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Among the vast variety of proposals put forward by the community to resolve tree-level unitarity
violations in Higgs inflation models, there exists the concept of self-healing. It heals the theory from
supposed tree-level violations for elastic scattering processes by summing over successive vacuum
polarization loop corrections. In this work, we examine this technique to check whether unitarity is indeed
restored and find that there exist underlying constraints in self-healing unitarity that pose the same
perturbative unitarity bounds that it was expected to heal.
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I. INTRODUCTION

Unitarity is one of several properties at the heart of a
quantum theory, and essentially implies that the probability
of an event cannot exceed unity. Along with other proper-
ties such as positivity, causality, etc., it helps provide us
with useful bounds on a theory (for example: perturbative
bounds, Froissart bounds, etc. [1]) in the form of con-
straints on a parameter, or on the domain within which the
theory is valid, without needing to introduce new degrees of
freedom (DsOF).
Tree-level unitarity violations, estimated using perturba-

tive unitarity bounds, are immensely helpful in pointing out
missing pieces in a theory. For a nonrenormalizable theory,
these may imply that the loop corrections might become
relevant as we approach the apparent violation scale in
describing the complete process [1]. For others, they may
indicate that the theory is incomplete. Beyond Standard
Model (BSM) physics helps fill in gaps stemming from the
incompatibility of the Standard Model and gravity, and
provides us with possible candidates for the missing DsOF,
often motivated by the existence of dark matter and dark
energy that make up the majority of the energy content of
the universe.
Given how Higgs driven inflation has been one of the

prime candidates for an inflaton field (check [2–4] and
references therein), the fact that it faces unitarity violations
far below the Planck scale is something the scientific
community has been trying to explain away for a long

time (see [4–9] and references therein for more info). After
several decades of search, though, we have as of yet not
been able to resolve the issue completely. Among the
several approaches suggested toward resolving the issue is
self-healing of unitarity proposed in [10] and later applied
in the context of Higgs inflation in [6], which are at the
heart of what we discuss in this work.
This paper is organized as follows: in Sec. II, we

introduce the reader to the optical theorem and partial
wave unitarity bounds as presented in [1]; in Sec. III, we
briefly review the idea of self-healing as it was put forward
in [10] while briefly introducing [6,11]; in Sec. IV we
critically examine [6,10] and assess whether self-healing
unitarity mechanism does play a role in the context of
unitarizing nonminimally coupled scalar-tensor theories
(STTs); and lastly, we conclude in Sec. V.

II. PERTURBATIVE UNITARITY BOUNDS

Imposing that the action is unitary, we obtain the famous
optical theorem, which equates the imaginary part of the
scattering amplitude to the total scattering cross section.

Mði→ fÞ−M�ðf → iÞ

¼ i
X
X

Z
dΠXð2πÞ4δ4ðpi −pXÞMði→ XÞM�ðf → XÞ:

ð1Þ

whereM represents the scattering amplitude, jiui, jfi, jXi
are initial, final and arbitrary intermediate states, respec-
tively, pn represents the momentum of state jni, and dΠX is
the momentum integral measure. In its generalized form
(1), this theorem states that order-by-order in perturbation
theory, imaginary parts of higher loop amplitudes are
determined by lower loop amplitudes. For instance, the
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imaginary part of one-loop amplitude could be determined
by the tree-level amplitude. A special case arises from this
using the assumption that the initial and final states are the
same (i.e., jii ¼ jfi ¼ jAi):

ImMðA → AÞ ¼ 2ECMjp⃗ij
X
X

σðA → XÞ: ð2Þ

where ECM is the center of mass energy of the system and
σðA → XÞ is the scattering cross section for the enclosed
process. Optical theorem puts a constraint on how large a
scattering amplitude can be. From the approximate form,

ImM ≤ jMj2 ⇒ jMj < 1: ð3Þ

Now, using the partial wave expansion of the scattering
amplitude to impose constraints on coefficients of the
Legendre polynomials. To recap, we first expand the
scattering amplitude as:

MðθÞ ¼ 16π
X
j

ajð2jþ 1ÞPjðcos θÞ; ð4Þ

where aj are complex-valued coefficients, and Pjðcos θÞ
are Legendre polynomials with Pjð1Þ ¼ 1 and

Z
1

−1
Pjðcos θÞPkðcos θÞd cos θ ¼ 2

2jþ 1
δjk: ð5Þ

For a case where the initial and final states are the same, we
can write the total scattering cross section in the center of
mass frame as:

σCMtot
¼ 16π

E2
CM

X
j

jajj2ð2jþ 1Þ: ð6Þ

Employing the optical theorem at θ ¼ 0, we have,

ImMðAB→ AB at θ¼ 0Þ
¼ 2ECMjp⃗ij

X
X

σtotðAB→XÞ≥ 2ECMjp⃗ijσtotðAB→ ABÞ;

ð7Þ

where an inequality has been introduced owing to the fact
that jABi∈ jXi. Then,

X∞
j¼0

ð2jþ 1Þ ImðajÞ ≥
2jp⃗ij
ECM

X∞
j¼0

ð2jþ 1Þjajj2: ð8Þ

This, coupled with the inequality jajj ≥ ImðajÞ, means
that the magnitude of aj is now constrained as jajj ≤ 1,
0 ≤ ImðajÞ ≤ 1, and jReðajÞj ≤ 1=2. These three condi-
tions constitute the perturbative unitarity bounds and can be
found from the Argand plane in Fig. 1. The information

presented in this section is explained in much greater detail
in [1].

III. SELF-HEALING UNITARITY

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGN
Rþ ∂

μΦ†
∂μΦ−m2jΦj2þ λRjΦj2

�

ð9Þ

Preceding [10], authors of [11] worked with a set of
complex scalar fields nonminimally coupled with gravity
as in Eq. (9), and tried to estimate the scattering amplitude
for the process ss̄ → s0s̄0, where they set s ≠ s0 to make
sure that only the s-channel graviton exchange diagram
contributed to the process, and they could avoid collinear
divergences in the t and u channels. They claimed that in
the limit where the number of particles is large, the leading
order loop corrections are successive vacuum polarization
diagrams and that any tree-level violations could be fixed
by considering such higher-loop corrections.
Using partial wave expansion as in the previous sec-

tion, they estimated the scale of unitarity violations for
j ¼ 2:

s ¼ 20

GNN
; ð10Þ

where s is a Mandelstam variable, GN is the Newton’s
constant andN is the number of particles in the theory. They
obtained the corresponding scales for the standard model of
particle physics (

ffiffiffi
s

p ¼ 6 × 1018 GeV) and the minimal
supersymmetric standard model (

ffiffiffi
s

p ¼ 4.6 × 1018 GeV),
both coupled with gravity.
Following this, authors of [10] considered a similar

Lagrangian as [11] involving a nonminimal coupling
between gravity and multiple scalar fields and provide a
useful confirmation for the results presented in [11]. They
go a step further and claim that the perturbative unitarity
bound (10) is false, and that summing over the infinite loop

FIG. 1. Argand diagram representing the condition
jajj2 ≤ ImðajÞ. The area within the circumference represents
the acceptable region where unitarity is obeyed.
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contributions in the same manner as done in [11], they
could use the relation:

aj ¼
atreej

1 −
Reða1-loopj Þ

atreej
− iatreej

ð11Þ

to show that there are no unitarity violations. Authors of [6]
expanded on this work and verified the results for a theory
involving the Higgs’ doublet They expanded the Higgs’
boson around a large background which caused the
coupling constants of the Higgs’ and Goldstone bosons
to differ. They, then, proceeded to show that self-healing
phenomenon could be applied to j ¼ 0 level as well.
There are two equivalent approaches to observe self-

healing of unitarity and we shall examine them both using
results from [6,10] in the following section. It should be
noted that even though the primary analyses have been
performed in the Jordan frame, an equivalent self-healing
mechanism can be found in the Einstein frame as well [12].

IV. UNITARITY VIOLATIONS
IN NONMINIMALLY COUPLED
SCALAR-TENSOR THEORIES

For this section, we consider the action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGN
Rþ ∂

μϕ∂μϕþ λRϕ2

�
ð12Þ

as used in [10] where we considerNs scalar fields and work
in the large Ns limit. Considering tree-level amplitudes, for
λ ¼ 0 (minimal coupling) and λ ¼ −1=3 (conformal cou-
pling), the theory is well behaved up to the Planck scale, but
more generally, looking at this action from dimensional
grounds, we expect the perturbative unitarity scales for all
processes ϕAϕA → ϕBϕB to be ≈ðGNλÞ−1. Now, for λ > 1,
it implies that perturbative unitarity is being violated below
≈ðGNÞ−1. Authors in [11] found that the perturbative
unitarity bound in these theories was dependent on Ns,
as stated in (10). The works [6,10] suggest, however, that
the self-healing mechanism takes care of any supposed
violations through infinite summation of vacuum polari-
zation corrections.

A. Partial wave amplitude approach

The tree-level ϕAϕA → ϕBϕB scattering amplitude is,

Mtree ¼ 8πGN

s
½2s2λð3λþ 1Þ þ ut� ð13Þ

and corresponding partial wave amplitudes for all possible
combinations of scalars can then be easily found to be,

atree0 ¼ GNNss
48

½24λð3λþ 1Þ þ 1�; ð14Þ

atree2 ¼ −
GNNss
120

: ð15Þ

Similarly, at 1-loop level,

M1-loop ¼ G2
NNs

15
½s2FðλÞ − ut� ð16Þ

a1-loop0 ¼ −G2
NN

2
ss2

2880π
½6FðλÞ − 1� ln ð−sÞ; ð17Þ

a1-loop2 ¼ −
−G2

NN
2
ss2

14400π
ln ð−sÞ; ð18Þ

where FðλÞ ¼ 1þ 20λþ 180λ2 þ 720λ3 þ 1080λ4 and s,
t, u represent the Mandelstam variables. The appearance of
Ns in the expressions (14), (15), (17), and (18) can be
explained simply: the authors in [11] worked with nor-
malized two-particle states, such that the normalization
factor for each state was 1=

ffiffiffiffiffiffi
Ns

p
. Combined with the

combinatorial factor N2
s=2 for large Ns, we are left with

Ns=2 as the factor. For 1-loop results, we need to attach
another Ns factor for the scalars running in the loop. Note
that λ ¼ 0 returns the expressions to the minimal coupling
case, and λ ¼ − 1

3
gives us the conformal coupling case. For

both of these, unitarity is safe up to the Planck scale. Since
a2 are completely independent of λ, the interesting case is
clearly a0.
The authors in [10] only tackled the j ¼ 2 case and

proved through jatree2 j2 ¼ Imða1-loop2 Þ that the unitarity
violations at tree-level can be taken care of by 1-loop
corrections. It is clear from the expressions above, however,
that since j ¼ 2 does not contain any λ dependence, their
results only prove that the minimal theory which appeared
to have tree-level unitarity violations at the Planck scale is
completely healed when considering the 1-loop correc-
tions. This result was improved in [6], where the authors
extended the result to the more relevant j ¼ 0 case. Their
result holds even when we consider the coupling constants
to be the same, as in (12).
The primary claim of [10] is that owing to the condition

jatree2 j2 ¼ Imða1-loop2 Þ, we can write:

aj ¼
atreej

1þ Reða1-loopj Þ
atreej

− iatreej

: ð19Þ

The authors state the same for (12) as well, which is
corroborated and extended to j ¼ 0 in [6]. They imply that
perturbative unitarity violations have been dealt with com-
pletely and the dependence of violation scale onNs in [11] is
just amisinterpretation of the result. Now, as stated in Sec. II,
the consequences of jatree2 j2 ¼ Imða1-loop2 Þ are the constraints:
jajj ≤ 1, 0 ≤ ImðajÞ ≤ 1, and jReðajÞj ≤ 1=2. Considering
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the first constraint at tree-level (see the appendix) for the
partial wave amplitudes, we find,

jatree2 j ≤ 1 ⇒ s ≤
120

GNNs
; ð20Þ

jatree0 j ≤ 1 ⇒ s ≤
48

GNNs½24λð3λþ 1Þ þ 1� ; ð21Þ

i.e., there still exists a perturbative unitarity bound on the
theory that depends on Ns and λ, similar to the result of [11]
(up to a multiplicative factor). Therefore, we claim that the
condition (11) as proposed in [10] does not imply healed tree-
level perturbative unitarity violations considering all loop
levels, even though they appear to be healed when we
consider 1-loop corrections. This can also be seen when
we perform a summation over infinite vacuum polarization
corrections. In order for the geometric progression to be
convergent, we require that the common ratio be <1. This
translates in our present case to the condition:

���� a
1-loop
2

atree2

���� ¼ GNNss
120π

< 1 ⇒ s <
120π

GNNs
ð22Þ

���� a
1-loop
0

atree0

���� ¼ GNNss
60π

�
6FðλÞ − 1

24λð3λþ 1Þ þ 1

�
< 1

⇒ s <
60π

GNNs

�
24λð3λþ 1Þ þ 1

6FðλÞ − 1

�
ð23Þ

where we have ignored ln ð−sÞ contributions since we’re
working in the UV limit. We see a similar dependence of the
perturbative unitarity bound on Ns and λ as seen earlier in
(20) and (21).

B. Dressed propagator approach

Further, the authors in [10] verify their results using the
dressed propagator approach for j ¼ 2, extended to j ¼ 0
in [6]. Here we present the 1-loop corrected dressed
graviton propagator as follows,

iDαβ;μν ¼ i
2q2

ð1þ 2Bðq2ÞÞ½LαμLβν þ LανLβμ − LαβLμν�

− i
Aðq2Þ
4

LαβLμν: ð24Þ

where

Aðq2Þ ¼ −
1

30π
GNNsð1þ 10λþ 30λ2Þ ln

�
−q2

μ2

�
; ð25Þ

Bðq2Þ ¼ 1

240π
GNNs ln

�
−q2

μ2

�
; ð26Þ

Lμν ¼ ημν −
qμqν

q2
; ð27Þ

where q represents momentum and μ is related to the
renormalization scale of the theory. Base graviton propa-
gator can be recovered by setting Aðq2Þ, Bðq2Þ ¼ 0. Again,
setting λ ¼ 0;− 1

3
returns the j ¼ 2 dressed graviton propa-

gator, and the λ dependent terms correspond to the off-shell
j ¼ 0 part. Authors in [10] mistakenly assume that Aðq2Þ
goes to zero completely in the aforementioned limits and
due to this, their result for the infinite 1-loop summed
dressed propagator is incorrect.
Also, in order to proceedwith the summation, they assume

that GNNs is small. Since this is a dimensionful quantity, a
more complete statement would beGNNs ≪ s−1. This again
gives us a similar upper bound on energy as (10), (20),
meaning its dependence on Ns is still present. Further, they
only proceed with the j ¼ 2 part for the rest of the
calculation, which as stated earlier, does not hold any
information about the violation scales dependent on λ.
The authors of [6] come to the rescue here. They assume

λ1 ¼ λ2 ¼ λ (i.e., small Higgs’ background limit) and focus
on the j ¼ 0 part of the dressed propagator (24) by
assuming λ ≫ 1, which is a valid limit as mentioned earlier
in this section. This limit is suggested by the authors to
avoid any contributions from Bðq2Þ, and consequently also
ignore parts of the base propagator contribution. The
dressed propagator in this work looks like,

iDαβμν ≈ −
i

2q2

�
1þ q2Aðq2Þ

2

�
LαβLμν

≈ −
i

2q2

�
1 −

q2GNNsλ
2

2π
ln

�
−q2

μ2

��
LαβLμν: ð28Þ

Typographical errors aside, these are the results of [6].
Later, similar to [10], they assume λ2GNNs ≪ q−2 to be
able to sum over the infinite series [which again reinforces
the dependence of the perturbative unitarity bound on Ns
and λ as in (21) and (23)]. This, however, does not make
sense because even though taking the two aforementioned
limits simultaneously means that we can ignore Bðq2Þ
(since λ ≫ 1) in favor of Aðq2Þ in (24), all parts of the base
graviton propagator must contribute to the dressed result
since the constraint q2GNNsλ

2 ≪ 1 implies that Aðq2Þ is
the leading perturbative correction. The actual form of the
propagator, as per their assumptions, should look like,

iDαβ;μν ≈
i

2q2
½LαμLβν þ LανLβμ − LαβLμν�

− i
GNNsλ

2

4π
ln

�
−q2

μ2

�
LαβLμν; ð29Þ

for which summing the infinite series is a rather difficult
task. Therefore, we need to confine ourselves with the
1-loop result in this method as well. It can be verified that
the partial wave amplitude for the sum of ϕAϕA → ϕBϕB
type processes involving the 1-loop dressed graviton
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propagator (29) for all A, B is the same as that obtained
in (17) assuming λ ≫ 1 (up to a multiplicative factor), i.e.
jatree0 j2 ¼ Imða1-loop0 Þ as verified using the partial wave
amplitude approach in [6].

V. DISCUSSION

The self-healing mechanism was defined in [10] to
operate under specific conditions that were first discovered
in [11] and listed in Sec. III. After examining the claims
made in the paper in both partial wave and dressed
propagator approaches, we conclude through this work
that the assessment made by the authors of [11] that the
unitarity violation scale depends on the number of particles
Ns is indeed true and complete healing of tree-level
violations works only if the bounds described in (20)
and (21) are obeyed strictly.
In conclusion, we found that tree-level unitarity viola-

tions are indeed healed using 1-loop corrections, but the
conditions required to effectively apply the self-healing

mechanism themselves impose bounds on the energy scale
of the theory that are dependent on the number of particles
in the theory, as found by the authors of [11] previously.

APPENDIX

The authors in [10] claim that for a unitary theory
obeying Imða1-loopj Þ ¼ jatreej j2, we can write,

aj ¼ atreej þ a1-loopj ¼ atreej

1 −
Reða1-loopj Þ

atreej
− iatreej

: ðA1Þ

Expanding a1-loopj ¼ Reða1-loopj Þ þ iImða1-loopj Þ, we find
that the equation above holds true if and only if,

Reða1-loopj Þ2 þ 2atreej Reða1-loopj Þ þ ðatreej Þ4 ¼ 0 ðA2Þ

Real solutions exist for Reða1-loopj Þ only when jatreej j ≤ 1.
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