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We revisit the calculation of the Casimir effect from the perspective of scale limited resolutions of
quantum fields. We use the continuous wavelet transform to introduce a scale degree of freedom and then
restrict it to simulate either an observational or fundamental limitation of resolution. The Casimir force is
derived in this setting for a free complex massless scalar field between two infinite plates with both
Dirichlet and periodic boundary conditions. The dependence of the force on the choice of wavelet and size
of scale cutoff is extensively discussed for several examples of wavelets.
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I. INTRODUCTION

The Casimir effect [1] is perhaps the most direct
illustration of how the zero-point energy of a free
quantum field theory (QFT) can have observable conse-
quences in the presence of boundary conditions. Like
many calculations in QFT, it is plagued by divergences,
and a variety of regularization techniques are used to
obtain the accepted finite result [2]. Often a frequency
cutoff, or bandlimit, is introduced. This can be motivated
by the physical characteristics of the boundary walls,
such as the Debye cutoff of the frequency response of the
boundary to the electromagnetic field. It can also arise
from more fundamental reasons, such as the incomplete-
ness of QFT at length scales on the order of the Planck
length, or potentially larger-scale limits such as the
minimum length scales described by generalized uncer-
tainty principles (GUPs) [3].
While it is the objective of every good regularization

technique to provide the same result in the continuum limit,
we would also like to have an understanding of the nature
of corrections arising from either fundamental limits on
length scales, or due to constraints imposed by the physical
construction of observables within the QFT. The preferred
tool for analysis of scale-dependent phenomena is wavelet
theory. Originally developed for the study of seismic
signals [4,5], it has found broad application in physics
and mathematics. Within QFT, the discrete wavelet trans-
form has found use in the study of Green’s functions and
renormalization flow [6–8], where the wavelet scale var-
iable provides a natural coordinate to represent coarse

grained information. Indeed, the Daubechies wavelet
scale functions are themselves the solution to a renorm-
alization group equation. Other applications for wavelet-
based analysis in QFT include the study of entanglement
via a multiscale wavelet representation [9], the holo-
graphic principle [10,11], and tensor networks, namely,
the multiscale entanglement renormalization Ansatz
(MERA) [12,13], which can be used to describe ground
states of quantum systems at criticality.
Wavelet regularization was first used for calculation

of the Casimir effect by Altaisky and Kaputkina [14]
(see also [15]). Using first-order Hermitian continuous
wavelets, they found a lowest-order correction that was
attractive after expanding in the ratio of scale cutoff to plate
separation. Similar to momenta-based regularization as in
bandlimited QFT [16], wavelet regularization restricts the
range of scales on which physical processes—such as pair
creation and the exchange of virtual particles—can occur,
which results in a QFT free from divergences.
In this paper, we expand this wavelet regularization

program, and find the lower-order corrections due to the
scale cutoff depend on the wavelet family used, and are not
always attractive. This demonstrates care must be taken
when inferring observable consequences of scale cutoffs,
and may provide guidance to probing emergent effects of
scale cutoffs in other contexts within QFT. We begin in
Sec. II with a brief introduction to the continuous wavelet
transform, providing the necessary mathematical founda-
tion for the applications to follow. The Casimir effect is
then derived in Sec. III using wavelet regularization.
Finally, in Sec. IV the form of the Casimir force is
discussed for different choices of wavelets. The objective
is to explore the dependence of the resulting force on the
choice of wavelet family.*Corresponding author: simon.vedl@hdr.mq.edu.au
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II. CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform of an L2 function
ϕðxÞ in d dimensions under the wavelet (aperture) function
wðxÞ is defined by the formula

ϕa;θðxÞ ¼ ðwa;θ;x;ϕÞ ¼
Z
Rd

ddx0 w�
a;θ;xðx0Þϕðx0Þ; ð1Þ

where wa;θ;xðx0Þ is the unitary action of the similitude group
SIMðdÞ on the wavelet function wðxÞ

wa;θ;xðx0Þ ¼
1

ad=2
w

�
R−1ðθÞ x

0 − x
a

�
: ð2Þ

The similitude group SIMðdÞ of the d-dimensional
Euclidean space preserves the Euclidean norm up to
multiplication by a constant. It can be parametrized by a
d-dimensional vector x representing translations, an
element θ of the group SOðdÞ corresponding to rotations,
and by a positive real number a for scaling. Here ð•; •Þ is the
usual inner product of L2 and R the natural representation
of SOðdÞ on Rd. The wavelet function w must satisfy the
admissibility condition

Cw ¼ 1

kwk2
Z
SIMðdÞ

dμða; θ; xÞjðw;wa;θ;xÞj2 ð3Þ

¼
Z
Rd

jw̃ðkÞj2
jkjd ddk < ∞; ð4Þ

where w̃ is the Fourier transform of w and dμða; θ; xÞ is the
left-invariant Haar measure on SIMðdÞ:

dμða; θ; xÞ ¼ da dμðθÞ ddx
adþ1

: ð5Þ

Interestingly, wavelets can be viewed as generalized coher-
ent states associated with this group [17]. If the admis-
sibility condition is satisfied, the wavelet transform can be
inverted using the reconstruction formula

ϕðxÞ ¼ 1

Cw

Z
SIMðdÞ

dμða; θ; x0Þwa;θ;x0 ðxÞϕa;θðx0Þ: ð6Þ

The wavelet transform is an isometry, which means that it
preserves the inner productZ
Rd

ddxϕ�ðxÞψðxÞ ¼ 1

Cw

Z
SIMðdÞ

dμða; θ; xÞϕ�
a;θðxÞψa;θðxÞ:

ð7Þ

Restricting integration over the scale from ð0;þ∞Þ to
ðA;þ∞Þ, or equivalently, projecting to the subspace

of scale-limited functions, modifies the original inner
product to

ðϕ;ψÞA ¼
Z
R2d

ddx ddx0

Ad ϕ�ðxÞf
�jx − x0j

A

�
ψðx0Þ; ð8Þ

where the function f is called the cutoff function. Its
interpretation is more clear in the Fourier image

ðϕ;ψÞA ¼
Z
Rd

ddk
ð2πÞd ϕ̃

�ðkÞf̃ðAjkjÞψ̃ðkÞ; ð9Þ

where

f̃ðkÞ ¼ 1

Cw

Z
jk0j>k

jw̃ðk0Þj2
jk0jd ddk0 ð10Þ

is essentially the admissibility condition integrated for all
momenta, except for a ball of radius k centred at the origin.
The effect of f̃ is the attenuation of high momenta, hence
the name cutoff function.

III. THE CASIMIR EFFECT

The Casimir effect [1,18] is observable when two
conductive plates are very close to each other. There is
an attractive force between them proportional to 1=s4,
where s is the separation of the plates. The force can be
explained by the difference in the vacuum energy of the
electromagnetic field between the plates and the vacuum
energy outside. In the following, a simple model of a free
complex massless scalar field is considered. Such a field
satisfies the wave equation (henceforth we set c ¼ ℏ≡ 1):

□ϕ ¼ ∂
2ϕ

∂t2
− Δϕ ¼ 0: ð11Þ

Without specifying the boundary conditions, the solution to
this equation can be written as a superposition of plane
waves

ϕðt; xÞ ¼
Z

d3k
ð2πÞ3

1

2ωk
ðaðkÞe−iðωkt−k·xÞ þ b�ðkÞeiðωkt−k·xÞÞ;

ð12Þ

where ωk ¼
ffiffiffiffiffi
k2

p
¼ jkj. After quantization, the coefficient

aðkÞ is promoted to an annihilation operator âðkÞ of the
particle, and b�ðkÞ is promoted to a creation operator b̂†ðkÞ
of the antiparticle.
The objective is then to calculate the vacuum energy

which is given by the vacuum expectation value of the
Hamiltonian

Ĥ ¼
Z

d3xðπ̂†ðt; xÞπ̂ðt; xÞ þ∇ϕ̂†ðt; xÞ ·∇ϕ̂ðt; xÞÞ; ð13Þ
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where the conjugate fields are given by

π̂†ðt; xÞ ¼ ˙̂ϕðt; xÞ≡ ∂tϕ̂ðt; xÞ; ð14Þ

π̂ðt; xÞ ¼ ˙̂ϕ
†ðt; xÞ≡ ∂tϕ̂

†ðt; xÞ; ð15Þ

and the field and conjugate field operators satisfy the
canonical equal-time commutation relations:

½ϕ̂ðt; xÞ; π̂ðt; x0Þ� ¼ iδðx − x0Þ; ð16Þ

½ϕ̂†ðt; xÞ; π̂†ðt; x0Þ� ¼ iδðx − x0Þ; ð17Þ

with the other commutators vanishing. The field operators
have dimensions of inverse length, and the conjugate field
operators dimensions of inverse length squared. The wave-
let transform of ϕ̂ is performed in the spatial coordinates

ϕ̂a;θðt;xÞ¼
Z
R3

d3x0
1

a3=2
w�
�
R−1ðθÞx

0−x
a

�
ϕ̂ðt;x0Þ; ð18Þ

and the other fields are transformed so that the Hermitian
conjugation is respected. For example,

ϕ̂†
a;θðt;xÞ¼

Z
R3

d3x0
1

a3=2
w

�
R−1ðθÞx

0−x
a

�
ϕ̂†ðt;x0Þ: ð19Þ

The scale-dependent field in the wavelet picture also admits
a mode expansion

ϕ̂a;θðt; xÞ ¼
Z

d3k
ð2πÞ3

1

2ωk
ðâa;θðkÞe−iðωkt−k·xÞ

þ b̂†a;θðkÞeiðωkt−k·xÞÞ; ð20Þ

where the scaled creation and annihilation operators are
essentially the wavelet transform of the original creation
and annihilation operators in momentum space:

âa;θðkÞ ¼ a3=2w̃�ð−aR−1ðθÞkÞâðkÞ; ð21Þ

b̂a;θðkÞ ¼ a3=2w̃ðaR−1ðθÞkÞb̂ðkÞ; ð22Þ

satisfying modified commutation relations

½âa;θðkÞ; â†a0;θ0 ðk0Þ� ¼ ð2πÞ32ωkðaa0Þ3=2δðk − k0Þ
× w̃�ð−aR−1ðθÞkÞw̃ð−a0R−1ðθ0Þk0Þ;

ð23Þ

½b̂a;θðkÞ; b̂†a0;θ0 ðk0Þ� ¼ ð2πÞ32ωkðaa0Þ3=2δðk − k0Þ
× w̃ðaR−1ðθÞkÞw̃�ða0R−1ðθ0Þk0Þ:

ð24Þ

Therefore, as in the canonical representation, theHamiltonian
in the wavelet representation can be written in terms of
creation and annihilation operators

Ĥ ¼ 1

2

Z
da dμðθÞ d3k
Cwa4ð2πÞ3

ωkðâ†a;θðkÞâa;θðkÞ þ âa;θðkÞâ†a;θðkÞ

þ b̂†a;θðkÞb̂a;θðkÞ þ b̂a;θðkÞb̂†a;θðkÞÞ: ð25Þ

A. Periodic boundary conditions

The presence of the conducting plates is modeled by
imposing periodic boundary conditions on the field

ϕ̂ðt; x; y; 0Þ ¼ ϕ̂ðt; x; y; sÞ ð26Þ
which restricts the z component of the momentum to
values kz ¼ 2πn

s , where n is an integer. The Hamiltonian
is then (25) with the replacements

kz →
2πn
s

;
Z

d3k
ð2πÞ3 →

X
n∈Z

Z
d2kk
ð2πÞ2 : ð27Þ

The energy density inside the plates is defined as the
vacuum expectation value of the Hamiltonian ρ0ðsÞ ¼
1
s h0jĤj0i. We introduce a scale cutoff by assuming that
the vacuum cannot be excited into modes below a certain
length scale A:

â†a;θðkÞj0i¼0; b̂†a;θðkÞj0i¼0; a<A<s: ð28Þ
Then

ρ0ðs;AÞ ¼
1

s

Z
d2kk
ð2πÞ2

X
n∈Z

Z þ∞

A

da
Cwa4

×
Z
θ∈ SOð3Þ

dμðθÞωka3jw̃ðaR−1ðθÞkÞj2

¼ 1

s

Z
d2kk
ð2πÞ2

X
n∈Z

ωkf̃ðAjkjÞ ð29Þ

where

f̃ðAjkjÞ¼
Z þ∞

A

da
Cwa

Z
θ∈SOð3Þ

dμðθÞjw̃ðaR−1ðθÞkÞj2 ð30Þ

is the cutoff function f̃ as in (10) and serves to attenuate
high momenta. This reproduces the standard regularization
procedure. Then one can follow the original derivation by
Casimir [1] and use the Euler-Maclaurin formula

ρ0ðs;AÞ¼
2

s

�
Fð0;AÞ

2
þ
Xþ∞

n¼1

Fðn;AÞ
�

¼2

s

�Z þ∞

0

Fðn;AÞdn−
Xþ∞

m¼1

B2m

ð2mÞ!F
ð2m−1Þð0;AÞ

�
;

ð31Þ
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where

Fðn;AÞ ¼
Z

d2kk
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ

�
2nπ
s

�
2

s
f̃

 
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ

�
2nπ
s

�
2

s !

ð32Þ

and Bn is the nth Bernoulli number. The first term in (31)
is equal to the energy density of a free field without
boundary conditions:

2

s

Z þ∞

0

Fðn;AÞdn ¼
Z

d3k
ð2πÞ3 jkjf̃ðAjkjÞ: ð33Þ

This leads to the definition of the renormalized energy
density, which can be interpreted as the difference between
the energy inside and outside of the plates:

ρðs;AÞ ¼ ρ0ðs;AÞ −
Z

d3k
ð2πÞ3 jkjf̃ðAjkjÞ: ð34Þ

Finally, substituting ρ0ðs;AÞ from (31) obtains

ρðs;AÞ ¼ −
2

s

Xþ∞

m¼1

B2m

ð2mÞ!F
ð2m−1Þð0;AÞ

¼ −
π2

45s4
þ 8π2

s4
Xþ∞

m¼2

B2mþ2

ð2mþ 2Þ! 2mð2m − 1Þ

× f̃ð2m−2Þð0Þ
�
2πA
s

�
2m−2

ð35Þ

which reduces to the standard result in the limit A → 0,
as expected.

B. Dirichlet boundary condition

In the case of the Dirichlet boundary condition

ϕðt; x; y; 0Þ ¼ ϕðt; x; y; sÞ ¼ 0; ð36Þ

the mode structure is slightly different compared to
the periodic boundary condition. In particular, in the
expression for the Hamiltonian (25) one has to do the
replacements

kz →
πn
s
;

Z
d3k
ð2πÞ3 →

Xþ∞

n¼1

Z
d2kk
ð2πÞ2 : ð37Þ

Given this, the regularized vacuum energy density
then reads

ρ0ðs;AÞ ¼
1

s

Xþ∞

n¼1

Fðn=2;AÞ

¼ 1

s

�Z þ∞

0

Fðn;AÞdn −
1

2
Fð0;AÞ

−
Xþ∞

m¼1

B2m

ð2mÞ!22m−1 F
ð2m−1Þð0;AÞ

�
; ð38Þ

where the term − 1
2
Fð0;AÞ amounts to a constant shift of

the total energy due to the boundary conditions [19] and
in this case does not contribute to the Casimir force. The
renormalized vacuum energy density is then

ρðs;AÞ ¼ −
1

s

Xþ∞

m¼1

B2m

ð2mÞ!22m−1 F
ð2m−1Þð0;AÞ

¼ −
π2

720s4
þ π2

2s4
Xþ∞

m¼2

B2mþ2

ð2mþ 2Þ! 2mð2m − 1Þ

× f̃ð2m−2Þð0Þ
�
πA
s

�
2m−2

; ð39Þ

which can also be obtained from the periodic result in (35)
via the replacement s → 2s.

IV. DETECTING A SCALE CUTOFF

The Casimir effect manifests itself via the Casimir force

FCðsÞ ¼ −
d
ds

ðsρðs; 0ÞÞ: ð40Þ

To detect a scale cutoff, we consider ρðs;AÞ instead of
ρðs; 0Þ and examine the behavior of the force. For suffi-
ciently large separation compared to the cutoff, the
lowest order term (in A=s) from (35) or (39) gives a
sufficiently precise description. The series expansion for
the force is then

FPB
C ðs;AÞ ¼ −

π2

15s4
þ 8π2

s4
Xþ∞

m¼2

an

�
2πA
s

�
2m−2

; ð41Þ

FDB
C ðs;AÞ ¼ −

π2

240s4
þ π2

2s4
Xþ∞

m¼2

an

�
πA
s

�
2m−2

; ð42Þ

where

an ¼
B2mþ2

2mþ 2

f̃ð2m−2Þð0Þ
ð2m − 2Þ! : ð43Þ

For simplicity, the following discussion is going to focus
on the Casimir force in the case of periodic boundary
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conditions and the scale cutoff being nonzero. The lowest
order correction from (41) then reads

FCðs;AÞ¼−
π2

15s4
þ π2

63s4
f̃ð2Þð0Þ

�
2πA
s

�
2

þOðA4Þ: ð44Þ

Another possibility is to examine the behavior of the force
when the separation of the plates approaches the value of
the scale cutoff. As discussed below, the Euler-Maclaurin
formula is not the preferred tool for this. Both of these
regimes strongly depend on the choice of the wavelet.

A. Hermitian wavelets

In one dimension, the Hermitian wavelets are usually
defined as derivatives of the Gaussian. Their Fourier image is
taken as the definition in higher dimensions (see Fig. 1) so
that they automatically satisfy the admissibility condition (4)

wnðxÞ ¼
2

n−1
2 Γ
�
3þn
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΓ
�
3
2
þ n
�r 1F1

�
3þ n
2

;
3

2
;−

x2

2

�
; ð45Þ

w̃nðkÞ ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð3=2þ nÞp ð−ijkjÞne−k2
2 ; ð46Þ

here 1F1ða; b; zÞ is the Kummer confluent hypergeomet-
ric function. The cutoff function (10) for the Hermitian
wavelets is

f̃nðkÞ ¼
Γðn; k2Þ
ðn − 1Þ! ¼ e−k

2
Xn−1
l¼0

k2l

l!
: ð47Þ

The lowest order correction then reads

FCðs;AÞ ¼ −
π2

15s4
−

2π2

63s4
δ1;n

�
2πA
s

�
2

þOðA4Þ: ð48Þ

Interestingly, for the wavelet with label n the first n − 1
corrections vanish. Equivalently, choosing a higher n for
the wavelet gives a stronger suppression of the effects
caused by the presence of a scale cutoff when the
separation is large compared to the cutoff, see Fig. 2.

B. Wavelet associated with exponential cutoff

In the usual treatment of the Casimir effect, the expo-
nential regulator is often introduced

f̃ðkÞ ¼ e−k: ð49Þ

The wavelet corresponding to this cutoff function can be
found and reads (plotted in Fig. 3)

wðxÞ ¼
ffiffiffiffiffiffi
3

2π

r
sin
�
5
2
arctanð2jxjÞ�

jxjð1þ 4x2Þ5=4 ; ð50Þ

w̃ðkÞ ¼ πffiffiffi
3

p
ffiffiffiffiffiffi
jkj

p
e−jkj: ð51Þ
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FIG. 1. Cross section of the first Hermitian wavelet (45) in both
position (a) and momentum (b) representation.

8 10 12 14 16
–0.00030

–0.00025

–0.00020

–0.00015

–0.00010

–0.00005

0.00000

FIG. 2. Dependence of the Casimir force FC on the separation
of the plates s. The scale cutoff is set A ¼ 1. The solid line
corresponds to the usual result − π2

15s4 and the other lines represent
the Casimir force perceived by the Hermitian wavelets for
different choices of n.
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For this choice of wavelet the lowest order correction
in the asymptotic behavior of large separation compared to
the scale cutoff is

FCðs;AÞ ¼ −
π2

15s4
þ π2

63s4

�
2πA
s

�
2

þOðA4Þ; ð52Þ

which has an opposite sign compared to the expression for
the first Hermitian wavelet (48). Interestingly, in this case,
the expression (29) can be evaluated in a closed form

ρ0ðs;AÞ ¼
coth

�
πA
s

�
πA3

þ πA coth
�
πA
s

�þ s

A2s3sinh2
�
πA
s

� : ð53Þ

The integral for bulk energy (33) evaluates to 3
π2A4 and thus

the renormalized energy reads

ρðs;AÞ ¼ πA coth
�
πA
s

�
− 3

π2A4
þ πA coth

�
πA
s

�þ s

A2s3sinh2
�
πA
s

� ; ð54Þ

which in turn gives the exact expression for the Casimir
force

FCðs;AÞ ¼
3

π2A4
−
π2
�
cosh

�
2πA
s

�þ 2
�

s4sinh4
�
πA
s

� : ð55Þ

Compare here the application of the Euler-Maclaurin
formula versus direct calculation of (29). The Euler-
Maclaurin formula is suitable when A=s is small. In the
usual derivation of the Casimir effect, only the dominant
term of (35) is considered and the rest is ignored (essen-
tially taking the A → 0 limit), which recovers the behavior
on length scales far away from the scale cutoff. When
examining length scales comparable to the cutoff, the
expansion (35) starts to lose precision as the sum is usually
asymptotic. Here, the original sum (29) is preferable to
analyze the behavior around the cutoff. This is illustrated
in Fig. 4.
Figure 4 shows another interesting phenomenon: as the

separation approaches the scale cutoff, the force becomes
repulsive, indicating reluctance of the plates being closer
than the scale cutoff. Although particular numeric values
differ, the same behavior is also obtained for the Hermitian
wavelet family. The difference here is that the sum (29)
does not have a closed form expression.
Thus the scale cutoff is in theory detectable before

reaching the critical regime discussed above. When the
separation of the plates is one order of magnitude above the
cutoff, the expansions in (48) and (52) differ meaningfully

–4 –2 0 2 4

0.0

0.5

1.0

1.5
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2.5
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3.5

–4 –2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Cross section of the wavelet associated with exponential
cutoff (50) in both position (a) and momentum (b) representation.

1 2 3 4 5
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0.15

1.5 2.0 2.5 3.0 3.5 4.0 4.5

–0.02

–0.01

0.00

0.01

0.02

FIG. 4. Dependence of Casimir force on the separation of the
two plates when the wavelet (50) is considered. The scale cutoff is
set A ¼ 1. The solid line corresponds to the exact expression (55),
the dashed-dotted line on the left corresponds to (34) where the
sum runs between −3 and 3. Finally, the dashed line on the right is
the expression (52) obtained from the Euler-Maclaurin formula.
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from the usual value − π2

15s4. This is an alternative inter-
pretation of the result in [14]. Figure 5 illustrates this and
also shows that the resulting force depends on the choice of
the wavelet.

C. Wavelets with extreme properties

Here we consider two examples of wavelets (Figs. 6
and 7) whose cutoff function satisfies f̃ðmÞð0Þ ¼ 0 for
m > 0. Such a function could be the following smoothed
step function

f̃ðkÞ¼

8>><
>>:
1 0≤k≤1

1−
�
1þexp

�
1

k−1−
1

2−k

��
−1

1<k<2

0 2≤k

; ð56Þ

where the Fourier image of the corresponding wavelet
could be set as

w̃bumpðkÞ ¼ N

ffiffiffiffiffiffijkjp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 − 6jkj þ 5

p
ðjkj − 1Þð2 − jkjÞ cosh

�
3=2−jkj

ðjkj−1Þð2−jkjÞ
� ð57Þ

in region 1 < jkj < 2 and zero outside. The Fourier trans-
form of this wavelet does not appear to have a closed
form expression, however the wavelet has several
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–0.00010

–0.00005
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FIG. 5. Dependence of the Casimir force on the separation of
the two plates with the scale cutoff set to A ¼ 1. The solid line
corresponds to the usual result − π2

15s4, the dashed line is the
correction (48) when the first Hermitian wavelet is considered,
and the dotted dashed line is the correction (52) obtained from the
wavelet (50).
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FIG. 6. Cross section of the wavelet that is defined as a bump
function (57) in the momentum representation (b). The cross
section in position representation (a) is computed numerically
directly from the inverse Fourier integral.
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FIG. 7. The cross section of the wavelet (61) associated with
the nonanalytic cutoff function 1 − e−1=k

10

both in position (a)
and momentum (b) representation. The momentum represen-
tation is zero only for k ¼ 0, in the neighborhood of zero the
value of the function is so small that the plotting software
rounds it down to zero.
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interesting properties. First, dyadic scaling generates an
orthonormal set

Z
R3

d3x0w
�
x0 − x
2k

�
w

�
x0 − y
2l

�
¼ δkl: ð58Þ

However, integer shifts at the same scale or dyadic powers
of integer shifts across scales do not produce an ortho-
normal set and, therefore, cannot be used to generate a basis
for a discrete wavelet transform. There are some shifts that
create a function orthogonal to the original, but they do not
appear to obey a regular pattern. The second observation is
that the wavelet image of the derivative operator

Diða; a0; x; yÞ ¼
Z
R3

d3x0w
�
x0 − x
a

�
∂iw

�
x0 − y
a0

�
ð59Þ

has a faster-than-polynomial fall-off in jx − yj. This means
that this wavelet has a much better localization than, for
example, sinc wavelets, while still maintaining orthogon-
ality at dyadic scaling. It also suggests that it may be useful
in a scale-limited analysis of QFT where it is desirable to
maintain a local representation of derivative operators
(where by “local” we mean that the operator representation
decays at least superpolynomially).
Another possible choice for the cutoff function is a

relative of the prototypical example of a nonanalytic
smooth function:

f̃ðkÞ ¼
	
1 − e−

1

k10 k ≠ 0

1 k ¼ 0
; ð60Þ

where the power 10 is chosen so that the wavelet is an L2

function in the three-dimensional space. The expression for
the wavelet is then

wMeijerðxÞ¼
1

27=10jxj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΓð7=10Þp G6;0

0;11

�
b⃗





 x10

2×1010

�
ð61Þ

w̃MeijerðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20π2

Γð7=10Þ

s
1

jkj5 exp
�
−

1

k10

�
; ð62Þ

where G is the Meijer G-function and b⃗ ¼ ð 1
10
; 3
10
; 3
10
; 1
2
; 7
10
;

9
10
; 0; 1

5
; 2
5
; 3
5
; 4
5
Þ.

The Euler-Maclaurin formula [20] for a p times differ-
entiable function is

Fð0Þ
2

þ
Xþ∞

n¼1

FðnÞ

¼
Z þ∞

0

FðxÞdxþ
Xp−1
k¼1

Bkþ1

ðkþ 1Þ!F
ðkÞð0Þ þ Rp; ð63Þ

where the remainder Rp is given by the formula

Rp ¼ ð−1Þpþ1

Z þ∞

0

FðpÞðxÞBpðx − bxcÞ
p!

dx: ð64Þ

where BnðxÞ is the Bernoulli polynomial of order n. Here,
the Euler-Maclaurin formula must be used with care,
because the remainder does not go to zero as the order
of the derivative p is taken to infinity. The remainder
satisfies the difference equation

Rpþ1 − Rp ¼ Bpþ1

ðpþ 1Þ!F
ðpÞð0Þ; ð65Þ

which means that if there exists p0 such that for all p > p0

the derivative FðpÞð0Þ vanishes, the sequence of remainders
becomes a constant sequence Rp ¼ Rp0

, for p > p0. This is
precisely the case for the wavelet with a nonanalytic cutoff
function defined in (61). The renormalized energy for these
wavelets therefore reads

ρðs;AÞ ¼ −
π2

45s4
þ 2

s
R4ðs;AÞ; ð66Þ

where the remainder has the form

R4ðs;AÞ¼
ð2πÞ2
s3

Z þ∞

0

d3

dx3

�
x2f̃

�
2πAx
s

��
B4ðx−bxcÞ

4!
dx:

ð67Þ
The Casimir force is then obtained straightforwardly as

FCðs;AÞ¼−
d
ds

ðsρðs;AÞÞ¼−
π2

15s4
−2

∂

∂s
R4ðs;AÞ: ð68Þ

These wavelets therefore have the interesting property
that the asymptotic behavior is isolated from the infinite
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FIG. 8. Comparison of the corrections to Casimir force ob-
tained from the wavelet wbump (61) associated with cutoff
function f̃ðkÞ¼1−e−1=k

10

(dashed) and the wavelet wMeijer (57)
associated with the smoothed cutoff function (solid), both
exhibiting oscillatory behavior. The scale cutoff is set to A ¼ 1.

VEDL, GEORGE, and BRENNEN PHYS. REV. D 109, 016018 (2024)

016018-8



sum and all of the short-range behavior is contained in the
remainder term. The resulting Casimir force is oscillatory,
as shown in Fig. 8, which ought to be particularly useful in
the context of detecting the existence of a scale cutoff. This
oscillatory behavior can also be obtained with higher-order
Hermitian wavelets.

V. DISCUSSION AND CONCLUSION

We demonstrated in Sec. III the use of wavelet regu-
larization to introduce a scale cutoff to a canonical field
theory calculation, and showed using several known and
some new wavelet families that the cutoff manifests itself as
higher-order terms that disappear in the zero-scale limit.
This serves to give further credence to the usefulness of
wavelet-based regularization in QFT.
In Sec. IV we demonstrated the relationship between the

choice of wavelet and the character of the resulting Casimir
force. This suggests the potential to “tune” a measuring
probe to either enhance or minimize the effects of a scale
cutoff in a system. If the objective is to minimize the effects
of a scale cutoff (i.e., to more closely approximate the
continuum limit using a finite scale) then this can be
achieved by engineering the probe so that the aperture
function corresponds to a higher order Hermitian wavelet
(see Fig. 2). In contrast, if the intention is to maximize the
deviation of the measurements of the scale-limited force
from the continuum force, so as to reveal the presence of
the scale cutoff, then a wavelet with a nonanalytic cutoff
function would provide this. In such a system the Casimir

force would then exhibit distinctive oscillatory behavior as
a function of separation.
Our analysis also provides a new perspective for modeling

fundamental cutoffs. The GUPs mentioned in the introduc-
tion model a minimal length scale by modifying the
commutation relations between the position and momentum
operators [3,21]. The electromagnetic field operators are
then expanded in terms of maximally localized states, which
regularizes the theory and one then obtains an attractive
correction [22] to the Casimir force. Our approach is distinct
in that, because the maximally localized states fail to satisfy
the wavelet admissibility condition, they cannot be used to
generate a wavelet frame. We show that via wavelet-based
regularization one encounters positive, negative, and oscil-
latory corrections to the force, however, we have observed in
all our examples that as the separation approaches the scale
cutoff the force becomes repulsive. This observation may be
one possible avenue for further investigation.
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