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We calculate the momentum spectrum of electron-positron pairs created via the Schwinger mechanism
by a class of four-dimensional electromagnetic fields called e-dipole fields. To the best of our knowledge,
this is the first time the momentum spectrum has been calculated for 4D, exact solutions to Maxwell’s
equations. Moreover, these solutions give fields that are optimally focused, and are hence particularly
relevant for future experiments. To achieve this we have developed a worldline instanton formalism where
we separate the process into a formation and an acceleration region.
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Schwinger pair production is challenging for both
experiment and theory [1–6]. It requires field strengths
much higher than what today’s high-intensity-laser facili-
ties can reach. Its nonperturbative nature makes it difficult
to calculate the probability for physical, 4D fields.
Collision of several pulses has been suggested as a way
to reduce the required field strength [7]. There is a class of
fields called e-dipole fields [8] which are exact solutions to
Maxwell’s equations and represent actual, physical fields
that are optimally focused for Schwinger pair production
[9]. They are genuinely 4D and hence computationally
challenging. In principle, the probability (neglecting radi-
ative corrections) is determined by solutions to the Dirac
equation with a background field. But in practice, no one
has managed to solve this numerically.1 One therefore
has to resort to approximations. We are interested in
approximations for field strengths well below the
Schwinger field2 eES ¼ m2. Indeed, the fields will likely
be weak in the future experiments that detect this process
for the first time.
Much work has been done for special backgrounds

such as fields which depend on only one spacetime

coordinate [14–18], using, e.g., the Wentzel-Kramers-
Brillouin (WKB) method. For spacetime fields, however,
a generalization of the WKB method seems challenging,
despite recent progress in 2D for colliding laser pulses [19].
Apart from the maximum field strength, E, another

relevant parameter is γ ¼ ω=E, where ω is some character-
istic length scale, which can be defined in terms of the
curvature of the field at the maximum. If γ ≪ 1 the
probability integrated over all momenta and summed over
spin can be approximated by (see e.g. [18,20])

PLCF ¼ 2

Z
d4x

E2ðxÞ
ð2πÞ3 exp

�
−

π

EðxÞ
�
; ð1Þ

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FμνFμν=2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − B2

p
(E ·B ¼ 0 every-

where for e-dipole fields). This locally constant-field (LCF)
approximation was used in [9]. For E ≪ 1, one can perform
the integrals in (1) with the saddle-point method.
For γ ∼ 1, one cannot use (1). Instead, one can use a

worldline-instanton formalism [17,18,21–26]. In the usual
approach, the integrated probability is obtained from the
imaginary part of the effective action, which in turn is
represented by a path integral over closed worldlines (i.e.
loops, periodic in both space and time). It was shown in
[25] how to use this formalism for 4D fields, in particular
for an e-dipole field.
However, neither (1) nor the closed-worldline formal-

ism give any information about the momentum or
spin of the pair.3 In [27] we showed how to use open
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1See [10–13] for state of the art.
2From now on, we will use units with c ¼ ℏ ¼ m ¼ 1 and

we absorb e into the field strength of the background field,
eFμν → Fμν. In particular, ES ¼ 1.

3For a field that only depends on time, one has momentum
conservation in 3D and the authors of [23] have shown that in this
case it is possible to extract the momentum spectrum from a
closed-worldline representation of the effective action.
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worldlines4 to obtain the momentum spectrum for time-
dependent fields, and in [30] we generalized to 2D fields,
with a single electric component, no magnetic field, and
which only depend on t and z. Here wewill for the first time
calculate the spectrum of 4D fields, which are exact
solutions to Maxwell’s equations. We emphasized in
[27,30] that the instantons are not unique because one is
free to make a deformation of the complex proper-time
contour without changing the probability. Here we show
how to choose a contour which allows us to clearly separate
the process into a formation region, where the instanton is
complex and where the “creation happens,” and a sub-
sequent acceleration region, where the real particles are
accelerated by the field. We are not trying to answer
questions such as “when are the particles actually created,”
and we are not suggesting that one tries to place detectors
inside the field.5 However, we will show that this contour
gives an advantage both numerically and analytically.6

A general e-dipole field is determined by [8,9]

Z ¼ ez
3E
4r

½gðtþ rÞ − gðt − rÞ�; ð2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and g is an arbitrary function.We

focus here on symmetric fields, i.e. g000ð−tÞ ¼ g000ðtÞ, with a
single maximum. The fields are given byE ¼ −∇ ×∇ × Z
and B ¼ −∇ × ∂tZ. The probability amplitude is obtained
with the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula [28,35] [px ¼ pμxμ, gμν ¼ diagð1;−1;−1;−1Þ],

M ¼ lim
t�→∞

Z
d3xþd3x−eipxþþip0x− ūγ0Sðxþ; x−Þγ0v; ð3Þ

where uðpÞ and vðp0Þ are free asymptotic electron and
positron states, and S is the background-field dependent
fermionpropagator,whichcanforanarbitrarybackgroundbe
expressed as a path integral over particle trajectories qμðτÞ,

Sðxþ;x−Þ¼ði∂xþ−=AðxþÞþ1Þ
Z

∞

0

dT
2

Z
qð1Þ¼xþ

qð0Þ¼x−

DqP

×exp

�
−i
�
T
2
þ
Z

1

0

dτ

�
q̇2

2T
þAq̇þT

4
σμνFμν

���
;

ð4Þ
where T is the total length of proper time, τ is proper
time rescaled by T, P means proper-time ordering, and
σμν ¼ i

2
½γμ; γν�. Since the field is 4D, all the integrals are

nontrivial. We have performed them using the saddle-point

method. As we explained in [30], the spin term, σμνFμν, is
OðE0Þ and hence does not enter the saddle-point equations.
The saddle point for the path integral is called a worldline
instanton, and it is determinedby theLorentz-force equation,
q̈μ ¼ TFμνq̇ν. ForT andx� the saddle points are determined
by T2¼ q̇2, q̇ið1Þ ¼ Tpi and q̇ið0Þ ¼ −Tp0

i, fixing the
instanton in terms of the asymptotic momenta p and p0,
which are at this point free parameters.However, thepeaksof
the spectrum are simply Gaussian7 (6), which we can
characterize uniquely by giving thewidths and the integrated
probability. To calculate these quantitiesweonly need to find
instantons, plus the solutions to the first-order variationof the
Lorentz-force equation, for the saddle-point values of the
momenta, ps and p0

s. Since ps⊥ ¼ p0
s⊥ ¼ 0, where

p⊥ ¼ fpx; pyg, etc., the instanton follows the z axis
(q⊥ðτÞ ¼ 0), on which B ¼ 0, Ex ¼ Ey ¼ 0, and the
Lorentz-force equation reduces to a 2D problem, ̈t ¼
TE3ðt; zÞż and ̈z ¼ TE3ðt; zÞṫ. However, this does not mean
that everything is the same as in the 2D case. Indeed, the
spectrum in the 2D case does not even have the same number
of independent momentum components, see e.g. (6).
After having derived the saddle-point equations, it is more

convenient to change variable from τ to u ¼ Tðτ − 1=2Þ, so
that the instanton obeys q00μ ¼ Fμ

νq0ν, q02 ¼ 1, q0iðu1Þ ¼ pi

and q0iðu0Þ¼−p0
i, where−u0 ¼ u1 ¼ T=2. SinceT → ∞ as

t� → ∞,u starts at−∞ andgoes toþ∞.T no longer appears
in the equations of motion.We can think of u ¼ 0 as the start
of the creation, and the half of the contour that goes to þ∞
(−∞) describes the electron (positron). Since tðuÞ is sym-
metric and zðuÞ antisymmetric, the electron and the positron
both propagate forward in time but in opposite directions
along the z axis. The contour foru is complex, andweare free
to make contour deformations. Although they give the same
probability, they are not equally simple. We parametrize the
contour as u0ðrÞ ¼ fðrÞ where r∈R. We have chosen
fðrÞ¼1−ðiþ1ÞψðrÞ, where ψ ≈ 1 for jrj < rc and ψ ≈ 0
for jrj > rc, for some constant rc. u starts at 0, follows the
negative imaginary axis to uc ¼ −ijucj, turns and goes to∞
parallel to the positive real axis, see Fig. 1. Some parts of the
instanton always have to be complex, regardless of the choice
of contour. One might still expect the instanton to be real
asymptotically, but this is not automatic, and is not the case
for the contour we advocated in [30]. We can choose rc such
that the instanton is real asymptotically, but rc will then
depend on e.g. γ. Since we will find the same probability
regardless of the contour, it might seem like unnecessary
work trying to find such a rc [30].However,wewill show that
it is in fact useful for practical calculations. As initial

4Open worldlines have been used for pair production by a
constant field in [28,29].

5See [31] for recent insight into the different definitions of
time-dependent particle numbers.

6Nontrivial, complex proper-time contours have also been studied
in [23] for closed worldlines, and in [32] for worldlines of particles
experiencing a space-time-dependent mass. Similar contours for
ordinary time appear in nonrelativistic tunneling [33,34].

7If one plots the spectrum on a linear (rather than logarithmic)
scale, then the spectrum will only be visibly nonzero in a small
region around the saddle points of the momenta, because outside
this region the spectrum is exponentially suppressed. In this
region we can expand around the saddle points and the peaks are
therefore approximately Gaussian.
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conditions at u ¼ 0 we have z ¼ t0 ¼ 0 from symmetry
and z0 ¼ i from q02 ¼ 1. We then adjust the two constants
tð0Þ ¼ ijtð0Þj and rc until we find an instanton with
ImtðraÞ¼ ImtðrbÞ¼0, for some arbitrary points ra;rb>rc.
The instanton will then be real for r > rc and describe the
trajectory of real particles, see Fig. 2. Note, importantly, none
of the conditions at u ¼ 0 or ra;b involves p or p0. The
solution will automatically be the instanton for the saddle-
point values of p or p0. After we have found the instanton we
obtain the energy by simply evaluating p0 ¼ t0ð∞Þ. We will
call jrj < rc the formation region, where the creation
happens, and jrj > rc the acceleration region. tðuÞ and
z0ðuÞ are imaginary (real) for jrj < rc (jrj > rc), so
tð�ucÞ ¼ z0ð�ucÞ ¼ 0, see Fig. 2. Thus, we can think of
uc (−uc) as the point where the electron (positron) goes
from being a virtual to a real particle. The pair is created at
t ¼ 0 with zero momentum. But zðucÞ ¼ −zð−ucÞ ≠ 0, so
the electron and positron are created at different points in
space. Thus, this choice of contour allows for a natural
interpretation.
More importantly, it is useful in practice. We cannot

know what values of γ will be relevant in future experi-
ments, but, judging from current laser facilities, one
can guess γ ≪ 1. This is also the regime which is most
Schwinger-like, since for γ ≫ 1 the production would
instead be perturbative. For γ ≪ 1 we need to find the
instantons up to very large r to see convergence to the
asymptotics, which means many numerical time steps.
For example, for γ¼0.01 we had to consider r¼Oð104Þ.
This is due to the fact that at γ ≪ 1 the field is wide, and the
electron (positron) travels at z ≈ t (z ≈ −t) which affects the

convergence of gðt� zÞ, so it takes longer for the particles
to become free. But with the above choice of contour, ra;b
do not need to be large, they just have to be larger than
rc ≈ π=2. This is a huge advantage, because to find tð0Þ and
rc we solve the Lorentz-force equation many times, but
only up to ra;b, which is much faster than if we had used a
different contour with conditions at r ≫ 1. After we have
found tð0Þ and rc we solve up to r ≫ 1, but we only have to
do that once. We will show that this contour also helps in
analytical calculations.
To obtain the prefactor we expand the exponent to second

order around the saddle points and perform the resulting
Gaussian integrals, which give determinants of Hessian
matrices. For the path integral this is done using the
Gelfand-Yaglom method. See Appendix B. For the inte-
grated probability, P, and the spectrum, Pðp; p0Þ, we find

P¼
Z

d3pd3p0

ð2πÞ6 Pðp;p0Þ Pðp;p0Þ ¼ 2ð2πÞ3e−A
jhϕ̄02jp0p0

0

; ð5Þ

where A ¼ 2Im
R
duqμ∂μAν

dqν

du , and h and ϕ̄ are two
functions coming from the Gelfand-Yaglom method.
Since the field is 4D, there are no volume factors and none
of the components of the momentum is conserved.
To find the widths we change variables to pj ¼ −Pj þ

Δpj

2
and p0

j ¼ Pj þ Δpj

2
. Because of symmetry there are only

four nonvanishing independent widths and the spectrum
has the form

Pðp;p0Þ ¼ 2ð2πÞ3e−A
jhϕ̄02jp2

0

×exp

�
−
Δp2⊥
d2Δ;⊥

−
Δp2

z

d2Δ;z
−

P2⊥
d2P;⊥

−
ðPz−PÞ2

d2P;z

�
; ð6Þ

FIG. 1. tðuÞ in the complex u plane for a Gaussian pulse and
γ ¼ 1. The color represents the phase, the white curves are
contour lines of jtðuÞj, and the black curves are lines of constant
real/imaginary part. The green line shows our preferred contour.
The details on how we obtained this plot are in Appendix D.

FIG. 2. Instantons for γ ¼ 1=10 (solid line) and γ ¼ 5 (dashed),
for a Gaussian pulse. We see that the size of the creation region is
much smaller for large γ. At small γ we see that the t and z
components converge for large r.
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where from now on A ¼ Aðps;p0
sÞ and P2⊥ ¼ P2

x þ P2
y,

etc. To obtain the widths we need to solve

ð−gμν∂2u þ Fμν∂u þ q0ρ∂νFμρÞδqνðuÞ ¼ 0; ð7Þ

which comes from expanding the Lorentz-force equation
around the instanton for ps, p0

s. The equations for δx and δy
are the same. δt and δz are combined into a single variable,
η. We find (see Appendix C)

η00 ¼ ðE2 þ∇E · fz0; t0gÞη

δx00 ¼ ðt0∂xEx − z0∂xByÞδx ¼ −
1

2
∇E · fz0; t0gδx; ð8Þ

where ∇E ¼ ð∂tE3; ∂zE3Þ. Note that the magnetic field
contributes to δx, but can be replaced since Maxwell’s
equations plus symmetry imply ∂xEx ¼ ∂yEy ¼ − 1

2
∂zEz,

∂xBy ¼ −∂yBx ¼ 1
2
∂tEz. The initial conditions are

ηað0Þ¼ 0 η0að0Þ¼ 1 ηsð0Þ¼ 1 η0sð0Þ¼ 0

δxað0Þ¼ 0 δx0að0Þ¼ 1 δxsð0Þ¼ 1 δx0sð0Þ¼ 0; ð9Þ

where a and s indicate that the solutions are antisymmetric
or symmetric functions of u. For a general contour we have
d−2Δ;z ¼ 1

2p2
0

Imð t
p0
− ηa

η0a
Þ, and similar for the other widths, see

Appendix C. With our choice of contour we can rewrite
these as

d−2Δ;⊥ ¼ Wðδxsr; δxsiÞ
2jδx0sj2

d−2P;⊥ ¼ 2
Wðδxar; δxaiÞ

jδx0aj2

d−2Δ;z ¼
Wðηar; ηaiÞ
2p2

0jη0aj2
d−2P;z ¼ 2

Wðηsr; ηsiÞ
p2
0jη0sj2

; ð10Þ

where Wðf; gÞ ¼ fg0 − f0g is the Wronskian, ηar ¼ Reηa
andηai ¼ Imηa, etc., andwhere all quantities are evaluated at
u → ∞. Outside the formation region, ηar and ηsr are
separately solutions to (8), so ðd=drÞWðηar; ηaiÞ ¼ 0 for
r > rc. Hence, the Wronskians can be evaluated at u≳ uc,
rather than atu → ∞, and are therefore local contributions to
thewidths. jη0j2 and jδx0j2 are not constant for r > rc and are
therefore nonlocal contributions. We also have jhð∞Þj¼
2jη0sη0aj and jϕ̄0ð∞Þj¼2jδx0sδx0aj, see Appendix C. We find

P ¼ ½Wðηar; ηaiÞWðηsr; ηsiÞ�−1=2e−A
32Wðδxar; δxaiÞWðδxsr; δxsiÞ

: ð11Þ

All nonlocal contributions have canceled. Thus, the inte-
grated probability only depends on the part of the field that
qμ and δqμ “see” while jrj < rc. This provides further

motivation for calling jrj < rc the formation region, because
it agrees with the intuition that the integrated probability
should not depend on what happens with the particles after
they have been created.
We allow γ ¼ Oð1Þ, so in general the instantons etc. have

a complicated dependence on γ. But E ≪ 1 is the expan-
sion parameter, and nothing will have any nontrivial
dependence on E. To make this clear right from the start,
we rescale qμ → qμ=E and u → u=E, so E no longer
appears in the Lorentz-force equation or any other equation
of motion. We have A ∝ 1=E and, for all widths, d ∝

ffiffiffiffi
E

p
.

We can compare the integrated probability (5) with the
closed-instanton method in [25]. Figure 3 shows the results
for a Gaussian pulse, g000ðtÞ ¼ e−ω

2t2 . We find perfect
agreement.
The local-nonlocal separations are also useful for deriving

γ ≪ 1 approximations. TheWronskians only depend on the
formation region, where we can expand the instanton, η and
δx as sums of Oð1Þ and Oðγ2Þ terms. These expansions
of q, η and δx are given in Appendix F. We find
Wðηar; ηaiÞ ≈ π

10
γ2, Wðηsr; ηsiÞ ≈ π

2
γ2, Wðδxsr; δxsiÞ ≈ π

5
γ2

and Wðδxar; δxaiÞ ≈ π
2
. Inserting this into (11) gives

P ≈ 5
ffiffi
5

p
ð2πÞ3γ4 e

−π=E, which agrees with what one finds by

performing the integrals in (1) with the saddle-pointmethod.
The nonlocal parts, jη0j and jδx0j, are more challenging.

Here we cannot expand t and z as a power series in γ, since
γt; γz ¼ Oð1Þ in the acceleration region, as expected since
the momentum spectrum depends on how the field accel-
erates the particles after they have been created and until
they leave the field. We first note that γ ≪ 1 means a very
wide field, so compared to the length scale of the field, the
particles are quickly accelerated to highly relativistic
velocities. The instanton will therefore follow almost
lightlike trajectories, z ≈ t, see Fig. 2. It is therefore
convenient to use lightfront coordinates, ϕ ¼ γ

2
ðtþ zÞ

and θ ¼ γðt − zÞ. One of the two nonzero Lorentz-force
equations becomes ϕ00 ¼ Fðϕ; θÞϕ0. The other, θ00 ¼ −Fθ0,
can be replaced by the on-shell condition ðt0Þ2 − ðz0Þ2 ¼ 1,

which gives θ0 ¼ γ2

2ϕ0, with θð0Þ ¼ iγ. In the formation
region we have F ≈ 1, while in the acceleration region
Fðϕ; θÞ ≈ Fðϕ; 0Þ≕FðϕÞ. In both regions we therefore
have ϕ ≈ ϕ0, where ϕ00

0 ¼ Fðϕ0Þϕ0
0. There are no explicit

factors of γ in this equation, but there are in the initial
conditions ϕ0ð0Þ ¼ ϕ0

0ð0Þ ¼ iγ=2, and ϕ0
0ðuÞ ≈Hðϕ0Þ,

where HðxÞ ¼ R
x
0 dφFðφÞ. Thus, the asymptotic momen-

tum is p0 ¼ t0ð∞Þ ≈Hð∞Þ=γ ¼ Oð1=γÞ.
The derivations of η0a;sð∞Þ and δx0a;sð∞Þ are quite long,

see Appendixes G and H. The results for η, however, are
very simple, p2

0jη0að∞Þj2 ≈ 1
4
, p2

0jη0sð∞Þj2 ≈ 9
4
and p2

0jhj ≈ 3
2
.

δxa;s are nontrivial. δxs is first obtained by changing
variable from u to ϕ and solving Hδx00ðϕÞ þ Fδx0ðϕÞ ¼
− 1

2
F0ðϕÞδx with initial conditions δxsðϕ ¼ 0Þ ¼ 1 and

δx0sðϕ ¼ 0Þ ¼ 0. Thus, δxs is independent of γ to leading
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order. This gives δx0sðu ¼ ∞Þ ¼ Hð∞Þδx0sðϕ ¼ ∞Þ. δxa is
obtained from δxs using Abel’s identity, which gives

δx0að∞Þ
δx0sð∞Þ ≈ c1 ln

�
1

γ

�
þ c2

¼ − ln

�
a
γ

2

�
−
iπ
2

þ
Z

∞

0

dϕ

�
1

Hδx2s
−

1

ϕð1þ aϕÞ
�
; ð12Þ

where a is an arbitrary constant. Convergence to this LCF
approximation of the widths is demonstrated in Fig. 3. Thus,
dΔ;z; dP;z; dΔ;⊥ ∝

ffiffiffiffi
E

p
=γ, while dP;⊥∝

ffiffiffiffi
E

p jc1 lnð1=γÞþc2j.
The scaling of dΔ;⊥ suggests that it might be possible to

produce particles with large p⊥; p0⊥, which could help to
enhance χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

p
, which is otherwise small since

χ ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2⊥

p
for x ¼ y ¼ 0. For χ ∼ 1 the pair could

emit hard photons, which could lead to further particle
production, or even cascades [6,36–41]. Even if no hard
photons are emitted, one might still wonder if radiation
reaction (RR) could be important for the spectrum. We
show in Appendix M that RR is negligible for ps and p0

s.
We emphasize that for a 2D field, E3ðt; zÞ, one would

have dΔ;⊥ ¼ 0 due to momentum conservation. So the
spectrum for a 2D field gives nothing with which one could
even try to approximate dΔ;⊥. Moreover, we see in Fig. 3
that dΔ;⊥ is not small, it is on the same order of magnitude
as dΔ;z and dP;z. For a 1D field, E3ðtÞ, one would also have
dΔ;z ¼ 0, but Fig. 3 also shows that dΔ;z too is not small.
To conclude, we have for the first time calculated the

momentum spectrum of pairs produced via the Schwinger
mechanism by 4D solutions to Maxwell’s equations. To do
so, we have developed a worldline instanton approach,
which allows us to separate the process into a formation
region, where the creation happens, and a subsequent

acceleration region, where the real particles are accelerated
to their final momentum. This is not only an intuitive
picture, but is also useful in practice for both numerical and
analytical calculations. These methods also pave the way
for further investigations of other 4D fields, e.g. ones with
more than one maximum, which leads to interference
effects in the spectrum, and of nonlinear Breit-Wheeler
pair production in 4D fields.

We are grateful to Christian Schneider for giving us a
copy of his closed-worldline-instanton code, which we
used to compare our results in Fig. 3. G. T. is supported by
the Swedish Research Council, Contract No. 2020-04327.

APPENDIX A: E-DIPOLE FIELDS

The fields of an e-dipole can be obtained from Z in (2),
but this is not a gauge potential. As a gauge potential we
can choose A ¼ −∂tZ (where f0; 0; 1g ·A ¼ −A3 etc.),
and with a corresponding nonzero A0. For Z ¼ Zðt; rÞe3,
we can write the gauge as

Aμ ¼ f∂zZ; 0; 0; ∂tZg: ðA1Þ

This automatically satisfies the Lorentz gauge condition
∂μAμ ¼ 0.
Two pulse functions that differ by a second-order

polynomial,

g1ðtÞ − g2ðtÞ ¼ aþ btþ ct2; ðA2Þ

give the same electromagnetic field. We can therefore
without loss of generality choose, e.g.,

gð0Þ ¼ g0ð0Þ ¼ g00ð0Þ ¼ 0; ðA3Þ

FIG. 3. Left: comparison with the effective action method [25] (dots) for the exponent (without the overall factor of 1=E) and the
normalized prefactor. The number of points used for the discrete instantons is N ¼ 1000. The same plots for the Lorentzian dipole can
be found in Appendix F. Right: widths normalized by their LCF approximations and unnormalized (but without overall factor of

ffiffiffiffi
E

p
).

We see that the two dΔ widths are very similar, with dΔ;⊥ being slightly bigger than dΔ;z.
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or choose gðtÞ such that it has no terms that go like aþ
btþ ct2 for t → ∞.
On the axis x ¼ y ¼ 0 we have

E3ðt; zÞ ¼
3E
2z3

fgðt − zÞ − gðtþ zÞ
þ z½g0ðt − zÞ þ g0ðtþ zÞ�g; ðA4Þ

and E3ðt; z ¼ 0Þ ¼ Eg000ðtÞ. After rescaling qμ → qμ=E and
u → u=E, nothing depends nontrivially on E. We will use
Fðt; zÞ ¼ E3ðt; zÞ=E and gðuÞ ¼ GðωuÞ=ω3, so

F ¼ 3

2ðγzÞ3 fG½γðt − zÞ� −G½γðtþ zÞ�

þ γzðG0½γðt − zÞ� þG0½γðtþ zÞ�Þg: ðA5Þ

In the γ ≪ 1 limit it is convenient to use lightfront
coordinates,

ϕ ¼ γ

2
ðtþ zÞ θ ¼ γðt − zÞ; ðA6Þ

and FðϕÞ ¼ Fðϕ; θ ¼ 0Þ is important for the leading order.
For an e-dipole field we have

FðϕÞ ¼ 3

2ϕ3
ð−G½2ϕ� þ ϕG0½2ϕ�Þ ¼ d

dϕ
3Gð2ϕÞ
ð2ϕÞ2 ; ðA7Þ

where we have chosen G as in (A3). This can be inverted

GðxÞ ¼ x2

3
H

�
x
2

�
; ðA8Þ

where

HðxÞ ¼
Z

x

0

dφFðφÞ: ðA9Þ

As mentioned in the main text, H gives to leading order
in γ ≪ 1 the energy as a function of lightfront time,
t0 ≈ ϕ0=γ ≈HðϕÞ=γ. The field for Fig. 3 was chosen to
have a simple Ezðt; x ¼ y ¼ z ¼ 0Þ, but to simplify the
calculation for γ ≪ 1, one could instead choose a simple
FðϕÞ, and then (A8) and (A9) give the corresponding G (or
g). We can perform the integral in (A9) using partial
integration, which gives

Hð∞Þ ¼
Z

∞

0

dϕFðϕÞ ¼ 3

Z
∞

0

dϕGð3Þð2ϕÞ

¼ 3

2
G00ð∞Þ: ðA10Þ

For example, for the Gaussian pulse g000ðtÞ ¼ e−ω
2t2 we

have 3G00ð∞Þ=2 ¼ 3
ffiffiffi
π

p
=4.

APPENDIX B: GELFAND-YAGLOM
AND THE PREFACTOR

Evaluating the exponent at the saddle points, one finds
exactly the same result (B19) as in the time-dependent and
2D case. As to the prefactor, we begin with the path integral
using the Gelfand-Yaglom method. Expanding the expo-
nent up to second order in δq ¼ q − qinst gives

exp

�
−

i
2T

Z
1

0

δqΛδq
�
; ðB1Þ

where

Λμν ¼ T2ð−ημν∂2u þ Fμν∂u þ q0ρ∂νFμρÞ; ðB2Þ

which can be written in a block-diagonal form,

Λ ¼

0
B@

Λ2D 0 0

0 Λ⊥ 0

0 0 Λ⊥

1
CA; ðB3Þ

where Λ2D is the ðt; zÞ block identical to the 2D case and

Λ⊥ ¼ T2ð∂2u − t0∂xEx þ z0∂xByÞ: ðB4Þ

This is a great simplification because the determinant splits

detΛ ¼ detΛ2DðdetΛ⊥Þ2 ðB5Þ

into the known ðt; zÞ contribution and a simpler factor

detΛ⊥ ¼ ϕðu1Þ; ðB6Þ

where ϕ is obtained by solving

Λ⊥ϕ ¼ 0 ðB7Þ

with initial conditions

ϕðu0Þ ¼ 0 ϕ0ðu0Þ ¼ 1=T; ðB8Þ

see e.g. [42]. In order to take the asymptotic limit and show
that factors of t�; T → ∞ cancel, we follow the treatment
of Λ2D in [30]. We define ðũ0; ũ1Þ such that it contains the
interval where the field is not negligible and where the
dynamics is nontrivial. ũ0 and ũ1 do not depend on t�. We
separate out the simple contribution coming from “before”
ũ0 (since the contour in u is complex, we cannot simply
express this as u < ũ0) by noting that

ϕðũ0Þ ∼
ũ0 − u0

T
∼

t−
Tp0

0

ðB9Þ
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and by defining ϕ ¼ t−ϕ̄=ðTp0
0Þ so that ϕ̄ has initial

conditions

ϕ̄ðũ0Þ ¼ 0 ϕ̄0ðũ0Þ ¼ 1; ðB10Þ

which are independent of t�. We can similarly separate
out the contribution from after ũ1 using ϕðu1Þ≈
ϕ0ðũ1Þðu1 − ũ1Þ. Thus,

detΛ⊥ ¼ ϕðu1Þ ≈ ϕ̄0ðũ1Þðu1 − ũ1Þ
t−
Tp0

0

≈ ϕ̄0ðũ1Þ
t−tþ
Tp0

0p0

: ðB11Þ

ϕ̄0ðũ1Þ does not depend on t�. We can replace “≈” with
“¼” in the asymptotic limit t� → ∞ and provided ũ0 and
ũ1 are chosen large enough for a given precision goal (we
consider in general fields such as e−x

2

which are strictly
speaking nonzero even asymptotically).
We perform the integrals over the ordinary variables as

in [30]. Denoting the exponential part of the integrand as
eφ, we have

∂φ

∂xj−
¼ i½p0

j − qj0ðu0Þ�
∂φ

∂xjþ
¼ i½pj þ qj0ðu1Þ�

∂φ

∂T
¼ i

2
ða2 − 1Þ; ðB12Þ

where a2 ¼ q02. In the limit t� → ∞ we have

qj0ðu0Þ ¼ −
xj−
T

�
1þ

ffiffiffiffiffiffi
x2þ

p
ffiffiffiffiffi
x2−

p
�

qj0ðu1Þ ¼
xjþ
T

�
1þ

ffiffiffiffiffi
x2−

p
ffiffiffiffiffiffi
x2þ

p
�

a2 ¼
ffiffiffiffiffi
x2−

p
þ

ffiffiffiffiffiffi
x2þ

p
T

; ðB13Þ

where x2� ¼ t2� − x2
�. Denoting X ¼ fT;x−;xþg, the

above equations give us ∂φ=∂Xj, j ¼ 1;…; 7, expressed
explicitly in terms of X. Solving ∂φ=∂Xj ¼ 0 gives us the
saddle point Xs,

xj−s¼−
p0
j

p0
0

t− xjþs¼−
pj

p0

tþ Ts ¼
tþ
p0

þ t−
p0
0

: ðB14Þ

Expanding the exponent to second order in δX ¼ X −Xs
gives

Z
d7X expf−δX ·H · δXg ¼

ffiffiffiffiffiffiffiffiffiffiffi
π7

detH

r
; ðB15Þ

where

Hij ¼ −
1

2

∂
2φ

∂Xi∂Xj
: ðB16Þ

Using Mathematica, it is straightforward to calculate H,
evaluate it at Xs and calculate the determinant. H itself
does not have a simple form, but the determinant is (up to a
phase)

detH ¼ p5
0p

05
0

27t3−t3þT
: ðB17Þ

Since we can evaluate the prefactor at the saddle point for
the momenta, the x and y components of the instanton are
zero, so Ex ¼ Ey ¼ 0 and B ¼ 0. This means the spin part
is exactly the same as in the 2D case, so we can reuse the
result in Eq. (85) in [30]. Thus, the magnetic component
does not have any effect on the spin structure for these
fields.
Combining these contributions we find

P ¼
Z

d3p
ð2πÞ3

d3p0

ð2πÞ3 2p0p0
0

				 e…

ð2πTÞ2
ffiffiffiffiffiffiffiffiffiffi
1

detΛ

r ffiffiffiffiffiffiffiffiffiffiffi
π7

detH

r 				
2

¼
Z

d3pd3p0

ð2πÞ3
2

jhðũ1Þjjϕ̄0ðũ1Þj2p0p0
0

e−A; ðB18Þ

where the ellipses stand for the exponents in (3) and (4),
except for the σμνFμν term, evaluated at the saddle-point
values of all variables, which gives

A ¼ 2Im
Z

duqμ∂μAν
dqν

du
: ðB19Þ

Since we can evaluate the prefactor at the momentum
saddle point, we could replace p0

0 ¼ p0 in the denominator
in (B18). h in (B18) comes from detΛ2D, see (C34).

APPENDIX C: DERIVATION OF THE WIDTHS

In terms of

pj ¼ −Pj þ
Δpj

2
p0
j ¼ Pj þ

Δpj

2
; ðC1Þ

we have a saddle point for the momentum variables at
Δpj ¼ 0 and Pj ¼ δj3P. We start with the Δpj integrals.
Expanding the exponent around the saddle point gives

e−AðΔpÞ → exp

�
−Að0Þ − 1

2
Δpi

∂
2A

∂Δpi∂Δpj
Δpj

�
: ðC2Þ

We first calculate ∂A=∂pi and ∂A=∂p0
i by going back to the

exponent expressed as in (3) and (4), but now with qμ, T,
and x� replaced by their saddle-point values. These saddle
points depend on p and p0, but it follows from the definition
of the saddle points that all first derivatives with respect to
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qμ, T, x� vanish. The total derivatives with respect to p
and p0 are therefore equal to the partial derivatives, so
we find

∂A
∂pj

¼ 2 lim
u→∞

Im

�
qj þ pj

p0

t

�
ðC3Þ

and

∂A
∂p0

j
¼ 2 lim

u→−∞
Im

�
qj þ p0

j

p0
0

t

�
: ðC4Þ

Hence,

∂A
∂Δpj

¼ lim
u→∞

Im

�
qjþpj

p0

t

�
þ lim

u→−∞
Im

�
qjþp0

j

p0
0

t

�
: ðC5Þ

For (C2) we need the first derivative of (C5), so when we
expand the instanton around Δpj ¼ 0 we only need the
first-order variation,

qμ → qμ þ Δpjδq
μ
ðjÞ þOðΔp2Þ; ðC6Þ

which is determined by

d2

du2
δqμðjÞ ¼ Fμν d

du
δqðjÞ;ν þ ∂ρFμνq0νδq

ρ
ðjÞ: ðC7Þ

Note that this can be written as Λq ¼ 0, where Λ is the
Hessian matrix for the worldline path integral (B2). The
boundary conditions q0jð−∞Þ ¼ −p0

j and q0jðþ∞Þ ¼ pj

imply

δq0iðjÞð�∞Þ ¼ ∓ δij
2

δt0ðjÞð�∞Þ ¼ −
Pj

2p0

: ðC8Þ

Because of symmetry, the term at u ¼ −∞ is equal to the
one at u ¼ þ∞, and we find

AΔ
ij≔

1

2

∂
2A

∂Δpi∂Δpj

¼ Im

�
δqiðjÞ−δtðjÞ

Pi

p0

þ t
2p0

�
δij−

PiPj

p2
0

��
ð∞Þ: ðC9Þ

Since the x and y components of the instanton vanish,
we only need the field and its derivatives evaluated at
x ¼ y ¼ 0, where Ex ¼ Ey ¼ 0 and B ¼ 0. The nonzero
derivatives are

∂xEx ¼ ∂yEy ¼ −
1

2
∂zEz

∂xBy ¼ −∂yBx ¼
1

2
∂tEz: ðC10Þ

The equations for δx and δy are the same,

δx00 ¼ ðt0∂xEx − z0∂xByÞδx ¼ −
1

2
∇E · fz0; t0gδx; ðC11Þ

where ∇E ¼ f∂tE3; ∂zE3g. An arbitrary solution to (C11)
can be expressed as a superposition

δxðuÞ ¼ caδxaðuÞ þ csδxsðuÞ; ðC12Þ

where δxa and δxs are antisymmetric and symmetric
solutions with initial conditions

δxað0Þ¼0 δx0að0Þ¼1 δxsð0Þ¼1 δx0sð0Þ¼0: ðC13Þ

For j ≠ 1 we have from (C8) δx0ðjÞð�∞Þ ¼ 0, but since

δx0a;sð∞Þ ≠ 0, this implies δxðjÞð0Þ ¼ 0. Thus, only δxð1Þ
(and δyð2Þ) is nonzero and is given by

δxð1ÞðuÞ ¼ −
1

2

δxsðuÞ
δx0sð∞Þ : ðC14Þ

Substituting into (C9) gives

d−2Δ;⊥ ¼ AΔ
11 ¼ AΔ

22 ¼
1

2
Im

�
t
p0

−
δxs
δx0s

�
ð∞Þ: ðC15Þ

For δtðjÞ and δzðjÞ we have initially two coupled equations,

δt00 ¼ Eδz0 þ∇E · fδt; δzgz0
δz00 ¼ Eδt0 þ∇E · fδt; δzgt0: ðC16Þ

We can simplify this into a single relevant equation by
replacing δt and δzwith twonewvariables, η and χ, as in [30],

fδt; δzg ¼ ft0; z0gχ þ f−z0; t0g η

t02 þ z02
; ðC17Þ

where η ¼ t0δz − z0δt is the relevant parameter. Instead of
(C16) we have

η00 ¼ ðE2 þ∇E · fz0; t0gÞη ðC18Þ

and

χ0 ¼ E
1 − 4t02z02

ðt02 þ z02Þ2 ηþ
2t0z0

t02 þ z02
η0: ðC19Þ

Note that the Eq. (C18) for η does not involve χ. With the
asymptotic condition for the instanton, t0ð∞Þ ¼ p0 and
z0ð∞Þ ¼ P, we can rewrite the contribution to (C9) as

Im

�
δzðjÞ − δtðjÞ

P
p0

�
ð∞Þ ¼ Im

�
ηðjÞð∞Þ

p0

�
: ðC20Þ
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Thus, χ does not contribute, neither to the final expression
for the widths nor to the equation for η. A general solution
to (C18) can be expressed as a superposition of an
antisymmetric and a symmetric solution,

ηðuÞ ¼ caηaðuÞ þ csηsðuÞ; ðC21Þ

where

ηað0Þ ¼ 0 η0að0Þ ¼ 1 ηsð0Þ ¼ 1 η0sð0Þ ¼ 0: ðC22Þ

For j ≠ 3, we have from (C8) δt0ðjÞð�∞Þ ¼ δz0ðjÞð�∞Þ ¼ 0,

whichmeans η0ðjÞð�∞Þ ¼ 0. Since η0a;sð∞Þ ≠ 0, this implies

ηðjÞðuÞ ¼ 0. So only ηð3Þ is nonzero. From (C8) we have
η0ð3Þð�∞Þ ¼ −1=ð2p0Þ and hence

ηð3ÞðuÞ ¼ −
1

2p0

ηaðuÞ
η0að∞Þ : ðC23Þ

Substituting into (C9) gives

d−2Δ;z ¼ AΔ
33 ¼

1

2p2
0

Im

�
t
p0

−
ηa
η0a

�
ð∞Þ: ðC24Þ

Thus, the off-diagonal components of AΔ
ij are zero.

Next we perform the Pj integrals following essentially
the same steps. For the first derivative we have

∂A
∂Pi

¼ 4Im

�
Pi

p0

t − qi
�
ð∞Þ: ðC25Þ

Setting ∂A
∂Pi

¼ 0 determines the saddle point for Pi. We again
only need the first-order variation of the instanton with
respect to δPj ¼ Pj − Psj,

qμ → qμ þ δPjδq
μ
ðjÞ þOðδP2Þ: ðC26Þ

The equation for δqμðjÞ is the same as before (C7), but the

asymptotic boundary conditions are different,

δqi0ðjÞð�∞Þ ¼ δij δt0ðjÞð�∞Þ ¼ �Pj

p0

; ðC27Þ

which follows from expanding q0jð�∞Þ ¼ −Pj. We find

AP
ij≔

1

2

∂
2A

∂Pi∂Pj

¼ 2Im

�
−δqiðjÞðu1ÞþδtðjÞ

Pi

p0

þ t
p0

�
δij−

PiPj

p2
0

��
ð∞Þ:

ðC28Þ

The off-diagonal terms vanish as before, and

δxð1ÞðuÞ ¼
δxaðuÞ
δx0að∞Þ ηð3ÞðuÞ ¼

1

p0

ηsðuÞ
η0sð∞Þ ; ðC29Þ

which gives

d−2P;⊥ ¼ AP
11 ¼ AP

22 ¼ 2Im

�
t
p0

−
δxa
δx0a

�
ð∞Þ

d−2P;z ¼ AP
33 ¼

2

p2
0

Im

�
t
p0

−
ηs
η0s

�
ð∞Þ: ðC30Þ

Thus, we have four independent widths,

d−2Δ;z¼
1

2p2
0

Im

�
t
p0

−
ηa
η0a

�
d−2P;z¼

2

p2
0

Im

�
t
p0

−
ηs
η0s

�

d−2Δ;⊥¼1

2
Im

�
t
p0

−
δxs
δx0s

�
d−2P;⊥¼2Im

�
t
p0

−
δxa
δx0a

�
; ðC31Þ

where all quantities are evaluated at u ¼ ∞. Note that, apart
from the instanton, the widths are obtained from solutions
to (C11) and (C18) which have simple initial conditions at
u ¼ 0. In other words, there is no need to use a shooting
method for these additional functions.
Choosing the contour such that Imt ¼ 0 r > rc,

d−2Δ;z ¼
1

2p2
0

Im

�
−
ηa
η0a

�
¼ Wðηar; ηaiÞ

2p2
0jη0aj2

d−2P;z ¼
2

p2
0

Im

�
−
ηs
η0s

�
¼ 2

Wðηsr; ηsiÞ
p2
0jη0sj2

d−2Δ;⊥ ¼ 1

2
Im

�
−
δxs
δx0s

�
¼ Wðδxsr; δxsiÞ

2jδx0sj2

d−2P;⊥ ¼ 2Im

�
−
δxa
δx0a

�
¼ 2

Wðδxar; δxaiÞ
jδx0aj2

; ðC32Þ

where Wðf; gÞ ¼ fg0 − f0g is the Wronskian, ηar ¼ Reηa
and ηai ¼ Imηa, etc.
h is the same as in [30], but we can simplify it further

using the above ideas. We start with Eq. (130) in [30], but
rewrite it in terms of the normalized solutions (9) as (note
that we used different notation in [30])

jhj ¼ 2

				 ηsη0s −
ηa
η0a

				
−1
: ðC33Þ

Since the Wronskian of ηs and ηa is constant (for all u), we
have ðηsη0a − ηaη

0
sÞðuÞ ¼ ðηsη0a − ηaη

0
sÞð0Þ ¼ 1 and hence

jhj ¼ 2jη0sη0aj: ðC34Þ
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We can obtain a similar expression for ϕ̄. We first note
that ϕ̄ satisfies the same equation as δx, so we can write
ϕ̄ ¼ caδxa þ csδxs, where ca and cs are two constants that
we determine using the initial conditions (9) and (B10).
We find

jϕ̄0ðu1Þj ¼
2jδx0sδx0aj

jδxsδx0a − δxaδx0sj
¼ 2jδx0sδx0aj; ðC35Þ

where in the second step we have used the fact that the
Wronskian of δxs and δxa is constant and evaluated it
at r ¼ 0.

APPENDIX D: INSTANTONS ON THE
COMPLEX PLANE

In the main text we argue that the most convenient
contour for this class of fields, especially for γ ≪ 1, is a
path traveling along the imaginary axis from the origin to
an imaginary value uc, then parallel to the real axis towards
infinity. Similar proper-time or ordinary-time contours have
been used in [32] for particles experiencing a space-time-
dependent mass, in [33,34] for nonrelativistic tunneling,
and in [43–46] for saddle points of fields [i.e. ϕðtÞ rather
than xμðτÞ] used to study multiparticle scattering/produc-
tion at high energies (around the sphaleron energy).
Although this single contour is sufficient to compute the
full spectrum, it is interesting to consider the instantons as
complex-variable functions. To obtain such functions, we
have to numerically solve the Lorentz-force equation along
a large set of contours starting from u ¼ 0 [after we have
found the turning point tð0Þ].
Since we expect singularities along the real axis and a

periodic structure along the imaginary axis, one possible
choice can be the following: we start with a single contour
along the imaginary axis uiðrÞ ¼ ir and obtain solutions
tiðrÞ ≔ tðirÞ, ziðrÞ ≔ zðirÞ. Then, these functions act as a
set of initial conditions which we use to solve parallel to the
real axis along a set of contours uRðrÞ ¼ iRþ r for several
values of R, obtaining solutions tRðrÞ ¼ tðiRþ rÞ and
zRðrÞ ¼ zðiRþ rÞ. Solving for a function effectively of
two variables (real/imaginary parts of u) using initial
conditions at a single point is possible only because the
solutions are analytic everywhere except at the branch
points.
In order to visualize the resulting functions there are

several possibilities. Since we are mostly interested in the
phase, we color the complex u plane depending on the
phase of qðuÞ and add lines of constant real/imaginary part
of q. The result is shown in the main text in Fig. 1 for the t
component and in Fig. 4 for z. We see in particular that,
since at uc both the real and imaginary part are zero and
constant along black lines, tðuÞ is either purely real or
imaginary along the “physical” contour.

Functions of a complex variable can have branch points.
If the area enclosed by two paths from the origin to some
value u contains a branch point, the value qðuÞ will be
different even if it is analytic. Multivalued solutions to
nonrelativistic, classical-mechanics trajectories have been
studied in detail in [47]; see also references therein. In fact,
Fig. 1 shows that there is a periodic set of branch points,
with cuts parallel to the real line due to our choice of
contours. If we rotate the contours uRðrÞ by some phase we
obtain rotated branch cuts as in Fig. 5, allowing us to see a
different Riemann sheet. The existence of such branch
points is directly related to singularities of the field. Since
the initial conditions are imaginary and Eðz; tÞ is real when
z and t are imaginary, both t and z will continue to be
imaginary when u follows the real axis. For the pulse
shapes we consider, gðtÞ either diverges at t → i∞ or hits a
pole at a finite t ¼ ijtpj. In both cases the instantons will
cross a singularity of the field if the u contour is along the
real axis. However, the situation is qualitatively different
for a Gaussian pulse and for a Lorentzian/Sauter pulse.
While the first has an essential singularity at infinity, which
makes the instantons divergent at branch points, the other
two have poles along the imaginary axis, so the instantons
remain finite. One can see this already in the simpler time-
dependent case. Let EðtÞ be a field with a pole of order β at
tp and expand the instantons around the branch point uB
with an ansatz

EðtÞ ∼ R
ðt − tpÞβ

; tðuÞ ∼ tp þ ctðu − uBÞα ðD1Þ

and similarly for z. Plugging this into the Lorentz force
equation we see that α ¼ 1=β, therefore for a field like a

FIG. 4. zðuÞ on the complex u plane for a Gaussian pulse and
γ ¼ 1. We see that along the physical contour zðuÞ is always real.
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Sauter pulse with a double pole the branch point is like a
square root tðuÞ ∼ tp þ ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uB

p
. This method does not

give the correct result for a field with a simple pole like a
Lorentzian pulse, indicating that near the branch point
the instanton is not approximated by ðu − uBÞα for any
fractional power α. This is related to the fact that AðtÞ itself
has a branch point of log type when A0ðtÞ ¼ EðtÞ has a
simple pole. On the other hand, one also sees that for the
Gaussian pulse we have tðuÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðu − uBÞ
p

. Because of
Liouville’s theorem, we always have singularities except
for constant fields. Indeed the constant field instantons (F3)
are trivially entire functions.
Furthermore, for a field with poles, since the field is

given by a dimensionless function fðvÞ with a pole vp and
v ¼ ωt, as ω grows, the pole tp moves closer to the origin.
Since the turning point is squeezed between the origin and
the pole, it will get closer to the latter. From this it also
follows that the branch cuts move closer to the origin. This
makes it numerically more challenging to reach larger ω
values for such fields.

APPENDIX E: ADDITIONAL PLOTS

In the main text we show the result for the exponent,
the prefactor and the widths for the Gaussian pulse,
g000ðtÞ ¼ e−ðωtÞ2 , but since the analytical results are valid
for a general pulse shape, we considered also a Lorentzian
pulse, g000ðtÞ ¼ 1=ð1þ ½ωt�2Þ, and compared the two. In
Figs. 6 and 7 we show tðuÞ and zðuÞ in the complex u
plane. Although the Lorentzian has a pole, these complex
plots look quite similar to Figs. 1 and 4 for the Gaussian
field. In Fig. 8 we see the maximum of the longitudinal

momentum for both field shapes, normalized by their
γ → 0 limits Hð∞Þ=γ from Appendix A. In Fig. 9 we
see the exponent and prefactor for both fields and their
agreement with the effective action. We comment on the
qualitative difference between the prefactors in Appendix F.
In Fig. 10 we see all four widths for the Lorentzian pulse
normalized by their LCF results.

FIG. 5. tðuÞ on the complex u plane for γ ¼ 1 with rotated
branch cuts. The angle of the cuts is θc ¼ π

6
.

FIG. 6. tðuÞ on the complex u plane for γ ¼ 1 for the
Lorentzian pulse.

FIG. 7. zðuÞ on the complex u plane for γ ¼ 1 for the
Lorentzian pulse. Both components look very similar to the
solutions for a Gaussian pulse. The main difference is the
behavior near the branch points.
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APPENDIX F: LCF EXPANSIONS IN THE
FORMATION REGION

In the formation region t and z are not large, so we can
expand the field in (A5) as

Fðt; zÞ ≈Gð3Þð0Þ þ Gð5Þð0Þ
2

�
t2 þ z2

5

�
γ2; ðF1Þ

where Gð3Þ ¼ G000, etc. We set

Gð3Þð0Þ ¼ 1 Gð5Þð0Þ ¼ −2; ðF2Þ

where the first condition means E is the maximum field
strength, and the second is used to define ω. There is no loss
of generality in these choices for Gð3Þð0Þ and Gð5Þð0Þ. They
just define what we mean by E and ω. For example,
expð−½ωt�2Þ and expð−½2ωt�2Þ are the same functions, just
with different normalization of ω or Gð5Þð0Þ. However, the
relative factor of 5 between the t2 and z2 terms cannot be
changed. It just happens to be this factor for all e-dipole
fields. We choseGð5Þð0Þ ¼ −2 so that the coefficient of t2 is
simple, which means E3ðt; z ¼ 0Þ ¼ Eg000ðtÞ is simple. For
γ ≪ 1 one might instead want to choose a simple E3ðt ¼ zÞ,
which would mean a different Gð5Þð0Þ would be simpler.
We solve the Lorentz force equation with the ansatz t ≈

t0ðuÞ þ t1ðuÞγ2 and z ≈ z0ðuÞ þ z1ðuÞγ2. To leading order
we find

t0ðuÞ ¼ i cosh u z0ðuÞ ¼ i sinh u: ðF3Þ

For the next order we use initial conditions z1ð0Þ ¼
z01ð0Þ ¼ t01ð0Þ ¼ 0, while t1ð0Þ is a constant to be deter-
mined. The u contour starts at u ¼ 0 and follows the
negative imaginary axis. Near u ¼ −iπ=2 the contour turns
and goes parallel to the real axis.8 We use uc to refer to the
exact point where the contour turns and where t becomes
real. We have uc ≈ − iπ

2
þ δuγ2. We determine the two

constants, t1ð0Þ and δu, by demanding that tðucÞ ¼ 0 and
z0ðucÞ ¼ 0. We find

t1ð0Þ ¼ −
i
5

δu ¼ iπ
5

ðF4Þ

and

t1ðuÞ ¼
i
20

½8u sinhðuÞ − 5 coshðuÞ þ coshð3uÞ�

z1ðuÞ ¼
i
20

½8u coshðuÞ − 11 sinhðuÞ þ sinhð3uÞ�: ðF5Þ

FIG. 9. Exponent and prefactor for the Gaussian and Lorentzian
pulses and comparison with the effective action (dots). The action
is qualitatively similar for the two fields, but for the Lorentzian
pulse it approaches the leading-order perturbative result (J7)
(dashed line) at large γ. On the other hand, the prefactors behave
very differently at larger values of γ.

FIG. 10. All four widths for the Lorentzian pulse. We can see
that qualitatively they look similar to Fig. 3 for the Gaussian
pulse. At large γ we find agreement with (J13) (dashed lines).

FIG. 8. Saddle-point value of the longitudinal momentum as a
function of γ normalized by the corresponding analytical ex-

pression of the γ → 0 limits, namely 3
ffiffi
π

p
4γ for the Gaussian pulse

and 3π
4γ for the Lorentzian pulse.

8For the numerical solution without using LCF, we choose a
contour with a smooth turn.
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For the longitudinal widths we need

ηð0Þa ðuÞ ¼ sinhðuÞ ηð0Þs ðuÞ ¼ coshðuÞ ðF6Þ

and

ηð1Þa ðuÞ ¼ 1

20
½4u coshðuÞ − 13 sinhðuÞ þ 3 sinhð3uÞ�

ηð1Þs ðuÞ ¼ 1

5
sinhðuÞ½7uþ 3 coshðuÞ sinhðuÞ�: ðF7Þ

Evaluating these at u ¼ uc gives us the Wronskians
in (C32)

ηarη
0
ai − ηaiη

0
ar ≈

π

10
γ2 ηsrη

0
si − ηsiη

0
sr ≈

π

2
γ2: ðF8Þ

For the transverse widths we need

δxð0Þa ¼ u δxð0Þs ¼ 1 ðF9Þ

and

δxð1Þa ¼ 3

20

�
sinhð2uÞ − u coshð2uÞ − u −

4

9
u3
�

δxð1Þs ¼ 1

20
½−3 coshð2uÞ þ 3 − 4u2�: ðF10Þ

Evaluating these at uc gives

δxsrδx0si−δxsiδx0sr≈
π

5
γ2 δxarδx0ai−δxaiδx0ar≈

π

2
: ðF11Þ

The above results give the leading order (LO) contri-
bution from the formation region, which we will combine
with the LO contribution from the acceleration region in
Appendixes G and H to obtain the widths to LO. However,
to explain the qualitatively different prefactors for the
Gaussian and the Lorentzian pulses seen in Fig. 9, we
have to consider at least the next-to-leading order (NLO)
contribution from the formation region (recall that the
acceleration region does not contribute to the prefactor).
We obtain the NLO in the same way as above, i.e. by just

expanding each quantity to one power higher in γ2, e.g.
q ≈ qð0Þ þ qð1Þγ2 þ qð2Þγ4. qð2Þ, ηð2Þ, and δxð2Þ, can again be
expressed in terms of powers of u, and cosh and sinh, but
the expressions are not particularly illuminating. For the u
independent quantities we find

uc ≈ i

�
−
π

2
þ π

5
γ2 þ 3π

560
½Gð7Þð0Þ − 28�γ4

�
ðF12Þ

tð0Þ ≈ i

�
1 −

1

5
γ2 þ

�
1

75
−
Gð7Þð0Þ
280

�
γ4
�

ðF13Þ

and

Wðηar; ηaiÞ ≈
π

10
γ2 þ π

280
½Gð7Þð0Þ − 70�γ4

Wðηsr; ηsiÞ ≈
π

2
γ2 þ π

40
½Gð7Þð0Þ − 6�γ4

Wðδxar; δxaiÞ ≈
π

2
þ π

60
½2π2 − 21�γ2

Wðδxsr; δxsiÞ ≈
π

5
γ2 þ π

8400
½90Gð7Þð0Þ

þ 112π2 − 1029�γ4; ðF14Þ

where Gð7Þð0Þ ¼ ∂
7
xGðxÞjx¼0. Since the field is assumed to

be symmetric, Gð7Þð0Þ is the first nonzero derivative that is
not fixed by the normalization of the field strength and ω.
Inserting this into the prefactor part of (11) gives

Pref ≈
5

ffiffiffi
5

p

ð2πÞ3γ4
�
1þ 4557 − 224π2 − 162Gð7Þð0Þ

1680
γ2
�

≈
5

ffiffiffi
5

p

ð2πÞ3γ4 ð1þ ½1.4 − 0.096Gð7Þð0Þ�γ2Þ: ðF15Þ

Thus, as γ increases, the ratio of the prefactor and its
leading-order approximation, Pref=PrefLO, becomes either
larger or smaller depending on whether Gð7Þð0Þ is smaller
or larger than

4557 − 224π2

162
≈ 14.5: ðF16Þ

For a Gaussian pulse,G000ðxÞ ¼ e−x
2

, we haveGð7Þð0Þ ¼ 12
and

Pref
PrefLO

≈ 1þ 0.24γ2; ðF17Þ

while for a Lorentzian pulse, G000ðxÞ ¼ 1=ð1þ x2Þ, we
have Gð7Þð0Þ ¼ 24 and

Pref
PrefLO

≈ 1 − 0.92γ2: ðF18Þ

This explains the qualitatively different prefactors seen
in Fig. 9.
In Fig. 11 we see a comparison of the action and the

prefactor with their expansions. We plot

ΔA ≔
Aapprox

Aexact
− 1; ðF19Þ

with Aapprox representing the expansion up to LO (dotted),
NLO (dashed), and NNLO (solid), and similarly for the
prefactor. We see that by including these first couple of
terms we obtain a good approximation all the way up to
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γ ∼ 0.5, which is not particularly small. The noisy error
seen in Fig. 11 around γ ∼ 0.1 for NNLO for the exponent
is due to the numerical precision rather than the error of the
analytical approximation.
Inserting the γ ≪ 1 expansions just found into (B19) and

expanding the field gives

A ≈
π

E

�
1 −

γ2

5
− ½Gð7Þð0Þ − 28� γ4

280

�
: ðF20Þ

Increasing γ thus leads to a reduction of the exponential
suppression and therefore to a larger probability. The same
happens for a purely time-dependent electric field, while
the opposite happens for a purely z dependent field.
We can generalize the e-dipole result (F20) to a general

field, i.e. we calculate the NLO correction in

AðγÞ ≈Að0Þ þ 1

2
A00ð0Þγ2: ðF21Þ

We begin by writing

AðγÞ¼ 2Im
�
pxþþp0x− −

T
2
−
Z

1

0

dτ
�
q̇2

2T
þAq̇

��
: ðF22Þ

Since all the integration variables are evaluated at their
saddle-point values, the total γ derivative is equal to

1

2
A00ð0Þ ¼ −lim

γ→0

1

γ

Z
∞

−∞
du

dAμ

dγ
q0μ: ðF23Þ

The derivative with respect to γ is up to a factor of E equal
to the derivative with respect to the frequency, and is
therefore not affected by our rescaling qμ → qμ=E and
u → u=E. We can express the γ dependence of the field as
AμðqÞ ¼ fμðγqÞ=γ. To take the γ → 0 limit we need to

expand fμðγqÞ up to Oðγ3Þ. Even though this is the NLO
correction to the exponent, we only need the zeroth order
approximation of the instanton, q ≈ qð0Þ, given by (F3), and
uc ≈ −iπ=2. Only the part of the u contour from þiπ=2 to
−iπ=2 contributes to the imaginary part. We have

1

2
A00ð0Þ ¼ −

1

3E
Im

Z
−iπ=2

iπ=2
dufμ;νρσq0μqνqρqσ: ðF24Þ

Substituting (F3) for q gives elementary integrals. We find

A ≈
π

E

�
1þ γ2

8
½F00ð0Þ − F33ð0Þ�

�
; ðF25Þ

where, in terms of the usual t and z (not rescaled by E),
Fðωt;ωzÞ ¼ E3ðt; zÞ, F00ð0Þ ¼ ∂

2
ωtE3ðt ¼ 0; z ¼ 0Þ=E,

and F33ð0Þ ¼ ∂
2
ωzE3ðt ¼ 0; z ¼ 0Þ=E. For example, for

an e-dipole field we have F00ð0Þ ¼ −2 and F33 ¼ −2=5
from (F1), and we recover (F20).
For a purely time-dependent Sauter pulse, E3ðtÞ ¼

Esech2ðωtÞ, we have F00ð0Þ ¼ −2 and F33 ¼ 0, and
(F25) gives

A ≈
π

E

�
1 −

γ2

4

�
; ðF26Þ

which agrees with the expansion of the exact result
[15,17,18] for A,

A ¼ π

E
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p : ðF27Þ

A purely z dependent field, e.g. a Sauter pulse
E3ðzÞ ¼ Esech2ðωzÞ, would lead to the same correction
but with opposite sign. This is expected. Increasing
(decreasing) γ for a time (z) dependent field leads in
general to a larger (smaller) probability. Since the correc-
tion in (F20) is negative, an e-dipole field behaves more
like a time-dependent field.
Note that, while we only needed qμð0ÞðuÞ, which also

gives the instanton for a constant field, the result (F25)
cannot be obtained from the standard LCF approximation
(1). Note also that the correction can be numerically
important, because while γ2 ≪ 1, γ2=E is not neces-
sarily small.

APPENDIX G: THE LONGITUDINAL WIDTHS

In the previous section we calculated the local parts of
the LCF approximation. Now we turn to the nonlocal parts,
which are more challenging.
As explained in the main text, to leading order we have

ϕ00
0 ¼ Fðϕ0Þϕ0

0: ðG1Þ

FIG. 11. Relative error of first orders in the γ ≪ 1 expansion of
the exponent (F20) and the prefactor (F15), with dotted lines for
the leading order, the dashed lines for LOþ NLO, and solid lines
for LOþ NLOþ NNLO.
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With initial conditions ϕ0ð0Þ¼ϕ0
0ð0Þ¼ iγ=2, the solution is

ϕ0
0ðuÞ ¼

iγ
2
þ
Z

ϕ0ðuÞ

iγ=2
dφFðφÞ ¼ Hðϕ0Þ þOðγ3Þ: ðG2Þ

For the other lightfront variable, we have a first-order
equation θ0 ¼ γ2

2ϕ0 and (approximate) initial condition
θð0Þ ¼ iγ, so the solution is given by

θðuÞ ¼ iγ þ γ2

2

Z
u

0

dv
ϕ0ðvÞ : ðG3Þ

The correction to ϕ ≈ ϕ0 þ δϕ is determined by

δϕ00 ¼ Fðϕ0Þδϕ0 þ ½F0ðϕ0Þδϕþ Fθðϕ0Þθ�ϕ0
0; ðG4Þ

where

FθðϕÞ ¼ ∂θFðϕ; θ ¼ 0Þ: ðG5Þ

But it turns out that we actually do not need δϕ. To keep the
notation simple, from now on we will write ϕ instead of ϕ0.
For η we have η ≈ η0, where

η0
00 ¼ ½F2ðϕÞ þ F0ðϕÞϕ0�η0: ðG6Þ

One solution to this equation is η0 ¼ ϕ0. A second
independent solution can be obtained using Abel’s identity,
allowing us to write a general solution as

η0ðuÞ ¼ ϕ0ðuÞ
�
aþ b

Z
u

0

dv
ϕ02ðvÞ

�
; ðG7Þ

where a and b are two constants. Imposing the initial
conditions (9) we find

ηa0ðuÞ ¼
iγ
2
ϕ0ðuÞ

Z
u

0

dv
ϕ02ðvÞ ðG8Þ

and

ηs0ðuÞ ¼ ϕ0ðuÞ
�
2

iγ
−
iγ
2
F

�
iγ
2

� Z
u

0

dv
ϕ02ðvÞ

�
; ðG9Þ

where we can approximate Fðiγ=2Þ ≈ 1. Close to u ¼ 0we
have ϕ0 ¼ OðγÞ, so there η0 ¼ Oð1Þ. Outside the formation
region, as ϕ0 becomes Oð1Þ, we have η0 ¼ Oð1=γÞ.
Asymptotically we have

η0a0ð∞Þ ¼ iγ
2ϕ0ð∞Þ ≈ −η0s0ð∞Þ: ðG10Þ

Since ϕ0ð∞Þ ¼ Oð1Þ, we have η0a0ð∞Þ; η0s0ð∞Þ ¼ OðγÞ.
Thus, in both cases there are regions where η0 is 1 order of
magnitude larger than the asymptotic η00. As we will now

show, the “next-order” correction to (G6) will actually
contribute to the same order of magnitude for η0ð∞Þ.
The equation for the next order is

δη00 ¼ ½F2ðϕÞ þ F0ðϕÞϕ0�δηþ Rη0; ðG11Þ

where R is a function of ϕ, θ, and δϕ. By separating out a
factor of ϕ0 as

δηðuÞ ¼ ϕ0ðuÞεðuÞ ðG12Þ

we obtain a simpler equation for εðuÞ,

ε00ðuÞ þ 2Fε0ðuÞ ¼ R
η0
ϕ0 : ðG13Þ

We can solve this equation using FðϕÞ ¼ ϕ00=ϕ0,

ε0ðuÞ ¼ 1

ϕ02ðuÞ
Z

u

0

dvϕ02R
η0
ϕ0 : ðG14Þ

Asymptotically we have

δη0ð∞Þ ¼ ϕ0ð∞Þε0ð∞Þ ¼ 1

ϕ0ð∞Þ
Z

∞

0

dvϕ02R
η0
ϕ0 : ðG15Þ

R ¼ Rθ þ Rδϕ has two terms, one (Rθ) proportional to θ
or θ0, and the other (Rδϕ) proportional to δϕ or δϕ0. We
begin with Rθ,

Rθ ¼ −Fθθ
0 þ ð2FFθ þ ϕ0F0

θÞθ

¼ 1

ϕ02

�
θ
d
du

½ϕ02Fθ� − θ0ϕ02Fθ

�
; ðG16Þ

with Fθ given by (G5). Choosing again G as in (A3) we
have

FθðϕÞ¼
3

4ϕ4
½−3Gð2ϕÞþ2ϕG0ð2ϕÞ� ¼ d

dϕ
HðϕÞ
ϕ

: ðG17Þ

Since H goes to a constant (A10), we have for large ϕ

FθðϕÞ → −
Hð∞Þ
ϕ2

; ðG18Þ

so R ¼ Oð1=u2Þ asymptotically. This would give Rη0 ¼
Oð1=uÞ in (G11) and hence δη0 ¼ Oðln uÞ, which does not
agree with the fact that δη0 should go to a constant. This
apparent problem is due to the fact that we have expanded
GðθÞ and G0ðθÞ in θ ≪ 1. But from (G3) we have

θ →
γ2

2ϕ0ð∞Þ u; ðG19Þ
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so when u ≳ 1=γ2 we can no longer expand GðθÞ. For such
large u we have ϕ≳ 1=γ2, and from (A5) we find
F ≈ F ðθÞ=ϕ2 ¼ Oð1=ϕ2Þ ¼ Oðγ4Þ, where F ðθÞ is some
Oð1Þ function. F is hence very small for u≳ 1=γ2 and
becomes smaller for larger u, and so δη0 will not change
significantly for u≳ 1=γ2. To approximate δη0 we can
therefore make an expansion for θ ≪ 1 as long as we stop
at some u ¼ u1 which is large u1 ≫ 1 but still u1 < 1=γ2 to
avoid the region where the expansion in θ ≪ 1 breaks down.
Returning to the calculation, the contribution to (G14)

coming from Rθ is

εðθÞ0ðuÞ ¼
1

ϕ02ðuÞ
Z

u

0

dv

�
θ
d
dv

½ϕ02Fθ� − θ0ϕ02Fθ

�

×

�
aþ b

Z
v

0

dw
ϕ02

�
: ðG20Þ

With a partial integration and θ0 ¼ γ2=ð2ϕ0Þ we find

εðθÞ0ðuÞ ¼ θFθ

�
aþ b

Z
u

0

dw
ϕ02

�
−

b
ϕ02ðuÞ

Z
u

0

dvθFθ

−
γ2

ϕ02ðuÞ
Z

u

0

dvϕ0Fθ

�
aþ b

Z
v

0

dw
ϕ02

�
; ðG21Þ

where we have dropped the boundary term at u ¼ 0 since
aðθϕ02FθÞju¼0=ϕ

02ðuÞ ¼ Oðaγ4=ϕ02ðuÞÞ. Using (G17) to
write ϕ0Fθ ¼ duðϕ0=ϕÞ and a second partial integration,
we find

ε0ðθÞðuÞ ¼ θFθ

�
aþ b

Z
u

0

dw
ϕ02

�
−

b
ϕ02ðuÞ

Z
u

0

dvθFθ

−
γ2

ϕ02ðuÞ
�
a
ϕ0

ϕ

				
u

0

þ b
Z

u

0

dv
ϕ02

�
ϕ0

ϕ

				
u

v

��
: ðG22Þ

By comparing (G22) with (G7) we can check that δηðθÞ ¼
ϕ0ε is indeed smaller than η0, which justifies the above
treatment. However, the derivative is asymptotically on
the same order of magnitude. To show this we take the
asymptotic limit,

ε0ðθÞð∞Þ ¼ γ2

ϕ02ð∞Þ
�
aþ b

Z
∞

0

du
ϕ0ϕ

�
; ðG23Þ

where the main contribution to the above integral comes
from the formation region where ϕ ≈ ϕ0 ≈ ðiγ=2Þeu, so

ε0ðθÞð∞Þ ≈ 1

ϕ02ð∞Þ ðγ
2a − 2bÞ: ðG24Þ

This gives the same result for both ηa (a ¼ 0 and b ¼ iγ=2)
and ηs [a ¼ 2=ðiγÞ and b ¼ −iγ=2],

ϕ0ð∞Þε0ðθÞð∞Þ ¼ −
iγ

ϕ0ð∞Þ ; ðG25Þ

which is indeed on the same order of magnitude as (G10).
We will now show that the part coming from δϕ is

negligible. We have

Rϕ ¼ ½ϕ0F00 þ 2FF0�δϕþ F0δϕ0

¼ 1

ϕ02
d
du

½ϕ02F0δϕ�; ðG26Þ

so with a partial integration we find

εðϕÞ0ðuÞ¼
1

ϕ02ðuÞ
Z

u

0

dvϕ02Rϕ
η0
ϕ0

≈δϕF0
�
aþb

Z
u

0

dv
ϕ02

�
−

b
ϕ02

Z
u

0

dvδϕF0; ðG27Þ

where we have dropped a negligible boundary term at
u ¼ 0. In the asymptotic limit the first two terms go to zero,
while the third is OðγδϕÞ which is negligible compared
to (G10).
Thus, the dominant contributions come from (G10)

and (G25),

η0að∞Þ ≈ −
iγ

2ϕ0ð∞Þ η0sð∞Þ ≈ −
3iγ

2ϕ0ð∞Þ ; ðG28Þ

and hence, with p0 ≈ ϕ0ð∞Þ=γ, we finally find some very
simple results:

p2
0jη0að∞Þj2≈1

4
p2
0jη0sð∞Þj2≈9

4
p2
0jhj≈

3

2
: ðG29Þ

Interestingly, these LCF approximations of the nonlocal
parts of the longitudinal widths do not actually depend on
the pulse shape g. We can understand this by generalizing
the above results beyond e-dipole fields. We consider now
either some other 4D fields for which the calculation of the
longitudinal widths reduces to a 2D problem in a similar
way as for the e-dipole fields, or just a 2D field. We assume
that the field can be expanded around the maximum as

E3ðt; zÞ=E0 ≈ 1 − ðt2 þ az2Þγ2; ðG30Þ

where a is some constant. For e-dipole fields we have
a ¼ 1=5. The calculation of the local parts is the same as
before. The generalization of the Wronskians in (F8) is
given by

Wðηsr; ηsiÞ ≈
πγ2

2
Wðηar; ηaiÞ ≈

πaγ2

2
: ðG31Þ

The calculation of the nonlocal parts is also essentially the
same, except that FθðϕÞ, which is still defined as in (G5),
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cannot be expressed as in (G17), which only holds for
e-dipole fields. We can still go through the same steps by
writing FθðϕÞ≕ IF0

θðϕÞ and choosing the integration
constant such that IFθð∞Þ ¼ 0. We find that the right-
hand side of (G25) should be multiplied by

J ¼ −
Z

∞

0

dϕFθðϕÞ: ðG32Þ

Thus, the LCF approximation of the longitudinal widths for
a general field is given by

d−2P;z¼
πγ2

E

�
1

2
þJ

�
−2

d−2Δ;z¼
πaγ2

4E

�
1

2
−J

�
−2
: ðG33Þ

J gives a nonlocal contribution. For all e-dipole fields we
can perform the integral in (G32) using (G17) to find J ¼ 1.
However, J ≠ 1 in general. For example, if E3ðt; zÞ ¼
E3ðz; tÞ then Fðϕ;−θÞ ¼ Fðϕ; θÞ, Fθ ¼ 0 and J ¼ 0. For a
purely time-dependent field we have Fðϕ;θÞ¼Fðϕþθ=2Þ
and hence FθðϕÞ ¼ F0ðϕÞ=2, so J ¼ 1=2 and d−2P;z¼πγ2=E,
which agrees with (L27). Thus, the longitudinal widths do
in fact depend on the field shape, but there exist entire
classes of fields that give the same result. We also see that if
we replace Ezðt; zÞ → Ezðz; tÞ then dP;z ↔ dΔ;z, up to a
factor of 2.

APPENDIX H: THE TRANSVERSE WIDTHS

Next we turn to the transverse widths. From (8) we have
approximately

δx00 ≈ −
1

2
ϕ0F0ðϕÞδx: ðH1Þ

It turns out that the symmetric solution δxs is simpler to
approximate, so we will first solve (H1) for δxs and then
obtain the antisymmetric solution using Abel’s identity
[similar to (G7)], which gives

δxaðuÞ ¼ δxsðuÞ
Z

u

0

dv
δx2sðvÞ

: ðH2Þ

To solve (H1) we change variable from proper time u to
lightfront timeϕ. Thevelocityϕ0 ¼ dϕ=du can be expressed
in terms ofϕ using (A9) and (G2),ϕ0 ≈HðϕÞ. Equation (H1)
becomes

Hδx00ðϕÞ þ Fδx0ðϕÞ ¼ −
1

2
F0ðϕÞδx; ðH3Þ

where now all primes denote derivatives with respect to ϕ.
We want to find the symmetric solution, which has initial
conditions as in (9). Equation (H3) should be solved along
some complex ϕ contour. If δxs depended on γ then we
would have started the contour at ϕ ¼ iγ=2. At first sight, it

might look like we would actually need to do that, because
Hðϕ ¼ iγ=2Þ ≈ iγ=2, so δx00 is multiplied by a function that
isOðγÞ at the initial point. Simply dividing (H3) byH does
not work, becauseF=H ∼ 1=ϕ for jϕj ≪ 1. So it might seem
like for γ ¼ 0 we have a problem in determining δx00ð0Þ,
which we need to jump to the next time step. However, (H3)
is in fact well posed even for γ ¼ 0, as can be seen by
expandingH and δx in power series in ϕ. Since H only has
odd powers,

HðϕÞ ¼
X∞
n¼0

H2nþ1ϕ
2nþ1; ðH4Þ

δxs only has even powers,

δxsðϕÞ ¼
X∞
n¼0

a2nϕ2n: ðH5Þ

Plugging in these two expansions into (H3) gives one
algebraic equation from each order in ϕ, which determines
the coefficients an in terms of Hn. We find in particular

δx00s ðϕ ¼ 0Þ ¼ −
1

4
F00ð0Þ: ðH6Þ

Using Mathematica, it is straightforward to calculate many
coefficients. It might therefore be tempting to solve (H3)
entirely using these expansions, without any numerical
integration. However, we need δx0 at ϕ → ∞, so we would
need to resum this series, regardless of how many coef-
ficients wemanage to calculate. Although there aremethods
to resum series based on a finite number of coefficients, we
will not do so here. We will instead use the first couple of
expansion coefficients to take the first time step, fromϕ ¼ 0
to ϕ ¼ Δϕ. For a low-order integration step we only need
δxsð0Þ ¼ 1, δx0sð0Þ ¼ 0 and δx00s ð0Þ,

δxsðΔϕÞ ≈ 1 −
F00ð0Þ
8

Δϕ2: ðH7Þ

We thus take the first time step analytically, and then we
solve (H3) numerically as usual, along the real axis starting
at ϕ ¼ Δϕ with initial conditions given by (H7). By adding
higher powers of ϕ to (H7) we would be able to choose a
larger Δϕ. However, since we only need (H7) for a single
time step, it is simpler to just choose a sufficiently smallΔϕ
so that we can use (H7) without adding higher-order terms.
In fact, for sufficiently small Δϕ we could simply choose
δxsðΔϕÞ ≈ 1. The time step and integration order we use for
the subsequent numerical integration are independent of the
first, analytical step. Thus, δxs is to leading order indepen-
dent of γ.
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From (H2) we find

δx0að∞Þ
δx0sð∞Þ ≈

Z
∞

iγ=2

dϕ
Hδx2s

; ðH8Þ

where we have put γ → 0 everywhere except in the lower
integration limit, since there it is needed because of the
singular integrand. To find an approximation we will
subtract a simple integrand, IðϕÞ, with the same singularity.
Since H ≈ ϕ and δxs ≈ 1, we should have IðϕÞ ≈ 1=ϕ for
ϕ → 0. But we cannot simply choose IðϕÞ ¼ 1=ϕ because
then IðϕÞ would not decay fast enough at ϕ → ∞. Instead
we will choose I ¼ 1=ðϕ½1þ aϕ�Þ where a is an arbitrary
constant. We have

Z
∞

iγ=2

dϕ
ϕð1þ aϕÞ ¼ − ln

�
a
iγ
2

�
þ ln

�
1þ a

iγ
2

�

¼ − ln

�
a
γ

2

�
−
iπ
2
þOðγÞ: ðH9Þ

Thus,

δx0að∞Þ
δx0sð∞Þ ≈ − ln

�
a
γ

2

�
−
iπ
2

þ
Z

∞

0

dϕ

�
1

Hδx2s
−

1

ϕð1þ aϕÞ
�
: ðH10Þ

This result is independent of a. The integral is real for real
a, so Im½δx0að∞Þ=δx0sð∞Þ� ≈ −iπ=2. If one chooses a ¼
limϕ→∞H½ðd=dϕÞδxs�2 then the integral converges faster at
ϕ → ∞. Thus, since δxs is independent of γ to leading
order, δx0að∞Þ increases as lnð1=γÞ. From (C32) and (F11)
we finally find

dP;⊥ ≈
				c1 ln

�
1

γ

�
þ c2

				 dΔ;⊥ ≈
c3
γ
; ðH11Þ

where the constants ci are obtained by solving (H3) and
performing the integral in (H10).

APPENDIX I: SLOW CONVERGENCE
AS u → ∞ FOR γ ≪ 1

As mentioned in the main text, for γ ≪ 1, we need to
integrate up to very large r to see convergence. We will
explain why this can be expected here. One might expect
that the convergence would be faster for a field which
decays faster asymptotically. For example, one might
expect a Gaussian pulse to lead to a relatively fast
convergence. However, even for a Gaussian pulse, the
convergence is not as fast as one might have expected.
As mentioned below (A2), we can without loss of

generality choose gðtÞ such that it has no terms that go
like aþ btþ ct2 for t → ∞. We would find the same result

anyway, but this choice makes the notation somewhat
simpler. With this choice, we have for a Gaussian pulse,
G000ðxÞ ¼ e−x

2

,

GðxÞ ¼ x
4
e−x

2 −
ffiffiffi
π

p
8

ð1þ 2x2ÞerfcðxÞ: ðI1Þ

Both terms decay as e−x
2

asymptotically, which seems
promising for the numerical convergence. However, for
γ ≪ 1, the instanton follows an almost lightlike trajectory
in the acceleration region, where θ is very small, see (G3).
So, while θ eventually grows linearly in u as in (G19), it
takes a very long time before θ becomes so large that GðθÞ
can be approximated by its asymptotic limit. In the semi-
asymptotic region, where ϕ is large but θ is not, we can
drop the exponentially suppressed terms, Gð2ϕÞ and
G0ð2ϕÞ, in (A5), so

F ≈
6

ð2ϕ − θÞ3 ½ð2ϕ − θÞG0ðθÞ þ 2GðθÞ�: ðI2Þ

In this region, F ¼ Oð1=ϕ2Þ is only quadratically rather
than exponentially small, even if we have chosen an
exponentially decaying G.

APPENDIX J: PERTURBATIVE LIMIT

In the previous sections we have derived approximations
for γ ≪ 1. It is probably possible to derive approximations of
the saddle-point approximation for γ ≫ 1 too, but we expect
that the saddle-point approximation breaks down in this limit,
so the result would then be an approximation of an approxi-
mation that is no longer valid. However, not being able to use
the saddle-point method for γ ≫ 1 would not be a problem,
because for γ ≫ 1 we anyway expect the probability to
become perturbative, which might not be what one wants to
have if one is mainly interested in the Schwinger mechanism.
However, while the saddle-point approximation of the

prefactor might break down, previous studies of other
processes [48–50] suggest that the approximation of the
exponent can still be valid, which means we can make a
completely independent check of the saddle-point result for
the exponent by comparing with the perturbative result. We
will show that this is also the case here for fields with poles,
such as the Lorentzian pulse.
When treating the field in perturbation theory, it is natural

to use the Fourier transform. For the e-dipole we have

ZðxÞ ¼
Z

d4k
ð2πÞ4 e

−ikxZðkÞ; ðJ1Þ

where

ZðkÞ ¼ −
3π2E
jkjk30

½δðjkj − k0Þ − δðjkj þ k0Þ�fðk0Þe3 ðJ2Þ
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and

fðk0Þ ¼
Z

dteik0tg000ðtÞ: ðJ3Þ

For the Gaussian pulse, g000ðtÞ ¼ e−ðωtÞ2 , we have

fðk0Þ ¼
ffiffiffi
π

p
ω

exp

�
−

k20
4ω2

�
; ðJ4Þ

and for the Lorentzian pulse, g000ðtÞ ¼ 1=ð1þ ½ωt�2Þ, we
have

fðk0Þ ¼
π

ω
exp

�
−
jk0j
ω

�
: ðJ5Þ

The exponential suppression of the probability comes from
the exponential suppression of the Fourier transform at
frequencies much higher than ω ≪ 1. Since the Fourier
photons are on shell, we need to absorb at least two photons.
The dominant contribution to the integrated probability
comes from pairs produced at rest, p ¼ p0 ¼ 0. From
energy-momentum conservation, we therefore consider the
absorption of n photons with four-momentum fk0;kg and n
photons with fk0;−kg, where k0 ¼ jkj ¼ 1=n so that the
sum of all the photon energies is equal to the energy of the
pair, i.e. 2 (recall m ¼ 1). For the Lorentzian pulse we
then have

Pn ∼ jf2nðk0Þj2 ∼ E4n exp

�
−
4nk0
ω

�

¼ E4n exp

�
−
4

ω

�
: ðJ6Þ

Since the exponent is the same for all n, the scaling of the
prefactor with E4n implies that the dominant contribution
comes from the absorption of only two photons,

P ∼ E4 exp

�
−
4

ω

�
: ðJ7Þ

The reason is that,while an exponential suppression as in (J5)
might naively seem like a fast decay, it is actually a wide
distribution in this context. Note that this exponential scaling
comes from the poles of the field. It is therefore a general
result for fields with poles. For example, for a Sauter pulse,
g000ðtÞ ¼ sech2ðωtÞ, we have

fðk0Þ ¼
πk0
ω2

sinh−1
�
πk0
2ω

�
≈
2πk0
ω2

exp

�
−
πk0
2ω

�
: ðJ8Þ

Contrast this with the Gaussian pulse (J4), for which
we have

Pn ∼ jf2nðk0Þj2 ∼ E4n exp

�
−

1

nω2

�
: ðJ9Þ

Here the exponential suppression decreases as the number
of absorbed photons increases. As shown in [48], since the
prefactor still favors absorption of fewer photons, the
dominant contribution to the probability comes from some
dominant order ndom and from n close to ndom. Since ndom
can be quite large, this means, while the probability is
“simply” perturbative, actually calculating it might be quite
challenging since one would need to consider the absorp-
tion of many photons.
For fields with poles, such as the Sauter and Lorentzian

pulses, we can also obtain γ ≫ 1 approximations of the
widths. The perturbative amplitude to produce a pair by
absorbing two Fourier photons from the field is propor-
tional to

M ¼
Z

d3kd3k0fðk0Þfðk00Þð2πÞ4

× δ4ðkþ k0 − p − p0Þ…: ðJ10Þ

If the pole closest to the real axis is t ¼ iν, then the Fourier
transform is proportional to fðk0Þ ∝ e−νk0 and

fðk0Þfðk00Þ ∝ e−νðk0þk0
0
Þ ¼ e−νðp0þp0

0
Þ: ðJ11Þ

For p2 ≪ 1 and p02 ≪ 1 we find

jMj2 ∝ e−4ν−νðp2þp02Þ ¼ e−4ν−2νP
2−ν

2
Δp2

: ðJ12Þ

Thus, the widths become isotropic in this limit, where

dP ¼ 1ffiffiffiffiffi
2ν

p dΔ ¼
ffiffiffi
2

ν

r
: ðJ13Þ

For a Lorentzian pulse we have ν ¼ 1=ω and hence dP ¼ffiffiffiffiffiffiffiffiffiffiffi
Eγ=2

p
and dΔ ¼ ffiffiffiffiffiffiffiffi

2Eγ
p

. Agreement with the numerical
results is demonstrated in Fig. 10. Equation (J13) has been
derived for fields with poles, and so does not apply to the
Gaussian field. We can see in Fig. 3 that we nevertheless
have dP;⊥ ≈ dP;z and dΔ;⊥ ≈ dΔ;z also for the Gaussian
field, but the convergence of the ratio dΔ=dP seems
very slow.

APPENDIX K: TIME-DEPENDENT-FIELD
APPROXIMATION

An e-dipole field is an exact solution to Maxwell’s
equations. Given a choice of pulse function, g, we only
have two parameters to tune, E and γ (or ω). We can make
the field faster or slower by tuning γ, but we cannot
independently make, e.g., the z dependence slower without
also making the t dependence slower. One might therefore
wonder whether a purely time-dependent electric field can
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ever be used as an approximation for these fields. But we
saw in the previous section that for γ ≫ 1 we can use
perturbation theory where the dominant contribution comes
from absorbing photons such that the sum of the spatial
components of the photon momenta vanishes. The expo-
nential part of the probability is then the same as what one
would have if the absorbed photons were off shell with
k ¼ 0 rather than on shell. Such off-shell photons would be
possible for a purely time-dependent field EðtÞ. For EðtÞ
one can produce a pair by absorbing a single photon. For
example, for a Lorentzian pulse, EðtÞ ¼ E0=ð1þ ½ωt�2Þ,
we have (cf. [15])

P ∼ E2 exp

�
−
4

ω

�
: ðK1Þ

While the prefactor is different, the exponent is exactly the
same as (J7). For a Gaussian pulse it would be much harder
to calculate the perturbative result since one would need to
consider the absorption of many photons. But the possibil-
ity that the result would be similar to a result for a Gaussian
EðtÞ suggests that we compare our instanton results for the
e-dipole field with the corresponding instanton (or WKB)
result for EðtÞ.
For EðtÞ there is a compact result for a general pulse

shape (assuming symmetry and a single maximum),
see [16,18]. We write the field as EðtÞ ¼ A0ðtÞ and
AðtÞ ¼ fðωtÞ=γ. The exponential part of the probability
is given by

P ≈… exp

�
−
π

E
ḡðγÞ

�
; ðK2Þ

where ḡðγÞ (which should not be confused with the dipole
function g) is given by

ḡðγÞ ¼ 4

πγ2

Z
v1

0

dv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − f̃2ðvÞ

q
; ðK3Þ

where f̃ðvÞ ¼ −ifðivÞ, and v1 is the point where f̃ðvÞ ¼ γ.
The integral is real since f is an antisymmetric function.
For example, for the Lorentzian pulse we have fðvÞ ¼
arctanðvÞ and f̃ðvÞ ¼ arctanhðvÞ.
If f̃ðvÞ has a pole at vp, then for γ ≫ 1

exp

�
−
π

E
ḡðγÞ

�
≈ exp

�
−
4vp
ω

�
; ðK4Þ

which agrees with the perturbative result, e.g. (J7) for the
Lorentzian pulse.
For γ ≪ 1 we can Taylor expand, and we find for an

arbitrary pulse shape

ḡðγÞ ¼ 1 −
γ2

4
þ 40 − fð5Þð0Þ

192
γ4 þOðγ6Þ; ðK5Þ

where we have normalized the field so that

f0ð0Þ ¼ 1 f000ð0Þ ¼ −2: ðK6Þ

Compare this with the corresponding result for e-dipole
fields (F20). To compare we choose EðtÞ ¼ EG000ðωtÞ, so
fðuÞ ¼ G00ðuÞ and in particular fð5Þð0Þ ¼ Gð7Þð0Þ.
In Fig. 12 we see thatA for the e-dipole field does indeed

seem to converge to A for EðtÞ as γ increases. In fact, we
see that the result for EðtÞ is actually a decent approxi-
mation for all values of γ. Since all results agree on
Aðγ ¼ 0Þ ¼ π=E, one can expect a maximum relative
error,

ϵ ¼
				 A½EðtÞ�
A½e-dipole� − 1

				; ðK7Þ

somewhere around γ ∼ 1. This is indeed what we find, but
the maximum ϵ is only ≲0.02. This is interesting because
when one sees such a small difference, the first guess would
be that it is due to the smallness of some parameter. But that
is not the case here, becauseA only depends on γ, and γ ∼ 1
is neither small nor large. The reason for the small ϵ is
instead due to the fact that the functional form of A½EðtÞ�
and A½e-dipole� are similar. They both start at π=E for γ ¼
0 and converge for γ ≫ 1, and, since they are both
monotonically decreasing, there is not much that could
happen in the region between γ ≪ 1 and γ ≫ 1. Compare
the expansions in γ ≪ 1 for EðtÞ in (K5) and for an e-dipole
in (F20). They are both power series in γ2 and the NLO has
the same sign. The coefficients, 1=4 and 1=5, are different
but happen to be quite close. If we tried to improve the
agreement by rescaling γ →

ffiffiffiffiffiffiffiffi
4=5

p
γ for A½EðtÞ� then ϵ

would become smaller for γ ≪ 1, but we would introduce
a relatively large discrepancy at γ ≫ 1 on the order
of j ffiffiffiffiffiffiffiffi

4=5
p

− 1j ¼ Oð0.1Þ.

FIG. 12. Relative error (K7) between the exponents of the exact
result for the 4D dipole pulse and the purely time-dependent field
EðtÞ ¼ Eg000ðtÞ for the Gaussian and Lorentzian shape.
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Given this agreement between A½e-dipole� and A½EðtÞ�,
it might be tempting to go beyond the leading order and
treat the z dependence and to consider the prefactor too.
However, there are fundamental differences for the pre-
factor. For example, for EðtÞ there are volume factors,
which we do not have for 4D fields, and 4D fields have
more nonzero and independent widths.

APPENDIX L: WIDTHS FOR 2D AND 1D FIELDS

In this section we explain to what extent results for the
widths for 4D fields can, or rather cannot, be approximated
by considering 2D or 1D fields. There is no parameter in
the e-dipole field that we can tune such that the field
becomes slower and slower in the transverse x⊥ ¼ fx; yg
directions. Indeed, a field given entirely in terms of a
longitudinal electric field, E3ðt; zÞ, is not a solution to
Maxwell’s equations (without a current). We will therefore
artificially make the x⊥ dependence slower by, e.g.,
rescaling x⊥ → ϵx⊥ in the gauge potential Aμ. The resulting
field will no longer be a solution to Maxwell’s equations,
but neither are the 2D and 1D fields we want to compare
with. In the 2D limit the equations for the longitudinal
widths stay the same. But for the transverse widths we have
[cf. (8)]

δx00 ¼ ðt0∂xEx − z0∂xByÞδx ≠ −
1

2
∇E · fz0; t0gδx: ðL1Þ

In the 4D case we used Maxwell’s equations to rewrite this
equation in terms of the ∇E term, but that is not possible
here. After rescaling x⊥ → ϵx⊥ we have

δx00ðuÞ ¼ RðuÞδxðuÞ; ðL2Þ

where R ¼ Oðϵ2Þ ≪ 1. To leading order we have δxa ≈ u
and hence (10) gives

d−2P;⊥ → −2Im uc; ðL3Þ

which agrees with Eq. (104) in [30] (which simplifies using
our preferred u contour). The symmetric solution is more
nontrivial,

δxsðuÞ ≈ 1þ δxð1Þs ðuÞ δxð1Þ0s ðuÞ ¼
Z

u

0

du0Rðu0Þ; ðL4Þ

and (10) gives

d−2Δ;⊥ →
1

2

Imδxð1Þ0s

jδxð1Þ0s j2
¼ −

1

2
Im

1

δxð1Þ0s

: ðL5Þ

Thus, dΔ;⊥ → 0 in the limit ϵ → 0. This is expected since if
we had instead started with a field that does not depend on
x⊥, then we would have had momentum conservation

δ2ðp⊥ þ p0⊥Þ, and dΔ;⊥ gives the width for Δp⊥ ¼
p⊥ þ p0⊥. For a nonzero ϵ ≪ 1 we therefore have a
regularized delta function. For the prefactor we also need

jϕ̄0j ¼ 2jδx0sδx0aj → 2jδxð1Þ0s j; ðL6Þ

so for the integrated probability we have (considering only
those factors that involve ϵ)

1

jϕ̄0j2d−2Δ;⊥
→

1

2Imδxð1Þ0s

: ðL7Þ

The prefactor hence scales as 1=ϵ2. This is also expected,
because had we started with a 2D field we would have had a
transverse volume factor, V⊥ ¼ VxVy, so 1=ϵ2 provides a
regularized volume factor.
Thus, if one starts with a 2D field, one has a constant

volume factor V⊥ and dΔ;⊥ ¼ 0. One cannot use these
trivial results to approximate anything. Judging from the
2D results, one might have wondered if perhaps dΔ;⊥ is at
least in some sense small in the 4D case. However, Figs. 3
and 10 show that dΔ;⊥ is on the same order of magnitude as
the longitudinal widths.
Next we go one step further and take the limit where also

the z dependence becomes very slow. We showed in [30]
that dΔ;z → 0, consistent with the fact that for a purely time-
dependent field we would have momentum conservation in
all spatial directions, δ3ðpþ p0Þ. We also checked in [30]
that, in the case of a Sauter pulse E3ðtÞ ¼ E= cosh2ðωtÞ, the
two nonzero widths agree with the results in [15]. Now we
will check this for an arbitrary pulse shape (but still
assuming a symmetric field with a single maximum).
For E3ðtÞ ¼ A0ðtÞ, AðtÞ ¼ fðωtÞ=γ, we have

t0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2ðtÞ

q
; ðL8Þ

which we can use to change integration variable from u to t.
For example,

uc ¼
Z

uc

0

du ¼
Z

0

tð0Þ

dt
t0
¼ −

Z
t̃

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2ðtÞ

p ; ðL9Þ

where Aðt̃Þ ¼ i, so from (L3) we find

d−2P;⊥ → 2Im
Z

t̃

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2ðtÞ

p ≕
π

E
B2ðγÞ: ðL10Þ

Since the integration goes along the imaginary axis,
we change variable and rewrite the field in terms of
f̃ðvÞ ¼ −ifðivÞ,

B2 ¼
2

πγ

Z
v1

0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðf̃ðvÞ=γÞ2

q ; ðL11Þ
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where f̃ðv1Þ ¼ γ. This integral is similar to (K3). To
compare with the results in [16] we change variable from
v to x ¼ f̃ðvÞ=γ. For the Jacobianwe have f̃0ðvÞ ¼ Fðf̃ðvÞÞ,
whereF is some function that depends on the choice of field.
For example, for a Sauter pulse we have f̃ðvÞ ¼ tanðvÞ and
F ¼ 1þ f̃2. We find

B2ðγÞ ¼
2

π

Z
1

0

dx

FðγxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p : ðL12Þ

With the same change of variable, ḡ in (K3) becomes

ḡ ¼ 4

π

Z
1

0

dx
FðγxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
: ðL13Þ

Equations (L12) and (L13) agree with Eq. (7.5) in [16].
For dP;z we need to solve [cf. (8)]

η00 ¼ ½E2ðtÞ þ E0ðtÞz0�η: ðL14Þ

Since one solution to (L14) is η ¼ t0, we can use Abel’s
identity and write the solution with correct initial con-
ditions as

ηsðuÞ ¼ t0ðuÞ
�
aþ b

Z
u

uc

dv
t02ðvÞ

�
; ðL15Þ

where a and b are two constants. Since the initial
conditions (9) are set at u ¼ 0, and t0ð0Þ ¼ 0, we have a
singular integrand. However, we only need ηsðuÞ for r > 0,
so we never have to integrate over u ¼ 0, and the limit
u → 0 is finite,

ηsð0Þ ¼ −
b

t00ð0Þ¼
!
1; ðL16Þ

so b ¼ −t00ð0Þ. The Lorentz-force equation and partial
integration give

Z
u

uc

dv
t02

¼
Z

u

uc

dv
E

d
dv

z0

t0
¼ z0

Et0
þ
Z

u

uc

dv
z0E0ðtÞ
E2

; ðL17Þ

which we use to simplify

η0sðuÞ ¼ at00 þ bt0 þ bt00
Z

u

uc

dv
z0E0ðtÞ
E2

: ðL18Þ

The second initial condition, η0sð0Þ ¼ 0, now implies

a ¼ −b
Z

0

uc

dv
z0E0ðtÞ
E2

: ðL19Þ

For the nonlocal part of (10) we have

p0η
0
sð∞Þ ¼ b; ðL20Þ

and for the local, Wronskian part we need

ηsðucÞ ¼ a η0sðucÞ ¼ b; ðL21Þ

where we have used z0ðucÞ ¼ t00ðucÞ ¼ 0 and t0ðucÞ ¼ 1, so

d−2P;z ¼ 2
Wðηsr; ηsiÞ
p2
0jη0sj2

¼ 2
arbi − brai

jbj2 ¼ −2Im
a
b
: ðL22Þ

Using (L19) and changing integration variable to t gives

d−2P;z ¼ 2Im
Z

t̃

0

dt
Affiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2
p A00

A02 ≕
π

E
B1ðγÞ: ðL23Þ

Rewriting as in (L11) gives

B1 ¼
2

πγ

Z
v1

0

dv
f̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðf̃=γÞ2
q f̃00

f̃02
: ðL24Þ

From the definition of F, f̃0ðvÞ ¼ Fðf̃ðvÞÞ, we have
f̃00 ¼ FF0 and

f̃f̃00

f̃03
¼ −γ

d
dγ

1

FðγxÞ : ðL25Þ

Thus,

B1ðγÞ ¼ −γB0
2ðγÞ; ðL26Þ

which agrees with Eq. (7.5) in [16].
By expanding in γ ≪ 1 as in (K5) we find

B2 ¼ 1 −
γ2

2
þ
�
5

8
−
fð5Þð0Þ
64

�
γ4 þOðγ6Þ

B1 ¼ γ2 þ ½fð5Þð0Þ − 40� γ
4

16
þOðγ6Þ: ðL27Þ

For a monochromatic field we find agreement with the
corresponding expansions in Eq. (7.6) in [16], we just have
to recall that with our normalization (K6), we have
fðvÞ ¼ sinð ffiffiffi

2
p

vÞ= ffiffiffi
2

p
, so our definition of γ differs from

that in [16] by a factor of
ffiffiffi
2

p
. By using the same

normalization (K6) for all fields, we see that the two
nonzero widths, dP;⊥ and dP;z, are to leading order
independent of the pulse shape.

APPENDIX M: RR

To estimate the size of RR (see [51] for a review) we
consider the classical Landau-Lifshitz (LL) equation,

q00μ ¼ Fμ
νq0ν þ βðF0

μ
νq0ν þ FμνFνρq0ρ þ ½Fq0�2q0μÞ; ðM1Þ
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where β ¼ 2
3
e2
4π. We consider zero transverse momenta,

since the saddle point is at p⊥ ¼ p0⊥ ¼ 0. After rescaling
Fμν → EFμν, qμ → qμ=E and u → u=E, (M1) remains the
same except that β → Eβ. RR might thus only be important
if some other parameter is large enough to compensate for
Eβ ≪ β ≪ 1. We consider therefore γ ≪ 1. Changing
variables to ϕ and θ, and expanding to leading order in
γ ≪ 1 gives ϕ00ðuÞ¼FðϕÞϕ0þEβF0ðϕÞϕ00. This is the same
as the LL equation for a field given entirely by E3ðtþ zÞ,
which was solved in [52,53]. The solution is

dϕ
du

ðϕÞ ¼ eEβFðϕÞ
Z

ϕ

0

dφe−EβFðφÞFðφÞ: ðM2Þ

Since FðϕÞ ¼ Oð1Þ, there is nothing to compensate for
Eβ ≪ 1, so RR is negligible. A similar conclusion and the
identification of Eα as the relevant parameter can also be
found in [38].
Many strong-field-QED processes are studied in fields

with components orthogonal to the momentum of the
particles. A high-energy particle will then effectively see
a much stronger field in a frame where the particle’s energy
isOð1Þ (this could be the rest frame for a massive particle).
The field will also effectively appear as a plane wave.
However, in our case, although the particles are accelerated

to high energies for γ ≪ 1, they are accelerated along the
direction of the electric field on a path where there are no
transverse field components. A Lorentz boost parallel to the
electric field does not change the field strength. With E≪1
in the lab frame, we will therefore also have E ≪ 1 in the
rest frame. Thus, rather than a plane wave, we have shown
that the particle effectively sees a purely electric field which
only depends on lightfront time, E3ðtþ zÞ. This is not a
solution to Maxwell’s equations in vacuum, but that is not
a problem since it does approximate an exact solution
(the e-dipole field) along the relevant plane x ¼ y ¼ 0.
A similar point was made in [54], where it was shown
that the closed worldline instanton for a standing wave,
∝ cosðωtÞ cosðkxÞ, is the same as the instanton for a purely
time-dependent electric field, ∝ cosðωtÞ.
We have shown that E3ðtþ zÞ is relevant for the

acceleration region for γ ≪ 1 because there the particles
have reached highly relativistic velocities and travel along
almost lightlike trajectories (see also [55]). However, we do
not approximate the field as E3ðtþ zÞ in the formation
region. In fact, our results are very different from the
probability of pair production by E3ðtþ zÞ, which was
derived in [56,57]. This is easy to see. The probability for
E3ðtþ zÞ is proportional to volume factors in the x, y and
t − z directions. We have no volume factors because we
consider a 4D field.
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