 1

2
ϵμνρσψ̄ðxÞγσγ5ψðxÞ:

ð27Þ

To summarize what we discussed so far in this section:
the decompositions can be divided into two categories,
kinetic and canonical [10]. The kinetic class includes
Belinfante [16], Ji [17], and Wakamatsu decomposition
[13], which is a gauge-invariant extension (GIE) of Ji’s
decomposition. The canonical class includes Jaffe-
Manohar [18] and its GIE, the decomposition of Chen
et al. [11,12]. This classification became possible because
of Wakamatsu’s covariant generalization of the decom-
position of QCD angular momentum tensor into five
separately gauge-invariant terms [13,14]. These terms are
spin and orbital angular momentum of quarks and gluons
and potential angular momentum. The potential angular
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momentum, being gauge-invariant in itself, can be added
to quark’s OAM or gluon’s OAM giving canonical and
kinetic families, respectively. An important point to note
about the various angular momentum decompositions is
that the individual components do not always satisfy
the angular momentum commutation relations, ½Ji; Jj� ¼
iϵijkJk [10,56]. For instance, none of the terms in the
Belinfante decomposition individually follow the commu-
tation relations, rendering them unsuitable for direct inter-
pretation as generators of rotation. In the decompositions of
Jaffe-Manohar and Chen et al., quark OAM and spin both
follow the angular momentum commutation relations
individually. The gluon OAM and spin cannot be indi-
vidually interpreted as generators of rotation [57,58]. In the
decompositions of Ji and Wakamatsu, only the quark spin
can be considered as a generator of rotations as it follows
the SU(2) algebra. Table I lists the properties of all the
angular momentum densities derived from EMTs of the
kinetic and canonical family.2

III. THE TWO-COMPONENT FORMALISM
IN LIGHT-FRONT HAMILTONIAN APPROACH

In this section, we describe the formalism used to
calculate the distributions of various constituents of
angular momentum densities. We use the two-component

formalism [49] of light-front Hamiltonian QCD, where
in the light-front gauge Aþ ¼ 0, one can eliminate the
unphysical degrees of freedom using the equations of
constraint. The quark field can be decomposed as ψ ¼
ψþ þ ψ−, ψ� ¼ Λ�ψ ¼ 1

2
γ0γ�ψ , where Λ� are the pro-

jection operators for the corresponding fields. The ψ−

component and the longitudinal component of the gauge
field A− are constrained fields and can be written in terms
of ψþ and A⊥ in the following way:

i∂þψ− ¼ ðiα⊥ · ∂⊥ þ gα⊥ · A⊥ þ βmÞψþ; ð28Þ

1

2
∂
þE−

a ¼ ð∂iEi
a þ gfabcAi

bE
i
cÞ − gψ†

þTaψþ; ð29Þ

where Ta is the Gell-Mann SU(3) matrices: ½Ta; Tb� ¼
ifabcTc and TrðTaTbÞ ¼ 1

2
δab, m is the quark mass,

α⊥ ¼ γ0γ⊥, β ¼ γ0, and E−;i
a ¼ − 1

2
∂
þA−;i

a (i ¼ 1, 2). So
in light-front QCD, the independent degrees of freedom are
ψþ and A⊥. It is now possible to reduce a four-component
fermion field to a two-component field with a suitable
choice of the light-front representation of the gamma
matrices defined by [49]

γþ ¼
�

0 0

2i 0

�
; γ− ¼

�
0 −2i
0 0

�
; ð30Þ

γi ¼
�
−iσi 0

0 iσi

�
; γ5 ¼

�
σ3 0

0 −σ3

�
: ð31Þ

In this representation, the projection operators become

Λþ ¼
�
1 0

0 0

�
; Λ− ¼

�
0 0

0 1

�
; ð32Þ

and the fermion field decomposes as

ψþ ¼
�
ξ

0

�
; ψ− ¼

�
0

η

�
; ð33Þ

where ξ represents the two-component light-front quark
field and η is the constrained field:

ξðyÞ ¼
X
λ

χλ

Z ½dk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p ½bλðkÞe−ik·yþd†−λðkÞeik·y�; ð34Þ

ηðyÞ ¼
�

1

i∂þ

�
½σ⊥ · ði∂⊥ þ gA⊥ðyÞÞ þ im�ξðyÞ; ð35Þ

where ½dk� ¼ dkþd2k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3kþ

p . The dynamical components of the

gluon field are given by

TABLE I. Properties of all the angular momentum densities
derived from EMTs of the kinetic and canonical family.

Class EMT
AM

densities
Gauge
invariant

Follow SUð2Þ
algebra

Kinetic Belinfante JBel;q ✓ ✗

JBel;g ✓ ✗

Ji LJi;q ✓ ✗

SJi;q ✓ ✓

JJi;g ✓ ✗

Wakamatsu (gik) Lgic;q ✓ ✗

Sgic;q ✓ ✓

Lgic;g ✓ ✗

Sgic;g ✓ ✗

Canonical Jaffe-Manohar LJM;q ✗ ✓

SJM;q ✓ ✓

LJM;g ✗ ✗

SJM;g ✗ ✗

Chen et al. (gic) Lgic;q ✓ ✓

Sgic;q ✓ ✓

Lgic;g ✓ ✗

Sgic;g ✓ ✗

2Since the gluon OAM and spin term are not derived in this
work, one can verify their angular momentum commutation
property using Refs. [10,56].
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A⊥ðyÞ¼
X
λ

Z ½dk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3kþ

p ½ϵ⊥λ aλðkÞe−ik·yþϵ⊥�
λ a†λðkÞeik·y�;

ð36Þ

where χλ is the eigenstate of σ3 and ϵiλ is the polarization
vector of the transverse gauge field. The state can be
expanded in Fock space in terms of multiparton LFWFs.
As stated in the Introduction, in this work, instead of the
proton state we take a dressed quark state, that is, a quark
dressed with a gluon at one-loop in QCD. In the light-
front Hamiltonian framework, we truncate the Fock space
expansion up to the two-particle sector in a boost invariant
way [43]. The LFWFs can be calculated analytically for
such a state. The dressed quark state is written as [47]

jp; σi ¼ ψ1ðp; σÞb†σðpÞj0i þ
X
λ1;λ2

Z
dkþ1 d

2k⊥1 dkþ2 d2k⊥2
ð16π3Þ ffiffiffiffiffiffiffiffiffiffiffi

kþ1 k
þ
2

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþ

q
ψ2ðp; σjk1; λ1; k2; λ2Þ

× δð3Þðp − k1 − k2Þb†λ1ðk1Þa
†
λ2
ðk2Þj0i: ð37Þ

In Eq. (37), ψ1ðp; σÞ in the first term corresponds to a
single particle with momentum (helicity) pðλÞ and also
gives the normalization of the state. The two-particle
LFWF, ψ2ðp; σjk1; λ1; k2; λ2Þ is related to the probability
amplitude of finding two particles, namely a quark and
a gluon with momentum (helicity) k1ðλ1Þ and k2ðλ2Þ,
respectively, inside the dressed quark state. b† and a†

correspond to the creation operator of the quark and gluon,
respectively.
The boost invariant LFWFs can be written in terms of

relative momenta so that they are independent of the
momentum of the composite state [48]. The relative
momenta xi and κ⊥i are defined such that they satisfy
the relation x1 þ x2 ¼ 1 and κ⊥1 þ κ⊥2 ¼ 0,

kþi ¼ xipþ; κ⊥i ¼ κ⊥i þ xip⊥; ð38Þ

where xi is the longitudinal momentum fraction for the
quark or gluon inside the two-particle LFWF. The boost
invariant two-particle LFWF can be written as [43,47]

ϕσa
λ1;λ2

ðx; κ⊥Þ ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p �
xð1 − xÞ

κ2⊥ þm2ð1 − xÞ2
�

Taffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

× χ†λ1

�
−
2ðκ⊥ · ϵ⊥�

λ2
Þ

1 − x
−
1

x
ðσ̃⊥ · κ⊥Þðσ̃⊥ · ϵ⊥�

λ2
Þ

þ imðσ̃⊥ · ϵ⊥�
λ2
Þ 1 − x

x

�
χσψ

σ
1; ð39Þ

where ϕσa
λ1;λ2

ðxi; κ⊥i Þ ¼
ffiffiffiffiffiffi
Pþp

ψ2ðP; σjk1; λ1; k2; λ2Þ, g is the
quark-gluon coupling, and Ta and ϵ⊥λ2 are the color SU(3)

matrices and polarization vector of the gluon. The quark
mass and the two-component spinor for the quark are
denoted by m and χλ, respectively, where λ ¼ 1, 2 corres-
pond to helicity up/down. We have used the notation
σ̃1¼σ2 and σ̃2¼−σ1 [47,50]. Note that here x and κ⊥ are
the longitudinal momentum fraction and the relative trans-
verse momentum of the quark, respectively. We define
average momentum and the invariant momentum transfer as

Pμ ¼ 1

2
ðp0μ þ pμÞ; Δμ ¼ ðp0μ − pμÞ; ð40Þ

wherepμ ¼ ðpþ; p⊥; p−Þ is four momenta in light-front.We
will calculate the angular momentum distributions in the
Drell-Yan frame, defined by Δþ ¼ 0 and P⊥ ¼ 0. Using
on-shell conditions P · Δ ¼ 0 and P2 ¼ m2 − Δ2=4, we get

Δ− ¼ 0; P− ¼ 1

Pþ

�
m2 þ Δ⊥2

4

�
: ð41Þ

Thus, the initial and the final state four momenta will be

pμ ¼
�
Pþ;−

Δ⊥
2

;
1

Pþ

�
m2 þ Δ⊥2

4

��
; ð42Þ

p0μ ¼
�
Pþ;

Δ⊥
2

;
1

Pþ

�
m2 þ Δ⊥2

4

��
; ð43Þ

and the invariant momentum transfer

Δμ ¼ ðp0 − pÞμ ¼ ð0;Δ⊥; 0Þ; ð44Þ

where Δ2 ¼ −Δ⊥2.

IV. ANGULAR MOMENTUM DISTRIBUTIONS
IN FRONT FORM

Now we will calculate the spatial distribution of various
components of angular momentum. This involves calcu-
lating the matrix element of the angular momentum
tensor. The matrix element of an orbital angular momentum
operator, xνTμρ − xρTμν, when computed between plane
wave states presents an issue. This issue arises because
the spatial integration of the EMT can result in either an
infinite or a zero value, leading to ambiguity in its
definition [10]. One way to resolve this ambiguity is by
considering wave-packet states instead of plane wave
states. However, constructing a proper wave packet for a
spin-1=2 particle can be a complex task. One approach is to
define the wave packet as a superposition of momentum
eigenstates while keeping the spin vector fixed in the rest
frame, as suggested in [59]. An alternative method to
address this problem is to relate the matrix element of the
angular momentum operator to the off-forward matrix
element of the EMT [18,60]. When this method is correctly
applied, it ensures that the spatial integral of the local
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operator is handled properly, addressing the ambiguity
issue. Moreover, it preserves the Lorentz covariance of
the matrix element of the AM densities and establishes the
correct relationship between the matrix element of the
EMT and the AM densities [10,32,59]. To calculate
the spatial distributions of angular momentum correctly,
which involves calculating the Fourier transform of the AM
densities in the momentum space, we use a Gaussian wave-
packet state in position space centered at the origin [61,62].
In our previous works, we have used these wave-packet
states to calculate the spatial distribution of pressure and
shear forces and energy density for a dressed quark
state [45,46]. The state that is confined in transverse
momentum space with definite longitudinal momentum
can be written as

1

16π3

Z
d2p⊥dpþ

pþ ϕðpÞjpþ; p⊥; λi ð45Þ

with ϕðpÞ ¼ pþδðpþ − pþ
0 Þϕðp⊥Þ. We choose a Gaussian

shape for ϕðp⊥Þ in transverse momentum:

ϕðp⊥Þ ¼ e−
p⊥2

2σ2 ; ð46Þ
where σ is the width of the Gaussian. We use the light-front
coordinates to calculate distribution in the transverse plane.
This is because the subgroup of Lorentz transformations
associated with the transverse plane in light-front coordi-
nates is Galilean in nature [48], and hence, no relativistic
corrections are required.
In LF formalism, the OAM distribution in four-

dimensional space is given as [32]

hLziðxÞ ¼ ϵ3jkxj⊥
Z

dΔþd2Δ⊥
ð2πÞ3 eiΔ·xhTþkiLF; ð47Þ

where hTþkiLF ¼ hp0;sjTþkð0Þjp;si
2

ffiffiffiffiffiffiffiffiffiffi
p0þpþ

p is the matrix element of

EMT. Now we will use different expressions of Tμν for
different decompositions in light-front coordinates and
gauge Aþ ¼ 0. To calculate the distributions, we consid-
ered the in and out states of the matrix elements to be
dressed quark states, and we only consider the quark part of
the EMT in this work. We can reexpress Eq. (47) in the
following way. Using the on-shell conditions, we can write

xjeiΔ:x ¼ i
∂

∂Δj e
iΔ:x þ xþ

Pj

Pþ eiΔ:x; ð48Þ

which when substituted in Eq. (47) gives

hLziðxÞ ¼ ϵ3jk
Z

dΔþd2Δ⊥
ð2πÞ3

�
i

∂

∂Δj e
iΔ:x

�
hTþki

þ ϵijk
Z

dΔþd2Δ⊥
ð2πÞ3 xþ

Pj

Pþ eiΔ:xhTþki:

Using integration by parts for the first term and ignoring the
surface term,

hLziðxÞ ¼ ϵ3jk
Z

dΔþd2Δ⊥
ð2πÞ3 eiΔ:x

×

�
−i

∂hTþki
∂Δj þ xþ

Pj

Pþ hTþki
�
: ð49Þ

In the Drell-Yan frame, where the average transverse
momentum of the system is zero, the impact-parameter
distribution of OAM is given as

hLziðb⊥Þ ¼ −iϵ3jk
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
∂hTþkiLF
∂Δj

⊥

�
; ð50Þ

where b⊥ is the impact parameter. It is the Fourier
conjugate to the transverse momentum transfer Δ⊥. In this
frame, the dependence of spatial distribution on light-front
time is removed. Similarly, the expression for spin dis-
tribution in the light-front is as follows:

hSziðb⊥Þ ¼ 1

2
ϵ3jk

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥hSþjkiLF: ð51Þ

Also, the Belinfante-improved total angular momentum
distribution that has the pure orbital form is given by

hJzBeliðb⊥Þ ¼ −iϵ3jk
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
∂hTþk

BeliLF
∂Δj

⊥

�
: ð52Þ

To calculate these distributions, we must first evaluate
the matrix element of the EMT with which they are
associated. First, we consider the quark part of the kinetic
EMT given by Eq. (13) (Ji’s decomposition),

Tþk
kin;qðxÞ¼

1

2
ψ̄ðxÞγþiDk

↔

ψðxÞ¼ψ†
þði∂k

↔

þ2gAkÞψþ: ð53Þ

Using the two-component expressions of fermion and
gluon field, we get

Tþk
kin;qð0Þ ¼

X
λ;λ0

Z
dk0þd2k0⊥dkþd2k⊥

ð16π3Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p b†λ0 ðk0ÞbλðkÞχ†λ0 ½k0k þ kk�χλ

þ 2g
X
λ0;λ;λ3

Z
dk0þd2k0⊥dkþd2k⊥dkþ3 d2k⊥3

ð16π3Þ3kþ3
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p ½ϵkλ3b
†
λ0 ðk0ÞbλðkÞaλ3ðk3Þ þ ϵk�λ3 b

†
λ0 ðk0ÞbλðkÞa†λ3ðk3Þ�: ð54Þ
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We calculate the diagonal (first term) and off-diagonal matrix (second term) elements of Tþk
kin;qð0Þ by sandwiching the above

expression between dressed quark states given in Eq. (37). These are then expressed in terms of boost-invariant LFWF and
Jacobi momenta (x; κ⊥). We have shown the form of the diagonal matrix element in Eqs. (B8) and (B9) obtained after
performing the integration over Jacobi momenta. Substituting these expressions in Eq. (50),

hLz
kin;qiðb⊥Þ ¼

g2CF

72π2

Z
d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥
�
−7þ 6

ω

�
1þ 2m2

Δ2

�
log

�
1þ ω

−1þ ω

�
− 6 log

�
Λ2

m2

��
; ð55Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Δ2

q
and Λ is the ultraviolet cutoff on the transverse momentum. The off-diagonal term, which

corresponds to the potential angular momentum, vanishes as shown in Appendix B. This is a confirmation of an interesting
result shown in [41,42].
For the spatial distribution of the intrinsic part of the quark, we write the operator structure of Eq. (16) as

Sþjk
q ¼ 1

2
ϵþjk−

X
λ;λ0

Z
dk0þd2k0⊥dkþd2k⊥

ð16πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p b†λ0 ðk0ÞbλðkÞðχ†λ0σð3Þ χλÞ: ð56Þ

Again, after evaluating the diagonal and off-diagonal (vanishes) matrix elements in terms of Jacobi momenta and
substituting them in Eq. (51), we get

hSzkin;qiðb⊥Þ ¼ −
g2CF

32π2

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
Z

dx
1 − x

×
�
ωð1þ x2Þ log

�
1þ ω

−1þ ω

�
þ
�
1 − ω2

ω

�
x log

�
1þ ω

−1þ ω

�
− ð1þ x2Þ log

�
Λ2

m2ð1 − xÞ2
��

: ð57Þ

Similarly, the impact-parameter distribution for the quark part of the Belinfante-improved total angular momentum is
calculated using Eqs. (7) and (52):

hJzBel;qiðb⊥Þ ¼ g2CF

Z
d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥
Z

dx
16π2

1

ð1− xÞΔ4ω3

×

�
ð8m4ð1− 2xÞð1− xð1− xÞÞ þ 6m2ð1− ð2− xÞxð1þ 2xÞÞΔ2 þ ð1− ð2− xÞxð1þ 2xÞÞΔ4Þ log

�
1þω

−1þω

�

−ωΔ2

�
4m2ð1− ð1− xÞxÞ þ ð1þ x2ÞΔ2 þ ð1− ð2− xÞxð1þ 2xÞÞð4m2 þΔ2Þ log

�
Λ2

m2ð1− xÞ2
���

: ð58Þ

The relevant κ⊥ integrations and the steps of the cal-
culation are given in Appendix A and Appendix B,
respectively.
To make a proper comparison between the decomposi-

tions of Belinfante and Ji, it is important to include the
correction term to Belinfante’s total angular momentum.
This term corresponds to the superpotential given in
Eq. (17). Its expression at the distribution level is given
in [32]

hMziðb⊥Þ ¼ 1

2
ϵ3jk

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥Δl⊥
∂hSlþkiLF

∂Δj
⊥

: ð59Þ

Substituting Eq. (B19) in the above expression, we get the
spatial distribution of the superpotential term

hMz
qiðb⊥Þ ¼

g2CF

32π2

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
Z

dx
ð1− xÞ

1

ω3Δ4

× ½ωΔ2ðð4m2 þΔ2Þð1þ x2Þ− 4m2xÞ
− 2m2ðð4m2 þΔ2Þð1þ x2Þ− 4m2x− 2xΔ2Þ�:

ð60Þ
Let us consider now the quark part of canonical EMT

given by Eq. (5). For the spin distribution in the canonical
definition, we use the second term of Eq. (6). Since the
nondiagonal matrix element of kinetic EMT, which is due
to the presence of the gauge field in the covariant derivative,
is found to be zero (see Appendix B), so effectively, we get
the nonzero contribution only from

Tþk
kin;q ¼

1

2
ψ̄γþi∂k

↔

ψ ¼ ψþi∂k
↔

ψþ ¼ Tþk
q ; ð61Þ
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which is exactly equal to the canonical definition of EMT in
the light-front. Thus, the OAM distribution of kinetic and
canonical is the same. Also, the spin density is the same
as the kinetic one; see Eqs. (6) and (16). Thus, the orbital
angular momentum distribution and the spin distribution
for the quark in canonical decomposition are

hLz
kin;qiðb⊥Þ ¼ hLz

qiðb⊥Þ; hSzkin;qiðb⊥Þ ¼ hSzqiðb⊥Þ: ð62Þ

Considering the quark part of the gic decomposition of
EMT [see Eq. (22)], which gives the decomposition of
Chen et al. [10–12], we get

Tþk
gic;q ¼

1

2
ψ̄ðxÞγþiDk

pure

↔

ψðxÞ; ð63Þ

whereD
↔μ

pure ¼ ∂

↔μ
− 2igAμ

pure and A
μ
pure ¼ Aμ − Aμ

phys. Since
only the transverse component of the gauge field in the
light-front is dynamical, Ak ¼ Ak

phys, and in the light-front
gauge, Aþ ¼ 0. Thus, the gic decomposition of EMT is the
same as the canonical one,

Tþk
gic;q ¼

1

2
ψ̄ðxÞγþi∂k

↔

ψðxÞ ¼ Tþk
q : ð64Þ

Thus, the OAM distribution calculated from the gic
decomposition of EMT is the same as that given in
Eq. (55). The same goes for the spin distributions that
can be seen from the second term of Eq. (23). So the spin
distribution due to this is given by Eqs. (57) and (16):

hLz
gic;qiðb⊥Þ ¼ hLz

qiðb⊥Þ; hSzgic;qiðb⊥Þ ¼ hSzqiðb⊥Þ: ð65Þ

We can also see from Eq. (26) that the quark part of
Wakamatsu’s decomposition [13,14] is similar to the quark
part of Ji’s decomposition (13). So from this decomposi-
tion, we will not get any new information,

Tμν
gik;q ¼ Tμν

kin;q: ð66Þ

The intrinsic part is also exactly the same as the kinetic
one; see Eq. (16) and the second term of (27). So, at the
distribution level, the gik decomposition is given as

hLz
gik;qiðb⊥Þ ¼ hLz

kin;qiðb⊥Þ; hSzgik;qiðb⊥Þ ¼ hSzkin;qiðb⊥Þ:
ð67Þ

V. EXTRACTION OF GRAVITATIONAL
FORM FACTOR D

If we consider a general asymmetric EMT, then its
matrix elements for a spin − 1

2
target are parametrized by

five form factors [59]

hp0; s0jTμνð0Þjp; si ¼ ūðp0; s0Þ
�
PμPν

M
AðtÞ þ PμiσνλΔλ

4M

× ðAþ BþDÞðtÞ þ ΔμΔν − gννΔ2

M

× CðtÞ þmgμνC̄ðtÞ þ PνiσμλΔλ

4M

× ðAþ B −DÞðtÞ
�
uðp; sÞ; ð68Þ

where M is the nucleon mass, s; s0 denotes the rest frame
polarization of the initial and the final states, respectively,
and

P ¼ p0 þ p
2

; Δ ¼ p0 − p; t ¼ Δ2: ð69Þ

The matrix element of the quark spin density operator is
also parametrized by two form factors

hp0; s0jSμαβð0Þjp; si ¼ 1

2
ϵμαβλūðp0; s0Þ

�
γλγ5G

q
AðtÞ

þ Δλγ5
2M

Gq
PðtÞ

�
uðp; sÞ; ð70Þ

where Gq
AðtÞ and Gq

PðtÞ are axial vector and pseudoscalar
form factors, respectively. Usually, axial vector form
factors are isoscalar (u-d-like state) or isovector (u-u-like
state) in nature, but since we are considering a state with
only one quark dressed with a gluon, we will addressGq

AðtÞ
simply as an axial vector form factor. The axial vector form
factor is measurable from quasielastic neutrino scattering
and pion electroproduction processes [63]. The antisym-
metric part of the EMT is related to the divergence of the
spin density Tμν − Tνμ ¼ −∂μSμαβðxÞ, and the antisymmet-
ric part of the quark EMT is given by

ψ̄ðxÞ½γαiDβ
↔

−γβiDα
↔ �ψðxÞ¼−ϵμαβλ∂μ½ψ̄ðxÞγλγ5ψðxÞ�: ð71Þ

So the form factor associated with the antisymmetric part of
the quark EMT is the axial vector form factor

DqðtÞ ¼ −Gq
AðtÞ: ð72Þ

To extract this form factor in the dressed quark state, we
use the following relation:

hp0; sjSþjk
q ð0Þjp; si
2pþ ¼ 1

2
ϵþjk−szGq

AðtÞ; ð73Þ

wherewe have used the relation ūðp0;s0Þγþγ5uðp;sÞ¼4Pþsz
in the Drell-Yan frame with light-front spinors by taking
nLF ¼ ð1; 0; 0;−1Þ [64].After comparing the left-hand sideof
the above equation with Eq. (B19), we get
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DqðtÞ ¼ −g2CF

Z
dxd2κ⊥
16π3

1

ð1 − xÞD1D2

× ½κ⊥2ð1þ x2Þ þ κ⊥ · Δ⊥ð1 − xÞð1þ x2Þ þ ið1 − xÞð1 − x2Þðκð1ÞΔð2Þ − κð2ÞΔð1ÞÞ −m2ð1 − xÞ4�; ð74Þ

where

D1 ¼ κ⊥2 þm2ð1 − xÞ2; ð75Þ

D2 ¼ ðκ⊥ þ ð1 − xÞΔ⊥Þ2 þm2ð1 − xÞ2: ð76Þ

After performing the κ integration, we get

DqðtÞ ¼ −
g2CF

16π2

Z
dx

1 − x

�
ωð1þ x2Þ log

�
1þ ω

−1þ ω

�
þ
�
1 − ω2

ω

�
x log

�
1þ ω

−1þ ω

�
− ð1þ x2Þ log

�
Λ2

m2ð1 − xÞ2
��

; ð77Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Δ2

q
.

VI. NUMERICAL ANALYSIS

In this section, we show the numerical results of the
longitudinal component of the angular momentum distri-
bution in the dressed quark state. The analytic results in the
previous section show that the AM distribution for quarks is
the same for Ji, JM, gic, and gik decompositions. So, we
only plot the results for Belinfante and Ji decompositions.
For the analysis, we have chosen the parameters: the quark
mass m ¼ 0.3 GeV, the coupling constant g ¼ 1, the color
factor CF ¼ 1, and the ultraviolet cutoff Λ ¼ 1.7 GeV.
Also, the y axis is multiplied by a factor of b⊥ to correctly
represent the data in radial coordinates where b⊥ is the
modulus of vector b⊥. To perform the Fourier transform of
the different components of angular momentum density
and obtain smooth plots for spatial distribution in the

impact-parameter space, we have chosen Gaussian wave
packets of width σ instead of plane waves.
In Fig. 1, the plot jn the left panel shows the longitudinal

component of Eq. (14) in the impact-parameter space,
hJzkin;qiðb⊥Þ ¼ hLz

kin;qiðb⊥Þ þ hSzkin;qiðb⊥Þ. Both the OAM
and spin distribution have a positive contribution. Unlike
the analysis done in a scalar diquark model in [32], without
a gluon contribution, with our dressed quark state, we find
that the spin contribution to the total angular momentum of
quarks is dominating over the OAM contribution. This
result is similar to the analysis done for a proton in [65]
using the basis light-front quantization approach, where the
valence sector LFWF of the proton has been considered. A
similar study of AM distribution done by using light-front
quark-diquark LFWFs in [35] also shows that the intrinsic
contribution to the total angular momentum is dominant in
comparison to the OAM contribution. It would be interest-
ing to see the effect of higher Fock components in the

FIG. 1. Longitudinal angular momentum distribution of quarks as a function of impact parameter b⊥. Left: Sum of the kinetic orbital
AM b⊥hLzi (dot-dashed line) and spin AM b⊥hSzi (dashed line) given by kinetic total AM b⊥hJzi (solid line). Right: Kinetic total AM
b⊥hJzi (solid line) is given by the sum of Belinfante total AM b⊥hJzBeli (dot-dashed line) and the correction term corresponding
to the total divergence b⊥hMzi (dashed line). Here, m ¼ 0.3 GeV, g ¼ 1, Cf ¼ 1, and Λ ¼ 1.7 GeV. We chose the Gaussian
width σ ¼ 0.1 GeV.
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contribution of quark OAM. From the right panel of Fig. 1,
it can be seen that the Belinfante total AM distribution,
hJzBel;qiðb⊥Þ, is not equal to the total AM density of the
quark. A correction term corresponding to the superpoten-
tial, hMz

qiðb⊥Þ, which is ignored in a symmetric EMT such
as the Belinfante, has to be added to hJzBel;qiðb⊥Þ. However,
in our analysis, the contribution of this superpotential is
positive for the whole range of impact parameters. This
contrasts with the results of [32,65] where the correction
term has a positive contribution near the core but a negative
contribution near the periphery. However, the major con-
tribution comes from hJzBel;qiðb⊥Þ and only a small fraction
of hJziðb⊥Þ is attributed to hMziðb⊥Þ, which is in agree-
ment with the analysis of Belinfante decomposition in [32].
As discussed above, the angular momenta derived from

the canonical, Belinfante, and kinetic AM tensors will be
the same, as they differ by a surface term which goes away
upon integration, with the assumption that the fields vanish
at infinity. However, individually the contributions coming
from the quark and gluon parts of the AM tensor are not
conserved, and this is not expected unless the full AM
tensor is considered. In this work, we have considered only
the quark part of the AM tensor and the interaction term.
When a nontrivial interaction is present in the system, as it
is in the dressed quark state, quark and gluon parts of the

angular momentum Ji depend on the renormalization scale
[66–68]. In our approach, the scale dependence comes from
the cutoff on the transverse momentum integration [45,46].
In Fig. 2, we show the cutoff dependence of different
components of the AM density for the dressed quark state.
We see that Belinfante’s total AM density shows the largest
variations with respect to the transverse momentum cutoff.
Also, as seen in the analytic expression, the superpotential
term is independent of the cutoff. The peaks of all the
distributions shift to lower values with an increase in the
value of the cutoff. However, the shape of the distributions
does not change, and all of them have their peaks at around
b⊥ ≈ 0.045 fm. Thus, for the quark part of the AM tensor,
in general, the equality Jzkin;q ¼ JzBel;q þMz is not expected
to hold, and each side is cutoff dependent. The contribution
coming from the gluon part of the AM tensor needs to be
incorporated to verify this equality, which is an ongoing
work. In this work, we have chosen a cutoff Λ ¼ 1.7 GeV
for which this equality holds. Figure 3 shows the variation
of the results with the width of the wave-packet state σ. The
width indicates the spread of the distribution. We observe
that for all the components of angular momentum in both
Belinfante and Ji decompositions, the peaks of the dis-
tributions shift away from the center, and the distributions
become broader in b⊥ space with an increase of the width
of the Gaussian.

FIG. 2. Dependence of different components of AM distribution on transverse momentum UV cutoff. Top-left: Variation of b⊥hLz
kin;qi

with Λ. Top-right: Variation of b⊥hSzkin;qi with Λ. Bottom: Variation of b⊥hJzBel;qi with Λ. Five different values of Λ are considered for
the analysis: Λ ¼ 1.5, 1.6, 1.7, 1.8, 1.9 GeV. The Gaussian width is σ ¼ 0.1 GeV.
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In Fig. 4, we plot the axial vector form factor
Gq

AðΔ2⊥Þ=Gq
Að0Þ as a function of squared momentum trans-

fer Δ2⊥. We observe that this form factor is positive over
the whole range of Δ2⊥ having the maximum at Δ2⊥ ¼ 0.
Our calculations show that Dqð0Þ ¼ −0.36 for cutoff
Λ ¼ 1.7 GeV. This form factor is directly related to the
axial-vector form factor Gq

A, i.e.,DqðΔ2⊥Þ ¼ −Gq
AðΔ2⊥Þ [30].

Thus, the value of the axial-vector form factor of the quark
in the dressed quark state is Gq

Að0Þ ¼ 0.36. For t ¼ 0,
leading-twist next-to-next-to leading order (NNLO) analysis

performed by the HERMES Collaboration shows that
Gq

Að0Þ ¼ 0.33� 0.011ðtheoÞ � 0.025ðexpÞ � 0.028 ðevolÞ
[69]. The form factor GA is also calculated in [70,71] for
a quarkþ scalar diquark (spectator) system, and it is
found that GAð0Þ ¼ 0.71� 0.04. However, after consider-
ing contributions from other possible diagrams involving
axial vector diquarks, GAð0Þ is found to be close to 1.25.
Qualitatively, the behavior of Gq

AðΔ2⊥Þ=Gq
Að0Þ as a func-

tion of Δ2⊥ is similar to many other model-based analyses
done in [70–74] and lattice studies [75,76]. The difference
in the numerical values can be linked to the fact that
these models and lattice studies consider a nucleon state,
whereas we consider a dressed quark state. In the impact-
parameter space,Dqðb⊥Þ is related to the firstMellinmoment
of the helicity-dependent generalized parton distribution
H̃ðx;0;b⊥Þ [22], which is given by

R
dxH̃ðx; 0; b⊥Þ ¼

−Dqðb⊥Þ ¼ Gq
Aðb⊥Þ.

The variation of the z component of AM distribu-
tions with the two components of the impact-parameter
space, bx and by, is represented in a 3D plot in Fig. 5. We
have plotted the magnitude of the Fourier transform in
impact-parameter space. We observe that the maximum
contribution to the total angular momentum density in Ji’s
decomposition comes from the intrinsic part. We also
observe that hSzkin;qi falls faster than hLz

kin;qi. The qualitative

FIG. 3. Dependence of different components of AM distribution on the width of the Gaussian wave packet σ. Top-left: Variation of
b⊥hLz

kin;qi with σ. Top-right: Variation of b⊥hSzkin;qi with σ. Bottom-left: Variation of b⊥hJzBel;qi with σ. Bottom-right: Variation of
b⊥hMz

qi with σ. Four different values of σ are considered for the analysis: σ ¼ 0.05, 0.10, 0.15, 0.20 GeV. Here, m ¼ 0.3 GeV,
Λ ¼ 1.7 GeV, and g ¼ Cf ¼ Nf ¼ 1.

FIG. 4. Axial vector form factor Gq
AðΔ2⊥Þ
Gq

Að0Þ
as a function of Δ2⊥.

Here m ¼ 0.3 GeV, g ¼ 1, Λ ¼ 1.7 GeV, and Cf ¼ 1.
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behavior of the AM distribution plots of hJzBel;qi and hMzi
in Fig. 5 is similar to that of hSzkin;qi and hLz

kin;qi,
respectively.
We show the longitudinal component of quark spin AM

density, hSzi, a function of the longitudinal momentum
fraction, x, and the impact parameter, b⊥, in Fig. 6. This is
called the impact-parameter dependent parton distribution
and is given by the Fourier transform of the helicity-
dependent GPD, H̃ðx; 0;Δ⊥Þ. For the polarization consid-
ered here,

2

Z
dx Szðx; b⊥Þ ¼ GAðb⊥Þ ¼

Z
dx H̃ðx; 0; b⊥Þ: ð78Þ

We plot b⊥hSzi on the y axis instead of hSzi since b⊥ is the
Jacobian associated with the transformation of hSzi to polar
coordinates. Though the GPDs do not have a probabilistic
interpretation, but for zero skewness the impact-parameter
dependent parton distributions have a probabilistic inter-
pretation [77]. From Fig. 6, it is clear that the contribution
to the hSzi only comes from the region of very large

momentum fraction for the whole range of the b⊥ con-
sidered here. The width of the distribution decreases
with a decrease in the value of x. This behavior of the
GPD H̃ðx; 0; b⊥Þ is different from that shown in [65,78].

FIG. 6. Variation of b⊥hSziðx; b⊥Þ as a function of longitudinal
momentum fraction, x, and impact parameter, b⊥. Here m ¼
0.3 GeV, g ¼ Cf ¼ Nf ¼ 1;Λ ¼ 1.7 GeV, and σ ¼ 0.1 GeV.

FIG. 5. A 3D plot of the expectation value of angular momentum distributions as a function of impact parameters bx and by. Top-left:
Spatial distribution of quark OAM in the decompositions of Ji and Jaffe-Manohar. Top-right: Spatial distribution of quark spin in the
decompositions of Ji and Jaffe-Manohar. Bottom-left: Spatial distribution of quark OAM in the Belinfante decomposition. Bottom-right:
Spatial distribution of the superpotential term. We use the following parameters: m ¼ 0.3 GeV, g ¼ Cf ¼ Nf ¼ 1, Λ ¼ 1.7 GeV, and
the Gaussian width, σ ¼ 0.1 GeV.
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This difference can be attributed to the fact that in [65] the
light-front wave functions of a nucleon state are considered
in the valence sector, and in [78] the Nambu–Jona-Lasinio
model is used for the nucleon, whereas in this work we
consider a dressed quark state at one-loop.

VII. CONCLUSIONS

In this work, we have calculated the spatial distribution
of angular momentum for various decompositions and the
GFF associated with the antisymmetric part of the EMT. At
the density level one can investigate the effect of total
divergence terms that vanish after integration. Also, gluons
contribute significantly to the total angular momentum.
Most of the studies in the literature related to the spatial
distribution of angular momentum components have been
done using phenomenological models of nucleon states that
do not include gluons. In this work, instead of a nucleon
state, we consider a relativistic spin-1=2 state comprising a
quark dressed with a gluon, treated perturbatively at the
one-loop level in QCD. This state, which incorporates
a gluonic degree of freedom, facilitates analytical calcu-
lations of quark-gluon LFWFs using the light-front
Hamiltonian QCD. The LFWFs are frame independent
due to their expression in terms of relative momenta.
Employing a two-component formalism in the light-front
gauge, we explore the angular momentum and spin dis-
tributions as well as the gravitational form factor associated
with the antisymmetric part of the EMT, all derived from
overlaps of these two-particle LFWFs. The advantage of
the light-front gauge lies in eliminating constrained degrees
of freedom, allowing for a calculation of the different
components of EMT relevant for the angular momentum
distribution. Consequently, using the LFWFs of the dressed
quark state, we have done a comprehensive analysis of the
spatial density of the longitudinal component of intrinsic
and orbital angular momentum in the light-front gauge
using different definitions of AM decomposition. We have
observed that the spatial distribution of total angular
momentum when calculated using the decomposition of
Belinfante and Ji does not agree. We have calculated the
missing superpotential term in the dressed quark state at
the distribution level that is responsible for this disparity. In
the work, we presented the contribution coming from the
quark part of the EMT; the contribution from the gluon part
to these observables will be discussed in a separate
publication. Our investigation sheds light on the difference
between the Ji and Jaffe-Manohar definitions of angular

momentum. We found that the potential angular momen-
tum, responsible for this distinction, vanishes at the one-
loop level in the dressed quark state. This observation
supports previous findings, emphasizing that potential
angular momentum arises from the torque exerted on the
quark due to the Lorentz force. As such, it becomes
unmeasurable in a two-body system where the constituents
and their center of inertia are all connected by a single line.
Consequently, the decomposition of Ji and Jaffe-Manohar
yields consistent results. Since we are working in a light-
front gauge where the physical part of the gauge field
coincides with the full gauge potential, even the decom-
position of Wakamatsu and Chen et al. gives the same
result as the decomposition of Ji and Jaffe-Manohar. We
also calculated the D form factor for quark, which is
directly related to the axial vector form factor and is
associated with the antisymmetric part of the energy-
momentum tensor. We have compared our results with
other calculations in the literature.
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APPENDIX A: INTEGRALS USED
TO CALCULATE GFFs

The following integrals are used to calculate the ana-
lytical forms of the GFFs:Z

d2κ⊥ 1

D1

¼ π log

�
Λ2 þm2ð1 − xÞ2

m2ð1 − xÞ2
�
; ðA1Þ

Z
d2κ⊥ 1

D1D2

¼ π

ð1 − xÞ2
1

q2
f2
f1

; ðA2Þ

Z
d2κ⊥ κðiÞ

D1D2

¼ −
π

ð1 − xÞ
qðiÞ

q2
f2
2f1

; ðA3Þ

Z
d2κ⊥ κð1Þκð2Þ

D1D2

¼ π
qð1Þqð2Þ

q2

�
−1þ

�
1þ 2m2

q2

�
f3
2f1

�
;

ðA4Þ

Z
d2κ⊥ ðκðiÞÞ2

D1D2

¼ π

�
−f1f3 þ

1

2
þ ðqðiÞÞ2

q2

��
1þ 2m2

q2

�
f3
2f1

− 1

�
þ 1

2
log

�
Λ2

m2ð1 − xÞ2
��

; ðA5Þ

Z
d2κ⊥ ðκðiÞÞ3

D1D2

¼ πð1 − xÞ
�
−
3

4
qðiÞ

�
1þ log

�
Λ2

m2ð1 − xÞ2
��

þ 3

2

ðqðiÞÞ3
q2

þ
�
6f1
4

qðiÞ −
ðqðiÞÞ3
q2

4f21 − m2

q2

2f1

�
f3

�
; ðA6Þ
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Z
d2κ⊥ ðκð1ÞÞ2κð2Þ

D1D2

¼ πð1 − xÞ
�
−
1

4
qð2Þ½1þ log

�
Λ2

m2ð1 − xÞ2
��

þ 3

2

ðqð1ÞÞ2qð2Þ
q2

þ
�
2f1
4

qð2Þ −
ðqð1ÞÞ2qð2Þ

q2
4f21 − m2

q2

2f1

�
f3

�
; ðA7Þ

Z
d2κ⊥ κð1Þðκð2ÞÞ2

D1D2

¼ πð1 − xÞ
�
−
1

4
qð1Þ

�
1þ log

�
Λ2

m2ð1 − xÞ2
��

þ 3

2

qð1Þðqð2ÞÞ2
q2

þ
�
2f1
4

qð1Þ −
qð1Þðqð2ÞÞ2

q2
4f21 − m2

q2

2f1

�
f3

�
; ðA8Þ

where i ¼ ð1; 2Þ and

D1 ≔ κ⊥2 þm2ð1 − xÞ2; ðA9Þ

D2 ≔ ðκ⊥ þ ð1 − xÞq⊥Þ2 þm2ð1 − xÞ2; ðA10Þ

f1 ≔
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

q2

s
; ðA11Þ

f2 ≔ log

�
1þ q2ð1þ 2f1Þ

2m2

�
; ðA12Þ

f3 ≔ log
�

1þ 2f1
−1þ 2f1

�
: ðA13Þ

APPENDIX B: STEPS USED TO CALCULATE
AM DISTRIBUTIONS

1. Kinetic orbital angular momentum

hLziðb⊥Þ ¼ −iϵ3jk
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥ ∂hTþk
kin;qiLF
∂Δj

⊥

����
DY

: ðB1Þ

Define, in the Drell-Yan frame:

hTμνi ¼ hp0; sjTμνð0Þjp; si
2pþ :

We get from Eq. (13)

Tþk
kin;qðxÞ¼

1

2
ψ̄ðxÞγþiD↔k

ψðxÞ¼ψ†
þði∂

↔kþ2gAkÞψþ; ðB2Þ

Tþk
kin;qð0Þ ¼

X
λ;λ0

Z
dk0þd2k0⊥dkþd2k⊥

ð16π3Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p b†λ0 ðk0ÞbλðkÞχ†λ0 ½k0k þ kk�χλ

þ 2g
X
λ0;λ;λ3

Z
dk0þd2k0⊥dkþd2k⊥dkþ3 d2k⊥3

ð16π3Þ3kþ3
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p χ†λ0 ½ϵkλ3b
†
λ0 ðk0ÞbλðkÞaλ3ðk3Þ þ ϵk�λ3 b

†
λ0 ðk0ÞbλðkÞa†λ3ðk3Þ�χλ: ðB3Þ

a. Diagonal matrix element of T + k
kin;qð0Þ

h2;↑jTþk
kin;qð0Þj2;↑i
2pþ ¼ 1

2

X
λ0
1
;λ1;λ2

Z
dxd2κ⊥ϕ�↑

λ0
1
;λ2
ðx; κ0⊥Þχ†λ0

1
ð2κk þ ð1 − xÞΔkÞχλ1ϕ↑

λ1;λ2
ðx; κ⊥Þ; ðB4Þ

¼ g2CF

Z
dxd2κ⊥
16π3

ð2κk þ ð1 − xÞΔkÞ
ð1 − xÞD1D2

½m2ð1 − xÞ4 þ ð1þ x2Þκ⊥2 þ ð1 − xÞð1þ x2Þκ⊥ · Δ⊥

þ ið1 − xÞð1 − x2Þðκð1ÞΔð2Þ − κð2ÞΔð1ÞÞ�; ðB5Þ

where x is the quark momentum fraction and κ0⊥ ¼ κ⊥ þ ð1 − xÞΔ⊥. Here we have defined

D1 ¼ κ⊥2 þm2ð1 − xÞ2; ðB6Þ

D2 ¼ ðκ⊥ þ ð1 − xÞΔ⊥Þ2 þm2ð1 − xÞ2: ðB7Þ
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After performing the κ integrations as in Appendix A we get

h2;↑jTþ1
kin;qð0Þj2;↑i
2pþ ¼ ig2CF

Z
dx
16π2

ð1 − x2ÞΔð2Þ
�
1 − ω log

�
1þ ω

−1þ ω

�
þ log

�
Λ2

m2ð1 − xÞ2
��

¼ ig2CF

16π2
Δð2Þ

�
13

9
−
2

3
ω log

�
1þ ω

−1þ ω

�
þ 2

3
log

�
Λ2

m2

��
; ðB8Þ

h2;↑jTþ2
kin;qð0Þj2;↑i
2pþ ¼ −ig2CF

Z
dx
16π2

ð1 − x2ÞΔð1Þ
�
1 − ω log

�
1þ ω

−1þ ω

�
þ log

�
Λ2

m2ð1 − xÞ2
��

¼ ig2CF

16π2
Δð1Þ

�
−
13

9
þ 2

3
ω log

�
1þ ω

−1þ ω

�
−
2

3
log

�
Λ2

m2

��
; ðB9Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Δ2

q
.

b. Nondiagonal matrix element of T + k
kin;qð0Þ

1

2pþ ½h1;↑jTþk
kin;qð0Þj2;↑i þ h2;↑jTþk

kin;qð0Þj1;↑i�

¼ gffiffiffiffiffiffiffiffiffiffi
16π3

p
X
λ1;λ2

Z
dxd2κ⊥ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ½ψ�
1ðP; σ0Þχ†σ0ϵkλ2 χλ1ϕσ

λ1;λ2
ðx; κ⊥Þ þ ϕ�σ0

λ1;λ2
ðx; κ⊥Þχ†λ1ϵk�λ2 χσψ1ðP; σÞ�; ðB10Þ

h1jTþ1
kin;qð0Þj2i þ h2jTþ1

kin;qð0Þj1i ¼ −g2CF

Z
dxd2κ⊥
8π3

�
1þ x
1 − x

�
κð1Þ

D1

¼ 0; …Odd integrand in κ: ðB11Þ

h1jTþ2
kin;qð0Þj2i þ h2jTþ2

kin;qð0Þj1i ¼ −g2CF

Z
dxd2κ⊥
8π3

�
1þ x
1 − x

�
κð2Þ

D1

¼ 0; …Odd integrand in κ: ðB12Þ

So, we only have to evaluate the contribution to hTþkiLF from the diagonal term, i.e., Eqs. (B8) and (B9). Now, Eq. (B1) can
be written as

hLziðb⊥Þ ¼ i
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥
�
∂hTþ1iLF
∂Δð2Þ

⊥
−
∂hTþ2iLF
∂Δð1Þ

⊥

�
DY

: ðB13Þ

From Eq. (B13) we get

hLziðb⊥Þ ¼ g2CF

72π2

Z
d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥
�
−7þ 6

ω

�
1þ 2m2

Δ2

�
log

�
1þ ω

−1þ ω

�
− 6 log

�
Λ2

m2

��
; ðB14Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Δ2

q
.

2. Kinetic spin angular momentum

hSziðb⊥Þ ¼ 1

2
ϵ3jk

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥hSþjkiLFjDY: ðB15Þ

We get from Eq. (16)

Sþjk
q ¼ 1

2
ϵþjk−

X
λ;λ0

Z
dk0þd2k0⊥dkþd2k⊥

ð16π3Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p b†λ0 ðk0ÞbλðkÞðχ†λ0σð3Þ χλÞ: ðB16Þ
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a. Diagonal matrix element of S+ jk
q ð0Þ

h2;↑jSþjk
q ð0Þj2;↑i
2pþ ðB17Þ

¼ 1

4
ϵþjk−

X
λ1;λ01;λ2

Z
dxd2κ⊥ϕ�↑

λ0
1
;λ2
ðx; κ0⊥Þðχ†λ0

1
σð3Þ χλ1Þϕ↑

λ1;λ2
ðx; κ⊥Þ ðB18Þ

¼ g2CF

4
ϵþjk−

Z
dxd2κ⊥
8π3

1

ð1 − xÞD1D2

× ½κ⊥2ð1þ x2Þ þ κ⊥ · Δ⊥ð1 − xÞð1þ x2Þ þ ið1 − xÞð1 − x2Þðκð1ÞΔð2Þ − κð2ÞΔð1ÞÞ −m2ð1 − xÞ4�: ðB19Þ

b. Nondiagonal matrix element of S+ jk
q ð0Þ

h1jSþjk
q ð0Þj2i ¼ h2jSþjk

q ð0Þj1i ¼ 0: ðB20Þ

After performing the κ integration, we get

hSziðb⊥Þ ¼ −
g2CF

32π2

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
Z

dx
1 − x

×

�
ωð1þ x2Þ log

�
1þ ω

−1þ ω

�
þ
�
1 − ω2

ω

�
x log

�
1þ ω

−1þ ω

�
− ð1þ x2Þ log

�
Λ2

m2ð1 − xÞ2
��

: ðB21Þ

3. Belinfante form of total angular momentum

hJziðb⊥Þ ¼ −iϵ3jk
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥ ∂hTþk
Bel;qiLF
∂Δj

⊥

����
DY

: ðB22Þ

Now,

Tþk
Bel;q ¼

1

4
ψ̄ðxÞ½γþiD↔k þ γkiD

↔þ�ψðxÞ ðB23Þ

¼ 1

2
Tþk
kin;qðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1st term

þ 1

4
ψ̄ðxÞ½γki∂↔þ�ψðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2nd term

; ðB24Þ

where the first term has already been calculated.

Second term∶¼ 1

4

X
λ;λ0

Z
dk0þd2k0⊥dkþd2k⊥

ð16π3Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p eik
0·y χ†λ0

�
σkðkþþk0þÞ

�
1

kþ

�
ðσikiþ imÞþðσik0i− imÞ

�
1

k0þ

�
σkðkþþk0þ

��
χλ

×e−ik·yb†λ0 ðk0ÞbλðkÞ

þ g
4

X
λ;λ0;λ3

Z
dk0þd2k0⊥dkþd2k⊥dkþ3 d2k⊥3

ð16π3Þ3kþ3
ffiffiffiffiffiffiffiffiffiffiffiffi
k0þkþ

p eik
0·y χ†λ0

�
σk
	
kþþkþ3 þk0þ

kþþkþ3
ðσiϵiλ3Þaλ3ðk3Þe−ik3·y

þkþ−kþ3 þk0þ

kþ−kþ3
ðσiϵi�λ3Þa

†
λ3
ðk3Þeik3·y



þ
	
ðσiϵiλ3Þ

kþþk0þ−kþ3
k0þ−kþ3

aλ3ðk3Þe−ik3·y

þðσiϵi�λ3Þ
kþþk0þ þkþ3

k0þ þkþ3
a†λ3ðk3Þeik3·y



σk
�
χλe−ik·yb

†
λ0 ðk0ÞbλðkÞ: ðB25Þ
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a. Diagonal matrix element of Tμν
Bel;qð0Þ

h2;↑jTþk
Bel;qj2;↑i
2pþ ¼ 1

2

X
λ2;λ1;λ01

Z
dxd2κ⊥ϕ�σ0

λ0
1
;λ2
ðx; κ0⊥Þχ†λ0

1

��
κk þ ð1 − xÞΔ

k

2

�
þ
�
σi
�
κ0i þ x

Δi

2

�
− im

�
σk

2

þ σk

2

�
σi
�
κi − x

Δi

2

�
þ im

��
χλ1ϕ

σ
λ1;λ2

ðx; κ⊥Þ; ðB26Þ

where x is the quark momentum fraction and κ0⊥ ¼ κ⊥ þ ð1 − xÞΔ⊥.

h2;↑jTþ1
Bel;qj2;↑i
2pþ

¼ g2CF

Z
dxd2κ⊥
32π3

1

ð1 − xÞ
m2ð1 − xÞ4ð4κð1Þ þ 2ð1 − xÞΔð1Þ þ iΔð2ÞÞ

D1D2

×
ð4κð1Þ þ 2ð1 − xÞΔð1Þ − iΔð2ÞÞ½ð1þ x2Þðκ⊥2 þ ð1 − xÞκ⊥ · Δ⊥Þ þ ið1 − xÞð1 − x2Þðκð1ÞΔð2Þ − κð2ÞΔð1ÞÞ�

D1D2

; ðB27Þ

h2;↑jTþ2
Bel;qj2;↑i
2pþ

¼ g2CF

Z
dxd2κ⊥
32π3

1

ð1 − xÞ
m2ð1 − xÞ4ð4κð2Þ þ 2ð1 − xÞΔð2Þ − iΔð1ÞÞ

D1D2

×
ð4κð2Þ þ 2ð1 − xÞΔð2Þ þ iΔð1ÞÞ½ð1þ x2Þðκ⊥2 þ ð1 − xÞκ⊥ · Δ⊥Þ þ ið1 − xÞð1 − x2Þðκð1ÞΔð2Þ − κð2ÞΔð1ÞÞ�

D1D2

: ðB28Þ

b. Nondiagonal matrix element of Tμν
Bel;qð0Þ

1

2pþ ½h1;↑jTþk
Bel;qj2;↑i þ h2;↑jTþk

Bel;qj1;↑i�

¼ g

4
ffiffiffiffiffiffiffiffiffiffi
16π3

p
Z

dxd2κ⊥ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞp ½χ†σ0 ðσkðσiϵiλ2Þ þ ðσiϵiλ2Þσk þ 2ϵkλ2Þχλ1ϕσ
λ1;λ2

ðx; κ⊥Þ

þ ϕ�σ0
λ1;λ2

ðx; κ⊥Þχ†λ1ððσiϵi�λ2Þσk þ σkðσiϵi�λ2Þ þ 2ϵk�λ2 Þχσ�:

This spinor product gives an integrand that is odd in κ. Thus, after κ integration this term vanishes, and so we have no
contribution from the off-diagonal terms:

h1jTþ1
Bel;qð0Þj2i þ h2jTþ1

Bel;qð0Þj1i ¼ −g2CF

Z
dxd2κ⊥
8π3

�
1þ x
1 − x

�
κð1Þ

D1

¼ 0; …Odd integrand: ðB29Þ

h1jTþ2
Bel;qð0Þj2i þ h2jTþ2

Bel;qð0Þj1i ¼ −g2CF

Z
dxd2κ⊥
8π3

�
1þ x
1 − x

�
κð2Þ

D1

¼ 0; …Odd integrand: ðB30Þ

So, we only have to evaluate the contribution of diagonal terms, i.e., Eqs. (B27) and (B28) to Tþk
Bel;q. The Belinfante total

angular momentum distribution is given as

hJziðb⊥Þ ¼ −iϵ3jk
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥ ∂hTþk
Bel;qiLF
∂Δj

⊥

����
DY

ðB31Þ

¼ i
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥
�
∂hTþ1

Bel;qiLF
∂Δð2Þ

⊥
−
∂hTþ2

Bel;qiLF
∂Δð1Þ

⊥

�
DY

: ðB32Þ
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After performing κ integration on Eqs. (B27) and (B28) and substituting them in the above equation, we get

hJziðb⊥Þ ¼ g2CF

16π2

Z
d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥
Z

dx
ð1− xÞ

1

Δ4ω3

×

�
ð8m4ð1− 2xÞð1− xð1− xÞÞ þ 6m2ð1− ð2− xÞxð1þ 2xÞÞΔ2 þ ð1− ð2− xÞxð1þ 2xÞÞΔ4Þ log

�
1þω

−1þω

�

−ωΔ2

�
4m2ð1− ð1− xÞxÞ þ ð1þ x2ÞΔ2 þ ð1− ð2− xÞxð1þ 2xÞÞð4m2 þΔ2Þ log

�
Λ2

m2ð1− xÞ2
���

: ðB33Þ

4. Correction term

hMz
qiðb⊥Þ ¼

1

2
ϵ3jk

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥Δl⊥
∂hSlþki
∂Δj

⊥
: ðB34Þ

We substitute from Eq. (B19)

h2;↑jSlþk
q ð0Þj2;↑i
2pþ ¼ g2CF

4
ϵlþk−

Z
dxd2κ⊥
8π3

1

ð1 − xÞD1D2

½κ⊥2ð1þ x2Þ þ κ⊥ · Δ⊥ð1 − xÞð1þ x2Þ

þ ið1 − xÞð1 − x2Þðκð1ÞΔð2Þ − κð2ÞΔð1ÞÞ −m2ð1 − xÞ4�: ðB35Þ

After performing the κ integration we get

hMz
qiðb⊥Þ ¼ −

1

2

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
Δð1Þ

⊥
∂

∂Δð1Þ þ Δð2Þ
⊥

∂

∂Δð2Þ

��h2;↑jSlþk
q ð0Þj2;↑i
2pþ

�

¼ g2CF

32π2

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
Z

dx
ð1 − xÞ

1

ω3Δ4

× ½ωΔ2ðð4m2 þ Δ2Þð1þ x2Þ − 4m2xÞ − 2m2ðð4m2 þ Δ2Þð1þ x2Þ − 4m2x − 2xΔ2Þ�: ðB36Þ
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