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A large class of strongly correlated quantum systems can be described in certain large-N limits by
quadratic in field actions along with self-consistency equations that determine the two-point functions. We
use the replica approach and the notion of shifted Matsubara frequency to compute von Neumann and
Rényi entanglement entropies for generic bipartitioning of such systems. We argue that the von Neumann
entropy can be computed from equilibrium spectral functions without partitioning, while the Rényi entropy
requires recalculating the spectrum in the interacting case. We demonstrate the flexibility of the method by
applying it to examples of a two-site problem in presence of decoherence and coupled Sachdev-Ye-Kitaev

models.
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I. INTRODUCTION

Entanglement is one of the central concepts of quantum
mechanics and a notion based on which many of the
modern physical phenomena are understood. The entan-
glement between the degrees of freedom in a region of
space A and the rest of the system A, is fully characterized
by the so-called entanglement spectrum (ES), i.e., eigen-
values of the reduced density matrix p, = Trz[p], or
equivalently, its various moments. Among different mea-
sures of the entanglement, Rényi and von Neumann
entanglement entropies (EEs),

Sy = log Tr[p}], SN =-Trlpslogpa], (1)

1-M

are frequently used, where the latter can also be extracted
from the limit SYN = limy,_;+ S

It is known that the EE of typical pure states depends on
the sizes of the Hilbert spaces [1,2], whereas the EE of the
ground state scales with the spatial extent of the regions.
This is because roughly speaking, EE counts the number of
entangled states; for gapped systems with short-range
correlation an “area law” and for gapless systems with
long-range correlation, a “volume law” is expected [3-5].

Entanglement entropy has many important applications.
For example, in 1 + 1-dimensional gapless systems, EE is
the natural probe of the central charge of the underlying
conformal field theory (CFT) [6]. Furthermore, in 2 + 1-
dimensional gapped systems with perimeter L,, the
entropy has the form SYN =aL, —y [7], where y is a
signature of topological order and can be extracted using a
procedure that eliminates the extensive part [8,9].

Moreover, according to eigenstate thermalization
hypothesis (ETH) [10-12], the reduced density matrix of
a chaotic system in a pure state has the Boltzmann form
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pa ~ e Ha/Ter wwhere H, is the Hamiltonian of detached A
part and the temperature 7.y depends on the state’s energy.
A somewhat unexpected example is the Laughlin state,
whose ES contains the spectrum of gapless edge states that
would exist if A and A were physically detached [13], as if
due to topology and despite the gap, p, shares the same
spectrum with H,. Similar physics is present in other
topological systems [14,15] and is understood in terms of
the relevance of the coupling between the edge states across
A-A border [16] in the renormalization group (RG) sense.

There are also connections to holography [17,18].
According to Ryu-Takayanagi conjecture, the EE of
CFT,,, is given geometrically SN « A, by the extremal
area A, of the minimal spacelike surface anchored to A
region and extending in the AdS,,, bulk. As external
parameters are varied, A4, may switch from isolated
surfaces to a joint surface, and this is interpreted as the
formation of a wormhole. Hence, certain transitions in EE
are holographically topological.

Despite its prevalence and important applications, the
class of problems where EE can be computed are limited to
noninteracting problems [19-21], 2D CFTs [6,22,23], a
number of integrable models [24-26], as well as systems
amenable to quantum Monte Carlo simulations [27,28],
exact diagonalization [29], or density matrix renormaliza-
tion. Here, we develop a versatile new technique that
allows us to extend this list to problems that can be
described by quadratic actions, e.g., models studied using
static mean-field [30,31] and dynamical large-N tech-
niques. The latter includes random Sachdev-Ye-Kitaev
(SYK) models [32] as well as various tensor models that
describe Kondo systems [33-43] and large-N theories of
strange metals [44,45]. To the best of our knowledge such a
versatile technique that can be applied to all these problems
was not available until now.
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Previous attempts at calculating EE of these systems
[46-50] have been mostly limited to second Rényi entropy
and restricted to random SYK model, which thanks to its
exact solvability and maximally chaotic behavior [32], have
attracted considerable interest. In particular, the thermal-
ization of the SYK and coupled-SYK models [51-56], have
been studied due to their holographic equivalence to
black holes, connected by traversable wormholes [52,53].
Therefore, we apply the method to study coupled-SYK
models, as an example in this paper.

The rest of the paper is organized as follows. Section II is
the central part of the paper where we develop our new
approach to computing EE as well as comment on the role
of topology. The method is then applied to various
problems in Sec. III. We conclude in Sec. IV and present
some future directions. A number of appendices present the
usual approach to non-interaction systems, the equilibrium
action of the SYK model and the detailed proof of various
statements made in the paper.

II. METHOD

In this section, we develop a formalism to compute EE
in large-N theories, which are described by quadratic
action, in which the interaction is incorporated self-
consistently into self-energies. We also discuss the non-
interacting limit of the formalism and its connection to
topology and ETH.

A. Replica approach

We consider field theories whose action S = Sy + S¢
can be reduced into a quadratic quantum part S [, y; X] in
any dimension, possibly by introducing a number of
dynamical constraints, and a Luttinger-Ward functional
in the free energy, collected in S¢[G, X]. The two parts are
linked by self-consistency equations X[G]. We imagine
dividing the system into A and B = A parts [Fig. 1(a)] with
(bosonic, fermionic, or mixed) quantum fields y, and y,,
each having an arbitrary number of modes which capture
the spatial extension of the region. To compute SR¥, we
introduce 7 = 1...M replica of quantum fields y(") (7), with
imaginary-time boundary-conditions [57],

p(B) =M 0),  wl (B =& 0), (2)

for the fields in A and B, respectively [see Fig. 1(b)]. Here,
¢ = +1 for bosons/fermions, and we have chosen a gauge
in which £ is distributed uniformly among y, [58]. In
terms of these fields, Tr[p¥| = Z,,/ZM where Zy =
e NS¢ [ D(p, y)e ¢ has to be computed on the manifold
of Fig. 1(b).
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FIG. 1. (a) General bipartite setting considered in this paper.
A and B sections do not need to be simply connected. (b) The
replica method for computing Rényi entropy. The boundary
condition in the imaginary time direction for A and B sections,
represented by the red/blue lines, are different. (c) The contour
integral used to define von Neumann EE in the fermionic case.
Bosonic case is the vertical mirror of this.

B. Replica momentum

Despite the quadratic form of the action, computing Z,,
is highly nontrivial due to the boundary condition (2).
Following [59], we transform both fields to the so-called
replica-momentum space,

YVp=0..M-1,

E\/LMZQWW(T). (3)

In this space, the w, have the boundary condition
P (B)=up(0)  with w,=F/Qr in

Q=¢>/M_ whereas y, have the usual wﬁf’)(ﬁ) =

terms

ngp )(0) periodicity. For a field with a periodicity
w(#) = uy(0), the Matsubara frequencies are shifted
according to u = e#®». Such shifted Matsubara frequency
have been encountered in the perturbative calculation of
the second Rényi entropy before [60], which are gener-
alized here to arbitrary Rényi entropies. The summation
over shifted frequencies @,, can be done using contour
integration with n,(z) = [ue’* — 1]7!, and such a field
has the partition sum Z.[u] =[1 —u~'ef]™¢. Note that
Z nz(w) is Bose-Einstein and Fermi-Dirac distributions for
¢ = +1, respectively.

Quite generically, the quadratic action S, on the mani-
fold of Fig. 1(b) decouples into different p sectors and
using Einstein summation can be expressed as

ME

_ b 1V/g ' ' (p)
a,n l//bm >[ gu,,l]zmj,'m/< “n > . (4)
Y

Here, n, n’ indices refer to shifted Matsubara frequencies
@,[u] = 2znT — iT log u, whereas m, m’ refer to regular
bosonic/fermionic Matsubara frequencies i,),.
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C. Time-translational invariance assumption

The Rényi entropy, proportional to logZ,/ZM =
> pl0gZ[u,]/Z, can be expressed as a contour integral
in the complex u plane [Fig. 1(c)],

Z d Z %
logﬁ: j{ﬁlog<%>5u log(u™ —¢). (5)

This enables us to extend SEM to nonintegers values of M,
justifying the YN = lim,_ SARIH limit. See Ref. [20] for a
discussion of uniqueness. Although for u # ¢ the (imagi-
nary) time-translational symmetry is broken [61], we
expect it to be recovered in the ¢ — 0 limit, and thus,
Gu.(t1,715) = G(r; — 10) + €6G,(71,7,) for the Green’s
function. For interacting systems, this feeds into the
self-energy X = X[G], giving Z,(71,75) = Z(r; — 1) +
€62, (11, 7,) (see the Appendix A 2). The first observation
of our paper is that since the ¢ = M — 1 — 0 limit of Eq. (5)
is explicitly proportional to ¢, the e-correction to the self-
energy is not needed to compute the von Neumann EE.
Therefore, we assume that self-energy has time-transla-
tional symmetry. For noninteracting problems, this is an
exact statement, but for interacting large-N problems, this
approximation is only valid for the von Neumann entropy.

D. Entanglement entropy formula

Absorbing the Hamiltonian into the self-energy, the
inverse Green’s function in (4) can be written as
~ ab!
c = cad _ vad 1-Zu Iy
[g—l]ub,a’b’ o [lw”5 z ]5”"’ pio,—iw,,
u ol — N

nm,n’'m |—Fu! b ) b Db’
p iw,,,l—nid)nr [lwm5 _Zm ]&nm’

(6)

where we have taken advantage of time-translational
symmetry of self-energies. The off diagonal elements in
frequency originate from the mismatch in Matsubara
frequencies of y, and y, fields. However, a knowledge
of equilibrium Green’s function G alone, is sufficient to
build the G;'. See Appendix A 3 for a derivation of Eq. (6).
The u-sector partition function of action (4), (6) is
Z[u] = det™*[(=G," o] det™*[=(GZ*),0, ). (7)

mm'

We use { =1 for bosons, { =—-1 and {=—-1/2 for

complex/real fermions and notice that ¢ = sign(). After
summation over shifted frequencies @, and expressing the
Green’s function of A by its spectral representation

A% (@) = iG“”/(z)]Z;:iZ , the GBB' can be written as

dx K, (x)ZbaA (x)za?'
2z Bliw,, — x)(iw,y —x)’

(glu}B’)—l = [GQI]BB/émm’ _/

where K, (0) = (§u — 1)n,(w)/nz(w). Here, GP¥'(z) with
uppercase B and G (z) with lowercase a are the equi-
librium Green’s function of the atfached B part and
detached A part (possibly modified due to self-consistency
equations), respectively. In other words, G (z) is the
inverse of the first block of g;ig,, but GBB' is the last block
of the inverted matrix guzg.

Using determinant shuffling technique (see the
Appendix A 4) and defining 1 = 276(w — @')8,4, Eq. (7)
becomes

Zlu] = Z,[u)Z det™[1 + LK, (@) Ay (@) J4 (@, @')]  (8)
(see Appendix A5 for details) written in terms of

/ :l RA(m)m)
o, o) = ﬂzm: (iw,, — o) (iw, — ')’ ©)

where R = X GPF' 3¢ Alternatively in terms of the
attached/detached A correlators, R, = G;!G,G,;' — G;!.
The boundary condition in imaginary time u appears in
Eq. (8) only via K, (x). We can write the determinant term
as det™*[n,/nz(C — uD)], where [62]

Clw.0) =Cng(0) 1+ A (@) s (0.0) /Ay (@), (10)

and D = 1 + £C. Considering that J, — 0 for a reference
Cy with detached A and B parts, the system-independent
thermal prefactor can be eliminated by taking the ratio of
the two determinants. Using Tr[p"] = Z" ], Z[u,,] and

Z = Z,Zp, we finally have

Z,u,) det™*[D - u,'C]
Za det_C[IDO — M;ICO] '

Tl =11

P

(11)

Equation (11) is the central result of our paper. We have
succeeded to single-out the parameter u, characterizing the
boundary condition in each sector, and express the rest in
terms of equilibrium Green’s functions of region A. This
enables us to evaluate the p-product using the identity

[1, det[D — u;,'C] = det[DM — ZCM].

E. Thermal part of EE

Rényi entropies can be written as a sum of two terms
S = Sa + ASK¥. The first term is the (thermal) Rényi
entropy of the detached A system,

1
SR — a7 log Zu(Mp) = Mlog Z,(p)],  (12)

where Z,(B) = e#f«() is the partition function of the
detached A system at inverse temperature 4. Inthe M — 17
limit, SYN = —dF,/dT becomes the thermodynamical
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entropy of the detached A system. Note that S,(7 — 0),
vanishes for all gapped systems, as well as most gapless
systems that lack a residual 7 = 0 entropy.

F. Quantum corrections

The quantum correction to EE ASy, requires a diago-
nalization of C(w, ®’) matrix. The eigenvalues of C are real
and positive (¢ < 1 for fermions). We define the entangle-
ment density of states (DoS) Ap as the difference Ap(c) =
ple) =polc) =32;8(c—c;) =3 2;6(c —cjp) in C and Cy
DoSs. Ap(c) vanishes for physically detatched A and B.
Defining ¢t = ¢ + in, Ap can be expressed as

Ap(c) :—%@Imlog{det[(c*ﬂ —Cy) (e 1-C)}.  (13)

in terms of which, ASY" = [ dcAp(c)gRu(c), where

1-M

and g™ (c) = g () = [(1+Ec) log(1+ Ec) —Eelog(c)].
Generally ¢g >0, and for fermions g < g(1/2) = log(2).
The matrix C has to be discretized and diagonalized
numerically. Assuming A frequency points, p and p, are
each O(N), but Ap is an O(1) zero-mean function,
independent of frequency discretization [63]. The form
of Eq. (14) is familiar from Luttinger’s theorem [64]. Ap(¢)
consists of unit-area resonances located at ¢ values where
the phase of the determinant winds, corresponding to
excess or deficit of an eigenvalue on top of a continuum.

Equations (13)—(14) indicate that the C part of the ES can
be emulated by an infinite set of auxiliary particles i, , in
an extra dimension [57] in thermal equilibrium with

log[(1 + Zc)M = EcM), (14)

ghu(c) =

occupations <1/~/Z,1/7w,> = C(w,®') [65]. The relation C =
(M — &)~ defines entanglement Hamiltonian F [66)].

G. Noninteracting limit and topology

In the noninteracting limit, the spectral function A%(w)
consists of a series of delta functions, which reduce the
dimension of C to the number of modes. More importantly,
Ap < 0 contribution by C, exactly cancels the thermal
contribution to EE, S,. In this limit ,, — v ,6(®), the
matrix C represents occupation of physical particles v,
and our formalism reduces to known results [20]. See
Appendix A 6 for an explicit proof.

Generally, when A-B coupling is weaker than temper-
ature, Eq. (13) offers a perturbative expansion without the
need to diagonalize C (See Appendix A 7). If the A-B
coupling is irrelevant in a renormalization group sense,
2% — 0 and J, — 0 and AS vanishes. On the other hand,
if A-B coupling is relevant, for example in presence of edge
modes in the energy spectrum of detached systems,
% — co. In this case, it is justified to flatten the spectrum
[15] by neglecting the k dependence of Green’s functions

involved in computing J, (, @'). Writing V?§% =xbxbe’
for each mode in A, R (z) —» §°“V?/(z - V?/z) will
have the same form as a two-site fermion problem with a
coupling V. The latter has a zero mode in the ES and an EE
of log(2). The original model has a highly degenerate zero
mode, whose degeneracy is lifted by A%(w), resulting in a
gapless mode in ES, in apparent agreement with ETH [16].
At T — 0, the negative part of Ap can be ignored, and
resonances can be represented by their entanglement
“energies” & = log(1/c+¢). An ES gap closing and
reopening with a zero mode then indicates a topological
transition in the bulk and formation of edge states. Indeed
the quantum EE AS/log(2) = nullity(H) is related to the
number of zero modes of H, a topological invariant.

III. EXAMPLES

In this section, we show that the formalism developed
above can be used to compute EE in large-N theories. For
simplicity, we limit ourselves to two-site fermionic problems.

A. Models with self-energy

The simplest example is a system in which integrating
out some internal degrees of freedom has led to a self-
energy. Consider the four-site problem in a U geometry
[inset of Fig. 2(a)] where A and B are coupled by V but
each are coupled by W to a single-site bath, resulting in
Y4 (z) = 2P (z) = W?/z. Figure 2(b) shows EE in perfect
agreement with exact diagonalization. At W — 0", the bath
sites are forced to be entangled with each other, as can
be seen by a Shrieffer-Wolff produced coupling, thus
S — 2log(2). Although the EE is constant for W <V,
there is a crossover from quantum to thermal contributions
as W/T is varied [Fig. 2(c)]. Figure 2(a) shows that at
W < V effectively two of the eigenvalues of C move to
¢ — 1/2, forming zero modes that increase EE to 2 log(2),
but they are canceled at 7 < W by the spectral migration of
C, eigenvalues to zero. The EE decreases with increasing
W, due to the entanglement monogamy.

Our technique readily generalizes to the case where
A and B are decohered [67] by coupling to a fermionic bath
[Fig. 2(d)], an example for which many other methods fail.
In the wideband limit, the self-energy can be taken to be
independent of frequency, i.e., (@ + in) = —iI" for both
sites. The resulting EE shows no interbath entanglement,
but an overshoot at I' ~ V remains.

B. Models with self-consistency

As an example of problems with self-consistency, we
look at coupled-SYK models, defined as Hy + H;,;, where

N
1 H

H, ~h Z Z Jl:,kﬂ/:)(j;/iz)/; (15)
* y=A.B ijki=1
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FIG. 2. Free fermions coupled to (a)-(c) single-site and
(d) wideband bath geometries indicated in the insets. (a) Entan-
glement DoS Ap(c) at T/V = 1072 for various W/V ratios, show
a quantized migration of positive spectrum toward ¢ — 1/2 for
T < W, followed by a negative spectrum migration at W < 7.
Each peak has a unit area. (b) von Neumann and Rényi EE as
function of W resolved into thermal part and quantum correction.
(c) The quantum part of SN show its W/T scaling. (d) von
Neumann and Rényi EE as a function of T/V for ' = zW?/A in
the large bandwidth A limit.

H, describes two copies of SYK dots. Here, ;(’; are
Majorana fermions and J’i‘jk, are random numbers taken
from a zero mean Gaussian distribution (ZMGD) with the
variance J?/N. After disorder averaging and in the large-
N, p limit, this model reduces to a quadratic action with the
two-point function that is determined self-consistently by
the self-energy X,() = J>G;(r) and the Dyson equation
G;'(z) = z—Z,(z). Readers are referred to [32,68] for
important omitted aspects as well as Appendix A 8 for a
review of the equilibrium case. Without coupling, AS, = 0
and thus S, (T) = S3YX(T), which at T — 0 is given by the
residual entropy of a single SYK.

We now assume that the two SYK dots are
connected [69] by four-fermion couplings H = H( +
i Vi aixix s where Vi are again ZMGD with
variance V?/N. In this latter case, the self-consistency
equations becomes (p = Nz/N,),

Toa(r) = JZG%A (r) + 2V2\/17G%B (7)Gaalz), (16)

and a similar equation for X,, with A <> B and p — 1/p.
For V = J, this is a single composite SYK dot with the total
number of N = N, 4+ Ny fermions.

A common feature of all these four-fermion coupling
models is that the coupling is irrelevant in an RG sense near

5
(@) 10 Aae) v (b) “®-Sihermal
Aalw /N 045 | oS (p=0.1)
0.4 | ® SgelP=10)
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FIG. 3. Coupled-SYK model with V/J = 1. (a) Spectral func-
tion A, and A for various temperatures (T/J from O to 1), (b) von
Neumann EE S'N for different components.

infrared fixed point. Furthermore, X% = ¥b¢ =0, and
thus, there are no quantum corrections AS, = 0. The EE
is given entirely by the thermal part S} = S, which also
includes the classical part of the action.

Figure 3 shows the spectra of A and B as well as both
thermodynamical and entanglement entropy of the two
systems. The same residual entropy per particle for A and B
shown in Fig. 3(b) indicates that the larger part of the
coupled system is still entangled to the outside at 7 = 0. In
addition to that, there are some intersubsystem entangle-
ment as indicated by the EEs.

IV. CONCLUSION

In summary, we have provided a Green’s function for-
malism to compute ES of theories with a quadratic action
through diagonalization of a single matrix built out of
equilibrium functions. In this sense, our approach is different
from the Z,; gauge theory approach taken in [70-72]. This
Green’s function approach already simplifies the computa-
tion of entanglement entropy in specific noninteracting
scenarios.

Interactions can be treated perturbatively within this
formalism. However, we argued that this formalism pro-
vides access to the von Neumann EE of large-N theories
described by a Luttinger-Ward functional of two-point
Green’s functions. The latter includes contributions from
both quantum and classical parts of the action. The focus of
this work has been on the quantum part and the examples
chosen are large-N models which have simple classical
parts. Generalization to other examples with more com-
plicated classical actions, e.g., [52] is left for future. More
importantly, further work is needed to investigate other
systems and verify the time-translational invariant
assumption that enables such an extension.

We have applied our method to a noninteracting prob-
lem with self-energy as well as the coupled SYK model.
The method can be in principle applied to Kondo lattices
[30,34,35,41] where changes in the pattern of entanglement
are shown to be playing major role in Kondo break-
down transition [36,73,74]. Extension to nonequllibirium
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steady-state as well as quench dynamics is an interesting
future direction.
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APPENDIX

This appendix contains further details and extended
proof of various statements in the paper.

1. Noninteracting case

For the sake of completeness, we remind ourselves of the
known noninteracting results [20,21].

Bosons—The reduced density matrix is
e~ Ha

Zy

Pa =

where Hy=> ., €unlimdy is the entanglement Hamiltonian
and Z, = [],(1 — e%)~!. We define the correlators,

Cmn = <aj;1an > *

The spectrum of C and H, have the following relation:

1

v, = ———
KT e -1

where {v;} is the spectrum of C and {¢;} is spectrum of
H,. The von Neumann entropy and Rényi entropy are

S = —Trlpa Inpa]

_ e e
Sl i) @
and
SRM — Tr[lnp%] )
A 1-M

Instead of using the spectrum {e}, one can use the
spectrum {v;} to calculate von Neumann entropy and
Rényi entropy as

SN = Z(l + ) In(1 4+ 1) — vy Iny,
k

and

S8 = TrIn[(1 4 v)™ — ).

or equivalently, in terms of the C matrix as
SN = —Tr[(1 +C)In(1 + C) —CInC]

and

S — _ Indet[(1 + C)M — CM].

1-M

Fermions—The entanglement Hamiltonian is

where Hy =, €,mana, and Z, =[] (14 ™). Again,
we define the correlator,

Conn = (anay).
The spectrum of C and H, are related according to

1
vy =—,
KT e 41
where {v;} is the spectrum of C and {e;} is spectrum
of H,. Therefore, von Neumann entropy and Rényi
entropy are

€re

SN = —Tr[ps Inp,| = z<1 — T In(1 + €_€k)>’
Z +e

and

S — InTr[pM].

1-M
Instead of using the spectrum {e}, one can use the
spectrum {y;} to calculate von Neumann entropy and

Rényi entropy as

SXN = —Z(l - Uk) ln(l —l/k) =+ 12% lnyk
k

and
S8 = trIn[(1 4 )™ — M),

which in terms of the C matrix are given by or

SN = —Tr[(1 = C)In(1 = C) + CInC]
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and 2. Replica symmetry and self-energy
In order to compute the Rényi entropy, one need to solve
SEM _ 1 Indet[(1 — C)M + CM]. the larg§—N Path—integral probl§m on an §xtepded manifold
1-M shown in Fig. 1(c). The Rényi entropy is given by
We can unify the entropies of Bosons and Fermions into the 1 _NS
following: TI‘[/)A] ZM / D[G, Z]D){e N MG,EL (A2)
SN = ¢Tr[(1 4 £C) In(1 4 £C) — ECInC] here, y represents the fermions and G — X are used to

decouple the interaction. Here, we show how this problem

reduces to the action (4) and (6) of the paper. In order to be

concrete and without loss of generality, we consider the

_ coupled SYK model [69]. This equilibrium path integral

SEM = ¢ Indet[(1 + ZC)M — ZCM}, description of this model is reviewed in Sec. A 8 of the
I-M present Appendix. The replica action is

and

For S
S= z Z/dT{QNZ%M T)(lll )+ liykl lll)(jll)(kﬂ)(lﬂ ”klz ZLAZ,A)(r)(r }, (A3)

u=AB r i,j.kI=1 i,j=1kl=

which is diagonal in replica and needs to be supplemented with the boundary condition (2). The random variables J* ki and
Vé‘jk, have zero mean and the variance,

J? V2

thkl‘ll’]’k’l’ = oM 5” 5”/(3](](/(3”/ —2 <V121kl> 5”/51/51{1{/5”/ m . (A4)

1w

After disorder averaging, the action develops off-diagonal-in-replica contributions and after G — X decoupling becomes

S=> > /dm {2NDfﬂ( )[0:8(r. )8 + = (2. 7)) (@)

r.r u=A.B
1 rr r'r 2 r V NN r rr
S R)G (@ 0) + G ()] - AN 6 a6 >} (AS)

where y and v are a or b for self-energy X, and A or B for Green’s function G,,. Note that the interacting part of the action
contains inter-replica interaction and such four-fermion terms are decoupled by the G'""") Green’s function, leading to off
diagonal replica self-energy X(""). Transforming from the replica sector 7, to replica momentum space p, we find

S= /drd’r{ Z Z Z}(W )(0,8(z, )P —I—X(pp)(’rr ){l# ZZZ”M 7,7) )(’c,r’)

p.p' H=AB i

- > {V VNsNg G (2, )G\, )G (z,7) Gy PP TITT (¢ )

2M? Ga B
m-pz,ps,n’],p’z-m

ZG plpl (pzpz)(r T,)G}gpspg)(f T/)G/(l_pl_pZ_PL_P/]_P/z_p;)(r 1’)} }

where we have used

1 / 1 ) /
- WZQ—WX(P) (), GU)(z,7)= MZQ—(PF—P Ger) (z,7), ZQ— =) 5P (7,7,
P pr'

pp'
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with inverse relations,

1 1
P () = ——N Qrry(f , Gpp) 7,7) = — Qpr=r'r G(rr') ©.7), s (pp Qpr-p'r)(rr (r.7
A1) = 2> ) ) =32 (=) > ).
Now in the p space, one set of saddle point solutions are found by varying the Green’s function fo’ ’ /),
! ]2 ! 5 / e —p —p —p
2,(4”7)(1/,7) _ E : {MZ GLplpl>(T7 T/)GLP'PZ)(T, T’)G,a P1—P2—p:—D\=ph p)(T’ )

P1.P2P Py
-V2 / ! —p1=pr—p.—p —pl—p'
n p;WGl(lmm)(T’ ‘L")G(_p,[l 2)(1, T,>G(_”m P2=P—P\=P5=Pp )(7:, T,) ’
where ji is £1 for u = A and B, respectively. The —u means the other part besides u. The variations with respect to Z,(,p ?)
gives the Dyson equation,

Glr'r Z(x @ (2)) = Gy p (2.7 (A6)

We note that while these equations do generally support replica off diagonal solutions G??) and Z(??"), However, replica
symmetry is also preserved by these equations. This means if we assume G(??) « 677, we find £(P?')  §”?" which means
the action decouples into different p sectors, leading to GP?) « 577", Considering that at UV, G ~ J6P”" is replica
symmetric, we conclude that the replica symmetry is preserved. Therefore, the Green’s functions and self-energies can be
represented by online diagonal p indices, G(P)(z, 7') = G,(z, 7). Likewise, the self consistency equations become the same
for different p sectors,

J2 V2
ZLP) (T/, T) — _Z |:W GLPI)(T, T/)G;(fZ)(T, T/)G/S—P—Pl—Pz)(T’ T/) + pt WG(pl)(T r )G(_I;f)(r, T’)G(_;p_p]_m)(r, T/) )
P1P2

The only thing different between various sectors is the boundary condition in imaginary-time direction. So, a full solution to
the problem requires simultaneous solution to all p sectors. Eventually, the Tr[p¥] can be written as

1
Tr[p!] = 7 / Dye™NS, S§=8p+Sc. (A7)
where using the saddle-point equations, the classical part is

1 V2 /NN; l e
Sc = —5/ drdr [; ;2,(]7)(1/,1)(;,([7)(1, T/) + B Z G{(qﬂ >(T, T/)GI(L‘M)(T, T/)G%p‘%)(T, T/)G](g P1=D2 173)(,[, ’L'/)

2M?
P1:P2:P3
J? . o
+ 4_M2 Z Z Gill 1)(7’ T/)G,(4p2) (1.7 T/)GLPS)(‘L', T/)G/(t P1—D2 Ps)(T’ T’):| ’
K P1,P2:P3
and the quantum part of the action is
1 _
So = Z Z /deT/ﬁZ)(S.’;) (1)(3,8(z, ) + =P (x, T’)))(,(-Z) (7). (A8)
p u=AB i

As we have argued in the paper, however, a full self-consistent solution to all p-sectors is not needed if we are only
interested in the von Neumann entanglement entropy. In this case, we could assume that the self-energy =(P)(7,7') =
¥(7, — 1) has the same expression as the time-translational invariant p = 0 sector. Going to frequency space and using
time-translational invariance assumption, the quantum action becomes

—l.(bn + ynn 0 )((Pl) (la)n)
So- XX 3 [aon alion] (777 L) e

l i’l”‘li’ll’l’l
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where n and indices for shifted Matsubara frequencies,
different in each p sector, and m are indices for normal
Matsubara frequencies. The classical part becomes

Se = =3 S [Balidr,)Gali,) + Zyli, )Gl ).

p.n,m

(A10)

The elements of self-energies are worked out in Sec. A 3.
Then G and X will be just the equilibrium Green’s
functions and self-energies with p = 0.

3. Construction of the action in the
replica-momentum space
In this section, we construct the elements of the matrix
G,! appearing in action (4) of the paper. The diagonal
elements are quite straight forward, so we focus on off
diagonal elements for both bosons and fermions. We use
the following identities:

2(z) :%ZZ(iwn)e_i“’"T, I(z) = /d_;i/%(xz)

Fermions—For the case of fermions, we can write

2(6) = = § A1) = Odlems [ ST

2ri T X—7z

=/”mwwwmvw@

T

(Al1)

Note that .., is important for convergence, but also
necessary to make sure that the Green’s function is f
antiperiodic. The two-point version is simple but note that
X(zy,7) = TX(7; — 75). Then,
p o
Sow =T / dridr,e @ n= o) (1) —1,).  (A12)
0

The result is

1
SRR S

0, — iw,, T iw, —X
1+u
T — " Siw,), (A13)
i@, — iw,,

where u = €@ Note that choosing (7|, 7,) = Vé(z,15)
or X(iw,,) = V reproduces the known result,

B 1 1
v / drei@mons = ——y_1T (A1)
0 ﬁ LWy — LWy
Similarly, we can show that
1+u! .
Zmn’ = —Ti_Z(la)m) (AIS)
lW,, — 1@y

This is correct, because using @, = v,, — iT log u, we find

=Teb,, Z(iw,,
limX,,, = lim On E i ) = S Z(iw,y),
u——1 e—0 TlOg(—l + 6) —inT

_T[(_l + €)_1 + 1]6,””/2(160,”)
inT — Tlog(—1+¢) '
= (Smn’z(iwm)'

lim%,, = lim
u——1 e—0

Bosons—In this case, we have

S(r) = %zﬂ:e—wnfz(wn)

_ ]{ ;_; [n(z) + 0.)e=3(z2)

dx

_ / B n(x) + 0Je.  (A16)

T

This has the correct half-periodicity, as seen in
dx 3
SB-lel) = [ S )ln(x) + e e
7

= [ @nt)er = 2(-r)

T

Fourier transform is

d p
an; = T/—XZH()C)/ dTlde[n(x) + 911>12]
T 0

x ei((b,, —X)71 e—(it/mr —X)7y

g u-l /@ > (x)

W, =W,y | T X—1Uy

~1
71T S(iv,)

i, — iU,y

d p
zM—T/45%w/dwmmm+amA

T 0
X e_i(“_’n’ —X)75 e(ium—x)fl

ul—1 /dx > (x)

i, — i, T X—1iv,

ul—1

v, — i@,

2(ivy,).

As a check, using e#® =y and @, = v, —iTlogu,
we find

B,y = Sy 2 ), KME = 8 Z( i)

u—1

So, in summary,

1 Cu-1

1 Cu' =1
Piw, — i,y ’

o = I
Piw,, —iw,

2mn’ =

016015-9
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4. Useful matrix identities
In this section, we provide some useful matrix identities that are used in the paper. The first is the famous determinant
identity,
A

t
de[c

g] = det(A) det(D — BA™'C) = det(D) det(A — CD'B), (A17)

which leads to the equation employed in the paper,

Imm an

det
|: Vnm Inn

:| = det(lmm - anvnm) = det(lnn - Vnmvmn)' (A18)

We also use some matrix inversion identities. If (A — BD~'C) is invertible,

{A B]—l B [ (A-BD'C)! —(A-BD7'C)"'BD™! } (A19)
c D| |-D'C(A-BD7'C)"' D'+ D7'C(A-BD'C)"'BD']
If (D — CA™'B) is invertible,
[A B } -1 {A‘l +A7'B(D - CA™'B)~'cA™' -A7'B(D - CA~'B)! ] (A20)
c p] —(D—-CA'B)"'cA™! (D-CA™'B)™" |
A consequence of these identities is that
G;l Vi Vi
qung’Vk’q = qu<G;1 - quGquk)_Iqu == <qu 0) < V G—ql ) < 0q>
gk a
= VulGyr + GV r(gx" = VakGoVig) 'V ik Gol Vg
=3, +2,G4Z, = G;'G,G;' - G;'. (A21)

5. A more detailed proof of Eq. (8)

Here, we provide a more detailed proof of central equation of the paper, Eq. (8). We start from the action (4),
1
> [”7“(@”) (=@ + cu - 20(00) )y 1@2) + S i) (=it + €+ 2 o) i)

1 ) ei{b,,/}' -1 _ ) ) e—iu’}nﬂ -1 _ N
+ E ;{Z“b(zwm) ml//a(lwn>l//b(lwm) +Z(iw,,) ml//b(lwm)lpa(lwn) H :

m n

Shift v, (i@,) = w,(i®,) —%Zm a(im,,) L L=y, (iw,,), the action becomes

id)n —€q _Eaa (’@n) id’n _iwm l//b

S=Sut 5 3 wlion) |16 )]

m,m’.n

1 1 (1—u)(1—uh) - }
+—Xha(jw - — - — - >4 (i iw,,),
:B ( m) i&)n — €4 — xad (i&)n) (lwn - lwm)(lwn - lwm’) ( " ) Wb( " )
where [G™!(iw,,)|"" = —iw,, + €, + =" (iw,,). Using spectral representation,

S=8, +%Zzp,,(ia)m) [—[G—l(iwm)]bb’am,m, +%Zn:zba(iwm) / dxA®(x) (1—w)(1-u™)

2rid, —x (i@, —iw,,) (i@, —iw,,)

T (lwm’ ):| Y (lwm' ) .

m,m’
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After integrating out the shifted Matsubara frequency,
the action becomes

1 /
S= Sa + E Zl/_/b(iwm) |:_[G_l (ia)m)]BB 5m,m’

/@Ku(x)zba(ia)m)Aaa/(x)za/b(ia)m’) Wb(iw /)7

2r (iw,, — x)(iw,; — x)
(A22)

where —[G™! (iw,,)|P? is

5100, A% (15 ()
27 iw, —x '

(6" i) + |

Then the whole second part in action S gives (G55')~!,
which is

dx K, (x)Zh A% (x)za P
2r f(iw,, — x)(iw,y — x)"

[Gal]BB/émm' _/
The determinant det™*[(—G5%)~!] now is

dx K, (x)Zhe A% (x)zaV
2n Biw,, — x)(iw,y —x) ]|’

det™* |:[G;LI]BB/5mm’ _/
Now we are facing a determinant,
det™* [Dmm’émm’ + Zwm ()C) U;rn’ ()C)]

This is nothing but

N, XN, N,
A

A

( \ 4 \
NxXNa{ d(x,y)daar vg;(ac,a)

N, { —Wm (377 a) ‘ Dmm’(smm’

where N, N, and N,, refer to the number of real frequen-
cies, number of A modes, and number of Matsubara
frequencies, respectively. Then the determinant is

et [3(5.3)3 + S 0h 5, ) Doty

m

Using Eq. (A18), and after the shuffling the determinant
becomes

Ax  ZebGBEsha
2r (lwm - x)(iwm - y) ‘

det™ {5()@ y) — ; D K, (x)A(x)

m

This motivates defining [z is the complex frequency]

R(z) = £%(2)GP¥ (2)£P(2), (A23)

in terms of which
r(x) E; i(’“ii (A24)
= [ 92 gt =D

Here, we have used the spectral representation of the R(z)
function, defined as Az(w) = i[R(w + in) — R(w — in)].
We also define

r(x) = v(y).

J(x.y) = Ty

(A26)

Note that the x — @ limit in Eq. (A25) and x — y limit in
Eq. (A26) needs to be treated using " Hdopital’s rule. In terms
of the J matrix, we find

det=<[1 + K, () A (@) I (o, o )],
Finally, we get the u-sector partition function (8),

Zlu)=Z,[u]Zdet™*[1+LK,(0) A (@) I (0,0')].  (A27)
6. Noninteracting limit of our formalism

In this part, we will show that our approach can be
connected to results in the noninteracting limit. In the
noninteracting case, the self-energy in the action (4) is justa
frequency independent constant V. Thus,

A (@) =Y Im[VPGEE (@ 4 in) V']
b.b

:E VabABB’Vb’a’
b.b

In the noninteracting limit, the spectral function is
A () = 2m)_de(a)hi(@)o(w ~e).
so that the last determinant in (8) reduces to
det [l () (8(x, y) = EK, (x)8(x — )77 (x, 7)) e (a)].
The ¢.(a) and ¢ (a) in the determinant plays the role of
unitary transformation from a modes to ¢ modes, which

together with the &(x — ¢) reduces the dimension of the
determinant,

det=¢[5(e, €') — K, (€)J (e, €')], (A28)
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where J(e, €’) can be written as

J(e, €)= %, (A29)
in terms of r(e)
r(e) = — / ;ij;AR(a))W. (A30)

The diagonal terms J (e, ¢') need to be treated in a limiting
procedure. In this context, J(e,€’) becomes

J(e, €)= —

—(e—=¢€)].

/d_w Ap(w) rz@) — ()

2n € —¢€ €E—w

With the help of VGV = G;'(G4 — G,)G;! which is
shown in (A21), we can further show

VabABB’ Vb’a’ _ iV“”(G,BQB/ _ Gﬁg’)vb'tz’

= (0 — €)A (0)(w — €).

So that J(e,€’) becomes

)= [ Goar @hngla) +ate.e) " IR

2r €—¢€
do . ng(€) —nz(€')
/27r oA (@) e—¢

=—{G4(r=07)—nz(e)
= <aTa>—n5(€),

where we use [42wA* (w) = ed(e.€'). And we can
further define C = (a'a) for both Bosons and Fermions,
the Tr[p%] becomes

Tepplt) = [T 24 det<[5(e. €) - EK, (€) (€ = ns(e))]

u Z“
= det™¢[CM + D¥],

where D = 1 + ¢{C = (aa’). The term [],[Z,(u)/Z,] can
be just absorbed into the determinant to get the final
expression because the dimension of the determinant in
noninteracting case is finite, but one does not have this
luxury again in the interacting case. Finally, the von
Neumann entropy and Rényi entropy are

SN =ZTr[DInD + {CInC]

and

St = :5M Indet[D™ + ZC),

which are exactly Casini’s results using the reduced density
matrix method.

7. The perturbative limit of our formalism

The EE S, =S, + AS, has a thermal part S, and a
quantum correction. The latter can be expressed as

AS, = /chp(c)gRM(c) (A31)
is expressed in terms of
Fo(e) = dogl(1 4 Z) — BV, (A32)
and the entanglement density of states,
Ap(c) = —%@.Im[Trlog{(c*ﬂ —Co) H(cTT=0C)}.
We can write the C matrix as C = C, + [1, where
Co=Cnz(@)1, M=\/A(0)Is(0.0) /A, (). (A33)

In the perturbative the entanglement density of states is
given by
1
Ap(c) = ——0 Im[Trlog{T1 — (c*1 = Cy)~'M}].  (A34)
/3

This expression can be expanded perturbatively. The
leading order term is

~Ly (4o | Tiw.o)
Ap(c) ~ ﬂac / 2”1 [c P Zn(a))] , (A35)
Tr[[(w, w)] is real. Therefore.
Ap(c) = —0, / ‘;f[’ le = Znz ()| T (@, @), (A36)

Note that in the limit x — y from Eq. (A26) we find
J(w, w) = d,r(w). Instead the w-integral, next we do the c-
integral and find

askr == [ T2 @A @), r@)). (A3
where R (@) is defined as
g (c) = 0.g%(e). (A38)
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and using ¢ = an(w) = 1/(ef” =), we can express it as
M nz(Mw)
M —1nz[(M = 1olnz (o)

Fu(w) =¢

(A39)

Note that this expression has a well-behaved limit as
M — 17. The leading perturbative quantum correction to
the Rényi entropy, Eq. (A37), can alternatively be extracted
from Eq. (8). Perturbation theory in J(w, ') gives

1 V4
SEM Y, log v

¢ da)
- [ A ) K, o).

p

(A40)

>_p K., (@) can be computed using contour integration
with 9, log(u™ — £), which gives

o _ éz(]WCl))
2K ) = M (01— Ty

p

(A41)
which gives the same result.

8. Review of equilibrium path integral
of the coupled-SYK model

For the sake of completeness, we list the saddle point
equations and thermal dynamical properties of the coupled-
SYK model. While it has been shown that such models can
undergo a spontaneous symmetry breaking [54], we restrict
our analysis to symmetry-preserving phases. We provide
the self-consistency equations in the real-frequency so that
they can be readily used with our real-frequency formalism.

The Hamiltonian of this coupled SYK model is

H = 41 Z ZJUMZMZ”Z!)(”"‘ZA ngukl)(z)(,)(k){;,

u=A.B ij.kl i,j=1k,l=

and ]’;jkl, Vi are Gaussian random variables with zero
mean and variances,

312 , V2

< Jél‘kl)2> = 33
J ]vz

In this case, the action is

—ZNﬂ InPf(9, +%,)
2
/d’rdrz G,(7, T)+£G( 7))
- % Ga(7,7)?Gy(r, 7).

Self-consistent equations—In the large-N limit, we can
get the saddle point solutions,

X, (7,7) = JZG;Z(T, )+ 2V2\/5G%(1, )Gy (7,7),

1
2y (7, 7) = I2Gy(e,7) + ZVZ\/;Gi(T, 7)Gg(z,7),

where p = Ng/N,.

These relations can be brought to real frequency by
introducing B, (7,7') = G2(z,7’). Generally, we have
the symmetries G,(,,7,) = —G,(7,,7), which imply
G,(iw,) = —=G,(~iw,) in Matsubara frequency. In the
Matsubara frequency domain, they become

z“a(iwn ﬂz ZGA lwn])GA(lwnz)GA( wnl _ia)nz)
ny,n,
2V2/p . .
VPN Gyl )Glion,)
ny,n,
X Gy(iw, —iw, —iw,,),
and
%, (iw,,) ﬁZZGB lwnl)GB(za)nz)GB(lw —iwnz)

ny,ny

2V2\/1
r . .
+ ZGA(lwnl)GA (lwnz)

2
'B ny,ny

x Gg(iw, —iw, —iw,,).

We define spectral bosonic and fremions spectral functions
AB(w) and AS (w) as

AS(w) = i[G, (0 +in) — G, (0 —
Allf(a)) = i[Bﬂ(a) +in) — Bﬂ(w —in)].

in)], and
(A42)

When analytically continued onto the real frequency axis, the self energies become

S (0 +in) = J? / i—aﬂ)/ [AS () f (0 )Ba(w + in — @) + Ga(w + in — & )np(—)Af ()]

—|—2V2\/ﬁ/c;—a;[Ag(a)/)f(w’)BB(w+in—w’) + Ga(w + in — ' )ng(—a')AS(w)],
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) (a)+u1)—J2/dw

[A5 (@) f (/) Bp(@ + in — ') + Gyl + in — o' )np(-a/)Af(w)]

+ zvz\[ / A NG (@) (@) Balw + in = of) + Gl + in — g (e JAB ()],

where

BM(a)Jrin):/L;wA (@

@' )Gy (@ + in — o )[f(e) = f(-0)].

Free energy and thermal entropy—The free energy is equal to

PF

1
T1+1/p

In Pf(9,6(z,7) + Zy(7,7'))

1 1 3
e P NeS () 12y (e /
N T nPf(9,6(r,7) + Z,(z,7)) 20 +p)/drdf 2 W(7,7)GA (7, 7)

1

/3 ! /
_m/drdr Zzb(T,‘L')GB(T,T), (A43)

In Matsubara frequency domain and analytically continued onto the real frequency axis, the free energy density becomes

e i

—in+Z,)

1
" llog(—
)m%, 1+é’ff[0g( 0]

+ %Zﬂ(w +in)Gy(w + i'l)] }

where ¢ = p for p = A, 1/p for y = B. The thermal entropy is

vooa ooy

_vvr

— in)[orng(w)B, (@ + in) + (

{log —o—in+Z,) +2,(0+in)G,(0+ in)}

np(w) = np(=w))orB, (@ + in))
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