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Recently, first-order phase transitions have been predicted as an effect of the inclusion of quark
anomalous magnetic moment (AMM) in the hot and magnetized Nambu—Jona-Lasinio model (NJL). These
transitions appear in the chiral condensate for different combinations of AMM and magnetic fields and
could lead to inverse magnetic catalysis. However, in this work, we show that the predicted first-order phase
transitions are related to regularization-dependent issues. To show this, we explore, in the context of the
vacuum magnetic regularization (VMR) scheme, two different scenarios: when mass-dependent (MD) and
mass-independent (MI) terms are present in the subtraction of the divergences. In the MD case, as we
increase the AMM value, it is observed the appearance of a nonmassive minimum in the thermodynamical
potential, which induces a first-order phase transition from the massive minimum. We argue that the
MD terms must be avoided in order to satisfy the predictions of Lattice QCD, and we propose a MI solution
that is valid in the limit which the magnetic fields are smaller than the squared of vacuum effective

quark mass.

DOI: 10.1103/PhysRevD.109.016011

I. INTRODUCTION

In the nonpertubative regime of quantum chromodynam-
ics (QCD), the anomalous chromomagnetic moment appears
as a result of the dynamical chiral symmetry breaking for
massive quarks, which consequently enables quarks to
possess an anomalous magnetic moment (AMM) [1]. It is
possible, however, in a more simple way, to estimate the
quark AMM from some quark models [2,3] through the
experimental knowledge of the proton and neutron magnetic
moments. This simplification has stimulated investigations
of the magnetized QCD phase diagram since one can explore
how it affects the chiral and deconfinement phase transitions,
as well as the effect of inverse magnetic catalysis (IMC) [4].
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The Nambu-Jona-Lasinio (NJL) model [5,6], for its
simplicity, is one of the most used quark models to describe
the QCD phase diagram. It is well adaptable to the
inclusion of constant external magnetic fields, that are
expected to be present in peripheral heavy ion collisions [7]
and magnetars [8]. As a nonrenormalizable model, the use
of an unsatisfactory regularization procedure can be a
source of strong nonphysical behavior in the quark con-
densate [9] and its thermodynamic properties [10]. This is
the case of using simple form-factor regularizations in the
one-dimensional integrations, due to the Landau Levels
quantization, which will entangle the magnetic field con-
tributions with the vacuum [9]. It is well known that the
magnetic field independent regularization (MFIR) methods
avoid these artificial results due to the full separation of
finite magnetic field contributions from the cutoff, A, of the
theory [9,11]. It is possible, however, to work within a
regularization prescription useful for situations when some
entangled vacuum-magnetic terms cannot be avoided, this
is the case of the vacuum magnetic regularization (VMR)
prescription, which is based in the MFIR, applied recently
for zero [10] and nonzero AMM environments [12].

All previous issues are supposed to be present in different
situations concerning the magnetized quark matter in the
3 + 1 D NJL-type models. When studying the influence of
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the quark AMM through the Schwinger ansatz [3], most
applications in the NJL model make use of non-MFIR
methods [3,13-25], besides some attempts to obtain
some similar application of the subtraction scheme of
divergences [26,27]. In the non-MFIR applications, recent
results have been predicted, as the possibility of a first-order
phase transitions in the chiral condensate as a function of the
magnetic field, mainly when considering very strong mag-
netic fields or a substantial value of the quark AMM [3,22]
and inverse magnetic catalysis at zero temperature [13,14],
all of them accompanied with strong oscillations character-
istic of non-MFIR methods. Although all of these results
represent new possibilities, most of them are not predicted
by Lattice QCD.

Our aim in this work is to apply the VMR regularization
prescription to the usual mean-field thermodynamic poten-
tial of the magnetized two-flavor NJL. model with a
constant AMM influence. Our results are contrasted with
the literature in two central points:

(i) We identify mass-dependent (MD) divergent terms
proportional to O(eB?) in the Taylor expansion of the
ultraviolet regime in the thermodynamic potential, €2.
Then we need to subtract and regularize these mass-
dependent divergent contributions that cannot be
ignored, since they modify the phase diagram struc-
ture, guided by the chiral condensate, (py) ~ M,
through 0Q/0M = 0. The thermodynamic potential
at a strong magnetic field (or strong value of quark
AMM) is then unbalanced to lower values in the
region of M = 0 until it becomes lower than the
massive minimum, inducing the idea of a possible
first-order phase transition. We show that this effect is
due to the contribution of these MD terms.

(i1) To solve these problems observed in the previous item
we propose that the Schwinger ansatz is applicable to
the situation when (| eB|/M3) — 0, with M, being
the vacuum effective quark mass. The Lagrangian
obtained in this limit is the one used by Dittrich in
Ref. [28] recently used in [12] and the additional MD
terms observed in the ultraviolet limit of the thermo-
dynamic potential are eliminated.

This work has the following structure: in the Sec. II we
present the two-flavor NJL. model with the inclusion of
the AMM. In Sec. III the analytical details to obtain the
thermodynamic potential are discussed. In Sec. IV the MD
regularization for the thermodynamic potential is shown. In
Sec. V we present the numerical results and in Sec. VI we
show in detail the mass-independent (MI) regularization
procedure and in Sec. VII the conclusions.

II. TWO-FLAVOR NAMBU-JONA-LASINIO
MODEL WITH AMM

The two-flavor NJL model in an external electromag-
netic field and constant anomalous magnetic moment is
given by the following Lagrangian [3]

L= l/7<iD —m +%&0’”’F’”’>w
+ Gl(w)* + (wiysty)?]. (1)

where G is the coupling constant, A* the electromagnetic
gauge field, F" = 0*AY — 0”A* is the electromagnetic
tensor, 7 are isospin Pauli matrices, Q is the diagonal
quark charge matrix' [Q = diag(g, = 2/3. ¢, = —1/3)].
D* = (0" 4 ieQA*) is the covariant derivative, the bare
quark mass matrix is /i = diag(m,,, m,), andy = (y, yy)!
is the quark fermion field. We consider the isospin limit
m, =myg=m and the Landau gauge, A, = §,,xB, in
order to satisfy V x A=B= Beés and V-A=0.

The Lagrangian £ in the mean field approximation is
given by

(M —m)*

_{. 1, y
E:l//(lD—M+§aUm,Fﬂ >l//— 4G B (2)

where we have redefined the mass term, now as a
constituent quark mass

M = m =2G{py). (3)

In the last equation, () is the chiral condensate. The
AMM appears adding the phenomenological Pauli term,
%Em’“’F’“’ term, which couples the AMM of the quarks,
given through the entries of the matrix a for each flavor
f=u, d as a =diag(a,, a,), with the external magnetic
field. The previous quantities are given, in the one-loop
level approximation, by

aequf . 1 e

A — A — a0 4
o %3 Memgyp )

dr=4qrxhp, Oy =
where @, is the fine-structure constant and yp is the Bohr
magneton. As we will work with constant values of AMM
we can redefine up = ¢/2M — up = e¢/2M,, where M, =
M(T =0,eB=0) [3].

III. THERMODYNAMIC POTENTIAL
WITH QUARK AMM

The thermodynamic potential of the two-flavor NJL
model at zero temperature with the influence of quark
AMM is given by [3]

(M —m)

Q:
4G

+ QME(M, B), (5)

'Our results are expressed in Gaussian natural units where
1 GeV? = 1.44 x 10" G and e = 1//137.
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where Q™ is the magnetic contribution given by

— N, Z|Bf|22/ Dk (6)

n=0 s==+1

QME(M, B)

in which the By = gyeB, s = £1 is the spin index, n are the
Landau levels, N, = 3 the number of colors and the quark-
energy dispersion relation is defined as

Ej;s = \/p3

where M} ; = \/|Bf|(2n—|— 1—ss5)+M?*and s, =sign(q;)

is the charge sign function. Using the gamma function
integral representation, one may write:

n s — safB) (7)

1 1 o0
- = d n—1 —rA‘
T A 7" e (8)

Thus, after some straightforward manipulations, we can
rewrite the magnetic part of the thermodynamic potential,
Eq. (6) as

Q™E(M, B)

822|f|

f=ud

X Z Z / f:l—safB)

n=0 s=+1

sﬂz 52 [ Germ. o

where we have defined

Ff(’l') =e " af T|Bf|

% Z Z P |Bf\(2n+1—sfx)—2safBM’,f“‘)' (10)

n=0 s=+1

It is possible to rewrite the function F ;(7), as detailed in
the Appendix, in the following way

Fi(r) = e~(@B T|Bf| [sf sinh(72a,;BM)

Z ZafB

=0

— e~rlasBl 7| B, | [s ssinh(e2a,BM) + F? (r)} (1

-

The function F®)(z) is

i 2afB

k=

)T Di(r).  (12)

and will be useful in the next sections. The function D, (7)
is given by

dk
Dy(z7) = e™ —ke_TM2 coth(z|B/|)
T

d
k
—%(i)( M?)k "d coth(|B/|z)
(& |B/]
— (=1k(M2)k -1 S
ey () (52
xd(Trichothﬂth). (13)

This last representation is useful to express the function
Dy (z) as a series expansion in terms of the parameter

IV. MASS-DEPENDENT REGULARIZATION

In order to apply the VMR scheme [10], we have to
identify the divergences of the thermodynamic potential,
Eq. (6). It is clear that the integral diverges in the limit of
7 — 0. It is possible to understand the origin of the
divergence considering the Taylor expansion of the func-
tion F;(7) around 7 = 0 up to the order O(7?) as

F?(T) =1 + (afB)QT+ Rf(Bf,M)TZ
+0(Y), <1, (14)

where the coefficient of 7? is mass-dependent and given by

|By|* (asB)*
R/(B;, M) = 3f f6 +2(a;B)2M>

To regularize the effective potential, we will apply the
VMR prescription [10]:

Q™ (B, M) = [Q™e(B, M)
— Qp*(B. M)

- Q"P(B,M)] + QP (B, M)
+Q"M(B, M), (16)
where Qp* = QMe(B, M) — QVP(B,M) is the magnetic
part of the regularized thermodynamic potential,
QVP(B,M) is the vacuum-divergent contribution and

QYM(B, M) is the vacuum-magnetic contribution. The last
two quantities are given by

Nc oodT _tM? 10

N, odr _,
QVM(B,M):@Z/ e M FO(z). (17)
f=ud’52

Q'2(B.M
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In the presence of the AMM, the vacuum-magnetic term
now has mass-dependent contributions which makes its
behavior completely different from the usual case where we
have zero AMM. In that case, we have simply

F(z) = |By|z coth(|B;|7)

(1Bl)?

~1 ,
Jr3

7 1. (18)

In the latter case, the full regularization will include
new MI terms proportional to eB> and these new contri-
butions do not give additional physics [10]. Now, in the
nonzero AMM case, if we look at Eq. (9), the thermody-
namic potential has divergences until O(z?) and, conse-
quently, the gap equation until O(z). In this way, for the
gap equation, we just need to use the expansion given
in Eq. (14) including first-order terms in t, F?(T) =
1 + (a;B)*z, which seems not to be consistent with the
constraint, 0Q/0M = 0, when we start from the regularized
thermodynamic potential, including the additional mass-
dependent contribution of order O(z?). Therefore, these
additional mass-dependent contributions are enforcing the
regularization to remove unnecessary new terms in the gap
equation.

V. NUMERICAL RESULTS

In this work we make use of the following parametrization
of the two-flavor NJL model using the proper-time vacuum
regularization: A = 886.62 MeV, m, = 7.383 MeV and
G = 4.001/A?, in order to reproduce the quark condensate,
<z‘4u)1/3 = =220 MeV, the pion mass, m, = 138 MeV and
the pion decay constant, f, = 92.4 MeV [9].

In Fig. 1 we show the thermodynamic potential including
mass-dependent terms in the regularization as a function of
the effective quark mass for different values of k  with a fixed

0.02751 —— k=00 GeVv-!
—— k=02 GeV~!
0.0270 { ---- Kk=0.4 GeV~!
k=0.6 GeV~!
0.0265
o
% 0.0260
g
S 0.0255
0.0250
0.0245
0.0 0.1 0.2 0.3 0.4 0.5
M (GeV)

FIG. 1. Thermodynamic potential as a function of the effec-
tive quark mass for different values of quark AMM with
2(a;B)*M?* + s;2Ba;M # 0 at eB = 0.3 GeV?.
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FIG. 2. Thermodynamic potential as a function of the effec-
tive quark mass for different values of quark AMM with
2(a;B)*M? + s;2Ba;M = 0 at eB = 0.3 GeV?.

magnetic field value, eB = 0.3 GeV?>. For lower values of
ks, we have a global minimum at M ~ 0.3 GeV, however, as
we increase the value of k ¢, the minimum at M = 0 surpasses
the massive one, and we have the first-order phase transition
observed before in the literature. This behavior also occurs
for some fixed value of x, and strong magnetic field values,
as observed in Ref. [3].

The same quantities are plotted in Fig. 2, in which we
test Q"M assuming 2(a;B)*M?* + s;2Ba;M = 0. We see
that the usual first-order phase transition does not occur
when we increase the value of k¢, showing that, these terms
are the ones mainly responsible for unbalancing the
thermodynamic potential.

VI. MASS-INDEPENDENT REGULARIZATION

In order to show a way to avoid nonphysical behavior
of the model due to mass-dependent terms in the regulari-
zation, we propose in this section the mass-independent
regularization, already explored in detail in Ref. [12].
The Schwinger ansatz proposed in Eq. (1) for AMM is
applied to the one-loop correction for QED in the limit
of x; —> 0. The same idea must be used here, so we
will apply the O(x?) expansion in the thermodynamic
potential, Eq. (9). To see this, we rewrite the summation in
Eq. (12) as

P =505 (5 BB e () B,

where D, (7) = W&I)” coth(|B/|r). Since, phenomenologi-

cally we implement a; = gexy and xy = ay/2M,, where
My=M(B=0,T =0), we can identify
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=3 (0) i () v () P

k

Q

k

K

20 (e

Z( ) “foT) (1 + eP¥(-1)" (W'f—ﬂ)) "Dale)

)0 (G 2wy Do

Z() afoT) (1+2k6)(1—2n€)(—1)”<%)nm(f)

=>(,) “foT) (1260 mje)(-1)(54) Dyto (19

where € = 6M /M, represents how much M changes in relation to M. At this point, we assume |B;|/M, < 1,sothe n = 0

term is dominant. In this way, we have

((lfoT)z

—  (2k)!

Bt
coth(|By|z) + ZM

2k
(1 4 2ke) coth(|B|7)

(2ke) coth(|By|7)

2k)!

3}
= coth(|B/|z) [cosh(af|Bf| )+ €T cosh(af|Bf|1)}

= coth(|By|z)[cosh(as|B|7) + eta;|By|sinh(as|By|7)]. (20)

It is easy to show that the function F () is now given by

Ff(T) = e—f(a/B)27‘Bf| [sf Sinh(TzafBM)
+ cosh(rZafBM ) coth(|Bf|T)]
+ COth(|Bf|T)e—T(“/B)ZT|Bf|
x [eray|By|sinh(ay|By|z)]. (21)

The term proportional to € can be integrated in Eq. (9) as

cay|B, / ¢~ =r(arBY 2 sinh(a, | B, 1)

d _ (af B)?
x coth(|Bf|r) — eaf|Bf|2/ et
g T

B B
X sinh (afl f| 1> coth( flT),
M? M?

where we have done a simple change of variables. To
simplify the analysis, we assume that we have regulated
the region 7~ 0 with some generic regulator . We can
normalize the effective potential by M‘g in order to obtain

dr _ _Ju® B B
Ag 9T p=r¢™" 7 sinh (aj;‘|/12f|1> coth('A;2|1>—>0, (22)

in the limit which 4, = eay (le ‘) < 1. The last expansion

is a bonus result, which is useful for physical situations
where M can increase its value, as at low temperatures and
finite magnetic fields, and situations where M decreases, as
at finite temperatures. It is easy to show that, for usual
parameters of the NJL model, such as the one listed in the
numerical results section, as well as the values for the quark
AMM [3], the previous integration is very small when
compared to the mean field term of the thermodynamical
potential. With this analysis, we guarantee the convergence
of two situations:

(i) 6M > 0: it can happen at finite ¢B and low temper-
atures. In the extremal situation, where 7 = 0, we
can simplify the analysis using the expansion at
By /M? < 1.

(i) oM < 0: it can happen at finite ¢B and high values
of temperature. The expansion parameter € < 1,
depending the value of ay. However, we still

guarantee the values of (|B;/Mj|)ase < 1.
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After some straightforward steps

cosh((a 1)|Byl
e = st [ L)

The magnetic field part of the thermodynamic potential
is then given by

dr oK cosh(cy|By|7)
Qmag — 23
87:22/ [' 7 mnB) sinh(|B[z]) |’ (23)

where we have defined c¢;=a;+1 and Ky,=

M? + (a;B)*. This last expression is exactly the same

used in [12] adapting to the NJL model the one-loop
Schwinger-Weisskopf Lagrangian in [28]. In order to
regularize this latter thermodynamic potential, we expand
the hyperbolic functions at 7 ~ 0

cosh(c/Byt) 1

sinh(B/7) NE %(3 =1 +0@).

The expansion of F)(z) is then, given by

(By)?
6

Fi(r) =1+ (3c; = 1)+ O(7) (24)

which is mass independent. In this case, the gap equation
have the correct degree of divergence as the zero AMM
case, avoiding, therefore, the contradiction observed in the
mass-dependent regularization.

VII. CONCLUSIONS

In this work, we have shown the effects of the quark
AMM in the context of the two-flavor Nambu—Jona-
Lasinio model in a strong magnetic field. The inclusion
of the quark AMM is given through a set of constant values,
by using the Schwinger ansatz in the NJL Lagrangian. We
then explore the role of the possible first-order phase
transition in the thermodynamic potential that can occur
when the value of quark AMM is strong enough. To
understand the origin of this transition, we apply the
VMR, since the subtraction of divergences shows clearly
the behavior of the model in the ultraviolet limit. We
identify that the full VMR prescription regularizes MD
terms that uneven the thermodynamic potential at M = 0,
which is strengthened for higher values of quark AMM
until an apparent first-order phase transition takes place.
We argue that these MD terms are nonphysical and
should be avoided by using a MI regularization. In the
limit of |B;|/M* <1, it is shown that we can obtain

the usual Schwinger-Weisskopf approach for one-loop
approximation in QED applied to the NJL. model. In this
approach, the MI terms are obtained in the regularization of
the vacuum-magnetic contributions and the results indicate
the absence of first-order phase transitions in accordance
with predictions of lattice QCD [4].
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APPENDIX: CALCULATING F(z)

In this section, we will obtain the expression to the
F(7), Eq. (11). Separating term proportional to a in the
exponential of the Eq. (10) and writing it in a Taylor
expansion,

2 B
Fy(z) = earB ' ¢|B, |Z ”‘f

DI

n=0 s=+1

—|Bf|(2n+1- sfs)<Mf ) (Al)

We can explicitly do the summation on even and odd
parts in respect to k, like

F(r)=e""@B 7| By

XZ{ 12621];3 Zze—f|8f\2n+l 545) (Mf )2

k=0 n=0s==+1
T2a B 2k+1 oo
i e Zzse—fu},\ (2n+1-sss (Mf )2k+1
(2k+1 n=0s==%1 ’
(A2)

where the even power of s is given by s** = 1 and the odd
s%+1 = 5. Analyzing the summations over n and s to the
odd part of last expression in the case where s, = 1,
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D> ser BB (20 4 1 = 5) + MY = [MP]S
N——

n=0 s==+1

n=0,s=1

— e IBI4]|Bs|4 + M?

— e B/2]|B,12 + M?

]2k+] ]2k+l

+ e—T\B[\ZHBf'z 4 M2

n=1,s=1

+ e B|B 4 + M2

n=0,s=—1

]2A+1 ]2k+1

—e T\B/\6[|B 6 + M>

n=1,s=— n=2,s=1

]2k+l

+ ...

n=2,s=—

= M*H! 4 Z s Z e8| B 20 + M)

— M2k

where next to the last line in Eq. (A3) the summation goes
to zero because of the explicitly s. In the case where s, =
—1 is easy to see that the result is analogous and given by
—M?*1_So, all the summation of the odd part of Eq. (A2)
has s ,M**! as the result. To the even summation, we insert

an identity ¢™ =™’ then

D> e[ (2 4 1~ 5) 4 M2

n=0 s==£1

_ eTMZ( l { —tM? Z Z —7[|B|(2n+1- st)]}

n=0 s=+1

From the Ref. [29], we can show that

s=+1 n=1

(A3)

i Z e~ 1B/|(2n+1=s.5)]

n=0 s==1

S
n=l1
= coth (z|B/|).

Plugging all the contribution we have the explicit summa-
tion of the sinh(z2a,BM) and so Eq. (Al) becomes

Fy(7) = e" @B 7| B| {sf sinh(72a,;BM)
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