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A large class of strongly correlated quantum systems can be described in certain large-N limits by
quadratic in field actions along with self-consistency equations that determine the two-point functions. We
use the replica approach and the notion of shifted Matsubara frequency to compute von Neumann and
Rényi entanglement entropies for generic bipartitioning of such systems. We argue that the von Neumann
entropy can be computed from equilibrium spectral functions without partitioning, while the Rényi entropy
requires recalculating the spectrum in the interacting case. We demonstrate the flexibility of the method by
applying it to examples of a two-site problem in presence of decoherence and coupled Sachdev-Ye-Kitaev
models.
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I. INTRODUCTION

Entanglement is one of the central concepts of quantum
mechanics and a notion based on which many of the
modern physical phenomena are understood. The entan-
glement between the degrees of freedom in a region of
space A and the rest of the system Ā, is fully characterized
by the so-called entanglement spectrum (ES), i.e., eigen-
values of the reduced density matrix ρA ¼ TrĀ½ρ�, or
equivalently, its various moments. Among different mea-
sures of the entanglement, Rényi and von Neumann
entanglement entropies (EEs),

SRM
A ≡ 1

1 −M
log Tr½ρMA �; SvNA ≡ −Tr½ρA log ρA�; ð1Þ

are frequently used, where the latter can also be extracted
from the limit SvNA ¼ limM→1þ S

RM
A .

It is known that the EE of typical pure states depends on
the sizes of the Hilbert spaces [1,2], whereas the EE of the
ground state scales with the spatial extent of the regions.
This is because roughly speaking, EE counts the number of
entangled states; for gapped systems with short-range
correlation an “area law” and for gapless systems with
long-range correlation, a “volume law” is expected [3–5].
Entanglement entropy has many important applications.

For example, in 1þ 1-dimensional gapless systems, EE is
the natural probe of the central charge of the underlying
conformal field theory (CFT) [6]. Furthermore, in 2þ 1-
dimensional gapped systems with perimeter LA, the
entropy has the form SvNA ¼ αLA − γ [7], where γ is a
signature of topological order and can be extracted using a
procedure that eliminates the extensive part [8,9].
Moreover, according to eigenstate thermalization

hypothesis (ETH) [10–12], the reduced density matrix of
a chaotic system in a pure state has the Boltzmann form

ρA ∼ e−HA=Teff , where HA is the Hamiltonian of detached A
part and the temperature Teff depends on the state’s energy.
A somewhat unexpected example is the Laughlin state,
whose ES contains the spectrum of gapless edge states that
would exist if A and Ā were physically detached [13], as if
due to topology and despite the gap, ρA shares the same
spectrum with HA. Similar physics is present in other
topological systems [14,15] and is understood in terms of
the relevance of the coupling between the edge states across
A-Ā border [16] in the renormalization group (RG) sense.
There are also connections to holography [17,18].

According to Ryu-Takayanagi conjecture, the EE of
CFTdþ1 is given geometrically SvNA ∝ AA by the extremal
area AA of the minimal spacelike surface anchored to A
region and extending in the AdSdþ2 bulk. As external
parameters are varied, AA may switch from isolated
surfaces to a joint surface, and this is interpreted as the
formation of a wormhole. Hence, certain transitions in EE
are holographically topological.
Despite its prevalence and important applications, the

class of problems where EE can be computed are limited to
noninteracting problems [19–21], 2D CFTs [6,22,23], a
number of integrable models [24–26], as well as systems
amenable to quantum Monte Carlo simulations [27,28],
exact diagonalization [29], or density matrix renormaliza-
tion. Here, we develop a versatile new technique that
allows us to extend this list to problems that can be
described by quadratic actions, e.g., models studied using
static mean-field [30,31] and dynamical large-N tech-
niques. The latter includes random Sachdev-Ye-Kitaev
(SYK) models [32] as well as various tensor models that
describe Kondo systems [33–43] and large-N theories of
strange metals [44,45]. To the best of our knowledge such a
versatile technique that can be applied to all these problems
was not available until now.
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Previous attempts at calculating EE of these systems
[46–50] have been mostly limited to second Rényi entropy
and restricted to random SYK model, which thanks to its
exact solvability and maximally chaotic behavior [32], have
attracted considerable interest. In particular, the thermal-
ization of the SYK and coupled-SYKmodels [51–56], have
been studied due to their holographic equivalence to
black holes, connected by traversable wormholes [52,53].
Therefore, we apply the method to study coupled-SYK
models, as an example in this paper.
The rest of the paper is organized as follows. Section II is

the central part of the paper where we develop our new
approach to computing EE as well as comment on the role
of topology. The method is then applied to various
problems in Sec. III. We conclude in Sec. IV and present
some future directions. A number of appendices present the
usual approach to non-interaction systems, the equilibrium
action of the SYK model and the detailed proof of various
statements made in the paper.

II. METHOD

In this section, we develop a formalism to compute EE
in large-N theories, which are described by quadratic
action, in which the interaction is incorporated self-
consistently into self-energies. We also discuss the non-
interacting limit of the formalism and its connection to
topology and ETH.

A. Replica approach

We consider field theories whose action S ¼ SQ þ SC
can be reduced into a quadratic quantum part SQ½ψ̄ ;ψ ;Σ� in
any dimension, possibly by introducing a number of
dynamical constraints, and a Luttinger-Ward functional
in the free energy, collected in SC½G;Σ�. The two parts are
linked by self-consistency equations Σ½G�. We imagine
dividing the system into A and B ¼ Ā parts [Fig. 1(a)] with
(bosonic, fermionic, or mixed) quantum fields ψa and ψb,
each having an arbitrary number of modes which capture
the spatial extension of the region. To compute SRM , we
introduce r ¼ 1…M replica of quantum fields ψ ðrÞðτÞ, with
imaginary-time boundary-conditions [57],

ψ ðrÞ
a ðβÞ ¼ ζ̃1=Mψ ðrþ1Þ

a ð0Þ; ψ ðrÞ
b ðβÞ ¼ ζ̃ψ ðrÞ

b ð0Þ; ð2Þ

for the fields in A and B, respectively [see Fig. 1(b)]. Here,
ζ̃ ¼ �1 for bosons/fermions, and we have chosen a gauge
in which ζ̃ is distributed uniformly among ψa [58]. In
terms of these fields, Tr½ρMA � ¼ ZM=ZM

0 where ZM ¼
e−NSC

R
Dðψ̄ ;ψÞe−NSQ has to be computed on the manifold

of Fig. 1(b).

B. Replica momentum

Despite the quadratic form of the action, computing ZM
is highly nontrivial due to the boundary condition (2).
Following [59], we transform both fields to the so-called
replica-momentum space,

∀p¼ 0…M−1; ψ ðpÞðτÞ≡ 1ffiffiffiffiffi
M

p
XM
r¼1

Ωprψ ðrÞðτÞ: ð3Þ

In this space, the ψa have the boundary condition

ψ ðpÞ
a ðβÞ¼upψ

ðpÞ
a ð0Þ with up≡ ζ̃1=MΩ−p in terms

Ω≡e2πi=M, whereas ψb have the usual ψ ðpÞ
b ðβÞ ¼

ζ̃ψ ðpÞ
b ð0Þ periodicity. For a field with a periodicity

ψðβÞ ¼ uψð0Þ, the Matsubara frequencies are shifted
according to u ¼ eiβω̄n . Such shifted Matsubara frequency
have been encountered in the perturbative calculation of
the second Rényi entropy before [60], which are gener-
alized here to arbitrary Rényi entropies. The summation
over shifted frequencies ω̄n, can be done using contour
integration with nuðzÞ≡ ½ueβz − 1�−1, and such a field
has the partition sum Zϵ½u�≡ ½1 − u−1eβϵ�−ζ. Note that
ζ̃nζ̃ðωÞ is Bose-Einstein and Fermi-Dirac distributions for

ζ̃ ¼ �1, respectively.
Quite generically, the quadratic action SQ on the mani-

fold of Fig. 1(b) decouples into different p sectors and
using Einstein summation can be expressed as

SQ ¼
XM−1

p¼0

ð ψ̄a;n ψ̄b;m ÞðpÞ½−G−1
up �ab;a

0b0
nm;n0m0

�
ψa0;n0

ψb0;m0

�ðpÞ
: ð4Þ

Here, n, n0 indices refer to shifted Matsubara frequencies
ω̄n½u� ¼ 2πnT − iT logu, whereas m, m0 refer to regular
bosonic/fermionic Matsubara frequencies iωm.

FIG. 1. (a) General bipartite setting considered in this paper.
A and B sections do not need to be simply connected. (b) The
replica method for computing Rényi entropy. The boundary
condition in the imaginary time direction for A and B sections,
represented by the red/blue lines, are different. (c) The contour
integral used to define von Neumann EE in the fermionic case.
Bosonic case is the vertical mirror of this.

SIQI SHAO and YASHAR KOMIJANI PHYS. REV. D 109, 016015 (2024)

016015-2



C. Time-translational invariance assumption

The Rényi entropy, proportional to logZM=ZM
0 ¼P

p logZ½up�=Z0 can be expressed as a contour integral
in the complex u plane [Fig. 1(c)],

log
ZM

ZM
0

¼
I

du
2πi

log

�
Z½u�
Z0

�
∂u logðuM − ζ̃Þ: ð5Þ

This enables us to extend SRM
A to nonintegers values of M,

justifying the SvNA ¼ limϵ→0 S
R1þϵ

A limit. See Ref. [20] for a
discussion of uniqueness. Although for u ≠ ζ̃ the (imagi-
nary) time-translational symmetry is broken [61], we
expect it to be recovered in the ϵ → 0 limit, and thus,
Guðτ1; τ2Þ ¼ Gðτ1 − τ2Þ þ ϵδGuðτ1; τ2Þ for the Green’s
function. For interacting systems, this feeds into the
self-energy Σ ¼ Σ½G�, giving Σuðτ1; τ2Þ ¼ Σðτ1 − τ2Þ þ
ϵδΣuðτ1; τ2Þ (see the Appendix A 2). The first observation
of our paper is that since the ϵ ¼ M − 1 → 0 limit of Eq. (5)
is explicitly proportional to ϵ, the ϵ-correction to the self-
energy is not needed to compute the von Neumann EE.
Therefore, we assume that self-energy has time-transla-
tional symmetry. For noninteracting problems, this is an
exact statement, but for interacting large-N problems, this
approximation is only valid for the von Neumann entropy.

D. Entanglement entropy formula

Absorbing the Hamiltonian into the self-energy, the
inverse Green’s function in (4) can be written as

½G−1
u �ab;a0b0nm;n0m0 ¼

0
B@½iω̄nδ

aa0 −Σaa0
n �δnn0 1−ζ̃u

β

Σab0
m0

iω̄n−iωm0

1−ζ̃u−1
β

Σba0
m

iωm−iω̄n0
½iωmδ

bb0 −Σbb0
m �δmm0

1
CA;

ð6Þ

where we have taken advantage of time-translational
symmetry of self-energies. The off diagonal elements in
frequency originate from the mismatch in Matsubara
frequencies of ψa and ψb fields. However, a knowledge
of equilibrium Green’s function G alone, is sufficient to
build the G−1

u . See Appendix A 3 for a derivation of Eq. (6).
The u-sector partition function of action (4), (6) is

Z½u� ¼ det−ζ½ð−G−1
u Þaa0nn0 � det−ζ½−ðGBB0

u Þ−1mm0 �: ð7Þ

We use ζ ¼ 1 for bosons, ζ ¼ −1 and ζ ¼ −1=2 for
complex/real fermions and notice that ζ̃ ¼ signðζÞ. After
summation over shifted frequencies ω̄n and expressing the
Green’s function of A by its spectral representation
Aaa0 ðωÞ≡ iGaa0 ðzÞ�ωþiη

ω−iη , the GBB0
u can be written as

ðGBB0
u Þ−1 ¼ ½G−1

m �BB0
δmm0 −

Z
dx
2π

KuðxÞΣba
m Aaa0 ðxÞΣa0b0

m0

βðiωm − xÞðiωm0 − xÞ ;

where KuðωÞ≡ ðζ̃u − 1ÞnuðωÞ=nζ̃ðωÞ. Here, GBB0 ðzÞ with
uppercase B and Gaa0 ðzÞ with lowercase a are the equi-
librium Green’s function of the attached B part and
detached A part (possibly modified due to self-consistency
equations), respectively. In other words, Gaa0 ðzÞ is the
inverse of the first block of G−1

u¼ζ̃
, but GBB0

is the last block

of the inverted matrix Gu¼ζ̃.
Using determinant shuffling technique (see the

Appendix A 4) and defining 1≡ 2πδðω − ω0Þδaa0 , Eq. (7)
becomes

Z½u� ¼ Za½u�ZB det−ζ½1þ ζ̃KuðωÞAaðωÞJAðω;ω0Þ� ð8Þ

(see Appendix A 5 for details) written in terms of

JAðω;ω0Þ≡ 1

β

X
m

RAðiωmÞ
ðiωm − ωÞðiωm − ω0Þ ; ð9Þ

where Raa0 ≡ ΣabGBB0Σba0 . Alternatively in terms of the
attached/detached A correlators, RA ¼ G−1

a GAG−1
a − G−1

a .
The boundary condition in imaginary time u appears in
Eq. (8) only via KuðxÞ. We can write the determinant term
as det−ζ½nu=nζ̃ðC − uDÞ�, where [62]

Cðω;ω0Þ¼ ζ̃nζ̃ðωÞ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AaðωÞ

p
JAðω;ω0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aaðω0Þ

p
; ð10Þ

and D ¼ 1þ ζ̃C. Considering that JA → 0 for a reference
C0 with detached A and B parts, the system-independent
thermal prefactor can be eliminated by taking the ratio of
the two determinants. Using Tr½ρM� ¼ Z−M Q

p Z½up� and
Z ¼ ZaZB, we finally have

Tr½ρMA � ¼
Y
p

Za½up�
Za

det−ζ½D − u−1p C�
det−ζ½D0 − u−1p C0�

: ð11Þ

Equation (11) is the central result of our paper. We have
succeeded to single-out the parameter u, characterizing the
boundary condition in each sector, and express the rest in
terms of equilibrium Green’s functions of region A. This
enables us to evaluate the p-product using the identityQ

p det½D − u−1p C� ¼ det½DM − ζ̃CM�.

E. Thermal part of EE

Rényi entropies can be written as a sum of two terms
SRM
A ¼ SRM

a þ ΔSRM
A . The first term is the (thermal) Rényi

entropy of the detached A system,

SRM
a ¼ 1

1 −M
½logZaðMβÞ −M logZaðβÞ�; ð12Þ

where ZaðβÞ ¼ e−βFaðβÞ is the partition function of the
detached A system at inverse temperature β. In theM → 1þ

limit, SvNa ¼ −dFa=dT becomes the thermodynamical

TOWARDS ENTANGLEMENT ENTROPY OF RANDOM LARGE-N … PHYS. REV. D 109, 016015 (2024)

016015-3



entropy of the detached A system. Note that SaðT → 0Þ,
vanishes for all gapped systems, as well as most gapless
systems that lack a residual T ¼ 0 entropy.

F. Quantum corrections

The quantum correction to EE ΔSA, requires a diago-
nalization of Cðω;ω0Þmatrix. The eigenvalues of C are real
and positive (c ≤ 1 for fermions). We define the entangle-
ment density of states (DoS) Δρ as the difference ΔρðcÞ≡
ρðcÞ − ρ0ðcÞ≡P

j δðc − cjÞ −
P

j δðc − cj0Þ in C and C0

DoSs. ΔρðcÞ vanishes for physically detatched A and B.
Defining cþ ≡ cþ iη, Δρ can be expressed as

ΔρðcÞ¼−
1

π
∂cImlogfdet½ðcþ1−C0Þ−1ðcþ1−CÞ�g: ð13Þ

in terms of which, ΔSRM
A ¼ R

dcΔρðcÞgRMðcÞ, where

gRMðcÞ≡ −ζ
1 −M

log½ð1þ ζ̃cÞM − ζ̃cM�; ð14Þ

and gvNðcÞ¼ gR1þ ðcÞ¼ ζ½ð1þ ζ̃cÞ logð1þ ζ̃cÞ− ζ̃c logðcÞ�.
Generally g ≥ 0, and for fermions g ≤ gð1=2Þ ¼ logð2Þ.
The matrix C has to be discretized and diagonalized
numerically. Assuming N frequency points, ρ and ρ0 are
each OðN Þ, but Δρ is an Oð1Þ zero-mean function,
independent of frequency discretization [63]. The form
of Eq. (14) is familiar from Luttinger’s theorem [64].ΔρðcÞ
consists of unit-area resonances located at c values where
the phase of the determinant winds, corresponding to
excess or deficit of an eigenvalue on top of a continuum.
Equations (13)–(14) indicate that theC part of the ES can

be emulated by an infinite set of auxiliary particles ψ̃a;ω in
an extra dimension [57] in thermal equilibrium with
occupations hψ̃†

ωψ̃ω0 i ¼ Cðω;ω0Þ [65]. The relation C ¼
ðeβH̃ − ζ̃Þ−1 defines entanglement Hamiltonian H̃ [66].

G. Noninteracting limit and topology

In the noninteracting limit, the spectral function AaðωÞ
consists of a series of delta functions, which reduce the
dimension of C to the number of modes. More importantly,
Δρ < 0 contribution by C0 exactly cancels the thermal
contribution to EE, Sa. In this limit ψ̃a;ω → ψaδðωÞ, the
matrix C represents occupation of physical particles ψa,
and our formalism reduces to known results [20]. See
Appendix A 6 for an explicit proof.
Generally, when A-B coupling is weaker than temper-

ature, Eq. (13) offers a perturbative expansion without the
need to diagonalize C (See Appendix A 7). If the A-B
coupling is irrelevant in a renormalization group sense,
Σab → 0 and JA → 0 and ΔS vanishes. On the other hand,
if A-B coupling is relevant, for example in presence of edge
modes in the energy spectrum of detached systems,
Σab → ∞. In this case, it is justified to flatten the spectrum
[15] by neglecting the k dependence of Green’s functions

involved in computing JAðω;ω0Þ. Writing V2δaa
0 ¼ΣabΣba0 ,

for each mode in A, Raa0 ðzÞ → δaa
0
V2=ðz − V2=zÞ will

have the same form as a two-site fermion problem with a
coupling V. The latter has a zero mode in the ES and an EE
of log(2). The original model has a highly degenerate zero
mode, whose degeneracy is lifted by AaðωÞ, resulting in a
gapless mode in ES, in apparent agreement with ETH [16].
At T → 0, the negative part of Δρ can be ignored, and

resonances can be represented by their entanglement
“energies” ε ¼ logð1=cþ ζ̃Þ. An ES gap closing and
reopening with a zero mode then indicates a topological
transition in the bulk and formation of edge states. Indeed
the quantum EE ΔS= logð2Þ ¼ nullityðH̃Þ is related to the
number of zero modes of H̃, a topological invariant.

III. EXAMPLES

In this section, we show that the formalism developed
above can be used to compute EE in large-N theories. For
simplicity,we limit ourselves to two-site fermionic problems.

A. Models with self-energy

The simplest example is a system in which integrating
out some internal degrees of freedom has led to a self-
energy. Consider the four-site problem in a U geometry
[inset of Fig. 2(a)] where A and B are coupled by V but
each are coupled by W to a single-site bath, resulting in
ΣaaðzÞ ¼ ΣbbðzÞ ¼ W2=z. Figure 2(b) shows EE in perfect
agreement with exact diagonalization. AtW → 0þ, the bath
sites are forced to be entangled with each other, as can
be seen by a Shrieffer-Wolff produced coupling, thus
S → 2 logð2Þ. Although the EE is constant for W ≪ V,
there is a crossover from quantum to thermal contributions
as W=T is varied [Fig. 2(c)]. Figure 2(a) shows that at
W < V effectively two of the eigenvalues of C move to
c → 1=2, forming zero modes that increase EE to 2 logð2Þ,
but they are canceled at T < W by the spectral migration of
C0 eigenvalues to zero. The EE decreases with increasing
W, due to the entanglement monogamy.
Our technique readily generalizes to the case where

A and B are decohered [67] by coupling to a fermionic bath
[Fig. 2(d)], an example for which many other methods fail.
In the wideband limit, the self-energy can be taken to be
independent of frequency, i.e., Σðωþ iηÞ ¼ −iΓ for both
sites. The resulting EE shows no interbath entanglement,
but an overshoot at Γ ∼ V remains.

B. Models with self-consistency

As an example of problems with self-consistency, we
look at coupled-SYK models, defined as H0 þHint, where

H0 ¼
1

4!

X
μ¼A;B

XNμ

ijkl¼1

Jμijklχ
μ
i χ

μ
jχ

μ
kχ

μ
l : ð15Þ
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H0 describes two copies of SYK dots. Here, χμj are
Majorana fermions and Jμijkl are random numbers taken
from a zero mean Gaussian distribution (ZMGD) with the
variance J2=N. After disorder averaging and in the large-
NA;B limit, this model reduces to a quadratic action with the
two-point function that is determined self-consistently by
the self-energy ΣμðτÞ ¼ J2G3

μðτÞ and the Dyson equation
G−1

μ ðzÞ ¼ z − ΣμðzÞ. Readers are referred to [32,68] for
important omitted aspects as well as Appendix A 8 for a
review of the equilibrium case. Without coupling, ΔSA ¼ 0

and thus SAðTÞ ¼ SSYKth ðTÞ, which at T → 0 is given by the
residual entropy of a single SYK.
We now assume that the two SYK dots are

connected [69] by four-fermion couplings H ¼ H0 þP
ijkl Vijklχ

A
i χ

A
j χ

B
k χ

B
l , where Vijkl are again ZMGD with

variance V2=N. In this latter case, the self-consistency
equations becomes ðp ¼ NB=NAÞ,

ΣaaðτÞ ¼ J2G3
AAðτÞ þ 2V2 ffiffiffiffi

p
p

G2
BBðτÞGAAðτÞ; ð16Þ

and a similar equation for Σbb with A ↔ B and p → 1=p.
For V ¼ J, this is a single composite SYK dot with the total
number of N ¼ NA þ NB fermions.
A common feature of all these four-fermion coupling

models is that the coupling is irrelevant in an RG sense near

infrared fixed point. Furthermore, Σab ¼ Σba ¼ 0, and
thus, there are no quantum corrections ΔSA ¼ 0. The EE
is given entirely by the thermal part SvNA ¼ Sa, which also
includes the classical part of the action.
Figure 3 shows the spectra of A and B as well as both

thermodynamical and entanglement entropy of the two
systems. The same residual entropy per particle for A and B
shown in Fig. 3(b) indicates that the larger part of the
coupled system is still entangled to the outside at T ¼ 0. In
addition to that, there are some intersubsystem entangle-
ment as indicated by the EEs.

IV. CONCLUSION

In summary, we have provided a Green’s function for-
malism to compute ES of theories with a quadratic action
through diagonalization of a single matrix built out of
equilibrium functions. In this sense, our approach is different
from the ZM gauge theory approach taken in [70–72]. This
Green’s function approach already simplifies the computa-
tion of entanglement entropy in specific noninteracting
scenarios.
Interactions can be treated perturbatively within this

formalism. However, we argued that this formalism pro-
vides access to the von Neumann EE of large-N theories
described by a Luttinger-Ward functional of two-point
Green’s functions. The latter includes contributions from
both quantum and classical parts of the action. The focus of
this work has been on the quantum part and the examples
chosen are large-N models which have simple classical
parts. Generalization to other examples with more com-
plicated classical actions, e.g., [52] is left for future. More
importantly, further work is needed to investigate other
systems and verify the time-translational invariant
assumption that enables such an extension.
We have applied our method to a noninteracting prob-

lem with self-energy as well as the coupled SYK model.
The method can be in principle applied to Kondo lattices
[30,34,35,41] where changes in the pattern of entanglement
are shown to be playing major role in Kondo break-
down transition [36,73,74]. Extension to nonequllibirium

FIG. 2. Free fermions coupled to (a)–(c) single-site and
(d) wideband bath geometries indicated in the insets. (a) Entan-
glement DoS ΔρðcÞ at T=V ¼ 10−2 for variousW=V ratios, show
a quantized migration of positive spectrum toward c → 1=2 for
T < W, followed by a negative spectrum migration at W < T.
Each peak has a unit area. (b) von Neumann and Rényi EE as
function ofW resolved into thermal part and quantum correction.
(c) The quantum part of SvN show its W=T scaling. (d) von
Neumann and Rényi EE as a function of Γ=V for Γ ¼ πW2=Λ in
the large bandwidth Λ limit.

FIG. 3. Coupled-SYK model with V=J ¼ 1. (a) Spectral func-
tion AA and AB for various temperatures (T=J from 0 to 1), (b) von
Neumann EE SvN for different components.
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steady-state as well as quench dynamics is an interesting
future direction.
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APPENDIX

This appendix contains further details and extended
proof of various statements in the paper.

1. Noninteracting case

For the sake of completeness, we remind ourselves of the
known noninteracting results [20,21].
Bosons—The reduced density matrix is

ρA ¼ e−HA

ZA
;

whereHA¼
P

mnϵmna
†
man is the entanglement Hamiltonian

and ZA ¼ Q
kð1 − eϵkÞ−1. We define the correlators,

Cmn ≡ ha†mani:
The spectrum of C and HA have the following relation:

νk ¼
1

eϵk − 1
;

where fνkg is the spectrum of C and fϵkg is spectrum of
HA. The von Neumann entropy and Rényi entropy are

SvNA ¼ −Tr½ρA ln ρA�

¼
X
k

�
ϵke−ϵk

1 − e−ϵk
− lnð1 − e−ϵkÞ

�
; ðA1Þ

and

SRM
A ¼ Tr½ln ρMA �

1 −M
:

Instead of using the spectrum fϵg, one can use the
spectrum fνkg to calculate von Neumann entropy and
Rényi entropy as

SvNA ¼
X
k

ð1þ νkÞ lnð1þ νkÞ − νk ln νk

and

SRM
A ¼ Tr ln½ð1þ νkÞM − νMk �:

or equivalently, in terms of the C matrix as

SvNA ¼ −Tr½ð1þ CÞ lnð1þ CÞ − C lnC�

and

SRM
A ¼ −

1

1 −M
ln det½ð1þ CÞM − CM�:

Fermions—The entanglement Hamiltonian is

ρA ¼ e−HA

ZA
;

where HA ¼
P

mn ϵmna
†
man and ZA¼

Q
kð1þe−ϵkÞ. Again,

we define the correlator,

Cmn ≡ ha†mani:

The spectrum of C and HA are related according to

νk ¼
1

eϵk þ 1
;

where fνkg is the spectrum of C and fϵkg is spectrum
of HA. Therefore, von Neumann entropy and Rényi
entropy are

SvNA ¼ −Tr½ρA ln ρA� ¼
X
k

�
ϵke−ϵk

1þ e−ϵk
þ lnð1þ e−ϵkÞ

�
;

and

SRM
A ¼ 1

1 −M
ln Tr½ρMA �:

Instead of using the spectrum fϵg, one can use the
spectrum fνkg to calculate von Neumann entropy and
Rényi entropy as

SvNA ¼ −
X
k

ð1 − νkÞ lnð1 − νkÞ þ νk ln νk

and

SRM
A ¼ tr ln½ð1þ νkÞM − νMk �;

which in terms of the C matrix are given by or

SvNA ¼ −Tr½ð1 − CÞ lnð1 − CÞ þ C lnC�
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and

SRM
A ¼ 1

1 −M
ln det½ð1 − CÞM þ CM�:

We can unify the entropies of Bosons and Fermions into the
following:

SvNA ¼ ζTr½ð1þ ζ̃CÞ lnð1þ ζ̃CÞ − ζ̃C lnC�

and

SRM
A ¼ −ζ

1 −M
ln det½ð1þ ζ̃CÞM − ζ̃CM�:

2. Replica symmetry and self-energy

In order to compute the Rényi entropy, one need to solve
the large-N path-integral problem on an extended manifold
shown in Fig. 1(c). The Rényi entropy is given by

Tr½ρMA � ¼
1

ZM

Z
D½G;Σ�Dχe−NS½χ;G;Σ�; ðA2Þ

here, χ represents the fermions and G − Σ are used to
decouple the interaction. Here, we show how this problem
reduces to the action (4) and (6) of the paper. In order to be
concrete and without loss of generality, we consider the
coupled SYK model [69]. This equilibrium path integral
description of this model is reviewed in Sec. A 8 of the
present Appendix. The replica action is

S ¼
X
μ¼A;B

X
r

Z
dτ

�
1

2N

XNμ

i¼1

χðrÞi;μ ðτÞ∂τχðrÞi;μðτÞ þ
Jμi;j;k;l
4!

XNμ

i;j;k;l¼1

χðrÞi;μχ
ðrÞ
j;μχ

ðrÞ
k;μχ

ðrÞ
l;μ þ

Vi;j;k;l

4!

XNA

i;j¼1

XNB

k;l¼1

χðrÞi;Aχ
ðrÞ
j;Aχ

ðrÞ
k;Bχ

ðrÞ
l;B

�
; ðA3Þ

which is diagonal in replica and needs to be supplemented with the boundary condition (2). The random variables Jμijkl and
Vμ
ijkl have zero mean and the variance,

JμijklJ
ν
i0j0k0l0 ¼ δμνδii0δjj0δkk0δll0

J2

4N3
μ
; hV2

ijkli ¼ δii0δjj0δkk0δll0
V2

ðNANBÞ32
: ðA4Þ

After disorder averaging, the action develops off-diagonal-in-replica contributions and after G − Σ decoupling becomes

S ¼
X
r;r0

X
μ¼A;B

Z
dτdτ0

�
1

2N

X
i

χðrÞi;μ ðτÞ½∂τδðτ; τ0Þδrr0 þ Σðrr0Þ
μ ðτ; τ0Þ�χðr0Þi;μ ðτ0Þ

−
1

2
½Σðrr0Þ

μ ðτ; τ0ÞGðr0rÞ
μ ðτ0; τÞ þ J2

4
½Gðrr0Þ

μ ðτ; τ0Þ�4� − V2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NANB

p
2

Gðrr0Þ
A ðτ; τ0Þ2Gðrr0Þ

B ðτ; τ0Þ2
�
; ðA5Þ

where μ and ν are a or b for self-energy Σμ and A or B for Green’s function Gμ. Note that the interacting part of the action
contains inter-replica interaction and such four-fermion terms are decoupled by the Gðrr0Þ Green’s function, leading to off
diagonal replica self-energy Σðrr0Þ. Transforming from the replica sector n, to replica momentum space p, we find

S ¼ 1

2

Z
dτdτ0

�
1

N

X
p;p0

X
μ¼A;B

X
i

χ̄ðpÞi;μ ðτÞð∂τδðτ; τ0Þδpp0 þ Σðpp0Þ
μ ðτ; τ0ÞÞχðp0Þ

i;μ ðτ0Þ −
X
p;p0

X
μ

Σðpp0Þ
μ ðτ0; τÞGðpp0Þ

μ ðτ; τ0Þ

−
X

p1;p2;p3;p0
1
;p0

2
;p0

3

�
V2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NANB

p
2M2

G
ðp1p0

1
Þ

A ðτ; τ0ÞGðp2p0
2
Þ

A ðτ; τ0ÞGðp3p0
3
Þ

B ðτ; τ0ÞGð−p1−p2−p3;−p0
1
−p0

2
−p0

3
Þ

B ðτ; τ0Þ

þ J2

4M2

X
μ

G
ðp1p0

1
Þ

μ ðτ; τ0ÞGðp2p0
2
Þ

μ ðτ; τ0ÞGðp3p0
3
Þ

μ ðτ; τ0ÞGð−p1−p2−p3;−p0
1
−p0

2
−p0

3
Þ

μ ðτ; τ0Þ
��

;

where we have used

χðrÞðτÞ¼ 1ffiffiffiffiffi
M

p
X
p

Ω−prχðpÞðτÞ; Gðrr0Þðτ;τ0Þ ¼ 1

M

X
pp0

Ω−ðpr−p0r0ÞGðpp0Þðτ;τ0Þ; Σðrr0Þðτ;τ0Þ ¼ 1

M

X
pp0

Ω−ðpr−p0r0ÞΣðpp0Þðτ;τ0Þ;

TOWARDS ENTANGLEMENT ENTROPY OF RANDOM LARGE-N … PHYS. REV. D 109, 016015 (2024)

016015-7



with inverse relations,

χðpÞðτÞ ¼ 1ffiffiffiffiffi
M

p
X
r

ΩprχðrÞðτÞ; Gðpp0Þðτ; τ0Þ ¼ 1

M

X
rr0

Ωpr−p0r0Gðrr0Þðτ; τ0Þ; Σðpp0Þðτ; τ0Þ ¼ 1

M

X
rr0

Ωðpr−p0r0ÞΣðrr0Þðτ; τ0Þ:

Now in the p space, one set of saddle point solutions are found by varying the Green’s function Gðpp0Þ
μ ,

Σðpp0Þ
μ ðτ0; τÞ ¼ −

X
p1;p2;p0

1
;p0

2

�
J2

M2
G

ðp1p0
1
Þ

μ ðτ; τ0ÞGðp2p0
2
Þ

μ ðτ; τ0ÞGð−p1−p2−p;−p0
1
−p0

2
−p0Þ

μ ðτ; τ0Þ

þ p
μ̃
2
V2

M2
G

ðp1p0
1
Þ

μ ðτ; τ0ÞGðp2p0
2
Þ

−μ ðτ; τ0ÞGð−p1−p2−p;−p0
1
−p0

2
−p0Þ

−μ ðτ; τ0Þ
�
;

where μ̃ is �1 for μ ¼ A and B, respectively. The −μ means the other part besides μ. The variations with respect to Σðpp0Þ
μ

gives the Dyson equation,

Gðp0pÞðτ; τ0Þ ¼ 1

N

X
i

hχðpÞi ðτ0Þχðp0Þ
i ðτÞi ¼ Gp;p0 ðτ; τ0Þ: ðA6Þ

We note that while these equations do generally support replica off diagonal solutions Gðpp0Þ and Σðpp0Þ, However, replica
symmetry is also preserved by these equations. This means if we assume Gðpp0Þ ∝ δpp

0
, we find Σðpp0Þ ∝ δpp

0
which means

the action decouples into different p sectors, leading to Gðpp0Þ ∝ δpp
0
. Considering that at UV, G ∼ Jδpp

0
is replica

symmetric, we conclude that the replica symmetry is preserved. Therefore, the Green’s functions and self-energies can be
represented by online diagonal p indices,GðpÞðτ; τ0Þ ¼ Gpðτ; τ0Þ. Likewise, the self consistency equations become the same
for different p sectors,

ΣðpÞ
μ ðτ0; τÞ ¼ −

X
p1p2

�
J2

M2
Gðp1Þ

μ ðτ; τ0ÞGðp2Þ
μ ðτ; τ0ÞGð−p−p1−p2Þ

μ ðτ; τ0Þ þ p
μ̃
2
V2

M2
Gðp1Þ

μ ðτ; τ0ÞGðp2Þ
−μ ðτ; τ0ÞGð−p−p1−p2Þ

−μ ðτ; τ0Þ
�
:

The only thing different between various sectors is the boundary condition in imaginary-time direction. So, a full solution to
the problem requires simultaneous solution to all p sectors. Eventually, the Tr½ρMA � can be written as

Tr½ρMA � ¼
1

ZM
0

Z
Dχe−NS; S ¼ SQ þ SC; ðA7Þ

where using the saddle-point equations, the classical part is

SC ¼ −
1

2

Z
dτdτ0

�X
p

X
μ

ΣðpÞ
μ ðτ0; τÞGðpÞ

μ ðτ; τ0Þ þ V2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NANB

p
2M2

X
p1;p2;p3

Gðp1Þ
A ðτ; τ0ÞGðp2Þ

A ðτ; τ0ÞGðp3Þ
B ðτ; τ0ÞGð−p1−p2−p3Þ

B ðτ; τ0Þ

þ J2

4M2

X
μ

X
p1;p2;p3

Gðp1Þ
μ ðτ; τ0ÞGðp2Þ

μ ðτ; τ0ÞGðp3Þ
μ ðτ; τ0ÞGð−p1−p2−p3Þ

μ ðτ; τ0Þ
�
;

and the quantum part of the action is

SQ ¼
X
p

X
μ¼A;B

Z
dτdτ0

1

2N

X
i

χ̄ðpÞi;μ ðτÞð∂τδðτ; τ0Þ þ ΣðpÞ
μ ðτ; τ0ÞÞχðpÞi;μ ðτ0Þ: ðA8Þ

As we have argued in the paper, however, a full self-consistent solution to all p-sectors is not needed if we are only
interested in the von Neumann entanglement entropy. In this case, we could assume that the self-energy ΣðpÞðτ; τ0Þ ¼
Σðτ1 − τ2Þ has the same expression as the time-translational invariant p ¼ 0 sector. Going to frequency space and using
time-translational invariance assumption, the quantum action becomes

SQ ¼ 1

2N

X
p

X
i

X
n;m;n0;m0

h
χ̄ðpÞA;i ðiω̄nÞ χ̄ðpÞB;i ðiωmÞ

i�−iω̄n þ Σnn
A 0

0 −iωm þ Σmm
B

�"
χðpÞA;i ðiω̄nÞ
χðpÞB;i ðiωmÞ

#
; ðA9Þ
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where n and indices for shifted Matsubara frequencies,
different in each p sector, and m are indices for normal
Matsubara frequencies. The classical part becomes

SC ¼ −
3

8

X
p;n;m

½ΣAðiω̄nÞGAðiω̄nÞ þ ΣBðiωmÞGBðiωmÞ�:

ðA10Þ
The elements of self-energies are worked out in Sec. A 3.
Then G and Σ will be just the equilibrium Green’s

functions and self-energies with p ¼ 0.

3. Construction of the action in the
replica-momentum space

In this section, we construct the elements of the matrix
G−1
u appearing in action (4) of the paper. The diagonal

elements are quite straight forward, so we focus on off
diagonal elements for both bosons and fermions. We use
the following identities:

ΣðτÞ ¼ 1

β

X
n

ΣðiωnÞe−iωnτ; ΣðzÞ ¼
Z

dx
π

Σ00ðxÞ
x − z

:

Fermions—For the case of fermions, we can write

ΣðτÞ ¼ −
I

dz
2πi

½fðzÞ − θτ>0�e−zτ
Z

dx
π

Σ00ðxÞ
x − z

¼
Z

dx
π
½fðxÞ − θτ>0�Σ00ðxÞe−xτ: ðA11Þ

Note that θτ>0 is important for convergence, but also
necessary to make sure that the Green’s function is β
antiperiodic. The two-point version is simple but note that
Σðτ1; τÞ ¼ TΣðτ1 − τ2Þ. Then,

Σnm0 ¼ T
Z

β

0

dτ1dτ2eiðω̄nτ1−ωm0 τ2ÞΣðτ1 − τ2Þ: ðA12Þ

The result is

Σnm0 ¼ T
1þ u

iω̄n − iωm0

Z
dx
π

Σ00ðxÞ
iωm0 − x

¼ −T
1þ u

iω̄n − iωm0
Σðiωm0 Þ; ðA13Þ

where u ¼ eiω̄nβ. Note that choosing Σðτ1; τ2Þ ¼ Vδðτ1; τ2Þ
or Σðiωm0 Þ ¼ V reproduces the known result,

V
Z

β

0

dτeiðω̄n−ωm0 Þτ ¼ −
1

β
V

uþ 1

iω̄n − iωm0
: ðA14Þ

Similarly, we can show that

Σmn0 ¼ −T
1þ u−1

iωm − iω̄n0
ΣðiωmÞ: ðA15Þ

This is correct, because using ω̄n ¼ νn − iT log u, we find

lim
u→−1

Σnm0 ¼ lim
ϵ→0

−Tϵδnm0Σðiωm0 Þ
T logð−1þ ϵÞ − iπT

¼ δnm0Σðiωm0 Þ;

lim
u→−1

Σmn0 ¼ lim
ϵ→0

−T½ð−1þ ϵÞ−1 þ 1�δmn0ΣðiωmÞ
iπT − T logð−1þ ϵÞ ;

¼ δmn0ΣðiωmÞ:
Bosons—In this case, we have

ΣðτÞ ¼ 1

β

X
n

e−iνnτΣðiνnÞ

¼
I

dz
2πi

½nðzÞ þ θτ�e−zτΣðzÞ

¼
Z

dx
π
Σ00ðxÞ½nðxÞ þ θτ�e−xτ: ðA16Þ

This has the correct half-periodicity, as seen in

Σðβ − jτjÞ ¼
Z

dx
π
Σ00ðxÞ½nðxÞ þ 1�e−βxeþxjτj

¼
Z

dx
π
Σ00ðxÞnðxÞeþxjτj ¼ Σð−jτjÞ:

Fourier transform is

Σnm0 ¼ T
Z

dx
π
Σ00ðxÞ

Z
β

0

dτ1dτ2½nðxÞ þ θτ1>τ2 �

× eiðω̄n−xÞτ1e−ðiνm0−xÞτ2

¼ T
u − 1

iω̄n − iνm0

Z
dx
π

Σ00ðxÞ
x − iνm0

¼ T
u − 1

iω̄n − iνm0
Σðiνm0 Þ

and

Σmn0 ¼ T
Z

dx
π
Σ00ðxÞ

Z
β

0

dτ1dτ2½nðxÞ þ θτ1>τ2 �

× e−iðω̄n0−xÞτ2eðiνm−xÞτ1

¼ T
u−1 − 1

iνm − iω̄n0

Z
dx
π

Σ00ðxÞ
x − iνm

¼ T
u−1 − 1

iνm − iω̄n0
ΣðiνmÞ:

As a check, using eiβω̄n ¼ u and ω̄n ¼ νn − iT log u,
we find

lim
u→1

Σmn0 ¼ δmn0ΣðiνmÞ; lim
u→1

Σnm0 ¼ δnm0Σðiνm0 Þ:

So, in summary,

Σnm0 ¼ −
1

β

ζ̃u − 1

iω̄n − iωm0
; Σmn0 ¼ −

1

β

ζ̃u−1 − 1

iωm − iω̄n0
:
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4. Useful matrix identities

In this section, we provide some useful matrix identities that are used in the paper. The first is the famous determinant
identity,

det

� A B

C D

�
¼ detðAÞ detðD − BA−1CÞ ¼ detðDÞ detðA − CD−1BÞ; ðA17Þ

which leads to the equation employed in the paper,

det

� Imm Vmn

Vnm Inn

�
¼ detðImm − VmnVnmÞ ¼ detðInn − VnmVmnÞ: ðA18Þ

We also use some matrix inversion identities. If ðA − BD−1CÞ is invertible,�
A B

C D

�
−1

¼
� ðA − BD−1CÞ−1 −ðA − BD−1CÞ−1BD−1

−D−1CðA − BD−1CÞ−1 D−1 þD−1CðA − BD−1CÞ−1BD−1

�
: ðA19Þ

If ðD − CA−1BÞ is invertible,
�
A B

C D

�
−1

¼
�
A−1 þ A−1BðD − CA−1BÞ−1CA−1 −A−1BðD − CA−1BÞ−1

−ðD − CA−1BÞ−1CA−1 ðD − CA−1BÞ−1
�
: ðA20Þ

A consequence of these identities is that

VqkGB
kk0Vk0q ¼ VqkðG−1

b − VkqGaVqkÞ−1Vkq ¼
�
Vqk 0

��
G−1

b Vkq

Vqk G−1
a

��
Vkq

0

�

¼ Vqk½Gb þGbVqkðg−1A − VqkGbVkqÞ−1VqkGb�Vkq

¼ Σa þ ΣaGAΣa ¼ G−1
a GAG−1

a − G−1
a : ðA21Þ

5. A more detailed proof of Eq. (8)

Here, we provide a more detailed proof of central equation of the paper, Eq. (8). We start from the action (4),

S ¼ 1

β

X
n

�
ψ̄aðiω̄nÞ

	
−iω̄n þ ϵa þ Σaaðiω̄nÞ



ψaðiω̄nÞ þ

X
m

ψ̄bðiωmÞ
	
−iωm þ ϵb þ ΣbbðiωmÞ



ψbðiωmÞ

þ 1

β2
X
n;m

�
ΣabðiωmÞ

eiω̄nβ − 1

iω̄n − iωm
ψ̄aðiω̄nÞψbðiωmÞ þ ΣbaðiωmÞ

e−iω̄nβ − 1

iωm − iω̄n
ψ̄bðiωmÞψaðiω̄nÞ

��
:

Shift ψaðiω̄nÞ → ψaðiω̄nÞ − 1
β

P
m ΣbaðiωmÞ 1

iω̄n−ϵa−Σaaðiω̄nÞ
1−u−1

iω̄n−iωm
ψbðiωmÞ, the action becomes

S ¼ Sa þ
1

β2
X
m;m0;n

ψ̄bðiωmÞ
�
−½G−1ðiωmÞ�bb0δm;m0

þ 1

β
ΣbaðiωmÞ

1

iω̄n − ϵa − Σaa0 ðiω̄nÞ
ð1 − uÞð1 − u−1Þ

ðiω̄n − iωmÞðiω̄n − iωm0 ÞΣ
a0b0 ðiωm0 Þ

�
ψbðiωm0 Þ;

where ½G−1ðiωmÞ�bb0 ¼ −iωm þ ϵb þ Σbb0 ðiωmÞ. Using spectral representation,

S¼Saþ
1

β2
X
m;m0

ψ̄bðiωmÞ
�
−½G−1ðiωmÞ�bb0δm;m0 þ1

β

X
n

ΣbaðiωmÞ
Z

dx
2π

Aaa0 ðxÞ
iω̄n−x

ð1−uÞð1−u−1Þ
ðiω̄n−iωmÞðiω̄n−iωm0 ÞΣ

a0b0 ðiωm0 Þ
�
ψbðiωm0 Þ:
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After integrating out the shifted Matsubara frequency,
the action becomes

S ¼ Sa þ
1

β2
X
m;m0

ψ̄bðiωmÞ
�
−½G−1ðiωmÞ�BB0

δm;m0

þ
Z

dx
2π

KuðxÞΣbaðiωmÞAaa0 ðxÞΣa0bðiωm0 Þ
ðiωm − xÞðiωm0 − xÞ

�
ψbðiωm0 Þ;

ðA22Þ

where −½G−1ðiωmÞ�BB0
is

−½G−1ðiωmÞ�bb0 þ
Z

dx
2π

ΣbaðiωmÞAaa0 ðxÞΣa0b0 ðiωmÞ
iωn − x

:

Then the whole second part in action S gives ðGBB0
u Þ−1,

which is

½G−1
m �BB0

δmm0 −
Z

dx
2π

KuðxÞΣba
m Aaa0 ðxÞΣa0b0

m0

βðiωm − xÞðiωm0 − xÞ :

The determinant det−ζ½ð−GBB0
u Þ−1� now is

det−ζ
�
½G−1

m �BB0
δmm0 −

Z
dx
2π

KuðxÞΣba
m Aaa0 ðxÞΣa0b0

m0

βðiωm − xÞðiωm0 − xÞ
�
:

Now we are facing a determinant,

det−ζ½Dmm0δmm0 þ
X
x

wmðxÞvTm0 ðxÞ�:

This is nothing but

where Nx, Na and Nm refer to the number of real frequen-
cies, number of A modes, and number of Matsubara
frequencies, respectively. Then the determinant is

det−ζ
�
δðx; yÞδaa0 þ

X
m

vTmðx; aÞDmmwmðy; a0Þ
�
:

Using Eq. (A18), and after the shuffling the determinant
becomes

det−ζ
�
δðx; yÞ − 1

β

X
m

KuðxÞAaðxÞΔx
2π

Σab
m GBB0

m Σba
m

ðiωm − xÞðiωm − yÞ
�
:

This motivates defining [z is the complex frequency]

RðzÞ≡ ΣabðzÞGBB0 ðzÞΣbaðzÞ; ðA23Þ
in terms of which

r ðxÞ≡ 1

β

X
n

RðiωnÞ
iωn − x

ðA24Þ

¼
Z

dω
2π

ARðωÞ
nζ̃ðxÞ − nζ̃ðωÞ

x − ω
: ðA25Þ

Here, we have used the spectral representation of the RðzÞ
function, defined as ARðωÞ ¼ i½Rðωþ iηÞ −Rðω − iηÞ�.
We also define

Jðx; yÞ≡ r ðxÞ − r ðyÞ
x − y

: ðA26Þ

Note that the x → ω limit in Eq. (A25) and x → y limit in
Eq. (A26) needs to be treated usingL’Hôpital’s rule. In terms
of the J matrix, we find

det−ζ½1þ ζ̃KuðωÞAaðωÞJAðω;ω0Þ�;

Finally, we get the u-sector partition function (8),

Z½u�¼Za½u�ZBdet−ζ½1þ ζ̃KuðωÞAaðωÞJAðω;ω0Þ�: ðA27Þ

6. Noninteracting limit of our formalism

In this part, we will show that our approach can be
connected to results in the noninteracting limit. In the
noninteracting case, the self-energy in the action (4) is just a
frequency independent constant V. Thus,

Aaa0
R ðωÞ ¼

X
b;b0

Im½VabGBB0 ðωþ iηÞVb0a0 �

¼
X
b;b0

VabABB0
Vb0a0 :

In the noninteracting limit, the spectral function is

Aaa0 ðωÞ ¼ 2π
X
ϵ

ϕϵðaÞϕ�
ϵða0Þδðω − ϵÞ;

so that the last determinant in (8) reduces to

det−ζ½ϕ†
ϵða0Þðδðx; yÞ − ζ̃KuðxÞδðx − ϵÞJa0aðx; yÞÞϕϵðaÞ�:

The ϕϵðaÞ and ϕ†
ϵðaÞ in the determinant plays the role of

unitary transformation from a modes to ϵ modes, which
together with the δðx − ϵÞ reduces the dimension of the
determinant,

det−ζ½δðϵ; ϵ0Þ − ζ̃KuðϵÞJϵϵ0 ðϵ; ϵ0Þ�; ðA28Þ

TOWARDS ENTANGLEMENT ENTROPY OF RANDOM LARGE-N … PHYS. REV. D 109, 016015 (2024)

016015-11



where Jðϵ; ϵ0Þ can be written as

Jðϵ; ϵ0Þ ¼ rðϵÞ − rðϵ0Þ
ϵ − ϵ0

; ðA29Þ

in terms of rðϵÞ

rðϵÞ ¼ −
Z

dω
2π

ARðωÞ
nζ̃ðϵÞ − nζ̃ðωÞ

ϵ − ω
: ðA30Þ

The diagonal terms Jðϵ; ϵ0Þ need to be treated in a limiting
procedure. In this context, Jðϵ; ϵ0Þ becomes

Jðϵ; ϵ0Þ ¼ −
Z

dω
2π

ARðωÞ
ϵ − ϵ0

�
nζ̃ðϵÞ − nζ̃ðωÞ

ϵ − ω
− ðϵ → ϵ0Þ

�
:

With the help of VGBV ¼ G−1
a ðGA −GaÞG−1

a which is
shown in (A21), we can further show

VabABB0
Vb0a0 ¼ iVabðGBB0

R −GBB0
Ad ÞVb0a0

¼ ðω − ϵÞAAA0 ðωÞðω − ϵ0Þ:

So that Jðϵ; ϵ0Þ becomes

Jðϵ;ϵ0Þ¼
Z

dω
2π

AAA0 ðωÞnζ̃ðωÞþδðϵ;ϵ0Þnζ̃ðϵÞϵ
0−nζ̃ðϵ0Þϵ
ϵ−ϵ0

−
Z

dω
2π

ωAAA0 ðωÞnζ̃ðϵÞ−nζ̃ðϵ0Þ
ϵ−ϵ0

¼−ζ̃
1

β

X
n

e−iωn0
−
GAðiωnÞþn0̃

ζ
ðϵÞϵ−nζ̃ðϵÞ−n0̃

ζ
ðϵÞϵ

¼−ζ̃GAðτ¼0−Þ−nζ̃ðϵÞ
¼ha†ai−nζ̃ðϵÞ;

where we use
R

dω
2π ωA

AA0 ðωÞ ¼ ϵδðϵ; ϵ0Þ. And we can
further define C ¼ ha†ai for both Bosons and Fermions,
the Tr½ρMA � becomes

Tr½ρMA � ¼
Y
u

ZaðuÞ
Za

det−ζ½δðϵ; ϵ0Þ − ζ̃KuðϵÞðC − nζ̃ðϵÞÞ�

¼ det−ζ½CM þ DM�;

where D ¼ 1þ ζ̃C ¼ haa†i. The term
Q

u½ZaðuÞ=Za� can
be just absorbed into the determinant to get the final
expression because the dimension of the determinant in
noninteracting case is finite, but one does not have this
luxury again in the interacting case. Finally, the von
Neumann entropy and Rényi entropy are

SvNA ¼ ζ̃Tr½D lnDþ ζ̃C lnC�

and

SRMA ¼ −ζ
1 −M

ln det½DM þ ζ̃CM�;

which are exactly Casini’s results using the reduced density
matrix method.

7. The perturbative limit of our formalism

The EE SA ¼ Sa þ ΔSA has a thermal part Sa and a
quantum correction. The latter can be expressed as

ΔSA ¼
Z

dcΔρðcÞgRMðcÞ ðA31Þ

is expressed in terms of

gRMðcÞ≡ −ζ
1 −M

log½ð1þ ζ̃cÞM − ζ̃cM�; ðA32Þ

and the entanglement density of states,

ΔρðcÞ ¼ −
1

π
∂cIm½Tr logfðcþ1 − C0Þ−1ðcþ1 − CÞg�:

We can write the C matrix as C ¼ C0 þ ℿ, where

C0¼ ζ̃nζ̃ðωÞ1; ℿ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AaðωÞ

p
JAðω;ω0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aaðω0Þ

p
: ðA33Þ

In the perturbative the entanglement density of states is
given by

ΔρðcÞ ¼ −
1

π
∂cIm½Tr logf1 − ðcþ1 − C0Þ−1ℿg�: ðA34Þ

This expression can be expanded perturbatively. The
leading order term is

ΔρðcÞ ≈ 1

π
∂c

Z
dω
2π

Im

�
Trℿðω;ωÞ

cþ iη − ζ̃nðωÞ

�
; ðA35Þ

Tr½ℿðω;ωÞ� is real. Therefore.

ΔρðcÞ ¼ −∂c
Z

dω
2π

δ½c − ζ̃nζ̃ðωÞ�Trℿðω;ωÞ: ðA36Þ

Note that in the limit x → y from Eq. (A26) we find
Jðω;ωÞ ¼ ∂ωr ðωÞ. Instead the ω-integral, next we do the c-
integral and find

ΔSRM
A ¼ −

Z
dω
2π

g̃RMðωÞTr½AaðωÞ∂ωr ðωÞ�; ðA37Þ

where g̃RMðωÞ is defined as

g̃RMðcÞ≡ ∂cgRMðcÞ; ðA38Þ
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and using c ¼ ζ̃nζ̃ðωÞ ¼ 1=ðeβω − ζ̃Þ, we can express it as

g̃RMðωÞ ¼ ζ
M

M − 1

nζ̃ðMωÞ
nζ̃½ðM − 1Þω�nζ̃ðωÞ

: ðA39Þ

Note that this expression has a well-behaved limit as
M → 1þ. The leading perturbative quantum correction to
the Rényi entropy, Eq. (A37), can alternatively be extracted
from Eq. (8). Perturbation theory in Jðω;ω0Þ gives

SRM
A ¼ 1

1 −M
log

ZM

ZM
0

¼ jζj
M − 1

Z
dω
2π

Tr½AaðωÞ∂ωr ðωÞ�
X
p

KpðωÞ: ðA40Þ

P
p KupðωÞ can be computed using contour integration

with ∂u logðuM − ζ̃Þ, which gives

X
p

KupðωÞ ¼ ζ̃M
nζ̃ðMωÞ

nζ̃ðωÞnζ̃½ðM − 1Þω� ; ðA41Þ

which gives the same result.

8. Review of equilibrium path integral
of the coupled-SYK model

For the sake of completeness, we list the saddle point
equations and thermal dynamical properties of the coupled-
SYK model. While it has been shown that such models can
undergo a spontaneous symmetry breaking [54], we restrict
our analysis to symmetry-preserving phases. We provide
the self-consistency equations in the real-frequency so that
they can be readily used with our real-frequency formalism.
The Hamiltonian of this coupled SYK model is

H ¼ 1

4!

X
μ¼A;B

XNμ

i;j;k;l

Jμijklχ
μ
i χ

μ
jχ

μ
kχ

μ
l þ

XNA

i;j¼1

XNB

k;l¼1

Vijklχ
A
i χ

A
j χ

B
k χ

B
l ;

and Jμijkl, Vijkl are Gaussian random variables with zero
mean and variances,

hðJμijklÞ2i ¼
3!J2

N3
μ
; hV2

ijkli ¼
V2

ðNANBÞ32
:

In this case, the action is

S ¼ −
X
μ

Nμ lnPfð∂τ þ ΣμÞ

−
Z

dτdτ0
X
μ

Nμ

2
ðΣμðτ; τ0ÞGμðτ0; τÞ þ

J2

4
Gμðτ; τ0Þ4Þ

−
V2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NANB

p
2

GAðτ; τ0Þ2GBðτ; τ0Þ2:

Self-consistent equations—In the large-N limit, we can
get the saddle point solutions,

Σaðτ; τ0Þ ¼ J2G3
Aðτ; τ0Þ þ 2V2 ffiffiffiffi

p
p

G2
Bðτ; τ0ÞGAðτ; τ0Þ;

Σbðτ; τ0Þ ¼ J2G3
Bðτ; τ0Þ þ 2V2

ffiffiffiffi
1

p

s
G2

Aðτ; τ0ÞGBðτ; τ0Þ;

where p ¼ NB=NA.
These relations can be brought to real frequency by

introducing Bμðτ; τ0Þ ¼ G2
μðτ; τ0Þ. Generally, we have

the symmetries Gμðτ1; τ2Þ ¼ −Gμðτ2; τ1Þ, which imply
GμðiωnÞ ¼ −Gμð−iωnÞ in Matsubara frequency. In the
Matsubara frequency domain, they become

ΣaðiωnÞ¼
J2

β2
X
n1;n2

GAðiωn1ÞGAðiωn2ÞGAðiωn− iωn1 − iωn2Þ

þ2V2 ffiffiffiffi
p

p
β2

X
n1;n2

GBðiωn1ÞGBðiωn2Þ

×GAðiωn− iωn1 − iωn2Þ;
and

ΣbðiωnÞ¼
J2

β2
X
n1;n2

GBðiωn1ÞGBðiωn2ÞGBðiωn− iωn1 − iωn2Þ

þ
2V2

ffiffiffi
1
p

q
β2

X
n1;n2

GAðiωn1ÞGAðiωn2Þ

×GBðiωn− iωn1 − iωn2Þ:

We define spectral bosonic and fremions spectral functions
AB
μ ðωÞ and AG

μ ðωÞ as

AG
μ ðωÞ≡ i½Gμðωþ iηÞ −Gμðω − iηÞ�; and

AB
μ ðωÞ≡ i½Bμðωþ iηÞ − Bμðω − iηÞ�: ðA42Þ

When analytically continued onto the real frequency axis, the self energies become

Σaðωþ iηÞ ¼ J2
Z

dω0

2π
½AG

A ðω0Þfðω0ÞBAðωþ iη − ω0Þ þ GAðωþ iη − ω0ÞnBð−ω0ÞAB
AðωÞ�

þ 2V2 ffiffiffiffi
p

p Z
dω0

2π
½AG

A ðω0Þfðω0ÞBBðωþ iη − ω0Þ þ GAðωþ iη − ω0ÞnBð−ω0ÞAB
BðωÞ�;
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Σbðωþ iηÞ ¼ J2
Z

dω0

2π
½AG

Bðω0Þfðω0ÞBBðωþ iη − ω0Þ þ GBðωþ iη − ω0ÞnBð−ω0ÞAB
BðωÞ�

þ 2V2

ffiffiffiffi
1

p

s Z
dω0

2π
½AG

Bðω0Þfðω0ÞBAðωþ iη − ω0Þ þGBðωþ iη − ω0ÞnBð−ω0ÞAB
AðωÞ�;

where

Bμðωþ iηÞ ¼
Z

dω0

2π
Aμðω0ÞGμðωþ iη − ω0Þ½fðω0Þ − fð−ω0Þ�:

Free energy and thermal entropy—The free energy is equal to

βF
N

¼ −
1

1þ p
lnPfð∂τδðτ; τ0Þ þ Σaðτ; τ0ÞÞ −

1

2ð1þ pÞ
Z

dτdτ0
3

4
Σaðτ; τ0ÞGAðτ0; τÞ

−
1

1þ 1=p
lnPfð∂τδðτ; τ0Þ þ Σbðτ; τ0ÞÞ −

1

2ð1þ 1=pÞ
Z

dτdτ0
3

4
Σbðτ; τ0ÞGBðτ0; τÞ: ðA43Þ

In Matsubara frequency domain and analytically continued onto the real frequency axis, the free energy density becomes

F
N

¼
Z

dω
π

�
1

2
fðωÞIm

X
μ

1

1þ ζpμ

�
logð−ω − iηþ ΣμÞ þ

3

4
Σμðωþ iηÞGμðωþ iηÞ

��
;

where ζpμ ¼ p for μ ¼ A, 1=p for μ ¼ B. The thermal entropy is

S
N

¼ −
1

2

Z
dω
π

�
∂TfðωÞIm

X
μ

1

1þ ζpμ

�
logð−ω − iηþ ΣμÞ þ Σμðωþ iηÞGμðωþ iηÞ

�

−
J2

4

X
μ

Bμð−ω − iηÞ½∂TnBðωÞBμðωþ iηÞ þ ðnBðωÞ − nBð−ωÞÞ∂TBμðωþ iηÞ�

−
V2 ffiffiffiffi

p
p

1þ p
BAð−ω − iηÞ½∂TnBðωÞBBðωþ iηÞ þ ðnBðωÞ − nBð−ωÞÞ∂TBBðωþ iηÞ�

�
:
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