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Momentum spectrum of Schwinger pair production
in four-dimensional e-dipole fields
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We calculate the momentum spectrum of electron-positron pairs created via the Schwinger mechanism
by a class of four-dimensional electromagnetic fields called e-dipole fields. To the best of our knowledge,
this is the first time the momentum spectrum has been calculated for 4D, exact solutions to Maxwell’s
equations. Moreover, these solutions give fields that are optimally focused, and are hence particularly
relevant for future experiments. To achieve this we have developed a worldline instanton formalism where
we separate the process into a formation and an acceleration region.
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Schwinger pair production is challenging for both
experiment and theory [1-6]. It requires field strengths
much higher than what today’s high-intensity-laser facili-
ties can reach. Its nonperturbative nature makes it difficult
to calculate the probability for physical, 4D fields.
Collision of several pulses has been suggested as a way
to reduce the required field strength [7]. There is a class of
fields called e-dipole fields [8] which are exact solutions to
Maxwell’s equations and represent actual, physical fields
that are optimally focused for Schwinger pair production
[9]. They are genuinely 4D and hence computationally
challenging. In principle, the probability (neglecting radi-
ative corrections) is determined by solutions to the Dirac
equation with a background field. But in ]practice, no one
has managed to solve this numerically.” One therefore
has to resort to approximations. We are interested in
approximations for field strengths well below the
Schwinger field* ¢E ¢ = m?. Indeed, the fields will likely
be weak in the future experiments that detect this process
for the first time.

Much work has been done for special backgrounds
such as fields which depend on only one spacetime
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'See [10-13] for state of the art.

’From now on, we will use units with c =42 =m =1 and
we absorb e into the field strength of the background field,
ef,, — F,,. In particular, Eg = 1.
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coordinate [14-18], using, e.g., the Wentzel-Kramers-
Brillouin (WKB) method. For spacetime fields, however,
a generalization of the WKB method seems challenging,
despite recent progress in 2D for colliding laser pulses [19].

Apart from the maximum field strength, E, another
relevant parameter is y = @/ E, where w is some character-
istic length scale, which can be defined in terms of the
curvature of the field at the maximum. If y <1 the
probability integrated over all momenta and summed over
spin can be approximated by (see e.g. [18,20])

Pep =2 / d*x f;(;)cg exp <— %), (1)

where £ = \/=F,,F*/2 = VE* - B* (E - B = 0 every-
where for e-dipole fields). This locally constant-field (LCF)
approximation was used in [9]. For E < 1, one can perform
the integrals in (1) with the saddle-point method.

For y ~ 1, one cannot use (1). Instead, one can use a
worldline-instanton formalism [17,18,21-26]. In the usual
approach, the integrated probability is obtained from the
imaginary part of the effective action, which in turn is
represented by a path integral over closed worldlines (i.e.
loops, periodic in both space and time). It was shown in
[25] how to use this formalism for 4D fields, in particular
for an e-dipole field.

However, neither (1) nor the closed-worldline formal-
ism give any information about the momentum or
spin of the pair.3 In [27] we showed how to use open

*For a field that only depends on time, one has momentum
conservation in 3D and the authors of [23] have shown that in this
case it is possible to extract the momentum spectrum from a
closed-worldline representation of the effective action.
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worldlines* to obtain the momentum spectrum for time-
dependent fields, and in [30] we generalized to 2D fields,
with a single electric component, no magnetic field, and
which only depend on ¢ and z. Here we will for the first time
calculate the spectrum of 4D fields, which are exact
solutions to Maxwell’s equations. We emphasized in
[27,30] that the instantons are not unique because one is
free to make a deformation of the complex proper-time
contour without changing the probability. Here we show
how to choose a contour which allows us to clearly separate
the process into a formation region, where the instanton is
complex and where the “creation happens,” and a sub-
sequent acceleration region, where the real particles are
accelerated by the field. We are not trying to answer
questions such as “when are the particles actually created,”
and we are not suggesting that one tries to place detectors
inside the field. However, we will show that this contour
gives an advantage both numerically and analytically.6
A general e-dipole field is determined by [8,9]

2= e. 5 lolt+ 1)~ gl =), @

where r = \/x? + y*> + z% and g is an arbitrary function. We
focus here on symmetric fields, i.e. ¢"'(—1) = ¢"'(¢), with a

single maximum. The fields are givenby E = -V x V x Z
and B = —V x 9,Z. The probability amplitude is obtained
with the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula [28,35] [px = p,x*, g,, = diag(1,-1,-1,-1)],

M = lim

Jim [ @ dx e S (e x )y  (3)

where u(p) and v(p’) are free asymptotic electron and
positron states, and S is the background-field dependent
fermion propagator, which can foranarbitrary background be
expressed as a path integral over particle trajectories ¢*(7),

. odT [a(l)=x
Stx.x)= i, ~AGr)+1) [ 75 [1 " Dgp
0 q(0)=x_
%)

T 1 q T
—i|= —+Ag+—0"F
Xexp{ l[z—i—A d1<2T—|— q—|—40 ﬂy)]},
4)

where T is the total length of proper time, 7 is proper
time rescaled by 7, P means proper-time ordering, and
o =L[y*,y"]. Since the field is 4D, all the integrals are
nontrivial. We have performed them using the saddle-point

4Open worldlines have been used for pair production by a
constant field in [28,29].

See [31] for recent insight into the different definitions of
time-dependent particle numbers.

Nontrivial, complex proper-time contours have also been studied
in [23] for closed worldlines, and in [32] for worldlines of particles
experiencing a space-time-dependent mass. Similar contours for
ordinary time appear in nonrelativistic tunneling [33,34].

method. As we explained in [30], the spin term, ¢*F,,, is
O(E®) and hence does not enter the saddle-point equations.
The saddle point for the path integral is called a worldline
instanton, and it is determined by the Lorentz-force equation,
g" = TF"™§,.For T and x . the saddle points are determined
by T?=¢% ¢;(1) =Tp; and ¢;(0) = -Tp!, fixing the
instanton in terms of the asymptotic momenta p and p/,
which are at this point free parameters. However, the peaks of
the spectrum are simply Gaussian’ (6), which we can
characterize uniquely by giving the widths and the integrated
probability. To calculate these quantities we only need to find
instantons, plus the solutions to the first-order variation of the
Lorentz-force equation, for the saddle-point values of the
momenta, p, and pj. Since p;; = p, =0, where
pL = 1{p. py}, etc., the instanton follows the z axis
(q(r) =0), on which B=0, E, =E, =0, and the
Lorentz-force equation reduces to a 2D problem, 7=
TE;(t,z)z and Z = TE;(t, z)t. However, this does not mean
that everything is the same as in the 2D case. Indeed, the
spectrum in the 2D case does not even have the same number
of independent momentum components, see €.g. (6).

After having derived the saddle-point equations, it is more
convenient to change variable from 7 to u = T(z — 1/2), so
that the instanton obeys ¢}, = F,“q,, ¢* =1, ¢i(u;) = p;
and ¢}(uy) =—p', where —ug = u; = T/2.Since T — oo as
1, — oo, u starts at —oo and goes to +o0. 7'no longer appears
in the equations of motion. We can think of # = 0 as the start
of the creation, and the half of the contour that goes to o0
(—o0) describes the electron (positron). Since #(u) is sym-
metric and z(u) antisymmetric, the electron and the positron
both propagate forward in time but in opposite directions
along the 7 axis. The contour for u is complex, and we are free
to make contour deformations. Although they give the same
probability, they are not equally simple. We parametrize the
contour as u'(r) = f(r) where r€R. We have chosen
f(r)=1—=(i+1)y(r), where y =~ 1 for |r| < r. and w ~ 0
for |r| > r., for some constant r.. u starts at 0, follows the
negative imaginary axis to u, = —i|u,|, turns and goes to co
parallel to the positive real axis, see Fig. 1. Some parts of the
instanton always have to be complex, regardless of the choice
of contour. One might still expect the instanton to be real
asymptotically, but this is not automatic, and is not the case
for the contour we advocated in [30]. We can choose r,. such
that the instanton is real asymptotically, but r. will then
depend on e.g. y. Since we will find the same probability
regardless of the contour, it might seem like unnecessary
work trying to find such a r.. [30]. However, we will show that
it is in fact useful for practical calculations. As initial

"If one plots the spectrum on a linear (rather than logarithmic)
scale, then the spectrum will only be visibly nonzero in a small
region around the saddle points of the momenta, because outside
this region the spectrum is exponentially suppressed. In this
region we can expand around the saddle points and the peaks are
therefore approximately Gaussian.
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FIG. 1. t(u) in the complex u plane for a Gaussian pulse and
y = 1. The color represents the phase, the white curves are
contour lines of |#(u)|, and the black curves are lines of constant
real/imaginary part. The green line shows our preferred contour.
The details on how we obtained this plot are in Appendix D.

conditions at u =0 we have z =¢ =0 from symmetry
and 7/ = i from ¢’> = 1. We then adjust the two constants
1(0) = i|#(0)| and r. until we find an instanton with
Im¢(r,) =Im#(r,) =0, for some arbitrary points r,,r;,> 7.
The instanton will then be real for r > r, and describe the
trajectory of real particles, see Fig. 2. Note, importantly, none
of the conditions at u =0 or r,; involves p or p’. The
solution will automatically be the instanton for the saddle-
point values of p or p’. After we have found the instanton we
obtain the energy by simply evaluating p, = #'(c0). We will
call |r| < r. the formation region, where the creation
happens, and |r| > r. the acceleration region. 7(u) and
Z/(u) are imaginary (real) for |r| <r. (|r] >r.), so
t(+u.) = 7/(£u,) = 0, see Fig. 2. Thus, we can think of
u. (—u,) as the point where the electron (positron) goes
from being a virtual to a real particle. The pair is created at
t = 0 with zero momentum. But z(u,.) = —z(—u.) # 0, so
the electron and positron are created at different points in
space. Thus, this choice of contour allows for a natural
interpretation.

More importantly, it is useful in practice. We cannot
know what values of y will be relevant in future experi-
ments, but, judging from current laser facilities, one
can guess y < 1. This is also the regime which is most
Schwinger-like, since for y > 1 the production would
instead be perturbative. For y << 1 we need to find the
instantons up to very large r to see convergence to the
asymptotics, which means many numerical time steps.
For example, for y=0.01 we had to consider r=0(10%).
This is due to the fact that at y < 1 the field is wide, and the
electron (positron) travels at z ~ ¢ (z % —t) which affects the

FIG. 2. Instantons for y = 1/10 (solid line) and y = 5 (dashed),
for a Gaussian pulse. We see that the size of the creation region is
much smaller for large y. At small y we see that the 7 and z
components converge for large r.

convergence of g(¢ + z), so it takes longer for the particles
to become free. But with the above choice of contour, r,
do not need to be large, they just have to be larger than
r. ~ r/2. This is a huge advantage, because to find 7(0) and
r. we solve the Lorentz-force equation many times, but
only up to r,,, which is much faster than if we had used a
different contour with conditions at r > 1. After we have
found #(0) and r, we solve up to r > 1, but we only have to
do that once. We will show that this contour also helps in
analytical calculations.

To obtain the prefactor we expand the exponent to second
order around the saddle points and perform the resulting
Gaussian integrals, which give determinants of Hessian
matrices. For the path integral this is done using the
Gelfand-Yaglom method. See Appendix B. For the inte-
grated probability, P, and the spectrum, P(p, p’), we find

d3pd3p/
P= [ —P(p.p

where A = 2Im [ dug”d,A, %, and h and ¢ are two
functions coming from the Gelfand-Yaglom method.
Since the field is 4D, there are no volume factors and none
of the components of the momentum is conserved.

To find the widths we change variables to p; = —P; +

2(2z)3e™A
(o) = (9

% and p;- =P;+ %. Because of symmetry there are only
four nonvanishing independent widths and the spectrum
has the form

2(27)3e™A
[P) 5 / =
0= g
A 2 A 2 P2 P — 2
Xexp{— 2pJ__ pZ_ 2J_ _( ZZP) }’ (6)
da. di,z dp | dp..
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where from now on A = A(p,,p;) and P; = P+ P3,
etc. To obtain the widths we need to solve

(_gyuazzt + F;wau + q/payFup)éqy(u) = 0, (7)

which comes from expanding the Lorentz-force equation
around the instanton for p,, p%. The equations for 5x and Sy
are the same. 0t and 0z are combined into a single variable,
n. We find (see Appendix C)

0" = (E* + VE-{'.1'})n

1

ox" = (1'0E, — 7/0,B,)ox = —EVE' {Z,7}ox, (8)
where VE = (0,E;3,0_E3). Note that the magnetic field
contributes to dx, but can be replaced since Maxwell S
equations plus symmetry imply d.E, = d,E, 0ZEZ,
0B, = —0,B, = ;ath. The initial COHdlthHS are
1,(0)=0 n,(0)=1 »,0)=1 #,(0)=0
6x,(0)=0 6x,(0)=1 6x,(0)=1 6x,(0)=0, (9)

where a and s indicate that the solutions are antisymmetric
or symmetric functions of u. For a general contour we have
dy =5 Im(— — ), and similar for the other widths, see

Appendlx C. With our choice of contour we can rewrite
these as

) W(éxsr’ 5xsi) W(éxur’ 6xai)

— d_z =
A 2laxf? e |6,
W 5 W )
dZZZ — 2(’7(1/‘ 77:;1) d}—)ZZ — 2 (’/Isr ;/Izsl) , (10)
pilnal pil]

where W(f,g) = fg — f'g is the Wronskian, 7,, = Ren,
andn,; = Imy,, etc., and where all quantities are evaluated at
u — oo. Outside the formation region, #,. and 7, are
separately solutions to (8), so (d/dr)W(n,,,n.) = 0 for
r > r.. Hence, the Wronskians can be evaluated at u# = u,.,
rather than at u — oo, and are therefore local contributions to
the widths. ||> and |6x|? are not constant for » > r, and are
therefore nonlocal contributions. We also have |h(oo)|=

2|ninl,| and |¢' (c0)| =

W 0ar 1ai) W (137 m5)) 267
32W(5x,”, 5xm‘)W(6xxr’5x”) .

(11)

All nonlocal contributions have canceled. Thus, the inte-
grated probability only depends on the part of the field that
g" and 6g* “see” while |r| < r.. This provides further

motivation for calling |r| < r. the formation region, because
it agrees with the intuition that the integrated probability
should not depend on what happens with the particles after
they have been created.

We allow y = O(1), so in general the instantons etc. have
a complicated dependence on y. But E < 1 is the expan-
sion parameter, and nothing will have any nontrivial
dependence on E. To make this clear right from the start,
we rescale ¢* — ¢*/E and u — u/E, so E no longer
appears in the Lorentz-force equation or any other equation
of motion. We have A « 1/E and, for all widths, d \/I—Z

We can compare the integrated probability (5) with the
closed-instanton method in [25]. Flgure 3 shows the results
for a Gaussian pulse, ¢”(f) = e™"". We find perfect
agreement.

The local-nonlocal separations are also useful for deriving
y < 1 approximations. The Wronskians only depend on the
formation region, where we can expand the instanton, # and
ox as sums of O(1) and O(y?) terms. These expansions
of ¢, n and 6x are given in Appendix F. We find
W(’?ar’ ”ai) ~ %}/27 W(’?srv ’7si) ~ %}/2’ W(éxsn (3)(“') ~ %7/2
and W(bx,,,0x,;) ~5. Inserting this into (11) gives

PN(;\/;; e "/E, which agrees with what one finds by

performing the integrals in (1) with the saddle-point method.

The nonlocal parts, |#7/| and |6x'|, are more challenging.
Here we cannot expand ¢ and z as a power series in ¥, since
yt.yz = O(1) in the acceleration region, as expected since
the momentum spectrum depends on how the field accel-
erates the particles after they have been created and until
they leave the field. We first note that y << 1 means a very
wide field, so compared to the length scale of the field, the
particles are quickly accelerated to highly relativistic
velocities. The instanton will therefore follow almost
lightlike trajectories, z~t, see Fig. 2. It is therefore
convenient to use lightfront coordinates, ¢ =% (74 z)
and 0 = y(r —z). One of the two nonzero Lorentz-force
equations becomes ¢ = F(¢, 0)¢’. The other, 6" = —F0',
can be replaced by the on-shell condition (#)* — (z/)? = 1,
which gives ¢ :%, with (0) = iy. In the formation
region we have F = 1, while in the acceleration region
F(¢,0) ~ F(¢,0)=:F(¢). In both regions we therefore
have ¢ = ¢, where ¢ = F(¢o)¢;,. There are no explicit
factors of y in this equation, but there are in the initial
conditions ¢o< )= #(0) = ir/2, and g(u) ~ H(dy),
where H(x) = [§ dpF(p). Thus, the asymptotic momen-
tum is py = t( )~ H(co)/y = O(1/7).

The derivations of 7], ;(c0) and 6x|, ;(c0) are quite long,
see Appendixes G and H. The results for 7, however, are
very simple, pg|r,(co0)|* & §, pglri(c0)[* ~ § and p|h| =3
0x, are nontrivial. ox; is first obtained by changing
variable from u to ¢ and solving Héx"(¢) + Féx'(¢) =
—1F'(¢)éx with initial conditions 8x,(¢p =0) =1 and
6x'(¢p = 0) = 0. Thus, dx, is independent of y to leading

016013-4
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Left: comparison with the effective action method [25] (dots) for the exponent (without the overall factor of 1/E) and the

normalized prefactor. The number of points used for the discrete instantons is N = 1000. The same plots for the Lorentzian dipole can
be found in Appendix F. Right: widths normalized by their LCF approximations and unnormalized (but without overall factor of v/E).
We see that the two d, widths are very similar, with d, ; being slightly bigger than dj ..

order. This gives 6x;(u = 00) = H(00)dx}(¢p = ). dx,, is
obtained from dx, using Abel’s identity, which gives

<1>
~cylnl-) +oc,
Y

/4
:—1 —

+/)md¢<H;x§—¢(lia¢)>, (12)

where a is an arbitrary constant. Convergence to this LCF
approximation of the widths is demonstrated in Fig. 3. Thus,
dardp,dyy < VE[y, while dp | o<vE[c;In(1/7)+cyl.

The scaling of d, | suggests that it might be possible to
produce particles with large p, . p’,, which could help to
enhance y = \/—(F*p,)?, which is otherwise small since
x = E\/1+ p? for x=y=0. For y ~ 1 the pair could
emit hard photons, which could lead to further particle
production, or even cascades [6,36—41]. Even if no hard
photons are emitted, one might still wonder if radiation
reaction (RR) could be important for the spectrum. We
show in Appendix M that RR is negligible for p, and p/.

We emphasize that for a 2D field, E5(¢,z), one would
have d,; =0 due to momentum conservation. So the
spectrum for a 2D field gives nothing with which one could
even try to approximate d, . Moreover, we see in Fig. 3
that d, , is not small, it is on the same order of magnitude
as d, , and dp .. For a 1D field, E5(t), one would also have
da, = 0, but Fig. 3 also shows that d, , too is not small.

To conclude, we have for the first time calculated the
momentum spectrum of pairs produced via the Schwinger
mechanism by 4D solutions to Maxwell’s equations. To do
so, we have developed a worldline instanton approach,
which allows us to separate the process into a formation
region, where the creation happens, and a subsequent

SAC))
Sxly(00)

in

2

acceleration region, where the real particles are accelerated
to their final momentum. This is not only an intuitive
picture, but is also useful in practice for both numerical and
analytical calculations. These methods also pave the way
for further investigations of other 4D fields, e.g. ones with
more than one maximum, which leads to interference
effects in the spectrum, and of nonlinear Breit-Wheeler
pair production in 4D fields.

We are grateful to Christian Schneider for giving us a
copy of his closed-worldline-instanton code, which we
used to compare our results in Fig. 3. G. T. is supported by
the Swedish Research Council, Contract No. 2020-04327.

APPENDIX A: E-DIPOLE FIELDS
The fields of an e-dipole can be obtained from Z in (2),

but this is not a gauge potential. As a gauge potential we
can choose A = —d,Z (where {0,0,1} A = —A; etc.),
and with a corresponding nonzero A,. For Z = Z(t, r)es,
we can write the gauge as
A, ={0,2,0,0,0,Z}. (A1)
This automatically satisfies the Lorentz gauge condition
9,A* = 0.
Two pulse functions that differ by a second-order
polynomial,
a1(t) — go(t) = a + bt + ct?, (A2)
give the same electromagnetic field. We can therefore
without loss of generality choose, e.g.,

9(0) = ¢(0) = ¢"(0) = 0, (A3)

016013-5
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or choose ¢(f) such that it has no terms that go like a +
bt + ct? for t — co.
On the axis x =y = 0 we have

Bx(1,9) = 2o {g(t = 2) — (1 +2)

+zld(t—2) + gt +2)]}, (A4)

and E5(t,z = 0) = E¢" (t). After rescaling ¢* — ¢*/E and
u — u/E, nothing depends nontrivially on E. We will use
F(t,z) = E5(t,2)/E and g(u) = G(wu)/@?, so

Fo ﬁ {Gy(t = 2)] - Gly(t + 2)]

+r2(G (=2 + G+ 2]} (AS)

In the y <1 limit it is convenient to use lightfront
coordinates,

p=50+2)  0=r-2).  (AG)

and F(¢) = F(¢,0 = 0) is important for the leading order.
For an e-dipole field we have

_ d3G(2¢)
T 247

F(¢) (=G[2¢4] + ¢G'[2¢))

_ 3
=35

where we have chosen G as in (A3). This can be inverted

G(x) = X;H @) , (A8)

where

H(x) = /0 " dpF (). (A9)

As mentioned in the main text, H gives to leading order
in y <1 the energy as a function of lightfront time,
! ~¢'/y~H(¢)/y. The field for Fig. 3 was chosen to
have a simple E_(t,x =y =z =0), but to simplify the
calculation for y << 1, one could instead choose a simple
F(¢), and then (A8) and (A9) give the corresponding G (or
g). We can perform the integral in (A9) using partial
integration, which gives

H(w) = [T apr@) =3 [T a6 2

3

= 3G"(w). (A10)

For example, for the Gaussian pulse ¢”(f) = e=""

have 3G”(c0)/2 = 3/7/4.

we

APPENDIX B: GELFAND-YAGLOM
AND THE PREFACTOR

Evaluating the exponent at the saddle points, one finds
exactly the same result (B19) as in the time-dependent and
2D case. As to the prefactor, we begin with the path integral
using the Gelfand-Yaglom method. Expanding the expo-
nent up to second order in 6g = g — @jpy glVes

i [l
- oqN\oq ¢, Bl
exp { 5T A q q} (B1)
where
Ayv = Tz(—’?;wai + Fuzzau + q//)al/Fﬂﬂ)’ (BZ)
which can be written in a block-diagonal form,
Nop O 0
A=| 0o A, 0 |, (B3)
0 0 A

where A, is the (7, z) block identical to the 2D case and
Ay =T*0% - 0.E, +70,B,). (B4)

This is a great simplification because the determinant splits
detA = detAZD(detAL)z (BS)

into the known (z, z) contribution and a simpler factor

det A, = ¢p(uy), (B6)
where ¢ is obtained by solving
ALg=0 (87)
with initial conditions
Pug) =0 ¢'(ug) = 1/T. (B8)

see e.g. [42]. In order to take the asymptotic limit and show
that factors of 7., T — oo cancel, we follow the treatment
of Ayp in [30]. We define (i, ii;) such that it contains the
interval where the field is not negligible and where the
dynamics is nontrivial. ity and it; do not depend on 7. We
separate out the simple contribution coming from “before”
ity (since the contour in u is complex, we cannot simply
express this as u < iiy) by noting that

ﬁo — Uy [
T Tp,

P(itg) ~ (B9)
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and by defining ¢ = t_¢/(Tp}) so that ¢ has initial
conditions
¢ (i) = 1,

G (itg) =0 (B10)

which are independent of 7,.. We can similarly separate
out the contribution from after #; using ¢(u;)~
¢'(ﬁ1)(u1 - 121) Thus,
~ @ (i) (uy — ) t_/
Tp,
- r_t
N ()

Tpopo

detAl = ¢(u1)

(B11)

¢'(it,) does not depend on ¢,. We can replace “~” with
“="in the asymptotic limit 7, — oo and provided &, and
it; are chosen large enough for a given precision goal (we
consider in general fields such as e which are strictly
speaking nonzero even asymptotically).

We perform the integrals over the ordinary variables as
in [30]. Denoting the exponential part of the integrand as
e¢?, we have

Jdo . ; dp . .
o i[p = q’ (up)] a: ilp; + ¢’ (uy)]
dp i
ﬁzi(az—l), (B12)
where a’> = ¢%. In the limit 7, — co we have
: X VX2
J! =-2=(1 +
q’ (o) T < + x%)
‘ x! x2
J! — 2+ -
q’ (uy) T ( + /—x%r>
/2 /2
&2 :%, (B13)

where x% =12 —x3. Denoting X = {T,x_,x,}, the
above equations give us dp/0X;, j=1,...,7, expressed
explicitly in terms of X. Solving dgp/dX; = 0 gives us the
saddle point X,

xis:—&t ==L 1= +—_

(B14)
Po Po Po Do

Expanding the exponent to second order in 6X = X — X
gives

7’

—_ B15
detH ( )

/d7X exp{—6X -H 56X} =

where

1 ¢
H. = —— . B1
Y 20X;0X; (B16)

Using Mathematica, it is straightforward to calculate H,
evaluate it at X, and calculate the determinant. H itself
does not have a simple form, but the determinant is (up to a
phase)

pory

detH = .
¢ 2883 T

(B17)

Since we can evaluate the prefactor at the saddle point for
the momenta, the x and y components of the instanton are
zero, so E, = E,, = 0 and B = 0. This means the spin part
is exactly the same as in the 2D case, so we can reuse the
result in Eq. (85) in [30]. Thus, the magnetic component
does not have any effect on the spin structure for these
fields.

Combining these contributions we find

d3 d3 !
= | Gzt
_ /d’ipdS / e_ ,
(27)* |h(a )||¢’( DI pory
where the ellipses stand for the exponents in (3) and (4),

except for the ¢"F,, term, evaluated at the saddle-point
values of all variables, which gives

271'T det A det

(B18)

v

d
A=2Im / duq"aﬂA,,di (B19)
u

Since we can evaluate the prefactor at the momentum
saddle point, we could replace p;, = p, in the denominator
in (B18). & in (B18) comes from det A,, see (C34).

APPENDIX C: DERIVATION OF THE WIDTHS

In terms of

Ap;
2] p;=Pj+

Ap .
pj=—P;+ %, (C1)
we have a saddle point for the momentum variables at
Ap; =0 and P; = 6;3P. We start with the Ap; integrals.

Expanding the exponent around the saddle point gives

P’ A

—A(Ap) —A0)==Ap, —— T~
o0~ exp { - A(0) = 3

Apj}. (C2)

We first calculate 0.A/dp; and d.A/dp’; by going back to the
exponent expressed as in (3) and (4), but now with ¢*, T,
and x.. replaced by their saddle-point values. These saddle
points depend on p and p’, but it follows from the definition
of the saddle points that all first derivatives with respect to
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q", T, x,. vanish. The total derivatives with respect to p
and p’ are therefore equal to the partial derivatives, so
we find

0 4 :
94 5 limIm <qf + p’z> (C3)
p] Uu—o0 pO
and
0 P
—f} =2 lim Im (qf + p—,’t) (C4)
apj u—=—0co Po
Hence,

ad . i . /
A = limlm(q/—l-&t) + lim Im(q/—l-p—/]t). (C3)
aAP/ U—>00 pO U—>—00 0

For (C2) we need the first derivative of (C5), so when we
expand the instanton around Ap; =0 we only need the
first-order variation,

¢" = ¢" + Ap;éq, + O(Ap?), (Co)
which is determined by
d? d

Note that this can be written as Ag = 0, where A is the
Hessian matrix for the worldline path integral (B2). The
boundary conditions gj(—c0) = —p’; and ¢(+o0) = p;

imply

. O; P.
/i _ Y / _ J
Because of symmetry, the term at u = —oo is equal to the
one at u = +oo, and we find
A :=1027A
K ZaAp,aApJ
. P, t . P,P;
=1Im|dql. —ot; —’+—<5€—#>] ®). (C9
WD e T 2pe \ 02 (00).  (C9)

Since the x and y components of the instanton vanish,
we only need the field and its derivatives evaluated at
x =y =0, where E, = E, =0 and B = 0. The nonzero
derivatives are

0.E, = 0,E, = ~50.E,
1
0.B, = ~0,B, = 0,E.. (C10)

The equations for éx and dy are the same,
1
ox" = ({0.E, — 7/0,B,)ox = —EVE- {Z,"}6x, (CI11)

where VE = {0,E3,d_E5}. An arbitrary solution to (C11)
can be expressed as a superposition

Sx(u) = c,6x,(u) + c;bx,(u), (C12)

where 0x, and 6x, are antisymmetric and symmetric
solutions with initial conditions

6x,(0)=0 6x,(0)=1 6x,(0)=1 6x5(0)=0. (C13)

For j # 1 we have from (C8) 5x’(j>(:too) =0, but since
0x; 5(c0) # 0, this implies dx(;(0) = 0. Thus, only éx(;)
(and Jy()) is nonzero and is given by

1 6x,(u)
é. =—=— . Cl4
X (#) 2 6xy(0) (C14)
Substituting into (C9) gives
_ 1 t Oxg

For 61(;) and 6z(;) we have initially two coupled equations,

6" = Eé7 + VE - {6t,62}7

67" = ESt + VE - {6t,6z}1. (C16)
We can simplify this into a single relevant equation by
replacing 6¢ and 6z with two new variables, 7 and y, as in [30],

n

{or. 62} ={r". '}y + {-2, f'}m7 (C17)

where # = /67 — 7/t is the relevant parameter. Instead of
(C16) we have

' = (E>+VE-{Z.1})n (C18)
and
1= 4t/2Z/2 ZI/Z/
)(/ =E (t/2 + Z/2>2’7 + t/2 + Z/Z ’7/‘ (C19)

Note that the Eq. (C18) for # does not involve y. With the
asymptotic condition for the instanton, #'(c0) = p, and
7/(00) = P, we can rewrite the contribution to (C9) as

Im {5%) — 8t(j) i] (00) = Im {'l(/)_(“ﬁ} '

C20
Po Po ( )
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Thus, y does not contribute, neither to the final expression
for the widths nor to the equation for . A general solution
to (C18) can be expressed as a superposition of an
antisymmetric and a symmetric solution,

n(u) = cana(u) + con,(u), (C21)
where
1.(0)=0 ne(0)=1 7, (0)=1 7(0)=0. (C22)
For j # 3, we have from (C8) 61 (£00) = 8z{; (-00) = 0,

which means 77, (+-00) = 0. Since;, ;(c0) # 0, this implies
n(;)(u) = 0. So only 73 is nonzero. From (C8) we have

”?z)(i‘”) = —1/(2py) and hence
1 n(u)
ne)(u) = TS (C23)

Substituting into (C9) gives

- 1 t g

Thus, the off-diagonal components of AiAj are zero.

Next we perform the P; integrals following essentially
the same steps. For the first derivative we have

0 P; .
A 4Im|—1—q' | (). (C25)
oP; Po
Setting &5 94 — () determines the saddle point for P;. We again

only need the first-order variation of the instanton with
respect to 6P; = P; — P

s

q" = g + oP; (Sq + O(5P?). (C26)

The equation for 6q’<‘i> is the same as before (C7), but the
asymptotic boundary conditions are different,

P.
(fo0) =+,

") (C27)

which follows from expanding ¢;(+c0) = —P;. We find

1 A
P
A 26POP
. P, t PP,
=2Im | =6q (u;)+ 61 —< = — Jﬂ ).
‘1()( 1) )Po po \ i p% (o0)

(C28)

The off-diagonal terms vanish as before, and

xq(u) 1 ny(u)
oxmy(u) = N3 (u) = , C29
O e O (e (Y

which gives
t ox,
dp? = A} = AL, = 2Im(%—5x;> (c0)
2 t 7

dz> = AL —m<—s)oo. C30
e = A= pml o= (c0) (C30)

Thus, we have four independent widths,

_ 1 t 7 _ 2 t n
dA%Z:FIm <— a) dP’ZZ:—zlm <———f>
p() Po ’7(1 p() Po Ns

1 t Ox, t  Ox
2 = Im( =25 @2 =2m( -2, (c31
At 2m(po 5XQ) Pt m(Po 5X’a> (@

where all quantities are evaluated at u = co. Note that, apart
from the instanton, the widths are obtained from solutions
to (C11) and (C18) which have simple initial conditions at
u = 0. In other words, there is no need to use a shooting
method for these additional functions.
Choosing the contour such that Imz =

_ 1 n W(Hars Nai)
dy’ = ﬁlm<——7> =
Po P0|’7a|

0r>rg,

W(nsrnsi)
i = Sim(=2) =2
s PP
W(6x,, 6x;)
2 =~1 -
= m( ) 2|5xs|2
W(6x,,, 6x,;)
d7% = 2Im - Cc32
it ( ) 7 (32)

where W(f,g) = f¢' — f'g is the Wronskian, 7, = Rez,
and n,; = Imy,,, etc.

h is the same as in [30], but we can simplify it further
using the above ideas. We start with Eq. (130) in [30], but
rewrite it in terms of the normalized solutions (9) as (note
that we used different notation in [30])

|h| =

2| BT (€33)

Since the Wronskian of 7, and 7, is constant (for all u), we
have (1, — nans)(u) = (nna = n.1;)(0) = 1 and hence

|| = 2|l (C34)
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We can obtain a similar expression for ¢b. We first note
that ¢ satisfies the same equation as dx, so we can write
¢ = c,6x, + c,6x,, where c, and ¢, are two constants that
we determine using the initial conditions (9) and (B10).
We find

o 2[6xoxy|
 |6x,6x!, — 6x,0x|

| ()] = 2|oxgoxa|,  (C35)

where in the second step we have used the fact that the
Wronskian of dx, and 6x, is constant and evaluated it
at r =0.

APPENDIX D: INSTANTONS ON THE
COMPLEX PLANE

In the main text we argue that the most convenient
contour for this class of fields, especially for y <« 1, is a
path traveling along the imaginary axis from the origin to
an imaginary value u,., then parallel to the real axis towards
infinity. Similar proper-time or ordinary-time contours have
been used in [32] for particles experiencing a space-time-
dependent mass, in [33,34] for nonrelativistic tunneling,
and in [43-46] for saddle points of fields [i.e. ¢(¢) rather
than x#(7)] used to study multiparticle scattering/produc-
tion at high energies (around the sphaleron energy).
Although this single contour is sufficient to compute the
full spectrum, it is interesting to consider the instantons as
complex-variable functions. To obtain such functions, we
have to numerically solve the Lorentz-force equation along
a large set of contours starting from u = 0 [after we have
found the turning point #(0)].

Since we expect singularities along the real axis and a
periodic structure along the imaginary axis, one possible
choice can be the following: we start with a single contour
along the imaginary axis u;(r) = ir and obtain solutions
t;(r) = t(ir), z;(r) == z(ir). Then, these functions act as a
set of initial conditions which we use to solve parallel to the
real axis along a set of contours ug(r) = iR + r for several
values of R, obtaining solutions #z(r) = ¢(iR + r) and
zg(r) = z(iR + r). Solving for a function effectively of
two variables (real/imaginary parts of u) using initial
conditions at a single point is possible only because the
solutions are analytic everywhere except at the branch
points.

In order to visualize the resulting functions there are
several possibilities. Since we are mostly interested in the
phase, we color the complex u plane depending on the
phase of g(u) and add lines of constant real/imaginary part
of g. The result is shown in the main text in Fig. 1 for the ¢
component and in Fig. 4 for z. We see in particular that,
since at u. both the real and imaginary part are zero and
constant along black lines, 7(u) is either purely real or
imaginary along the “physical” contour.

-17/2

-7t

-3 -2 1 o 1 23

FIG. 4. z(u) on the complex u plane for a Gaussian pulse and
y = 1. We see that along the physical contour z(u) is always real.

Functions of a complex variable can have branch points.
If the area enclosed by two paths from the origin to some
value u contains a branch point, the value g(u) will be
different even if it is analytic. Multivalued solutions to
nonrelativistic, classical-mechanics trajectories have been
studied in detail in [47]; see also references therein. In fact,
Fig. 1 shows that there is a periodic set of branch points,
with cuts parallel to the real line due to our choice of
contours. If we rotate the contours ug(r) by some phase we
obtain rotated branch cuts as in Fig. 5, allowing us to see a
different Riemann sheet. The existence of such branch
points is directly related to singularities of the field. Since
the initial conditions are imaginary and E(z, t) is real when
z and t are imaginary, both ¢ and z will continue to be
imaginary when u follows the real axis. For the pulse
shapes we consider, ¢(t) either diverges at t — ico or hits a
pole at a finite # = i|¢,[. In both cases the instantons will
cross a singularity of the field if the u contour is along the
real axis. However, the situation is qualitatively different
for a Gaussian pulse and for a Lorentzian/Sauter pulse.
While the first has an essential singularity at infinity, which
makes the instantons divergent at branch points, the other
two have poles along the imaginary axis, so the instantons
remain finite. One can see this already in the simpler time-
dependent case. Let E(¢) be a field with a pole of order f§ at
t, and expand the instantons around the branch point ug
with an ansatz

E(t) ~ Ty H(u) ~t, +c(u—ug)* (DI)

and similarly for z. Plugging this into the Lorentz force
equation we see that « = 1/, therefore for a field like a
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-11/2

-7

FIG. 5. t(u) on the complex u plane for y = 1 with rotated
branch cuts. The angle of the cuts is 6. = Z.

Sauter pulse with a double pole the branch point is like a
square root #(u) ~ t, + ¢,\/u — ug. This method does not
give the correct result for a field with a simple pole like a
Lorentzian pulse, indicating that near the branch point
the instanton is not approximated by (u — ug)* for any
fractional power a. This is related to the fact that A(z) itself
has a branch point of log type when A’(¢) = E(¢) has a
simple pole. On the other hand, one also sees that for the

Gaussian pulse we have #(u) ~ /In(u — ug). Because of
Liouville’s theorem, we always have singularities except
for constant fields. Indeed the constant field instantons (F3)
are trivially entire functions.

Furthermore, for a field with poles, since the field is
given by a dimensionless function f(v) with a pole v, and
v = wt, as  grows, the pole 7, moves closer to the origin.
Since the turning point is squeezed between the origin and
the pole, it will get closer to the latter. From this it also
follows that the branch cuts move closer to the origin. This
makes it numerically more challenging to reach larger @
values for such fields.

APPENDIX E: ADDITIONAL PLOTS

In the main text we show the result for the exponent,
the prefactor and the widths for the Gaussian pulse,

¢"(t) = e~ but since the analytical results are valid
for a general pulse shape, we considered also a Lorentzian
pulse, ¢”'(t) = 1/(1 + [wt]?), and compared the two. In
Figs. 6 and 7 we show #(u) and z(u) in the complex u
plane. Although the Lorentzian has a pole, these complex
plots look quite similar to Figs. 1 and 4 for the Gaussian
field. In Fig. 8 we see the maximum of the longitudinal

-17/2

— -7
-3 -2 -1 0 1 2 3

FIG. 6. t(u) on the complex u plane for y =1 for the
Lorentzian pulse.

-1/2

=TT

-3 -2 -1 0 1 23

FIG. 7. z(u) on the complex u plane for y =1 for the
Lorentzian pulse. Both components look very similar to the
solutions for a Gaussian pulse. The main difference is the
behavior near the branch points.

momentum for both field shapes, normalized by their
y = 0 limits H(c0)/y from Appendix A. In Fig. 9 we
see the exponent and prefactor for both fields and their
agreement with the effective action. We comment on the
qualitative difference between the prefactors in Appendix F.
In Fig. 10 we see all four widths for the Lorentzian pulse
normalized by their LCF results.
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1.00 F
0.95F
0.90F
= [
S 085
= [
5 0.80F
& r —— Gauss
075 F —— Lorentz
0.70 F
0.01 0.05 0.10 050 1 5
14
FIG. 8. Saddle-point value of the longitudinal momentum as a

function of y normalized by the corresponding analytical ex-
pression of the y — 0 limits, namely %’7 for the Gaussian pulse

and Z—’; for the Lorentzian pulse.

Lof

08l

0.6: 10.100

Pref(y)/Preficr(y)

g
§ Exp (Gauss)
= [
§ g4 — Exp(Lorentz) 10.010
[ —— Pref (Gauss)
0.2} 10.001
[ —— Pref (Lorentz)
0.0 L L L L L L 14104
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG.9. Exponent and prefactor for the Gaussian and Lorentzian
pulses and comparison with the effective action (dots). The action
is qualitatively similar for the two fields, but for the Lorentzian
pulse it approaches the leading-order perturbative result (J7)
(dashed line) at large y. On the other hand, the prefactors behave
very differently at larger values of y.

— T T T ——T— T T T —

10}
10 dp,1

w
— T

1 - =

d(y)ldicr(y)

0.05 0.10 0.50 1 5
2r dy

—_— dp

1 R R 't L L L 1 L P L L L
0.05 0.10 0.50 1 5

14

FIG. 10. All four widths for the Lorentzian pulse. We can see
that qualitatively they look similar to Fig. 3 for the Gaussian
pulse. At large y we find agreement with (J13) (dashed lines).

APPENDIX F: LCF EXPANSIONS IN THE
FORMATION REGION

In the formation region ¢ and z are not large, so we can
expand the field in (AS5) as

F(t,z) ~ G¥(0) + LZ(O) <t2 + 25—2> r’.  (Fl)

where G©®) = G”, etc. We set

GY0)=1  GY(0)=-2, (F2)
where the first condition means E is the maximum field
strength, and the second is used to define @. There is no loss
of generality in these choices for G®)(0) and G (0). They
just define what we mean by E and w. For example,
exp(—[wt]?) and exp(—[2wt]?) are the same functions, just
with different normalization of @ or G (0). However, the
relative factor of 5 between the > and z> terms cannot be
changed. It just happens to be this factor for all e-dipole
fields. We chose G©)(0) = —2 so that the coefficient of > is
simple, which means E3(z,z = 0) = E¢"(¢) is simple. For
y < 1 one might instead want to choose a simple E3(t = z),
which would mean a different G®) (0) would be simpler.
We solve the Lorentz force equation with the ansatz ¢ ~
to(u) + t,(u)y? and z ~ zo(u) + z; (u)y>. To leading order
we find
to(u) = icoshu Zo(u) = isinh u. (F3)
For the next order we use initial conditions z;(0) =
Z,(0) = 7,(0) = 0, while #,(0) is a constant to be deter-
mined. The u contour starts at © =0 and follows the
negative imaginary axis. Near u = —iz/2 the contour turns
and goes parallel to the real axis.® We use u, to refer to the
exact point where the contour turns and where ¢ becomes
real. We have u,~ — % + duy®>. We determine the two

constants, #;(0) and éu, by demanding that #(u.) = 0 and
7 (u.) = 0. We find

ou =— (F4)
and

() = % [8u sinh(u) — 5 cosh(s) + cosh(3u)]

i

z1(u) = 20 [8ucosh(u) — 11 sinh(u) + sinh(3u)].  (F5)

8For the numerical solution without using LCF, we choose a
contour with a smooth turn.
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For the longitudinal widths we need

7O (u) = sinh(u) 7" (u) = cosh(u)  (F6)

and
1
n(al)(u) 2 [4u cosh(u) — 13 sinh(u) + 3 sinh(3u)]
1
M (u) = S sinh() [7u + 3 cosh(u) sinh(u)). (F7)
Evaluating these at u = u,. gives us the Wronskians
in (C32)
r 2 / / )
~ =Nl 2=y~ (F8
Narllai = Naitlar B 767" Hsrlls = Hsillsy 577 (F8)
For the transverse widths we need

oxl¥ = u ¥ =1 (F9)
and
sx( = = |sinh(2u) — u cosh(2u) — u —izﬁ

20 9
1
sxt) = 55 m3cosh(2u) +3 — du?) (F10)
Evaluating these at u, gives
z z

8x,,6X; — Ox4;0xL, zgyz 8X 4, 0x); — 6x,;6x),, o) (F11)

The above results give the leading order (LO) contri-
bution from the formation region, which we will combine
with the LO contribution from the acceleration region in
Appendixes G and H to obtain the widths to LO. However,
to explain the qualitatively different prefactors for the
Gaussian and the Lorentzian pulses seen in Fig. 9, we
have to consider at least the next-to-leading order (NLO)
contribution from the formation region (recall that the
acceleration region does not contribute to the prefactor).

We obtain the NLO in the same way as above, i.e. by just
expanding each quantity to one power higher in y?, e.g.
g~ q% + gy + ¢@y* ¢, n?, and 6x), can again be
expressed in terms of powers of #, and cosh and sinh, but
the expressions are not particularly illuminating. For the u
independent quantities we find

U ~l<—§+§}’2 —l—%[G 7(0) —28]}/4) (F12)
(7
t(0) ~ i<1 —%ﬁ + {%—GTE)O)] y4> (F13)

and
W (s Nai) ® 10 Ty % [G7(0) - 70]*
W(n,,. 1) » r + = " " [G7(0) - 6]y
W (x4, 6x,4i) = 2 60 [271 - 21]y?
W(éxsr’ 5xsz) ~ 3 7 + m [9OG ( )

+ 1127% — 1029]y* (F14)
where GU)(0) = 07G( )|x—o- Since the field is assumed to
be symmetric, G\7)(0) is the first nonzero derivative that is
not fixed by the normalization of the field strength and .
Inserting this into the prefactor part of (11) gives

Prof o 5V5 1+4557—2247r2—162G(7>(0) )
Y 2n) 1680 4
5
“(275; (1+[1.4-0.096G7 (0)]y2). (F15)

Thus, as y increases, the ratio of the prefactor and its
leading-order approximation, Pref /Pref] o, becomes either
larger or smaller depending on whether G7)(0) is smaller
or larger than

4557 — 224>

~ 14.5.
162

(F16)

For a Gaussian pulse, G (x) = ¢™, we have G (0) = 12
and

Pref

~ 1+ 02492,
Pre LO + 4

(F17)
while for a Lorentzian pulse, G”(x) = 1/(1 + x?), we
have G)(0) = 24 and

Pref
PrefLO

~1—0.922. (F18)

This explains the qualitatively different prefactors seen
in Fig. 9.

In Fig. 11 we see a comparison of the action and the
prefactor with their expansions. We plot

AA:@_l

: F19
ABXHCI ( )

with A0 representing the expansion up to LO (dotted),
NLO (dashed), and NNLO (solid), and similarly for the
prefactor. We see that by including these first couple of
terms we obtain a good approximation all the way up to
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FIG. 11. Relative error of first orders in the y < 1 expansion of
the exponent (F20) and the prefactor (F15), with dotted lines for
the leading order, the dashed lines for LO + NLO, and solid lines
for LO + NLO + NNLO.

y ~ 0.5, which is not particularly small. The noisy error
seen in Fig. 11 around y ~ 0.1 for NNLO for the exponent
is due to the numerical precision rather than the error of the
analytical approximation.

Inserting the y < 1 expansions just found into (B19) and
expanding the field gives

4

A z% <1 - % — [G7(0) - 28] %) (F20)

Increasing y thus leads to a reduction of the exponential
suppression and therefore to a larger probability. The same
happens for a purely time-dependent electric field, while
the opposite happens for a purely z dependent field.

We can generalize the e-dipole result (F20) to a general
field, i.e. we calculate the NLO correction in

A(y) ~ A(0) + %A”(O)yz. (F21)

We begin by writing

1 42
A(y)=2Im [px+ +p'x_— r_ / de <q— +Aq>} . (F22)
2 Jo \er

Since all the integration variables are evaluated at their
saddle-point values, the total y derivative is equal to

1 1 [ dAH

—A"(0) = —lim— du—yg,,. F23
A0 =—tim [ " (F2)
The derivative with respect to y is up to a factor of E equal
to the derivative with respect to the frequency, and is
therefore not affected by our rescaling ¢* — ¢#/E and
u — u/E. We can express the y dependence of the field as

A,(q) = f.(rq)/y- To take the y — O limit we need to

expand f,(yq) up to O(y*). Even though this is the NLO
correction to the exponent, we only need the zeroth order
approximation of the instanton, g ~ g q), given by (F3), and
u. ~ —in/2. Only the part of the u contour from ~+iz/2 to
—in/2 contributes to the imaginary part. We have

1 1
S A(0) = ——1
yAN0) = =g Im 2

—in/2

duf,.,p0q"q" 9’ q°.  (F24)

Substituting (F3) for ¢ gives elementary integrals. We find

AT (14 R0 - F(0]). (29

where, in terms of the usual 7 and z (not rescaled by E),
F(G)t,a)Z) :E3(I,Z), FO()(O) :ag)tEé(l‘:O,Z:O)/E,
and F33(0) = 02,E5(t =0,z = 0)/E. For example, for
an e-dipole field we have Fy)(0) = =2 and F33 = -2/5
from (F1), and we recover (F20).

For a purely time-dependent Sauter pulse, FE;(f) =
Esech?(wt), we have Fyy(0) = -2 and F3; =0, and

(F25) gives
2
T 4
r—(1—-—

which agrees with the expansion of the exact result
[15,17,18] for A,

(F26)

2

A .
1—|—}/2

T
== F27
B (F27)

A purely z dependent field, e.g. a Sauter pulse
E;(z) = Esech?(wz), would lead to the same correction
but with opposite sign. This is expected. Increasing
(decreasing) y for a time (z) dependent field leads in
general to a larger (smaller) probability. Since the correc-
tion in (F20) is negative, an e-dipole field behaves more
like a time-dependent field.

Note that, while we only needed ¢, o)(u), which also
gives the instanton for a constant field, the result (F25)
cannot be obtained from the standard LCF approximation
(1). Note also that the correction can be numerically
important, because while y> < 1, y*/E is not neces-
sarily small.

APPENDIX G: THE LONGITUDINAL WIDTHS

In the previous section we calculated the local parts of
the LCF approximation. Now we turn to the nonlocal parts,
which are more challenging.

As explained in the main text, to leading order we have

0 = F(do)do.- (G1)
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With initial conditions ¢y (0) =¢{,(0) =iy/2, the solution is

iy Po(u)
w0 =5+ [ aprio) = Hign) + Or). (@
iy
For the other lightfront variable, we have a first-order
equation @' = 2775, and (approximate) initial condition
0(0) = iy, so the solution is given by

O(u) = iy+%2 OM%. (G3)
The correction to ¢ = ¢ + 5¢ is determined by
50" = F(¢o)od! + [F' (o) + Fo(do)Oly.  (G4)
where
Fy(¢p) = 0gF(h, 6 = 0). (GS5)

But it turns out that we actually do not need d¢. To keep the

notation simple, from now on we will write ¢ instead of ¢,.
For n we have 5 ~ 1y, where

no" = [F*(¢) + F'(¢)¢'Ino. (G6)

One solution to this equation is 7y = ¢’. A second

independent solution can be obtained using Abel’s identity,
allowing us to write a general solution as

() = #w (a0 [* 50,

where a and b are two constants. Imposing the initial
conditions (9) we find

(G7)

nalu) =3/ ) [* o

@

and

ol =0 (2 =587 ['55). (@@

where we can approximate F(iy/2) ~ 1. Close to u = 0 we
have ¢/ = O(y), so there 5y = O(1). Outside the formation
region, as ¢’ becomes O(1), we have g = O(1/y).
Asymptotically we have

24/(0)
Since ¢/(00) = O(1), we have 1 (00). 7g(c0) = O).

Thus, in both cases there are regions where 7, is 1 order of
magnitude larger than the asymptotic 7;,. As we will now

Myo(00) ~ —1p(0). (G10)

show, the “next-order” correction to (G6) will actually
contribute to the same order of magnitude for #'(co).
The equation for the next order is
on" = [F*(¢) + F'(¢)¢lon + Rny,  (G11)

where R is a function of ¢, 8, and 6¢. By separating out a
factor of ¢’ as

on(u) = ¢/ (u)e(u) (G12)
we obtain a simpler equation for e(u),
¢"(u) + 2Fe (u) = R%. (G13)
We can solve this equation using F(¢) = ¢" /¢,
1 /u Mo
) =—5— [ dvg”R-—. Gl4
( ) ¢/2(u) 0 ¢ ¢/ ( )
Asymptotically we have
51 (00) = f (00)e/(c0) = L/“ a?RM. (G15)
¢'(e0) Jo ¢

R = Ry + Ry has two terms, one (Ry) proportional to ¢
or ¢, and the other (R;;) proportional to d¢p or 5¢p'. We
begin with Ry,

Rg = —Fggl + (2FFO + ¢/F2))9

1 d
— P <g@ [¢/2F9} _ 9/¢/2F6‘> ) (G16)

with Fy given by (G5). Choosing again G as in (A3) we
have

3 d
Fol) = =360 + 206/ 2] =0 o)
Since H goes to a constant (A10), we have for large ¢
Fol) -, G18)

so R = O(1/u?*) asymptotically. This would give Ry, =
O(1/u) in (G11) and hence 61" = O(In u), which does not
agree with the fact that 6’ should go to a constant. This
apparent problem is due to the fact that we have expanded
G(0) and G'(0) in 6 < 1. But from (G3) we have

(G19)

016013-15



DEGLI ESPOSTI and TORGRIMSSON

PHYS. REV. D 109, 016013 (2024)

so when u > 1/y> we can no longer expand G(6). For such
large u we have ¢ =>1/y%, and from (AS5) we find
F(0)/¢* = O(1/¢*) = O(y*), where F () is some
O( ) function. F is hence very small for u > 1/y?> and
becomes smaller for larger u, and so §;’ will not change
significantly for u > 1/y% To approximate &7 we can
therefore make an expansion for 6 < 1 as long as we stop
at some u = u; which is large u; > 1 butstill u; < 1/y? to
avoid the region where the expansion in @ <« 1 breaks down.
Returning to the calculation, the contribution to (G14)
coming from R, is

1 u d
e/ () = s [fa (9— 6°F,) - 9’¢’2Fe)

(oo f3)

With a partial integration and 6 = y*/(2¢') we find

ud b u
8(9)( )—9F9(61+b/ ¢‘//‘2))—¢/2(u)/ dUHFg
2 d
—#(u)/ dv¢’F9<a+b/) q;;) (G21)

where we have dropped the boundary term at u = 0 since

(09" Fo)l,—o/¢”(u) = Olar*/¢"(u)). Using (G17) to
write ¢'Fy = d,(¢'/¢) and a second partial integration,
we find

g (u) = OF <a+b/ ;ﬁ)—%”/udvng
g L w G} e

By comparing (G22) with (G7) we can check that onp) =
¢’e is indeed smaller than 7, which justifies the above
treatment. However, the derivative is asymptotically on
the same order of magnitude. To show this we take the
asymptotic limit,

€l (00) = qyf(zw <a + b/0°° ;f;), (G23)

where the main contribution to the above integral comes
from the formation region where ¢ ~ ¢’ ~ (iy/2)e", so

(G20)

(y?a — 2b).

£(p) () ~ (G24)

b
()

This gives the same result for both 77, (¢ = 0 and b = iy/2)
and 7, [a =2/(iy) and b = —iy/2],

_ir
¢ (c0)’

which is indeed on the same order of magnitude as (G10).
We will now show that the part coming from d¢ is
negligible. We have

@' (0)e(y (00) = = (G25)

Ry = [¢’F” +2FF'|5¢) + F'6¢'

[¢’2F '6¢). (G26)

¢/2 d

so with a partial integration we find

1
=g,

~5¢F’<a+b / ;Z) ;2 / dvspF',  (G27)

where we have dropped a negligible boundary term at
u = 0. In the asymptotic limit the first two terms go to zero,
while the third is O(yd¢) which is negligible compared
to (G10).

Thus, the dominant contributions come from (G10)
and (G25),

3iy
2¢/(c0)”

) /7, we finally find some very

U 4 /(o0) A —

and hence, with py ~ ¢/(
simple results:

(G28)

PRl(e)Pry  pi(eo)Pr,  plklxs.  (G29)
Interestingly, these LCF approximations of the nonlocal
parts of the longitudinal widths do not actually depend on
the pulse shape g. We can understand this by generalizing
the above results beyond e-dipole fields. We consider now
either some other 4D fields for which the calculation of the
longitudinal widths reduces to a 2D problem in a similar
way as for the e-dipole fields, or just a 2D field. We assume
that the field can be expanded around the maximum as
E5(t.2)/Ey~ 1 — (# + az®)y? (G30)
where a is some constant. For e-dipole fields we have
a = 1/5. The calculation of the local parts is the same as
before. The generalization of the Wronskians in (F8) is
given by

ay? nay?

W(’/Isr’ ﬂsi) R W(nar’ ”ai) R —

5 (G31)

The calculation of the nonlocal parts is also essentially the
same, except that Fy(¢), which is still defined as in (G5),
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cannot be expressed as in (G17), which only holds for
e-dipole fields. We can still go through the same steps by
writing Fy(¢)=:1F,(¢) and choosing the integration
constant such that /Fy(c0) = 0. We find that the right-
hand side of (G25) should be multiplied by

1== [ aprue) (632)

0

Thus, the LCF approximation of the longitudinal widths for
a general field is given by

2 ) 2 )
o _ar (1 o _may* (1
ap =" (2+J> az =" <2 J> . (G33)

J gives a nonlocal contribution. For all e-dipole fields we
can perform the integral in (G32) using (G17) to find J = 1.
However, J # 1 in general. For example, if E3(t,z) =
E5(z,t) then F(¢p, —0) = F(¢,0), Fy = 0and J = 0. Fora
purely time-dependent field we have F(¢,0)=F(¢+0/2)
and hence Fy(¢p) = F'(¢)/2,50J = 1/2 and dp% =ny*/E,
which agrees with (L27). Thus, the longitudinal widths do
in fact depend on the field shape, but there exist entire
classes of fields that give the same result. We also see that if
we replace E,(t,z) — E_(z,1) then dp, <> d,, up to a
factor of 2.

APPENDIX H: THE TRANSVERSE WIDTHS

Next we turn to the transverse widths. From (8) we have
approximately

1
ox" & —Eqﬁ’F’(qﬁ)(Sx. (H1)
It turns out that the symmetric solution dx; is simpler to
approximate, so we will first solve (H1) for dx, and then
obtain the antisymmetric solution using Abel’s identity
[similar to (G7)], which gives

Sx,(u) = 6x,(u) Au 5);1(}1}) .

To solve (H1) we change variable from proper time u to
lightfront time ¢b. The velocity ¢ = d¢p/du can be expressed
in terms of ¢ using (A9) and (G2), ¢’ ~ H(¢p). Equation (H1)
becomes

(H2)

Hox"(¢p) + Fox'(¢) = —%F’(gb)&x, (H3)
where now all primes denote derivatives with respect to ¢.
We want to find the symmetric solution, which has initial
conditions as in (9). Equation (H3) should be solved along
some complex ¢ contour. If dx, depended on y then we
would have started the contour at ¢p = iy/2. At first sight, it

might look like we would actually need to do that, because
H(¢p = iy/2) = iy/2, so 6x” is multiplied by a function that
is O(y) at the initial point. Simply dividing (H3) by H does
not work, because F/H ~ 1/¢ for || < 1. So it might seem
like for y = 0 we have a problem in determining 5x”(0),
which we need to jump to the next time step. However, (H3)
is in fact well posed even for y = 0, as can be seen by
expanding H and ox in power series in ¢. Since H only has
odd powers,

H(¢) = Hyp 1™, (H4)
n=0
ox, only has even powers,
5xs (¢) = Z 02n¢2n- (HS)
n=0

Plugging in these two expansions into (H3) gives one
algebraic equation from each order in ¢, which determines
the coefficients a, in terms of H,. We find in particular

S = 0) =~ 1 F"(0).

(Ho)
Using Mathematica, it is straightforward to calculate many
coefficients. It might therefore be tempting to solve (H3)
entirely using these expansions, without any numerical
integration. However, we need 6x’ at ¢p - oo, so we would
need to resum this series, regardless of how many coef-
ficients we manage to calculate. Although there are methods
to resum series based on a finite number of coefficients, we
will not do so here. We will instead use the first couple of
expansion coefficients to take the first time step, from ¢ = 0
to ¢p = A¢. For a low-order integration step we only need
6x4(0) = 1, 6x;(0) = 0 and 6x7(0),

F// (0)

ox,(Ag) ~ 1 — TA(ﬁz. (H7)

We thus take the first time step analytically, and then we
solve (H3) numerically as usual, along the real axis starting
at ¢ = A¢ with initial conditions given by (H7). By adding
higher powers of ¢ to (H7) we would be able to choose a
larger A¢. However, since we only need (H7) for a single
time step, it is simpler to just choose a sufficiently small A¢
so that we can use (H7) without adding higher-order terms.
In fact, for sufficiently small A¢ we could simply choose
6x,(A¢) ~ 1. The time step and integration order we use for
the subsequent numerical integration are independent of the
first, analytical step. Thus, dx; is to leading order indepen-
dent of y.
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From (H2) we find

o3, (o0) _ /oo A

7/2 H5x% ’

(H8)

where we have put y — 0 everywhere except in the lower
integration limit, since there it is needed because of the
singular integrand. To find an approximation we will
subtract a simple integrand, /(¢), with the same singularity.
Since H =~ ¢ and 6x, ~ 1, we should have I(¢) ~ 1/¢ for
¢ — 0. But we cannot simply choose I(¢) = 1/¢ because
then 7(¢) would not decay fast enough at ¢ - oo. Instead
we will choose I = 1/(¢[1 + a¢]) where a is an arbitrary
constant. We have

= dp iy iy
/y/2¢(1+a¢)——ln<a2>+ln(1+a2)

——In <a g) - ’5” +O@). (HY)
Thus,
ox}(00) v\ iz
~—1 ===
5x);(o0) . (a 2 2

+Awd¢(H;x%—¢(lia¢)). (H10)

This result is independent of a. The integral is real for real
a, so Im[6x),(00)/6x;(00)] ~ —in/2. If one chooses a =
lim,,_,, H([(d/d¢)éx,)* then the integral converges faster at
¢ — oo. Thus, since 6x, is independent of y to leading
order, 6x/,(c0) increases as In(1/y). From (C32) and (F11)
we finally find

C3

dqu_z dA,J_ N7, (Hll)

1
c1In {—] + ¢
Y

where the constants ¢; are obtained by solving (H3) and
performing the integral in (H10).

APPENDIX I: SLOW CONVERGENCE
ASu - o FORyx 1

As mentioned in the main text, for y < 1, we need to
integrate up to very large r to see convergence. We will
explain why this can be expected here. One might expect
that the convergence would be faster for a field which
decays faster asymptotically. For example, one might
expect a Gaussian pulse to lead to a relatively fast
convergence. However, even for a Gaussian pulse, the
convergence is not as fast as one might have expected.

As mentioned below (A2), we can without loss of
generality choose g(f) such that it has no terms that go
like a + bt + ct* for t — co. We would find the same result

anyway, but this choice makes the notation somewhat
simpler. With this choice, we have for a Gaussian pulse,

G///(x) — e—xz’
G(x) = Yo % (1 + 2x?)erfc(x). (I1)

Both terms decay as e~ asymptotically, which seems
promising for the numerical convergence. However, for
7 < 1, the instanton follows an almost lightlike trajectory
in the acceleration region, where 6 is very small, see (G3).
So, while 0 eventually grows linearly in u as in (G19), it
takes a very long time before # becomes so large that G(0)
can be approximated by its asymptotic limit. In the semi-
asymptotic region, where ¢ is large but € is not, we can
drop the exponentially suppressed terms, G(2¢) and
G'(2¢), in (AS), so

6 !
FaGr—grl20-0G0)+260). 1)

In this region, F = O(1/¢?) is only quadratically rather
than exponentially small, even if we have chosen an
exponentially decaying G.

APPENDIX J: PERTURBATIVE LIMIT

In the previous sections we have derived approximations
fory < 1. Itis probably possible to derive approximations of
the saddle-point approximation for y > 1 too, but we expect
that the saddle-point approximation breaks down in this limit,
so the result would then be an approximation of an approxi-
mation that is no longer valid. However, not being able to use
the saddle-point method for y > 1 would not be a problem,
because for y > 1 we anyway expect the probability to
become perturbative, which might not be what one wants to
have if one is mainly interested in the Schwinger mechanism.

However, while the saddle-point approximation of the
prefactor might break down, previous studies of other
processes [48—50] suggest that the approximation of the
exponent can still be valid, which means we can make a
completely independent check of the saddle-point result for
the exponent by comparing with the perturbative result. We
will show that this is also the case here for fields with poles,
such as the Lorentzian pulse.

When treating the field in perturbation theory, it is natural
to use the Fourier transform. For the e-dipole we have

4
Z(x) = / ((21,,/;4 LK), (1)
where
7‘[2
Z(k) = ) E[5(|k|—ko)—5(|k|+ko)]f(ko)es (J2)

ke |&5
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and
Flka) = [ dretrg o, )
For the Gaussian pulse, ¢ (1) = ¢~(®)’, we have
o) = Lexp {- 51 04)

and for the Lorentzian pulse, ¢"(t) = 1/(1 + [wt]?), we
have

Flko) = Zexp {—@} (I5)

The exponential suppression of the probability comes from
the exponential suppression of the Fourier transform at
frequencies much higher than @ < 1. Since the Fourier
photons are on shell, we need to absorb at least two photons.
The dominant contribution to the integrated probability
comes from pairs produced at rest, p =p’ = 0. From
energy-momentum conservation, we therefore consider the
absorption of n photons with four-momentum {k(, k } and n
photons with {ky, —k}, where ky = |k| = 1/n so that the
sum of all the photon energies is equal to the energy of the
pair, i.e. 2 (recall m = 1). For the Lorentzian pulse we
then have

4nk
B~ L)~ % enp { <20
4
=EY exp{——}. (Jo6)
w

Since the exponent is the same for all n, the scaling of the
prefactor with E*"* implies that the dominant contribution
comes from the absorption of only two photons,

P~ E* exp{—:)}. (J7)

The reason is that, while an exponential suppression asin (J5)
might naively seem like a fast decay, it is actually a wide
distribution in this context. Note that this exponential scaling
comes from the poles of the field. It is therefore a general
result for fields with poles. For example, for a Sauter pulse,
g"(t) = sech?(wt), we have

ﬂ'k() .o ﬂ'k() 271'](0 ﬂ'ko
f(ko) = Fslnh 1<2—> z—zexp —% . (Jg)

Contrast this with the Gaussian pulse (J4), for which
we have

1
P, ~ [f* (ko) |* ~ E*" exp {—m} (J9)

Here the exponential suppression decreases as the number
of absorbed photons increases. As shown in [48], since the
prefactor still favors absorption of fewer photons, the
dominant contribution to the probability comes from some
dominant order ng4,, and from n close to ny,y. Since 1y
can be quite large, this means, while the probability is
“simply” perturbative, actually calculating it might be quite
challenging since one would need to consider the absorp-
tion of many photons.

For fields with poles, such as the Sauter and Lorentzian
pulses, we can also obtain y > 1 approximations of the
widths. The perturbative amplitude to produce a pair by
absorbing two Fourier photons from the field is propor-
tional to

M= [ @k ) (k) ()
xHk+kK—-p=p')... (J10)

If the pole closest to the real axis is ¢ = iv, then the Fourier
transform is proportional to f(kg) o ek and

[ ko) f (k) oc e™hoth) = e=#(potrt) - (J11)
For p?> < 1 and p”? < 1 we find
M o mtmso ) — pmtamsan (110)

Thus, the widths become isotropic in this limit, where

1 L
v

For a Lorentzian pulse we have v = 1/w and hence dp =

Ey/2 and d, = \/2Ey. Agreement with the numerical
results is demonstrated in Fig. 10. Equation (J13) has been
derived for fields with poles, and so does not apply to the
Gaussian field. We can see in Fig. 3 that we nevertheless
have dp ) ~dp, and d, | ~d,, also for the Gaussian
field, but the convergence of the ratio d,/dp seems
very slow.

(113)

APPENDIX K: TIME-DEPENDENT-FIELD
APPROXIMATION

An e-dipole field is an exact solution to Maxwell’s
equations. Given a choice of pulse function, g, we only
have two parameters to tune, E and y (or @). We can make
the field faster or slower by tuning y, but we cannot
independently make, e.g., the z dependence slower without
also making the ¢ dependence slower. One might therefore
wonder whether a purely time-dependent electric field can

016013-19



DEGLI ESPOSTI and TORGRIMSSON

PHYS. REV. D 109, 016013 (2024)

ever be used as an approximation for these fields. But we
saw in the previous section that for y > 1 we can use
perturbation theory where the dominant contribution comes
from absorbing photons such that the sum of the spatial
components of the photon momenta vanishes. The expo-
nential part of the probability is then the same as what one
would have if the absorbed photons were off shell with
k = O rather than on shell. Such off-shell photons would be
possible for a purely time-dependent field E(t). For E(r)
one can produce a pair by absorbing a single photon. For
example, for a Lorentzian pulse, E(t) = Ey/(1 + [wt]?),

we have (cf. [15])
4
IPNEzexp{——}.
w

While the prefactor is different, the exponent is exactly the
same as (J7). For a Gaussian pulse it would be much harder
to calculate the perturbative result since one would need to
consider the absorption of many photons. But the possibil-
ity that the result would be similar to a result for a Gaussian
E(t) suggests that we compare our instanton results for the
e-dipole field with the corresponding instanton (or WKB)
result for E(z).

For E(r) there is a compact result for a general pulse
shape (assuming symmetry and a single maximum),
see [16,18]. We write the field as E(r) = A'(f) and
A(t) = f(wr)/y. The exponential part of the probability
is given by

(K1)

Pz...exp{—%g(y)}, (K2)

where g(y) (which should not be confused with the dipole
function g) is given by

3(r) = % " an/r =P,

where f(v) = —if(iv), and v; is the point where f(v) = 7.
The integral is real since f is an antisymmetric function.
For example, for the Lorentzian pulse we have f(v) =
arctan(v) and f(v) = arctanh(v).

If f(v) has a pole at v, then for y > 1

exp {—%9(7/)} ~ exp {—4%},

which agrees with the perturbative result, e.g. (J7) for the
Lorentzian pulse.

For y < 1 we can Taylor expand, and we find for an
arbitrary pulse shape

(K3)

(K4)

2 40— 0
i) =1-L+ 2= o

4 6
1 T +O(r°),

(K5)

where we have normalized the field so that

fo)y=1 " f"0)=-2. (Ko)
Compare this with the corresponding result for e-dipole
fields (F20). To compare we choose E(t) = EG" (wt), so
f(u) = G"(u) and in particular £©)(0) = G7)(0).

In Fig. 12 we see that A for the e-dipole field does indeed
seem to converge to A for E(f) as y increases. In fact, we
see that the result for E(¢) is actually a decent approxi-
mation for all values of y. Since all results agree on
A(y =0) =z/E, one can expect a maximum relative
errof,

_ ‘ AEEW] ’ )
Ale-dipole]

somewhere around y ~ 1. This is indeed what we find, but
the maximum ¢ is only <0.02. This is interesting because
when one sees such a small difference, the first guess would
be that it is due to the smallness of some parameter. But that
is not the case here, because .4 only depends on y, and y ~ 1
is neither small nor large. The reason for the small e is
instead due to the fact that the functional form of A[E(7)]
and A[e-dipole] are similar. They both start at z/E for y =
0 and converge for y > 1, and, since they are both
monotonically decreasing, there is not much that could
happen in the region between y < 1 and y > 1. Compare
the expansions in y < 1 for E(¢) in (K5) and for an e-dipole
in (F20). They are both power series in y> and the NLO has
the same sign. The coefficients, 1/4 and 1/5, are different
but happen to be quite close. If we tried to improve the
agreement by rescaling y — \/4/5y for A[E(t)] then e
would become smaller for y < 1, but we would introduce
a relatively large discrepancy at y > 1 on the order

of |\/4/5—1| = O(0.1).

:‘,..-:: ............................
0.010} /' )
0.005F ¢
s
0.001F *
5.x10™ F e
3 . —— Gauss
—— Lorentz
1.x10™* E.. L L L L '
0 1 2 3 4 ’

FIG. 12. Relative error (K7) between the exponents of the exact
result for the 4D dipole pulse and the purely time-dependent field
E(t) = Eq¢"(t) for the Gaussian and Lorentzian shape.
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Given this agreement between .4[e-dipole| and A[E(7)],
it might be tempting to go beyond the leading order and
treat the z dependence and to consider the prefactor too.
However, there are fundamental differences for the pre-
factor. For example, for E(¢) there are volume factors,
which we do not have for 4D fields, and 4D fields have
more nonzero and independent widths.

APPENDIX L: WIDTHS FOR 2D AND 1D FIELDS

In this section we explain to what extent results for the
widths for 4D fields can, or rather cannot, be approximated
by considering 2D or 1D fields. There is no parameter in
the e-dipole field that we can tune such that the field
becomes slower and slower in the transverse x* = {x, y}
directions. Indeed, a field given entirely in terms of a
longitudinal electric field, E5(z,z), is not a solution to
Maxwell’s equations (without a current). We will therefore
artificially make the x dependence slower by, e.g.,
rescaling x* — ex* in the gauge potential A,,. The resulting
field will no longer be a solution to Maxwell’s equations,
but neither are the 2D and 1D fields we want to compare
with. In the 2D limit the equations for the longitudinal
widths stay the same. But for the transverse widths we have

[cf. (8)]
o' = (10,E, —'0,B,)dx # — % VE-{Z./}6x. (L)

In the 4D case we used Maxwell’s equations to rewrite this

equation in terms of the VE term, but that is not possible

here. After rescaling x — ex- we have

6x"(u) = R(u)dx(u), (L2)

where R = O(e?) < 1. To leading order we have dx, ~ u
and hence (10) gives

dp? — —2Imu,, (L3)

which agrees with Eq. (104) in [30] (which simplifies using

our preferred u contour). The symmetric solution is more
nontrivial,

Sxg(u) ~ 1+ 6x§1)(u) 6x§1)'(u) = /M du'R(u), (L4)

0

and (10) gives

Lo tmedY 1

A’J-_)Em:_i mm

(L5)
Thus, dy | — 01in the limit € — 0. This is expected since if
we had instead started with a field that does not depend on
x1, then we would have had momentum conservation

*(pL+p)), and dy, gives the width for Ap, =
p1+p'. For a nonzero ¢ <1 we therefore have a
regularized delta function. For the prefactor we also need

'] = 26x;6x, | — 2]axt

, (L6)

so for the integrated probability we have (considering only
those factors that involve ¢)

1 |
— e d .
|¢'1Pd3% 2mmex!Y

(L7)

The prefactor hence scales as 1/e. This is also expected,
because had we started with a 2D field we would have had a
transverse volume factor, V, = V,V,, so 1/ €? provides a
regularized volume factor.

Thus, if one starts with a 2D field, one has a constant
volume factor V, and d,; = 0. One cannot use these
trivial results to approximate anything. Judging from the
2D results, one might have wondered if perhaps d, ; is at
least in some sense small in the 4D case. However, Figs. 3
and 10 show that d, | is on the same order of magnitude as
the longitudinal widths.

Next we go one step further and take the limit where also
the z dependence becomes very slow. We showed in [30]
that d, , — 0, consistent with the fact that for a purely time-
dependent field we would have momentum conservation in
all spatial directions, 5°(p + p’). We also checked in [30]
that, in the case of a Sauter pulse E3(t) = E/ cosh?(wt), the
two nonzero widths agree with the results in [15]. Now we
will check this for an arbitrary pulse shape (but still
assuming a symmetric field with a single maximum).
For E5(t) = A'(t), A(t) = f(wt)/y, we have

£(u) = /1 + A1),

which we can use to change integration variable from u to .
For example,

(L8)

/uf 4 /0 dt /? dr (L9)
uc = u = _ = — [ — ,

0 i0) ¢ 0 \/1+A2%()

where A(7) = i, so from (L3) we find

T

[ dr
d} — ZIm/ ——— = —B,(y).
Pl o JitAN) E 2(7)

Since the integration goes along the imaginary axis,
we change variable and rewrite the field in terms of

f(v) = —if(iv),

(L10)

2 Uy dv
Sl . — (L11)
=) L= o)y
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where f(v;) =y. This integral is similar to (K3). To
compare with the results in [16] we change variable from
vtox = f(v)/y. Forthe Jacobian we have f'(v) = F(f(v)),
where F'is some function that depends on the choice of field.
For example, for a Sauter pulse we have f(v) = tan(v) and
F =1+ f* We find

Bt =2 [T
275 Flyx)V1—x2

With the same change of variable, g in (K3) becomes

4 (1 d
g:/ a V1-=x2
7 Jo F(yx)

Equations (L12) and (L13) agree with Eq. (7.5) in [16].
For dp, we need to solve [cf. (8)]

(L12)

(L13)

0" = [E*(1) + E'(1)]n. (L14)
Since one solution to (LL14) is 7 = ¢, we can use Abel’s
identity and write the solution with correct initial con-

ditions as
u do
0 =00 (a0 [15355)

where a and b are two constants. Since the initial
conditions (9) are set at u = 0, and 7(0) = 0, we have a
singular integrand. However, we only need 7, (u) for r > 0,
so we never have to integrate over u = 0, and the limit
u — 0 is finite,

(L15)

(L16)

so b =—¢"(0). The Lorentz-force equation and partial
integration give

udy udv d 7 7 u  ZE'(1)
= — - d , L17
L, 2 l Edvt EY * L > (L17)
which we use to simplify
w ZE'(t
n.(u) = at" + b’ + bt" / o Ez( ) (ws)
u(

The second initial condition, 77;(0) = 0, now implies

0 "E'(t
a:—b/ dvZ ()

= (L19)

For the nonlocal part of (10) we have

poits(e0) = b, (L20)
and for the local, Wronskian part we need
’75(“0) =da ﬂﬁ-(uc) =b, (Lzl)

where we have used z/(u.) = (u.) = 0and 7 (u.) = 1, s0

|14 s i rbi _br i
a2 =Wl tt) _pabi—bia o4
' pOl']s' |b| b

(L22)

Using (L19) and changing integration variable to ¢ gives

A" rm

i A
-2 _ 2 2
d72 = 2Im A GBS RO, (L2
Rewriting as in (L11) gives
2 v }' }‘//
B] = — dv — =5 (L24)
o=t

From the definition of F, f'(v) = F(f(v)), we have
f" = FF' and

7 d 1
== —y——. 125
75 a4 (123
Thus,
Bi(r) = —rBj(y). (L26)
which agrees with Eq. (7.5) in [16].
By expanding in y <« 1 as in (K5) we find
2 (5)
v (5N 6
By=l-—+4|z———
s=1-Tr (3- L)+ o)
4
By =7 +[/9)(0) - 40 T2 4 O(). (L27)

16

For a monochromatic field we find agreement with the
corresponding expansions in Eq. (7.6) in [16], we just have
to recall that with our normalization (K6), we have
f(v) = sin(v/2v)/+/2, so our definition of y differs from
that in [16] by a factor of V2. By using the same
normalization (K6) for all fields, we see that the two
nonzero widths, dp, and dp,, are to leading order
independent of the pulse shape.

APPENDIX M: RR

To estimate the size of RR (see [51] for a review) we
consider the classical Landau-Lifshitz (LL) equation,

9 =F q, +B(Frq, + FuF"q, + [FqPq,).  (Ml)
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2 .
where f = %Z—” We consider zero transverse momenta,

since the saddle point is at p; = p’, = 0. After rescaling
F, — EF,, ¢ — ¢"/E and u — u/E, (M1) remains the
same except that f — Ef. RR might thus only be important
if some other parameter is large enough to compensate for
Ef < < 1. We consider therefore y < 1. Changing
variables to ¢ and 6, and expanding to leading order in
y < lgives ¢’ (u)=F(¢p)p'+EPF'(¢)¢". This is the same
as the LL equation for a field given entirely by E3(t + z),
which was solved in [52,53]. The solution is

D)= [Capetr ). on)

Since F(¢) = O(1), there is nothing to compensate for
Ef <« 1, s0 RR is negligible. A similar conclusion and the
identification of Ea as the relevant parameter can also be
found in [38].

Many strong-field-QED processes are studied in fields
with components orthogonal to the momentum of the
particles. A high-energy particle will then effectively see
a much stronger field in a frame where the particle’s energy
is O(1) (this could be the rest frame for a massive particle).
The field will also effectively appear as a plane wave.
However, in our case, although the particles are accelerated

to high energies for y <« 1, they are accelerated along the
direction of the electric field on a path where there are no
transverse field components. A Lorentz boost parallel to the
electric field does not change the field strength. With E<1
in the lab frame, we will therefore also have E < 1 in the
rest frame. Thus, rather than a plane wave, we have shown
that the particle effectively sees a purely electric field which
only depends on lightfront time, E3(z + z). This is not a
solution to Maxwell’s equations in vacuum, but that is not
a problem since it does approximate an exact solution
(the e-dipole field) along the relevant plane x =y = 0.
A similar point was made in [54], where it was shown
that the closed worldline instanton for a standing wave,
 cos(wt) cos(kx), is the same as the instanton for a purely
time-dependent electric field, o cos(wt).

We have shown that FE;(t+z) is relevant for the
acceleration region for y << 1 because there the particles
have reached highly relativistic velocities and travel along
almost lightlike trajectories (see also [55]). However, we do
not approximate the field as E5(¢+ z) in the formation
region. In fact, our results are very different from the
probability of pair production by E;(f+ z), which was
derived in [56,57]. This is easy to see. The probability for
E5( + z) is proportional to volume factors in the x, y and
t — z directions. We have no volume factors because we
consider a 4D field.
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