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Using analytical tools from linear response theory, we systematically assess the accuracy of several
microscopic derivations of Israel-Stewart hydrodynamics near local equilibrium. This allows us to “rank”
the different approaches in decreasing order of accuracy as follows: inverse Reynolds dominance (IReD),
Denicol-Niemi-Molnár-Rischke (DNMR), second-order gradient expansion, and 14-moment approxima-
tion. We find that IReD theory is far superior to Navier-Stokes, being very accurate both in the asymptotic
regime (i.e., for slow processes) and in the transient regime (i.e., on timescales comparable to the relaxation
time). Also, the high accuracy of DNMR is confirmed, but neglecting second-order terms in the Knudsen
number, which would render the equations parabolic, introduces serious systematic errors. Finally, in most
cases, the second-order gradient expansion (also known as nonresummed Baier-Romatschke-Son-
Starinets-Stephanov) is found to be more inaccurate than Navier-Stokes in the transient regime. Overall,
this analysis shows that Israel-Stewart hydrodynamics is falsifiable, and the relaxation time is observable,
shedding new light on the debate on the viability of transient hydrodynamics as a well-defined physical
theory distinguished from Navier-Stokes.
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I. INTRODUCTION

There is a long-lasting debate over the physical content
of Israel-Stewart-type theories [1–6] for relativistic viscous
hydrodynamics. The three most widespread positions on
the matter are summarized below (see Fig. 1):

(i) Israel-Stewart theories are a “mathematical trick” to
make relativistic Navier-Stokes (NS) hyperbolic,
causal, and stable. Their physical content is exactly
the same as Navier-Stokes, and all the additional
transport coefficients (e.g. the relaxation times) are
unobservable UV regulators, which fall outside the
regime of applicability of hydrodynamics [7–10].

(ii) Israel-Stewart theories are a “refinement” of Navier-
Stokes, able to capture the dynamics up to second
order in gradients, from which the term “second-
order hydrodynamics” comes [4,11,12]. Their re-
gime of applicability is essentially the same as that
of Navier-Stokes (i.e., small gradients), but the
dynamics is captured more accurately.

(iii) Israel-Stewart theories are an extension of hydro-
dynamics which captures not only the Navier-Stokes
behavior, but also the dynamics of the slowest
nonequilibrium degrees of freedom (namely the first
nonhydrodynamic modes [13–16]). Their regime of
applicability extends beyond Navier-Stokes, and it
can capture also the initial transient dynamics of a

fluid, when the slowest nonequilibrium degrees of
freedom have not yet equilibrated. From this the
term “transient hydrodynamics” originates [1,5].

The tenured practitioner may regard such debate as a
merely academic controversy. However, this discussion
has a direct impact on theoretical models and numerical
simulations, because it affects how we define and compute
the Israel-Stewart transport coefficients. If we adopt inter-
pretation (i), then it does not really matter what the actual
value of, e.g., the relaxation time is, as long as causality and
stability are enforced. If we adopt interpretation (ii), then
there is a Kubo formula for all Israel-Stewart coefficients,
including the relaxation time. Finally, if we adopt inter-
pretation (iii), then the relaxation time is determined by the
first nonhydrodynamic pole of the retarded correlator, and
there is no Kubo formula for it [13].
Let us consider a concrete example of this dilemma: the

problem of deriving relativistic hydrodynamics from
kinetic theory. Here, one starts from a theory with infinite
local degrees freedom, namely all the moments of the
phase-space distribution function fðxμ; pμÞ, and the goal is
to make some approximation to derive a closed system of
equations for the Israel-Stewart hydrodynamic fields,
which constitute only 14 algebraic degrees of freedom.
The best-known approach to this problem is the Denicol-
Niemi-Molnár-Rischke (DNMR) procedure [5] which, in
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its original intent, aims to fulfill both interpretations (ii) and
(iii). In fact, the authors of [5] carry out a rigorous
expansion up to second order in gradients, consistent with
point (ii). At the same time, they develop an ingenious
technique to match the relaxation times with those of the
slowest nonhydrodynamic modes, thereby ensuring con-
sistency also with point (iii). Unfortunately, the resulting
theory fails to be hyperbolic, opening the doors to causality
violations and, therefore, to instabilities [17,18]. For this
reason, when the DNMR theory is actually used in
numerical simulations, one is forced to artificially remove
all the terms that are explicitly of second order in gradients
(the termsK,Kμ,Kμν [5,19,20]), breaking consistency with
point (ii). To fix this problem, an alternative procedure
called inverse Reynolds dominance (IReD) has been
recently proposed [21].1 The main idea of [21] is to
“reabsorb” the K terms through a redefinition of the
hydrodynamic fields. In this way, nothing is neglected,
and agreement with (ii) is restored. The price of this
transformation is that the relaxation times are redefined,

and they may no longer match the transient dynamics of the
gas, thereby breaking (iii). Hence, the choice between IReD
and DNMR looks equivalent to the choice between
interpretations (ii) and (iii).
A rather open-minded approach to the dilemmamay be to

suggest that there is no universally preferable interpretation
of Israel-Stewart theories, and that the choice between
positions (i), (ii), and (iii) ultimately depends on the details
of the systemunder consideration, and onwhich observables
one is interested in. While such a compromise might seem
reasonable at first, it still leaves some issues unresolved. For
example, the core position of Geroch [9], who advocates for
(i), is that as soon as deviations from Navier-Stokes become
measurable, all the degrees of freedom of kinetic theory
“appear together”, and hydrodynamics as a whole breaks
down. Hence, any “Israel-Stewart effect” is fundamentally
undetectable, because it is impossible to disentangle it from
all the microscopic deviations from hydrodynamics. This
(rather extreme) position is at odds with a large part of the
recent literature [25–32]. For this reason, it is now necessary
to put Geroch’s claims to the test. Furthermore, even
assuming that position (i) is not always valid, still we need
a clear-cut criterion to decide between interpretations (ii) and
(iii) for a given system.
This article aims to make some further steps towards

settling all such matters. We will use a solvable linear-
response model to discuss the accuracy of the most wide-
spread formulations of Israel-Stewart hydrodynamics in
different dynamical regimes. This will allow us to assess
the viability of interpretations (i), (ii), and (iii) in realistic
situations. Our analysis is restricted to fluid flows that are
close to local equilibrium, because a proper formulation of
far-from-equilibrium hydrodynamics does not exist, except
in some very specific situations [26,31].
Throughout the article, we adopt the metric signature

ðþ − −−Þ, and work in natural units: c ¼ kB ¼ ℏ ¼ 1.
We adopt Einstein’s convention for spacetime indices
(μ; ν;…).

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

A. A simple linear-response model

Let us formulate the problem in an abstract way. We can
picture every element of fluid as a tiny thermodynamic
system, having a large list of internal nonequilibrium
degrees of freedom, A ¼ fA1;A2;…gT (which we will
in the following also call “affinities” [33]), undergoing
some complicated coupled dynamics. In hydrodynamics,
we are not interested in explicitly tracking all these internal
variables. Instead, we only want to know the evolution of a
single viscous flux ΠðAÞ, which describes the collective
influence of A on the transport of some conserved quantity.
For example, we may take Π to be the bulk stress, which
affects the transport of linear momentum. If we follow the

FIG. 1. Fix a spacetime event P. Working in the local rest
frame of the fluid, call “∂x” the maximum (in magnitude) rate of
change of the hydrodynamic fields along all spacelike directions,
and call “∂t” the maximum rate of change along the time direction
(nearP). Compare them with the particles’ mean free path λ and
mean collision time τ. The regime of applicability of a hydro-
dynamic theory (in our case, Israel-Stewart) is the region of the
fλ∂x; τ∂tg plane where the predictions of hydrodynamics are
assumed accurate. Both interpretations (i) and (ii) treat spacelike
derivatives and timelike derivatives on the same footing, and
(ii) assumes a slightly larger regime than (i). Interpretation
(iii) claims a regime of applicability that extends up to jτ∂tj≲ 1.

1We remark that the method has also been called “order-of-
magnitude approximation” [22,23] and has its origins in non-
relativistic kinetic theory [24].
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evolution of a single element of fluid, we can express all our
variables as functions of the proper time t along the
element’s worldline: AðtÞ, ΠðtÞ. Now, the time derivative
of AðtÞ, which we call ȦðtÞ, depends on the state of the
fluid element, namely on AðtÞ itself, but also on the
interaction of the fluid element with the surroundings,
since the fluid element is an open system (see Fig. 2). For
clarity, we will assume that the action of the environment
on AðtÞ can be parametrized through a single driving force
θðtÞ related to some spatial gradient (in the example of bulk
viscosity, we may identify θ with the expansion rate ∇μuμ).
Then, linearizing the dynamics around local equilibrium,
which we take to be the state A ¼ 0, the most general
model we can construct is2

τȦþ A ¼ κθ;

Π ¼ −γA: ð1Þ

Here, τ is a square matrix, called “relaxation matrix”,
whose eigenvalues are positive by thermodynamic stabil-
ity.3 The column vector κ ¼ fκ1; κ2;…gT is the dynamical
susceptibility of A to the local gradient θ. In the second
equation, we have Taylor-expanded the function ΠðAÞ
to linear order in A, so that the row vector γ ¼ fγ1; γ2;…g
is just −∂AΠðA ¼ 0Þ. Furthermore, we used that ΠðA ¼
0Þ ¼ 0. In principle, τ, κ, and γ may be functions of the
proper time, because they depend on the thermodynamic
conditions of the fluid element (e.g. on its energy). Here,
we will treat them as constants, for simplicity.
Model (1) can be solved analytically, and it gives

AðtÞ ¼
Z

t

−∞
e−τ

−1ðt−t0Þτ−1κθðt0Þdt0;

ΠðtÞ ¼ −
Z

t

−∞
γe−τ

−1ðt−t0Þτ−1κθðt0Þdt0: ð2Þ

We are interested in the second equation, which tells us that
the fluid elements, when subject to a time-varying driving
force θðtÞ, will possess an induced viscous fluxΠðtÞ, which
can be expressed in the form ΠðtÞ ¼ −

R
RGðt − t0Þθðt0Þdt0,

with a linear-response (retarded) Green’s function

GðtÞ ¼ ΘðtÞγe−τ−1tτ−1κ; ð3Þ

where ΘðtÞ is the Heaviside step function. Assuming, as is
usually the case, that τ is diagonalizable, i.e., τ ¼ P

n τnPn,
with eigenvalues τn and eigenprojectors Pn (recall thatP

n Pn ¼ I, PmPn ¼ δmnPn), we can express GðtÞ in the
form

GðtÞ ¼ ΘðtÞ
X
n

ζn
τn

e−t=τn ; with ζn ¼ γPnκ: ð4Þ

Recalling that τn > 0, we see that ΠðtÞ is a sum
of independent relaxing contributions ΠnðtÞ ∝ e−t=τn . The
coefficient ζn quantifies the susceptibility of Πn to the
driving force θ. The larger ζn, the more Πn is excited by
the local gradients.
In the case of kinetic theory, fA1;A2;…g may be

interpreted as the infinite tower of moments of the
phase-space distribution function fðxμ; pμÞ, and θ is some
gradient of the flow velocity. Then,Πn is the contribution to
the viscous stress associated with the nth eigenmode of the
collision kernel.

B. The Israel-Stewart approximation

The Israel-Stewart theory is a drastic approximation of
model (1). It replaces the system of coupled differential
equations for the degrees of freedom A with a single
relaxation equation for Π itself,

FIG. 2. Schematic representation of our linear-response frame-
work. In a full “(3þ 1)-dimensional” description, the non-
equilibrium degrees of freedom AðxμÞ obey some linearized
partial differential equations of the form τuμ∂μAþA ¼
“spatial gradients”. However, we can effectively reduce the
problem to “(0þ 1)-dimensional” by tracking the evolution of
A along a single worldline xμðtÞ (dashed line), which is an
integral curve of the velocity field uμ (blue arrow). In this
dimensional reduction, we lose information. In fact, by focusing
on a single worldline, we are forced to treat the spatial gradients
as externally given, converting them into an external force θðtÞ.
This leads to a model where the fluid element (blue box) travels in
a dynamically active environment.

2In Appendix, we clarify the connection of our simple model
to the system of moment equations in kinetic theory.

3Strictly speaking, thermodynamic stability only requires the
real part of the eigenvalues to be positive. Hence, depending on
the parity of the degrees of freedom under time reversal, one is
in principle allowed to have “complex relaxation times” [15].
Indeed, this is expected to happen in most holographic strongly
coupled plasmas [34]. However, for such systems, the Israel-
Stewart theory is not applicable [13]. Hence, focusing on
situations that are closer to kinetic theory, we will assume that
the eigenvalues of τ are real and strictly positive.

REGIME OF APPLICABILITY OF ISRAEL-STEWART … PHYS. REV. D 109, 016019 (2024)

016019-3



τΠΠ̇þ Π ¼ −ζθ: ð5Þ

The underlying assumption is that all the complicated
dynamics of fA1;A2;…g can be “traced out”, and reab-
sorbed into two transport coefficients, namely τΠ and ζ.
Now, it is evident that the Israel-Stewart theory cannot
agree with (1) in an exact manner, because the linear-
response Green’s function of (5) is

GISðtÞ ¼ ΘðtÞ ζ

τΠ
e−t=τΠ ; ð6Þ

which differs from (4) whenever there are at least two
relaxation times. However, by appropriately tuning the
values of τΠ and ζ, we may replicate some essential features
of (4). This is where the debate outlined in the introduction
comes about. In fact, depending on which interpretation
one chooses, there may be different features of G one may
want GIS to replicate, and this leads to different prescrip-
tions for the values of τΠ and ζ. For example, if one adopts
interpretation (i), then only the Navier-Stokes limit
Π ≈ −ζθ matters, meaning that τΠ can be chosen freely.
If one instead follows the DNMR approach, then τΠ
should replicate the evolution of the slowest nonequili-
brium degree of freedom, and we should therefore
set τΠ ¼ maxfτng.

C. Our solution

Let us anticipate the central result of this article. There is a
prescription for τΠ and ζ that can accommodate for both
interpretations (ii) and (iii) simultaneously, and this pre-
scription is not DNMR in its original formulation [5], but the
more recent IReD formulation [21]. Within such a frame-
work, the Israel-Stewart predictions are significantly more
accurate than the Navier-Stokes ones, thereby falsifying
Geroch’s claim that Israel-Stewart effects are always unde-
tectable [9].4 Below, we provide some quick analytic argu-
ments in support of the above statements, which are then
corroborated by numerical studies in the upcoming sections.
According to interpretation (ii), the “correct” Israel-

Stewart theory should agree to second order in spacetime
gradients with the exact model. Considering that θ is
already of first order in gradients, we only need to make
sure that, if we Fourier-transform to frequency space, the
Israel-Stewart relationship between ΠðωÞ and θðωÞ agrees
with the exact relationship derived from model (1), within
an error of order ω2. Hence, we must match the coefficients
of the ω-expansions below:

ΠðωÞ
θðωÞ ¼exact − γðI − iωτÞ−1κ ¼ −γκ − iγτκωþOðω2Þ;

ΠðωÞ
θðωÞ¼

IS − ζð1 − iωτΠÞ−1 ¼ −ζ − iζτΠωþOðω2Þ: ð7Þ

This leads us to the following identifications, which are
mandatory for interpretation (ii) to hold:

ζ ¼ γκ ¼
X
n

ζn;

τΠ ¼ γτκ

γκ
¼

P
nζnτnP
mζm

: ð8Þ

As it turns out, these are the expressions of the transport
coefficients within the IReD approach [21]. This fact
will be shown explicitly in Sec. III C. However, it is
evident a priori, since IReD fulfills interpretation (ii) by
construction.
Let us now focus on interpretation (iii). Here, the

assumption is that, even if the Green’s function (6) cannot
coincide with (4), still one can look for the value of τΠ that
gives “the best fit” (ζ is fixed to γκ by the Navier-Stokes
limit). In the original DNMR approach [5,13], it is argued
that, since the term in (4) with the largest relaxation time is
the last to decay to zero, one should set τΠ ¼ maxfτng.
However, this approach has a serious limitation. In fact,
suppose that the largest relaxation time, say τ1, has a very
small associated susceptibility ζ1. Then, its contribution to
the Green’s function (4) may be negligible for all practical
purposes. In this case, the DNMR prescription may
dramatically overestimate the timescale over which G
relaxes to zero. The most natural way to avoid this problem
is to define τΠ as the average of the relaxation times τn,
weighted over their susceptibility ζn. In this way, we give
more importance to those relaxation times that contribute
more to the Green’s function (4). Quite surprisingly, this
leads us back to the IReD prescription (8).
To appreciate these subtleties, let us consider a concrete

example. Suppose that the “exact model” possesses three
relaxation times, τn ¼ f5; 2; 1g, with associated suscep-
tibilities ζn ¼ f1; 1; 8g. Then, for t > 0, the exact Green’s
function (4), the DNMR Green’s function (6), and its IReD
variation are, respectively,

GexðtÞ ¼
e−t=5

5
þ e−t=2

2
þ 8e−t;

GDðtÞ ¼ 2e−t=5;

GIRðtÞ ¼
20

3
e−2t=3: ð9Þ

While it is evident that DNMR fails to reproduce the
transient dynamics of the system (see Fig. 3), IReD still
provides a reasonable fit. Now, it should be emphasized
that, since the Green’s function describes the response of Π

4We would like to point out that with this we are not claiming
that interpretation (i) is always incorrect and should be discarded.
On the contrary, interpretation (i) is the most convenient and
pragmatic approach in all those systems where Navier-Stokes
(and therefore Bemfica-Disconzi-Noronha-Kovtun [35–37]) is
assumed applicable. However, it is incorrect to claim that Israel-
Stewart is always only as accurate as Navier-Stokes.
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to an unrealistic instantaneous driving force θðtÞ ¼ δðtÞ, in
Fig. 3 the discrepancies between the models are exacer-
bated. In a situation where θðtÞ varies over timescales that
are comparable to the relaxation times, the agreement
between the exact model, IReD, and DNMR can be
surprisingly good, as we will show in our numerical study.

III. OUTLINE OF THE NUMERICAL STUDY

We consider a fluid element that is initially in thermo-
dynamic equilibrium (A ¼ 0), with no spatial gradients in
the surroundings (θ ¼ 0). Then, a perturbation comes
along, and the driving force θðtÞ is turned on, acting as
an external source for Π (in the linear response regime). To
examine both the transient dynamics [interpretation (iii)]
and the relaxation to the Navier-Stokes state [interpreta-
tions (i) and (ii)], we choose θðtÞ to be a smoothstep that
reaches 1 over a timescale comparable to the relaxation
times. Its analytic profile is provided as5

θðtÞ ¼

8>><
>>:

0 if t ≤ 0;

6ðt=t0Þ5 − 15ðt=t0Þ4 þ 10ðt=t0Þ3 if 0 < t < t0;

1 if t ≥ t0;

ð10Þ

where t0 is a parameter of the order of maxfτng. The profile
is visualized in Fig. 4. We will vary the exact value of t0 to
explore more or less extreme transient regimes. Note that,

although (10) is not truly smooth, it is still of class C2ðRÞ,
which is good enough for our purposes. Our goal is to “rank”
different formulations of Israel-Stewart theory, based on
their accuracy in reproducing the exact model prediction.
Interpretation (i) will be considered outdone only if the
Israel-Stewart prediction for ΠðtÞ is significantly (i.e.,
visibly) more accurate than the Navier-Stokes prediction.
In practice, we will compare six alternative dynamical

equations for Π, which are supposed to approximate the
exact model (1). In all equations, the function θðtÞ plays the
role of an external source, and the transport coefficients are
background constants.

DNMR∶ τDΠ̇þ Π ¼ −ζθ − χDθ̇; ð11Þ

tDNMR∶ τDΠ̇þ Π ¼ −ζθ; ð12Þ

IReD∶ τIRΠ̇þ Π ¼ −ζθ; ð13Þ

1AA∶ τð1ÞΠ̇þ Π ¼ −ζð1Þθ; ð14Þ

2ndOH∶ Π ¼ −ζθ − χ2θ̇; ð15Þ

NS∶ Π ¼ −ζθ: ð16Þ

Equation (11) is the formulation of Israel-Stewart
constructed by applying the original DNMR truncation
procedure [5] to the “exact” model (1). Note that there is
an additional term ∝ θ̇, which does not appear in the
general Israel-Stewart theory (5). This term is the explicit
second-order gradient (K-type [5]) contribution that
makes DNMR acausal. Equation (12) is the truncated
DNMR model that we obtain when we artificially remove

FIG. 4. The smoothstep function that is used as an external
source to drive the internal degrees of freedom A (and thus the
viscous flux Π) out of equilibrium. Its analytic profile can be
found in Eq. (10).

FIG. 3. Israel-Stewart approximations (dashed and dashdotted
lines) for the linear-response Green’s function of a viscous flux
(solid line) in a system with three relaxation times. The analytic
formulas are provided in Eq. (9).

5We would like to remark that our main results do not depend
on the choice of θðtÞ. We tested many possible shapes, obtaining
similar accuracy estimates. We chose the smoothstep because it
illustrates all the essential physics quite well.
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this acausal term, as is always done in simulations.
Equation (13) is constructed by applying the IReD
approach [21] to truncate the dynamics of (1), reducing
it again to a relaxation equation for Π (with a different
relaxation time with respect to DNMR). Equation (14)
is the analog of the 14-moment approximation (we call it
“1-affinity approximation (1AA)”); it expresses the dynam-
ics using the variables fΠ;A2;A3;…g, and then simply
sets A2 ¼ A3 ¼ … ¼ 0. Equation (15) is second-order
hydrodynamics (2ndOH) in its purest form; Π is expanded
up to second-order in gradients of the flow velocity uμ

(recall that θ is a first-order term). It is not properly an
Israel-Stewart model, but it is instructive to use it as a
reference, since within interpretation (ii) it should be as
accurate as (11) and (13), see Ref. [4]. Finally, Eq. (16) is
the Navier-Stokes limit, which is used as our fundamental
accuracy threshold. If an Israel-Stewart model fails to be
appreciably more accurate than Navier-Stokes, then inter-
pretation (i) applies to it (at best).
In this section, we will derive Eqs. (11)–(16) one by one

directly, as approximations of the “exact” model (1), and
we will express all transport coefficients in terms of the
kinetic coefficients τ, κ, γ.

A. The Navier-Stokes limit

Let us first show that the slow limit of model (1) is the
Navier-Stokes theory. If we perform the change of inte-
gration variable t̃ ¼ t − t0 in the second equation of (2), we
obtain the following (exact) formula for the viscous flux:

ΠðtÞ ¼ −
Z

∞

0

γe−τ
−1 t̃τ−1κθðt − t̃Þdt̃: ð17Þ

Let us note that, if t̃≳maxfτng, then the integrand is
exponentially suppressed. Hence, the relevant contributions
to the integral come from the region 0 < t̃≲maxfτng.
This implies that, if the driving force θ varies slowly over the
longest relaxation timescale, we can make the approxima-
tion θðt − t̃Þ ≈ θðtÞ, and we can bring the force outside
the integral. Then, using the well-known result of matrix
calculus Z

∞

0

e−τ
−1 t̃dt̃ ¼ τ; ð18Þ

we indeed recover theNavier-Stokes Eq. (16), with viscosity
coefficient ζ ¼ γκ ¼ P

n ζn.

B. The DNMR truncation

If we left-multiply the first equation of (1) by the row-
vector −γ, we obtain

−γτȦþ Π ¼ −ζθ: ð19Þ
This tells us that the exact value of Π can be expressed
through the Navier-Stokes prescription, plus a relaxation-type

correction that involves all the nonequilibrium degrees of
freedom (in our case, all affinities A). The main idea of
DNMR is to keep the dynamics of the slowest eigenmode
of the system, say, τ1, while the faster ones are approxi-
mated by their Navier-Stokes values [5]. To this end, we
split the first term of (19) into two pieces as follows:

−γτȦ ¼ τ1Π̇þ γðτ1I − τÞȦ: ð20Þ

Then, we define the eigenprojected vectors Xn ¼ PnA, so
that we have A ¼ P

n Xn (because
P

n Pn ¼ I). This
allows us to rewrite (19) as follows:

τ1Π̇þ Π ¼ −ζθ − γ
X
n≠1

ðτ1 − τnÞẊn: ð21Þ

Up to this point, no approximation has been made (we
removed the n ¼ 1 contribution to the sum because it
vanishes). Now, we notice that, if we left-multiply the first
equation of (1) by Pn, we obtain τnẊn þXn ¼ Pnκθ,
which, when differentiated in time, becomes

Ẋn ¼ Pnκθ̇ þOðτn∂3Þ: ð22Þ

The DNMR truncation consists of using Eq. (22) to replace
Ẋn in Eq. (21). In this way, consistency with interpretation
(ii) is preserved, because the error is of order 3 in gradients
(recall that Xn is already of order 1). Furthermore, also
interpretation (iii) is somehow respected, because the sum in
Eq. (21) does not involve the n ¼ 1 term, meaning that the
transient dynamics ofX1 is captured exactly. The result is the
DNMR equation of motion (11), with transport coefficients

τD ¼ τ1;

χD ¼ γðτ1 − τÞκ ¼ ζ

�
τ1 −

γτκ

γκ

�
: ð23Þ

C. The IReD truncation and second-order
hydrodynamics

Both the IReD approach [21], and second-order hydro-
dynamics [4] adopt interpretation (ii), namely that Israel-
Stewart theories are refinements of Navier-Stokes, and
should be accurate up to second order in the derivatives. In
fact, both of them start from the assumption that the process
is very slow, so that Eqs. (1) and (19) imply

A ¼ κθ þOð∂2Þ;
Π ¼ −ζθ þOð∂2Þ: ð24Þ

These equations, by themselves, are not accurate enough
for our purposes, because their error is of order 2 in
derivatives. However, if we differentiate them with respect
to time, we get two possible approximations for Ȧ, namely
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Ȧ ¼ −κΠ̇=ζ þOð∂3Þ;
Ȧ ¼ κθ̇ þOð∂3Þ: ð25Þ

If we use the first approximation to replace Ȧ in Eq. (19),
we recover the IReD prescription, see Eq. (13), whereas, if
we use the second approximation for Ȧ, we recover second-
order hydrodynamics, as given in Eq. (15). The associated
transport coefficients are (recall that ζ ¼ γκ)

τIR ¼ −
χ2
ζ
¼ γτκ

γκ
¼

P
nζnτnP
mζm

: ð26Þ

Let us make an important remark. Both IReD and second-
order hydrodynamics arise from the same underlying
assumption, and adopt the same type of approximation.
Hence, their accuracy is necessarily similar for very slow
processes. However, when θðtÞ varies over timescales that
are comparable to the relaxation times, the two equations are
very different. In fact, the linear-response Green’s function
of second-order hydrodynamics isG2ðtÞ ¼ ζδðtÞ þ χ2δ

0ðtÞ,
which has nothing to do with the exact Green’s function (4).
Thus, the transient evolution of second-order hydro-
dynamics is expected to be the least accurate, among
Eqs. (11)–(15).On the other hand, even if the IReDapproach
assumes interpretation (ii), the value of the IReD relaxa-
tion time happens to be the weighted average (8). As a
result, the IReD Green’s function turns out to be a very
accurate exponential approximation of the exact Green’s
function.

D. The 1-affinity approximation

The 1-affinity approximation is the abstract generaliza-
tion of Grad’s 14-moment approximation [1]. It differs
from all others in the fact that it never assumes that the
dynamics is “slow”. Instead, it uses the second equation
of (1) to rewrite the equation of motion for A1 as an
equation of motion for Π,

τ11Π̇þ
X
n≠1

ðτ11γn − γ1τ
1
nÞȦn þ Πþ

X
n≠1

γnAn ¼ −γ1κ1θ:

ð27Þ

Neglecting the impact of all other degrees of freedom
completely, by just setting An ¼ 0 for n ≠ 1, we obtain a
closed equation for the viscous stress. This has the form
(14), with

τð1Þ ¼ τ11; ζð1Þ ¼ γ1κ1: ð28Þ

We remark that this approximation has to be slightly
modified in the case of kinetic theory discussed in
Sec. IV C, where the fundamental matrix is given by τ−1

(and not τ itself).

IV. NUMERICAL RESULTS

In this section, we present our numerical results on the
performance of the different Israel-Stewart-type prescrip-
tions introduced in the previous sections.

A. Two degrees of freedom

To assess the performance of the different theories
introduced in the preceding section, we first consider the
simple case of two affinities, i.e.,A ¼ fA1;A2gT. This case
is admittedly quite far from the kinetic theory problem,
where the nonequilibrium degrees of freedom are infinite.
However, it may be important for applications to bulk-
viscous neutron stars [32,38]. In practice, to completely
specify the “exact” model, we only need to prescribe the
eigenvalues τn and susceptibilities ζn, since this fully
determines the exact Green’s function. Indeed, most of
the Israel-Stewart prescriptions for the transport coefficients
discussed above can be expressed only in terms of τn and ζn.
The only exception is the one-affinity approximation, which
requires the knowledge of τ, κ, and γ. For simplicity, wewill
assume that τ ¼ diagðτ1; τ2Þ, so that the one-affinity trans-
port coefficients simply become τð1Þ ¼ τ1 and ζð1Þ ¼ ζ1.

1. Varying the susceptibilities

In order to explore the regimes where we expect different
hydrodynamic theories to be valid, we start by varying the
susceptibilities ζn ¼ fζ1; ζ2g that determine how important
each eigenvalue is for the evolution ofΠ. Specifically, let us
consider the following parameter sets:

ðaÞ τn ¼ f5; 1g; ζn ¼ f5; 1g; t0 ¼ 5;

ðbÞ τn ¼ f5; 1g; ζn ¼ f1; 1g; t0 ¼ 5;

ðcÞ τn ¼ f5; 1g; ζn ¼ f1; 5g; t0 ¼ 5;

where t0 is the parameter appearing in Eq. (10). Let us
discuss these scenarios one by one.
In case (a), the slowest scale is also the most important

one to Π since ζ1 is considerably larger than ζ2. As is
evident from Fig. 5, both DNMR and IReD capture the
dynamics very well. Indeed, the error of DNMR drops off
faster than the one of IReD, especially at late times. This is
to be expected, since the parameter set (a) lies precisely
in the regime where the assumptions of DNMR hold.
However, when omitting the term ∼θ̇, i.e., considering the
tDNMR method, the agreement with the exact solution,
while still reasonably good, becomes worse than the one of
IReD. In comparison to the previous three theories, the
performances of 1AA, 2ndOH, and NS, are considerably
worse, cf. Fig. 5. While 1AA does not capture the correct
late-time limit, NS relaxes to it on a timescale that is much
too short. Finally, 2ndOH, in addition to relaxing too fast to
the late-time limit, features an unphysical upward spike that
is induced by the nonvanishing derivative θ̇. Only at very
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late times tNS ∼ 5maxfτng, the different methods (exclud-
ing 1AA) agree.
In parameter set (b), both the slow and the fast mode are

equally important. Considering the results displayed in
Fig. 6, both DNMR and IReD perform rather well, with
DNMR converging to the exact solution faster at late times.
However, in this case the omission of the term ∼θ̇ has a
larger effect on the performance of tDNMR, making it
visibly worse than IReD. The qualitative behavior of the
1AA, 2ndOH and NS is the same as in case (a), with 1AA
incurring a greater error in the Navier-Stokes value.
Parameter set (c) inverts the weight that each mode

contributes to the quantity Π, with the faster mode being
more important than the slower one. The results are
displayed in Fig. 7. In accordance with the previous
discussions, DNMR, while still catching some features
of the exact curve, has trouble dealing with the importance
of the slower mode. This problem is worsened in tDNMR,
which now is significantly off. IReD, on the other hand,
does not suffer considerably, and captures the transient

dynamics relatively well. Furthermore, because the faster
mode now has a greater influence, Π reaches its asymptotic
limit faster, making both NS and 2ndOH perform better in
comparison to cases (a) and (b).

2. Varying the transient regime

In the previous subsubsection we considered a smooth-
step that varied on a timescale equal to that of the longest
microscopic relaxation time. To test more or less violent
transient regimes, we consider the following additional
parameter sets,

ðdÞ τn ¼ f5; 1g; ζn ¼ f1; 1g; t0 ¼ 100;

ðeÞ τn ¼ f5; 1g; ζn ¼ f1; 1g; t0 ¼ 0.01:

Intuitively, one would expect the performances of NS and
2ndOH to become worse as the timescale t0 is decreased.
Indeed, at the very slow dynamics of case (d) depicted in
Fig. 8, essentially all theories (with the exception of 1AA)

FIG. 6. Same as Fig. 5, but for parameter set (b).

FIG. 5. The time evolution ofΠðtÞ for parameter set (a) in different hydrodynamic approaches compared to the exact results. The black
line, representing the exact result, is the same in both pictures.
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capture the evolution of the system correctly, although
DNMR and IReD are still the most accurate. Case (e),
depicted in Fig. 9, is opposite to the previous one, since t0 is
now negligible and the source term θ is basically a step
function. As expected, the NS and 2ndOH prescriptions fail
to describe the evolution of Π in the transient regime, while
the error of DNMR, tDNMR, and IReD is increased.
Interestingly, in the case of DNMR, one can see the effect
of the θ̇-term in a jump at t ¼ 0 that does not coincide with
the exact evolution.

3. Ranking the theories

One can rank the performance of the different theories by
comparing how close they are to the exact solution, which

we do by considering the square root of the integrated
square deviations weighed by the asymptotic magnitude
of Π,

D ¼ 1

ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
R
½Πexactðt0Þ − Πðt0Þ�2dt0

s
: ð29Þ

When excluding 1AA, which does not capture the Navier-
Stokes value correctly, such a procedure can assess how
well the different theories describe the transient dynamics.
The results are listed in Table I. Schematically, we find the
following orderings:

ðaÞ; ðbÞ∶ DNMR ≻ IReD ≻ tDNMR ≻ NS ≻ 2ndOH; ðcÞ∶ IReD ≻ DNMR ≻ 2ndOH ≻ NS ≻ tDNMR;

ðdÞ∶ DNMR ≻ IReD ≻ 2ndOH ≻ tDNMR ≻ NS; ðeÞ∶ IReD ≻ DNMR ≻ tDNMR ≻ NS ≻ 2ndOH;

FIG. 8. Same as Fig. 5, but for parameter set (d).

FIG. 7. Same as Fig. 5, but for parameter set (c).
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where x ≻ y means that method x performs better than
method y. It should be noted that while DNMR performs
best in its regime of validity, IReD should be preferred in
practice, since it gives better results than the (actually used)
tDNMR method. In the regime where the fast modes
contribute greatly to the dynamics of Π, the tDNMR

method that is implemented in practice actually performs
worst, while IReD still gives good results. We remark that
the worsening of the performance of tDNMR are in
agreement with Ref. [20], where the heat-flow problem
was considered for a system described by kinetic theory. In
fact, the resummed “21/37”-theory of fluid dynamics
proposed there to restore agreement with the exact results,
although introducing more dynamical degrees of freedom,
shares some important features with IReD, cf. Sec. V of
Ref. [21].

B. 300 random degrees of freedom

In this subsection, we consider a system with many
(300) degrees of freedom which relax on different time-
scales. Both the eigenvalues τn ¼ fτ1;…; τ300g, and the
associated susceptibilities, ζn ¼ fζ1;…; ζ300g, are inde-
pendently drawn from an exponential distribution with unit
mean and variance, i.e.,

Pðτi ≤ xÞ ¼ Pðζi ≤ xÞ ¼
�
1 − e−x; x ≥ 0

0; x < 0
∀ i∈ f1;…; 300g: ð30Þ

We again use the smoothstep (10) as a source, with
growth-rate parameter t0 ¼ 5, which is five times
larger than the mean relaxation time EðτnÞ ¼ 1, but
of the order of the expected maximal relaxation time
EðmaxfτngÞ ¼ H300 ≈ 6.3, where Hn denotes the nth
harmonic number. From Fig. 10, it is immediately clear
that the timescale of the dynamics is too short for NS or
2ndOH to describe them. Similarly, 1AA does not catch
the correct Navier-Stokes value or the dynamics at all,
since it completely neglects 299 contributions. DNMR on
the other hand qualitatively captures the dynamics, but
does so in a worse way than IReD, which agrees rather
well with the exact solution. Finally, tDNMR is also off
by a large amount, performing even worse than NS
and 2ndOH. The ranking of the different theories is very
clear:

IReD ≻ DNMR ≻ 2ndOH ≻ NS ≻ tDNMR:

The case of randomly assigned susceptibilities and asso-
ciated relaxation times is of course a rather extreme one;
however, it clearly shows the difficulties that hydrody-
namic theories like NS face when they are applied to a
system with many degrees of freedom which are impor-
tant. The refined second-order approaches DNMR and
IReD on the other hand are able to surmount these
challenges and still provide a rather good description
of the system at all times. As in the previous section,
however, it has to be stressed that the truncated tDNMR
used in practice does not work well in this regard.

C. A real example from kinetic theory

As a final test case, we consider kinetic theory for a gas
of ultrarelativistic particles interacting via a constant cross
section. For the basic concepts of relativistic kinetic theory,
we refer the reader to Appendix and Refs. [39,40]. In the
context of this section, it is sufficient to state that the
equations of motion for the so-called irreducible moments
of tensor-rank two6 of the distribution function take on the
following form [5],

ρ̇μνr þ
XN2

n¼0

Að2Þ
rn ρ

μν
n ¼ ð4þ rÞ!

15π2
T4þrσμν þ � � � ; ð31Þ

where the ellipses denote quadratic terms that we will not
consider in our simplified setup, and T is the temperature,
which we take to be constant. Additionally, N2 denotes the
truncation order, i.e., the number of coupled equations we
consider. Furthermore, σμν ¼ ∂

hμuνi is the shear tensor, uμ
is the four-velocity of the fluid, and the angular brackets
denote the projection onto the subspace of tensors that are
traceless, symmetric and orthogonal to uμ.7 The linearized

TABLE I. The error D, defined in Eq. (29), for different
methods and parameter sets (a)–(e). In cases (a), (b), (c), and
(e), we cut off the range of numerical integration at tmax ¼ 50,
while we use tmax ¼ 300 in case (d).

DNMR tDNMR IReD 2ndOH NS

(a) 0.050 0.18 0.082 1.92 1.25
(b) 0.15 0.55 0.18 1.23 0.91
(c) 0.25 0.92 0.13 0.56 0.59
(d) 0.0080 0.24 0.016 0.052 0.35
(e) 0.27 0.58 0.20 35.83 1.09

6We choose to go with the moments of tensor-rank two
(instead of zero) since the bulk viscous pressure vanishes in
the ultrarelativistic limit m=T → 0, where m is the particle mass.

7Specifically, we have for a second-rank tensor Ahμνi ¼
Δμν

αβA
αβ, and Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ, with the basic

projector Δμν ¼ gμν − uμuν.
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collision matrixAð2Þ has been recently computed exactly in
Ref. [41], and is given by

Að2Þ
0n ¼ 432ð−TÞ−n

λmfpðnþ 5Þ! S
ð2Þ
n ðN2Þ;

Að2Þ
r>0;n≤r ¼

Tr−nðrþ 4Þ!ðnþ 1Þ
λmfpðnþ 5Þ!rðrþ 1Þ

× ð9nþ nr − 4rÞ
�
δnr −

2

rþ 2

�
;

Að2Þ
r>0;n>r ¼ 0; ð32Þ

where λmfp is the mean-free path, and we defined

Sð2Þn ðN2Þ ¼
XN2

m¼n

�
m

n

�
1

ðmþ 2Þðmþ 3Þ : ð33Þ

Since the entries of the matrix Að2Þ are proportional to

different powers of the temperature,Að2Þ
rn ∼ Tr−n, it is sensible

to define the dedimensionalized moments ρ̃μνr ¼ ρμνr =Tr,

and the dimensionless matrix Ãð2Þ
rn ¼ Að2Þ

rn Tn−r. Then, we
can rewrite Eq. (31) as (choosing μ ¼ ν ¼ z)

XN2

n¼0

τð2Þrn ˙̃ρzzn þ ρ̃zzr ¼ ηrT4σzz; ð34Þ

where we defined

τð2Þ ¼ ðÃð2ÞÞ−1 and ηr ¼
X
n

τð2Þrn
ð4þ nÞ!
15π2

: ð35Þ

Comparing Eq. (34) and the first line of (1), we can
identify τ≡ τð2Þ, κ≡ η, and θ ¼ T4σzz. The quantity
of interest from a hydrodynamic perspective is the

FIG. 9. Same as Fig. 5, but for parameter set (e).

FIG. 10. The time evolution of ΠðtÞ in different hydrodynamic approaches for a system of 300 independent degrees of freedom with
exponentially distributed relaxation times and susceptibilities.
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zz-component of the shear-stress tensor πzz ¼ ρ̃zz0 , such that
γ ¼ f−1; 0; 0;…g. The vector ζn can then be computed
according to Eq. (4). Choosing t0 ¼ λmfp ¼ 1, we simulate
the performance of the hydrodynamic approximations
to the exact dynamics of the system (34) (considering the
coupled dynamics of N2 ¼ 50 moments)8 reacting to the
smoothstep (10) (that we multiply by −1 to facilitate a better
visual comparisonwith the previous cases) which now can be
interpreted as a shearing of the fluid. The results are displayed
in Fig. 11.
The conclusions drawn from this realistic case do not

change much from the simpler models discussed before.
Neither NS nor 2ndOH describe the transient dynamics
correctly, and 1AA does not capture the late-time limit,
although the error is significantly less than in the previous
examples. On the other hand, the second-order theories are
doing rather well, with IReD performing best, its predic-
tions lying on top of the exact solution, which is in
agreement with the results obtained for the relaxation-time
approximation in Ref. [42]. The different formulations,
whose errors are listed in Table II, can be ranked as follows:

IReD ≻ DNMR ≻ tDNMR ≻ NS ≻ 2ndOH:

Finally, it should be noted that the error of IReD is an order
of magnitude lower than the ones of DNMR and tDNMR.
This suggests that the complicated coupling between the
moments may result in the slowest degree of freedom
having a smaller susceptibility than the combination of the

faster ones, thereby breaking the fundamental assumption
of DNMR, in favor of the IReD approach, which is more
agnostic.

V. SOME ADDITIONAL REMARKS

We conclude our analysis with some useful observations,
which should help the reader interpret our results.

A. Breakdown of the gradient expansion

Our numerical experiment clearly shows that second-
order hydrodynamics (i.e., nonresummed Baier-
Romatschke-Son-Starinets-Stephanov [4]) may be even
less accurate than Navier-Stokes hydrodynamics, in the
transient regime. This feels rather counterintuitive, since
one would think that, in the grand scheme of the gradient
expansion, adding more and more terms would result in
better and better accuracy, until the exact solution is
recovered. Unfortunately, this is not always true.
In order to see this, let us consider again the exact

formula for the viscous flux computed from linear response
theory: ΠðtÞ ¼ −

R
RGðt − t0Þθðt0Þdt0. We can express θðt0Þ

as a Taylor series centered at t, so that we get

ΠðtÞ ¼ −
X∞
k¼0

ð−1Þk
k!

dkθðtÞ
dtk

Z
R
GðsÞskds: ð36Þ

Recalling that the Green’s function is given by (4), we can
compute the integrals analytically, and we obtain

TABLE II. The error D, defined in Eq. (29), for different
methods in the case of ultrarelativistic kinetic theory.

DNMR tDNMR IReD 2ndOH NS

0.095 0.13 0.013 1.79 0.84

FIG. 11. The time evolution of πzzðtÞ in different hydrodynamic approaches for a coupled system of 50 moments, describing a system
of particles subject to hard-sphere collisions.

8We remark that the 1AA approximation (corresponding to the
14-moment approximation in kinetic theory) requires us to
restrict the matrix τ to one entry, i.e., τð2Þ ≡ τð2Þ00 ¼ ðÃð2Þ

00 Þ−1.
This is because the procedure described in Sec. III D has to be
carried out for the system (31), which features Að2Þ and not its
inverse.
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ΠðtÞ ¼ −
X
n

ζn
X∞
k¼0

ð−τnÞk
dkθðtÞ
dtk

: ð37Þ

This is the gradient expansion of the fluxΠðtÞ, expressed in
terms of the derivatives of the hydrodynamic variable θðtÞ.
If we truncate at k ¼ 0, we recover Navier-Stokes, if we
include the term k ¼ 1, we obtain second-order hydro-
dynamics, and so on. To understand the properties of the
series (37), let us assume that, in a neighborhood of t,
the flow θ is exponentially relaxing, i.e., θðt0Þ ¼ θ0e−t

0=t0

for t0 ∈ ðt − ε; tþ εÞ, with some ε > 0. Then, Eq. (37)
reduces to

ΠðtÞ ¼ −θðtÞ
X
n

ζn
X∞
k¼0

�
τn
t0

�
k
: ð38Þ

As can be seen, the series is geometric, and thus converges
only if t0 > τn. This implies that, if θðtÞ varies over
timescales that are shorter than a relaxation time, the
gradient expansion is divergent, and there is no guarantee
that adding more and more terms will improve the
accuracy. Instead, the more terms we add to the gradient
expansion, the more we should expect to see large
fluctuations in the transient regime, as we indeed see,
e.g., in Fig. 11.
There is also an additional problem. When we replaced

θðtÞ with its Taylor series, we made the implicit assumption
that θðtÞ was analytic. Indeed, when the perturbation is
nonanalytic (as is the case with our smoothstep), no
gradient expansion is able to reproduce the correct value
of Π, because local gradients cannot “remember” what the
state was before a nonanalyticity point. This introduces a
large error in the predictions of second-order (and higher-
order) hydrodynamics in proximity to all nonanalyticity
points. Such error decays over a timescale maxfτng,
meaning that, again, the whole transient evolution is
modeled incorrectly.
We can illustrate this issue with a simple example.

Suppose that, for t < 0, the fluid element is in thermody-
namic equilibrium, so that Πð0−Þ ¼ θð0−Þ ¼ 0. At t ¼ 0, a
nonanalytic perturbation arrives, with profile θðtÞ ¼ t for
t > 0. Then, from Eq. (2), we find that the “exact” viscous
stress is continuous at t ¼ 0, since

Πð0þÞ ¼ − lim
t→0þ

Z
t

0

γe−τ
−1ðt−t0Þτ−1κt0dt0 ¼ 0: ð39Þ

Indeed, also the Navier-Stokes prediction,ΠðtÞ ¼ −ΘðtÞζt,
is continuous. However, if we go up to second order,
there is a discontinuity, ΠðtÞ ¼ −ΘðtÞðχ2 þ ζtÞ. This is no
surprise as the gradient expansion assumes that θðtÞ is
analytic, and therefore it “behaves” as if θðtÞwere equal to t
also at negative times.

B. Continuous spectrum: An analytic example

For computational reasons, in our numerical study, we
restricted our attention to systems with a finite number of
degrees of freedom. However, since most of our results do
not seem to depend on the number of affinities, we expect
them to remain valid also in the limit of infinite affinities.
Let us verify this explicitly with an exactly solvable model.
In the infinite-dimensional case, the operator τ may

possess a continuous spectrum, in which case (3) no longer
reduces to (4), but we need to consider its continuous
analog,

GðtÞ¼ΘðtÞ
Z

∞

0

ζðνÞνe−νtdν¼−ΘðtÞ d
dt
LfζðνÞgðtÞ; ð40Þ

where ζðνÞ may be interpreted as the spectral density of
susceptibility, ν is a continuous parameter spanning all
possible values of ½relaxation time�−1, and L is the Laplace
transform. The presence of the Laplace transform tells us
that GðtÞ no longer behaves as a sum of exponentials. For
example, let us take

ζðνÞ ¼ ν

36
ðν − 2Þ3e−ðν−2ÞΘðν − 2Þ; ð41Þ

whose profile is plotted in Fig. 12 (left panel). The Green’s
function associated with this spectral density is (for t > 0)

GðtÞ ¼ 2ðt2 þ 6tþ 10Þe−2t
3ðtþ 1Þ6 ; ð42Þ

which differs from an exponential by a rational factor.
Nevertheless, our main results still hold. For example,
IReD still provides a good approximation for the exact
Green’s function, while DNMR is considerably less accu-
rate (see Fig. 12). The exact values of the Israel-Stewart
transport coefficients for this model are reported below:

ζ ¼
Z

∞

0

ζðνÞdν ¼ 1;

τIR ¼ 1

ζ

Z
∞

0

ζðνÞ dν
ν
¼ 1

6
;

τD ¼ max

�
1

ν

�
¼ 1

2
: ð43Þ

The IReD Green’s function is just 6e−6t, while the DNMR
Green’s function is 2e−2t. The analogies between Figs. 12
and 3 are quite remarkable. This confirms that, for the
purposes of the present analysis, there is no fundamental
difference between a simple model with three eigenvalues
and a system with a continuous spectrum.
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C. Effect of stochastic fluctuations

Deterministic descriptions like the Boltzmann equation
and our model (1) neglect stochastic fluctuations. One
would expect that, as long as the number of particles in a
fluid element is very large, the impact of such fluctuations
should be negligible. However, this is not always true.
Studying the backreaction of stochastic sound waves on the
flow over a very long time (i.e., in the limit ω → 0), one
finds a cumulative effect that is larger than the second-order
gradient corrections [43]. In our simple linear response
model, one may picture this correction as an additional
nonanalytic power ω1=2 in Eq. (7),

ΠðωÞ
θðωÞ ¼exact − γκ þ βω1=2 − iγτκωþ � � � : ð44Þ

This implies that, strictly speaking, interpretation (ii) is
inconsistent with statistical mechanics. In fact, in the
rigorous low-ω regime, all “second-order phenomenology”
is covered by the effect of fluctuations, and is therefore
undetectable. In practice, the actual relevance of the term
βω1=2 for physics is more limited than it may seem, since
all real experiments have a finite duration, meaning that
the rigorous low-ω regime is never achieved. Nevertheless,
this effect is there, and it may become important in
QCD [43].
Although our analysis does not include the effect of

fluctuations, the main conclusion that second-order physics
is undetectable is strongly corroborated by our analysis. In
fact, also in our nonstochastic model, second-order hydro-
dynamics is accurate only when Navier-Stokes is already
quite accurate, making second-order corrections tiny, and
hard to isolate. Hence, we confirm that interpretation (ii)
often gives way to interpretation (i). Of course, this
discussion has no impact on interpretation (iii), since
transient hydrodynamics is concerned with the behavior

of the system for short times (ω−1 ≈ τΠ), and it makes no
claim of being more accurate than Navier-Stokes at
late times.

VI. CONCLUSIONS

Our analysis suggests that we may need to revise some of
the current paradigms of relativistic hydrodynamics.
First of all, we found that interpretation (i) usually

prevails over interpretation (ii). In fact, second-order
hydrodynamics (namely, Israel-Stewart viewed as a gra-
dient expansion [4]) is applicable only when Navier-Stokes
is already pretty accurate, see Fig. 8, right panel. As soon as
we exit the regime of applicability of first-order hydro-
dynamics (the “asymptotic regime”), we also exit the
regime of applicability of second-order hydrodynamics,
which often turns out to behave even worse than Navier-
Stokes, see Fig. 11, right panel. This makes second-
order gradient corrections extremely difficult to isolate
phenomenologically, thereby corroborating the claims
of Geroch [9] that second-order phenomena may be
effectively undetectable in practice.
By contrast, interpretation (iii) was proven to be a

perfectly valid approach, at least as an approximation
of kinetic theory. In fact, the DNMR interpretation of
Israel-Stewart hydrodynamics [5] fully passed “Geroch’s
test”, being visibly more accurate than Navier-Stokes also
in regimes where Navier-Stokes is manifestly nonreliable,
see e.g. Fig. 11, left panel. This implies that we can define
for transient hydrodynamics a clear-cut regime of appli-
cability, which extends far beyond that of first-order
hydrodynamics. In other words, transient hydrodynamics
is falsifiable in a rigorous sense, and it is a well-posed
scientific theory. Indeed, in their seminal paper [1], Israel
and Stewart themselves were viewing their own theory
from the perspective of transient hydrodynamics, although
they employed the 14-moment approximation to compute

FIG. 12. Left panel: A simple example of a spectral density of susceptibility, as given by Eq. (41). Right panel: The associated exact
Green’s function (solid line) and its Israel-Stewart approximations (dashed and dash-dotted lines).
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the transport coefficients, thereby obtaining inaccurate
predictions for the transport coefficients, see Fig. 11
(“1AA” curve).
Unfortunately, we also found that neglecting theK-terms

from DNMR can considerably reduce its overall accuracy,
in agreement with Ref. [20]. This phenomenon can be
dramatic for certain “anomalous” collision kernels, such as
that of Fig. 10 (see curve “tDNMR”), where DNMR
becomes even less reliable than Navier-Stokes in the
transient regime. However, in commonplace situations
such as Fig. 11, DNMR still performs well enough also
without the K-terms.
Yet, the most important (and surprising) finding of the

present article is probably the discovery that interpre-
tations (ii) and (iii) can be unified within the IReD
theory [21]. In fact, IReD fulfills interpretation (ii) by
construction, see Fig. 8. Furthermore, due to a fortuitous
“twist of fate”, its relaxation time happens to be the
average of all the (possibly infinite) relaxation times of
kinetic theory, weighted on their susceptibility to the
hydrodynamic gradients, see Eq. (8). This weighted
average constitutes an excellent fit of the microscopic
Green’s function, making IReD reliable for any collision
kernel (even the anomalous ones considered Figs. 3, 10,
and 12). As a consequence, by keeping track of all
relaxation times, IReD can reach levels of accuracy that
escape DNMR. For example, in the realistic case shown in
Fig. 11, the error of IReD theory is an order of magnitude
smaller than that of DNMR (even keeping the K-terms),
and it is two orders of magnitude smaller than that of
Navier-Stokes (see Table II). For these reasons, we believe
that switching from the DNMR to the IReD paradigm
might significantly improve the accuracy of hydrody-
namic simulations.
In summary, we hope we convinced the reader that

Israel-Stewart hydrodynamics constitutes an objective
improvement to Navier-Stokes, at least within the kinetic
theory framework. Its regime of applicability extends to
processes whose timescale is comparable to the relaxation
time, provided that the transport coefficients are computed
using the IReD prescription. In our opinion, this could
help resolve a debate that has been going on since
1978 [1].
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APPENDIX: CONNECTION
TO KINETIC THEORY

The purpose of this appendix is to clarify the connection
of our simplified model (1) to kinetic theory, which is
often the microscopic starting point for deriving hydro-
dynamics. For simplicity, we will consider a gas of classical
particles.
The energy-momentum tensor Tμν and the particle four-

current Nμ are the basic quantity of interest in a fluid which
admits a kinetic description as mentioned above. Assuming
Landau matching conditions, i.e., demanding that there be
no energy flux in the fluid-rest frame, we can decompose
Tμν and Nμ with respect to the fluid four-velocity uμ as

Tμν ¼ εuμuν − ΔμνðPþ ΠÞ þ πμν; Nμ ¼ nuμ þ nμ;

ðA1Þ

with Δμν ¼ gμν − uμuν. Here, ε, P, and n are the (equilib-
rium) energy density, pressure, and particle-number den-
sity, respectively, which determine ideal fluid dynamics.
In contrast, additionally computing the bulk viscous
pressure Π, the particle-diffusion current nμ, and the
shear-stress tensor πμν is the objective of dissipative
hydrodynamics.
These dissipative quantities admit the following kinetic

description [5]:

Π ¼ −
m2

3

Z
dKδfk; nμ ¼

Z
dKkhμiδfk;

πμν ¼
Z

dKkhμkνiδfk; ðA2Þ

where the angular brackets symbolize that the respective
tensor is projected to be orthogonal to the four-velocity uμ

as well as symmetric and traceless in all pairs of indices [5].
Furthermore, dK ¼ d3k=½ð2πÞ3k0� is the measure in
momentum space, k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
the on shell energy,

Ek ¼ uμkμ the energy in the rest frame of the fluid, and δfk
denotes the deviation from the local-equilibrium single-
particle distribution function f0k ¼ eα−βEk , where β ¼ 1=T
is the inverse temperature and α ¼ βμ denotes the ratio of
chemical potential over temperature.
While the evolution of this function is determined by the

Boltzmann equation, when deriving dissipative hydrody-
namics it is advantageous to instead track the so-called
irreducible moments of δfk,

ρμ1���μlr ¼
Z

dKEr
kk

hμ1 � � � kμliδfk: ðA3Þ
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Using these moments, we can identify Π ¼ −ðm2=3Þρ0, nμ ¼ ρμ0, and πμν ¼ ρμν0 . Denoting the comoving derivative of a
quantity A with a dot, Ȧ ¼ uμ∂μA, the equations of motion for the irreducible moments of tensor-ranks l ≤ 2 read [5]

ρ̇r − Cr−1 ¼ αð0Þr θ −
G2r

D20

Πθ þ G2r

D20

πμνσμν þ
G3r

D20

∂μnμ þ ðr − 1Þρμνr−2σμν þ rρμr−1u̇μ −∇μρ
μ
r−1

−
1

3
½ðrþ 2Þρr − ðr − 1Þm2ρr−2�θ; ðA4aÞ

ρ̇hμir − Chμi
r−1 ¼ αð1Þr Iμ þ ρνrω

μ
ν þ

1

3
½ðr − 1Þm2ρμr−2 − ðrþ 3Þρμr �θ − Δμ

λ∇νρ
λν
r−1 þ rρμνr−1u̇ν

þ 1

5
½ð2r − 2Þm2ρνr−2 − ð2rþ 3Þρνr�σμν þ

1

3
½m2rρr−1 − ðrþ 3Þρrþ1�u̇μ

þ βIrþ2;1

εþ P
ðΠu̇μ −∇μΠþ Δμ

ν∂λπ
λνÞ − 1

3
∇μðm2ρr−1 − ρrþ1Þ þ ðr − 1Þρμνλr−2σλν; ðA4bÞ

ρ̇hμνir − Chμνi
r−1 ¼ 2αð2Þr σμν −

2

7

h
ð2rþ 5Þρλhμr − 2m2ðr − 1Þρλhμr−2

i
σνiλ þ 2ρλhμr ωνi

λ

þ 2

15
½ðrþ 4Þρrþ2 − ð2rþ 3Þm2ρr þ ðr − 1Þm4ρr−2�σμν þ

2

5
∇hμðρνirþ1 −m2ρνir−1Þ

−
2

5

h
ðrþ 5Þρhμrþ1 − rm2ρhμr−1

i
u̇νi −

1

3
½ðrþ 4Þρμνr −m2ðr − 1Þρμνr−2�θ

þ ðr − 1Þρμνλρr−2 σλρ − Δμν
αβ∇λρ

αβλ
r−1 þ rρμνλr−1u̇λ; ðA4cÞ

where Iμ ¼ ∇μα (with the spacelike gradient ∇μ ¼ Δμν
∂ν), σμν ¼ ∇hμuνi and ωμν ¼ 1

2
ð∂μuν − ∂νuμÞ are the shear and

vorticity tensors, respectively, and θ ¼ ∇μuμ denotes the expansion scalar. The quantity

Chμ1���μli
r ¼

Z
dKEr

kk
hμ1 � � � kμliC½f�: ðA5Þ

is an irreducible moment of the collision term. Moreover, we have introduced the basic thermodynamic integral

Inq ¼
1

ð2qþ 1Þ!!
Z

dKEn−2q
k ð−ΔαβkαkβÞqf0k; ðA6Þ

and the combinations Gnm ¼ In0Im0 − In−1;0Imþ1;0, Dnq ¼ Inþ1;qIn−1;q − I2nq. The coefficients appearing in the first terms
on the right-hand sides of Eqs. (A4) are given as

αð0Þr ¼ð1−rÞIr1−Ir0−
1

D20

½G2rðεþPÞ−G3rn�; αð1Þr ¼ Irþ1;1−
n

εþP
Irþ2;1; αð2Þr ¼ Irþ2;1þðr−1ÞIrþ2;2: ðA7Þ

When neglecting the nonlinear contributions in Eqs. (A4), we find

ρ̇r þ
X
n

Að0Þ
rn ρn ¼ αð0Þr θ þ G3r

D20

∇μnμ −∇μρ
μ
r−1 ðA8aÞ

ρ̇hμir þ
X
n

Að1Þ
rn ρ

μ
n ¼ αð1Þr Iμ − Δμ

λ∇νρ
λν
r−1 þ

βIrþ2;1

εþ P
ðΔμ

ν∇λπ
λν −∇μΠÞ − 1

3
∇μðm2ρr−1 − ρrþ1Þ; ðA8bÞ

ρ̇hμνir þ
X
n

Að2Þ
rn ρ

μν
n ¼ 2αð2Þr σμν þ 2

5
∇hμðρνirþ1 −m2ρνir−1Þ − Δμν

αβ∇λρ
αβλ
r−1; ðA8cÞ
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where we employed that the irreducible moments of the collision term can be written as

Chμ1���μli
r−1 ¼ −

X
n

AðlÞ
rn ρ

μ1���μl
n þ nonlinear terms: ðA9Þ

Inverting the linearized collision matrices, τðlÞ ¼ ðAðlÞÞ−1, we then obtain

X
n

τð0Þrn ρ̇n þ ρr ¼
X
n

τð0Þrn

�
αð0Þn θ þ G3r

D20

∇μnμ −∇μρ
μ
n−1

�
ðA10aÞ

X
n

τð1Þrn ρ̇
hμi
n þ ρμr ¼

X
n

τð1Þrn

�
αð1Þn Iμ − Δμ

λ∇νρ
λν
n−1 þ

βInþ2;1

εþ P
ðΔμ

ν∇λπ
λν −∇μΠÞ − 1

3
∇μðm2ρn−1 − ρnþ1Þ

�
; ðA10bÞ

X
n

τð2Þrn ρ̇
hμνi
n þ ρμνr ¼

X
n

τð2Þrn

�
2αð2Þn σμν þ 2

5
∇hμðρνinþ1 −m2ρνin−1Þ − Δμν

αβ∇λρ
αβλ
n−1

�
: ðA10cÞ

At this point, we can make a connection between the
linearized moment Eqs. (A10) and our basic model (1).
Upon evaluating the moment equations along the worldline
of a specific fluid element, as schematically depicted in
Fig. 2, the moments will only depend on the proper-time t
that parametrizes the wordline. Then, we can identify the
quantities A in Eq. (1) with the (in principle infinite-
dimensional) vectors of irreducible moments,9 i.e., A ¼
fρ0; ρ3;…gT for l ¼ 0, Aμ ¼ fρμ0; ρμ2;…gT for l ¼ 1, and
Aμν ¼ fρμν0 ; ρμν1 ;…gT for l ¼ 2. Similarly, the matrices τ
can be identified with the respective inverse linearized

collision matrices, τ ¼ τðlÞ. The vectors γ that specify
which combination of the moments is of interest for the
conserved currents are given by γ ¼ fm2=3; 0;…gT for
l ¼ 0, and γ ¼ f−1; 0;…gT for l ¼ 1 or l ¼ 2.
The set of spatial gradients on the right-hand sides

denote the external driving forces that influence the
proper-time evolution of the quantities A. While, as is
evident from Eqs. (A10), there can be a multitude of these
terms, one simplification of the model (1) lies in collecting
all of them in one external driving force θðtÞ. Note that in
neglecting nonlinear terms we also assume spatial gradients
to be small, thereby excluding regions of Fig. 1 that are far
away from the vertical axis. Upon considering a fluid of
massless uncharged particles and neglecting the second and
third term on the right-hand side of Eq. (10c), we arrive at
the setup considered in Sec. IV C.

[1] W. Israel and J. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).
[2] W. A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) 151, 466

(1983).
[3] T. S. Olson, Ann. Phys. (N.Y.) 199, 18 (1990).
[4] R. Baier, P. Romatschke, D. Thanh Son, A. O. Starinets, and

M. A. Stephanov, J. High Energy Phys. 04 (2008) 100.
[5] G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke,

Phys. Rev. D 85, 114047 (2012).
[6] L. Gavassino and M. Antonelli, Classical Quantum Gravity

40, 075012 (2023).
[7] R. Geroch, J. Math. Phys. (N.Y.) 36, 4226 (1995).
[8] L. Lindblom, Ann. Phys. (N.Y.) 247, 1 (1996).
[9] R. Geroch, arXiv:gr-qc/0103112.

[10] P. Kostädt and M. Liu, Phys. Rev. D 62, 023003 (2000).

[11] P. Romatschke and U. Romatschke, arXiv:1712.05815.
[12] W. Florkowski, M. P. Heller, and M. Spaliński, Rep. Prog.

Phys. 81, 046001 (2018).
[13] G. S. Denicol, J. Noronha, H. Niemi, and D. H. Rischke,

Phys. Rev. D 83, 074019 (2011).
[14] S.Grozdanov and J. Polonyi, Phys. Rev. D 91, 105031 (2015).
[15] L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev. D

106, 056010 (2022).
[16] L. Gavassino and M. Antonelli, Front. Astron. Space Sci. 8,

686344 (2021).
[17] L. Gavassino, Phys. Rev. X 12, 041001 (2022).
[18] L. Gavassino, Phys. Lett. B 840, 137854 (2023).
[19] E. Molnár, H. Niemi, G. S. Denicol, and D. H. Rischke,

Phys. Rev. D 89, 074010 (2014).

9The moments ρ1, ρ2, and ρμ1 do not appear due to Landau
matching.

REGIME OF APPLICABILITY OF ISRAEL-STEWART … PHYS. REV. D 109, 016019 (2024)

016019-17

https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(90)90366-V
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1088/1361-6382/acc165
https://doi.org/10.1088/1361-6382/acc165
https://doi.org/10.1063/1.530958
https://doi.org/10.1006/aphy.1996.0036
https://arXiv.org/abs/gr-qc/0103112
https://doi.org/10.1103/PhysRevD.62.023003
https://arXiv.org/abs/1712.05815
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1103/PhysRevD.83.074019
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1103/PhysRevD.106.056010
https://doi.org/10.1103/PhysRevD.106.056010
https://doi.org/10.3389/fspas.2021.686344
https://doi.org/10.3389/fspas.2021.686344
https://doi.org/10.1103/PhysRevX.12.041001
https://doi.org/10.1016/j.physletb.2023.137854
https://doi.org/10.1103/PhysRevD.89.074010


[20] G. S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, D. H.
Rischke, and C. Greiner, Phys. Rev. D 89, 074005 (2014).

[21] D. Wagner, A. Palermo, and V. E. Ambruş, Phys. Rev. D
106, 016013 (2022).

[22] J. A. Fotakis, E. Molnár, H. Niemi, C. Greiner, and D. H.
Rischke, Phys. Rev. D 106, 036009 (2022).

[23] G. S. Rocha, C. V. P. de Brito, and G. S. Denicol, Phys. Rev.
D 108, 036017 (2023).

[24] H. Struchtrup, Phys. Fluids 16, 3921 (2004).
[25] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and

M. Strickland, Phys. Rev. Lett. 113, 202301 (2014).
[26] M. Strickland, Acta Phys. Pol. B 45, 2355 (2014).
[27] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and

M. Strickland, Phys. Rev. D 90, 125026 (2014).
[28] M. Alqahtani, M. Nopoush, and M. Strickland, Prog. Part.

Nucl. Phys. 101, 204 (2018).
[29] S. Jaiswal, C. Chattopadhyay, A. Jaiswal, S. Pal, and U.

Heinz, Phys. Rev. C 100, 034901 (2019).
[30] A. Dash, M. Shokri, L. Rezzolla, and D. H. Rischke, Phys.

Rev. D 107, 056003 (2023).
[31] L. Gavassino and J. Noronha, arXiv:2305.04119.
[32] L. Gavassino, Classical Quantum Gravity 40, 165008 (2023).

[33] L. Peliti, Statistical Mechanics in a Nutshell, In a nutshell
(Princeton University Press, Princeton, NJ, 2011).

[34] M. P. Heller, R. A. Janik, M. Spaliński, and P. Witaszczyk,
Phys. Rev. Lett. 113, 261601 (2014).

[35] F. S. Bemfica, M.M. Disconzi, and J. Noronha, Phys. Rev.
D 98, 104064 (2018).

[36] P. Kovtun, J. High Energy Phys. 10 (2019) 034.
[37] F. S. Bemfica, M.M. Disconzi, and J. Noronha, Phys. Rev.

X 12, 021044 (2022).
[38] G. Camelio, L. Gavassino, M. Antonelli, S. Bernuzzi, and B.

Haskell, Phys. Rev. D 107, 103031 (2023).
[39] S. R. de Groot, W. A. van Leeuwen, and C. G. van Weert,

Relativistic Kinetic Theory. Principles and Applications
(North-Holland, Amsterdam, 1980).

[40] C. Cercignani and G. M. Kremer, The Relativistic Boltzmann
Equation: Theory and Applications (Birkhäuser, Basel,
Switzerland, 2002).

[41] D.Wagner, V. E. Ambrus, and E.Molnár, arXiv:2309.09335.
[42] V. E. Ambrus, E. Molnár, and D. H. Rischke, Phys. Rev. D

106, 076005 (2022).
[43] P. Kovtun, G. D. Moore, and P. Romatschke, Phys. Rev. D

84, 025006 (2011).

D. WAGNER and L. GAVASSINO PHYS. REV. D 109, 016019 (2024)

016019-18

https://doi.org/10.1103/PhysRevD.89.074005
https://doi.org/10.1103/PhysRevD.106.016013
https://doi.org/10.1103/PhysRevD.106.016013
https://doi.org/10.1103/PhysRevD.106.036009
https://doi.org/10.1103/PhysRevD.108.036017
https://doi.org/10.1103/PhysRevD.108.036017
https://doi.org/10.1063/1.1782751
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.5506/APhysPolB.45.2355
https://doi.org/10.1103/PhysRevD.90.125026
https://doi.org/10.1016/j.ppnp.2018.05.004
https://doi.org/10.1016/j.ppnp.2018.05.004
https://doi.org/10.1103/PhysRevC.100.034901
https://doi.org/10.1103/PhysRevD.107.056003
https://doi.org/10.1103/PhysRevD.107.056003
https://arXiv.org/abs/2305.04119
https://doi.org/10.1088/1361-6382/ace587
https://doi.org/10.1103/PhysRevLett.113.261601
https://doi.org/10.1103/PhysRevD.98.104064
https://doi.org/10.1103/PhysRevD.98.104064
https://doi.org/10.1007/JHEP10(2019)034
https://doi.org/10.1103/PhysRevX.12.021044
https://doi.org/10.1103/PhysRevX.12.021044
https://doi.org/10.1103/PhysRevD.107.103031
https://arXiv.org/abs/2309.09335
https://doi.org/10.1103/PhysRevD.106.076005
https://doi.org/10.1103/PhysRevD.106.076005
https://doi.org/10.1103/PhysRevD.84.025006
https://doi.org/10.1103/PhysRevD.84.025006

