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Gravitational form factors of the nucleon and one pion graviproduction
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In the framework of chiral effective field theory of delta resonances, nucleons, and pions interacting with
background gravitational field we calculate the gravitational form factors of the nucleon up to fourth order
in the small scale expansion and obtain the long-range behavior of the corresponding contributions to the
energy, spin, pressure, and shear force distributions. By comparing nucleon gravitational form factors with
and without delta contributions we conclude that explicit inclusion of deltas plays an important role. Next
we explore the Lorentz structure of the N + Nz transition matrix element of the conserved symmetric
energy-momentum tensor and introduce its parametrization in terms of twelve transition form factors. We
use the chiral effective field theory to calculate the tree-order contributions to the gravitational transition
form factors of the pion graviproduction off the nucleon up to third order.
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I. INTRODUCTION

Hadronic matrix elements of the energy-momentum
tensor (EMT) have been studied intensively over the past
decades on both theoretical and experimental sides. These
quantities, which can be extracted from the GPDs [1-4],
encode global characteristics of hadrons, such as the
charge, mass, spin and the D-term [5-8]. The gravitational
form factors (GFFs) of the nucleon, which are accessed
experimentally in exclusive processes like deeply virtual
Compton scattering (DVCS) [3,9] and hard exclusive
meson production [10], have been the main focus of many
works in the last years, see, e.g., recent colloquium [11] and
references therein. Moreover, nonsymmetric hadronic
matrix elements of EMT, which are parametrized in terms
of gravitational transition form factors (GTFFs), and their
connection to the transition GPDs have awaken increasing
interest in the past few years and started to be studied both
theoretically and experimentally, see, e.g., Refs. [12—-15].

Experimentally, the GFFs and the GTFFs are hard to
obtain at low energies, so we may rely on chiral effective
field theory (EFT) to make predictions for these quantities.
In Ref. [16], the effective chiral Lagrangian of nucleons and
pions has been extended to curved spacetime up to second
chiral order and it was used to obtain the GFFs of the
nucleon to fourth order of chiral counting. In the first part of
the current work we extend the Lagrangian of Ref. [16] by
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including the terms with delta resonances at the leading
order and the order three terms of coupling to external
gravitational field relevant for calculations of the current
work. Next we calculate the nucleon GFFs up to fourth
order in the small scale expansion [17,18] and obtain the
long-range behavior of the corresponding contributions to
the spatial densities, i.e. to the energy, spin, pressure and
shear force distributions. In the second part we discuss the
one pion graviproduction (OPGP) off the nucleon, in which
the initial nucleon scatters on external gravitational field
and emits a pion in the final state. The OPGP, which can be
accessed in hard exclusive processes [19-22], was dis-
cussed for the first time in Ref. [19] where the authors
showed that it is related to the second moment of the Nz-
distributions. They also showed that soft-pion theorems,
which are related to OPGP at low energies, can be used to
provide useful estimates of the soft-pion contamination in
hard exclusive reactions and they can serve as an additional
source of information about GPDs. At the threshold, the
matrix element of OPGP is parametrized in terms of three
independent GTFFs, that were introduced in Ref. [23].
The OPGP in the framework of chiral EFT at the threshold
was also studied in Ref. [16]. We extend the work of
Refs. [16,23] beyond the threshold and give a general
parametrization for the matrix element of a conserved EMT
corresponding to OPGP in terms of twelve independent
GTFFs. Next, using the chiral effective Lagrangian, we
calculate tree-level diagrams contributing to the GTFFs up
to third order.

This work is organized as follows: In Sec. II we specify
the relevant terms of the effective Lagrangian for pions,
nucleons and delta resonances in curved spacetime and
the corresponding expression for the EMT. In Sec. III we
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discuss renormalization of the loop diagrams contributing
in our calculations and obtain the nucleon GFFs at fourth
order in the small scale expansion. Next, in Sec. IV we
discuss the parametrization of the matrix element of OPGP
and use the Lagrangians from Sec. II to obtain the tree-
order contributions to the GTFFs. The results of the work
are summarized in Sec. V. In Appendix A we show the
building blocks of the action together with the corres-
ponding expressions of the EMT and Appendix B con-
tains variations of terms in the action with gravity. In
Appendices C and D are given identities, which we used to
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reduce some redundant structures in the parametrization of
OPGP and also the tree-order expressions of the GTFFs.

II. EFFECTIVE ACTION IN CURVED SPACETIME
AND THE ENERGY-MOMENTUM TENSOR

The action corresponding to the effective Lagrangian of
pions, nucleons, and delta resonances in the presence of
external gravitational field is obtained from the correspond-
ing expressions in the flat spacetime. The terms relevant for
our calculation have the following form:
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where the delta resonance is represented by the Rarita-Schwinger field,' g" is the spacetime metric and y, = ejy,, with e
denoting the vielbein gravitational fields. In Egs. (3) and (4) we take the off-shell parameter of the delta sector A = —1. The
building blocks of the above specified terms of the action are given in Appendix A.

Further terms of the third and fourth order Lagrangians contributing to our calculations (at tree order) contain the
Riemann tensor, the Ricci tensor and the Ricci scalar. The action corresponding to the most general third- and fourth-order
Lagrangian of such terms reduces to the following minimal form:
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'"The delta fields W contain isospin projectors 52 = 6;; — 37,7}, i.e., they satisfy the condition W = éfj‘Pﬁ
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FIG. 1.
respectively, while the curly lines represent gravitons.

The interactions with coupling constants /;;, [, and I3
have been introduced in Ref. [24] and the ones with cg
and c¢g in Ref. [16]. Further we introduced in Eq. (6)
new interaction terms of the third order Lagrangian, with
coupling constants Elgi, contributing (at tree order) to our
calculations. Similarly to the terms with cg, cq, 1, /12, and
[13, the new interaction terms contribute in flat spacetime in
the nucleon GFFs as well as in the OPGP although the
corresponding action disappears in the flat spacetime.

The EMT for matter fields interacting with the gravita-
tional metric field is given via

258,
V=989’

while for the fermion fields interacting with the gravita-
tional vielbein fields we use [25]:
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From the above specified terms of the action we obtain
the EMT in flat spacetime. The corresponding expressions
are given in Appendix A. In the next section we use the
EMT to calculate the nucleon GFFs.

III. ONE-LOOP CORRECTIONS TO THE
GRAVITATIONAL FORM FACTORS

The one-nucleon matrix element of the EMT is para-
metrized in terms of three form factors as follows [8]:
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where m,y is the mass of the nucleon, (p;,s;) and (py,ss)
are the momentum and polarization of the incoming and
outgoing nucleons, respectively, and P = (p; + ps)/2,
A:pf_pi’ IZAZ.

One-loop contributions to the nucleon GFFs. Double, solid, and dashed lines correspond to the deltas, nucleons, and pions,

Tree-order diagrams up to fourth order in the small scale
expansion give the following contributions to the form
factors:
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where x4 and y# parametrize the tree-order contributions of
the fourth chiral order. We use the superscript A to distin-
guish the LECs from the ones, that appear in the theory
without A resonances. For the one-loop contributions we
calculate the diagrams shown in Fig. 1.

To order the contributions of various diagrams we
apply the small scale expansion (also called the e-counting
scheme) [17,1 8].2 Within this scheme the pion lines count as
of order minus two, the nucleon and delta lines have order
minus one, interaction vertices originating from the effective
Lagrangian of order N count also as of order N and the
vertices generated by the EMT have the orders corresponding
to the number of quark mass factors and derivatives acting on
the pion fields. Derivatives acting on the nucleon and delta
fields count as of order zero. The momentum transfer
between the initial and final states counts as of order one,
therefore in those terms of the EMT which contain full
derivatives, these derivatives count as of order one.
Integration over loop momenta is counted as of order four.
The delta-nucleon mass difference also counts as of order one
within the e-counting scheme. It is understood that the above
described power counting for loop diagrams is realized as the
result of our manifestly Lorentz-invariant calculations only
after performing an appropriate renormalization. To getrid of
the divergent parts and power counting violating pieces from
the expressions of one-loop diagrams we apply the EOMS
scheme of Refs. [27,28], with the remaining renormalization
scale chosen as u = my, where my is the mass of the
nucleon. The one-loop parts of counter terms are given by:

For an alternative power counting in an EFT with delta
resonances, see Ref. [26].
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32r=\n—-4
n is the spacetime dimension, y = —I"(1) and & is the delta-nucleon mass difference, i.e., § = my — my.

After renormalization we obtain for the D-term the following one-loop contribution, expanded in powers of the pion mass
and the delta-nucleon mass difference:
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Next, we define the slopes of the GFFs by writing the form factors as:

+

M2+ O(e%). (14)

A(t) = 1+ 541+ O(£2),
J(t) = % + 550+ O(2?),
D(t) = D(0) + spt + O(#?). (15)

Calculating loop contributions to these quantities and expanding in powers of the pion mass and § we obtain

: M
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As mentioned in the introduction, the one-loop corrections to
the GFFs of the nucleon were calculated in Ref. [16] in the
framework of chiral EFT. If we switch off the delta resonances,
i.e., set g;ya = 0, then we obtain the same expressions for the

AlQ?
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N+ Oe). (16)

407> F2

slopes and the D-term as the ones obtained in Ref. [16]. To
illustrate the differences between GFFs with and without delta
contributions we use the program LoopTools [29] and plot the
GFFs as functions of Q> = —t in Fig. 2. Before doing that we
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FIG. 2. GFFs of the nucleon as functions of Q2. Solid curves represent the GFFs with A resonances while dashed curves stand for

GFFs without A resonances.
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had to fix the LECs cg, ¢g, and &'y4 together with the
parameters x; and y; in both theories. Due to the lack of
empirical data we cannot fix all of them, but for the sake of
comparison we substitute the following values of the unknown
LECs in the theory without A resonances
x1:Y1:)72:394:C9:0’ (17)
and fix cg from the value of the D-term and the LECs of the
effective Lagrangian with explicit delta from the condition of

matching physical quantities in theories with and without
explicit deltas:

DA =D =-0.2,

54 = 54,

53 =5y,

55 =sp, (18)

where D and s# correspond to the D-term and the slopes in
the theory with A resonances. The value D = —0.2 is taken
from Ref. [30].3 For the choice of the unknown LECs given in
Eq. (17) we obtain from Eq. (18) the following values for the
remaining parameters

XA =1 Gev+,
cg = —1.15 GeV!,

yA=-72GeV2 = y}=122GeV?2
cd =-1.29 GeV!,

c§ =-097 GeV~!,
db, = 0.44 GeV~3, (19)
Moreover, we use for the plots below the following numerical values for the masses and the LECs obtained in Ref. [31]
gena = 1.35, ga = 1.289, my = 0.93827 GeV,
F, =0.0922 GeV, c; = —0.82 GeV~!,

ch =-1.15GeV!, cd =157 GeV™!,

my = 1.232 GeV,
¢, = 3.56 GeV~!,
(:3A = —2.54 GeV~L.

M, = 0.13957 GeV,
c; = —4.59 GeV!,
(20)

As can be seen in Fig. 2 the contributions with the A resonances become important for the GFFs with increasing Q>
(for more details see below). As the next step, we calculate the long-range behavior of the corresponding gravitational
spatial densities, which can be obtained from the nonanalytic contributions of the GFFs in the chiral limit. That is,
we decompose the GFFs in two parts, one which is analytic in ¢ and one which is nonanalytic.4 Similarly to Ref. [16] we
expand the nonanalytic contributions of the GFFs in the chiral limit and obtain up to the accuracy of our calculations the

following results:

2 2
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(1) 288027253 "\Twz) T e

(505 + 4(ca + 5¢3)my)

_l‘ 3
- thn{ —- o(r).
16072 F2 n<m12V> +0(#)

For the sake of comparison we plot in Fig. 3 the
nonanalytic parts of GFFs with and without delta contri-
butions. As we can see from Fig. 3, the A resonances give
noticeable contributions to the nonanalytic parts of the
GFFs, which in its turn will affect the spatial density
distributions directly. The importance of these effects will
be discussed at the end of this section.

The corresponding connections between the GFFs and
the spatial densities of energy (pg), spin (p;), pressure (p),

(1)

and shear forces (s) in the zero average momentum frame
(ZAMF) are given in [32] and they read

3The authors of Ref. [30] obtained for a model independent
bound D < —0.2. For the sake of the current work we take the
value D = —0.2 to fix the coupling constant cg.

“The analytic contributions are too lengthy to be shown here
and they are not relevant for coming discussion.
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FIG. 3.
while dashed curves stand for GFFs without A resonances.
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Nonanalytic contributions of the GFFs of the nucleon as functions of Q2. Solid curves represent the GFFs with A resonances
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Using the expressions of Eqs. (21) and (22) we obtain the following results (valid in the region of distan-

ces 1/Agpong K 7 << 1/M):
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[
The local stability condition of Ref. [8] (ie. delta to a nucleon and a pion, i.e., they carry information

25(r) + p(r) 20) is satisfied by all terms, while the
positivity of the energy density is satisfied by all terms
except the ones that are proportional to g,zr,\, A- These terms
that violate the positivity of pz(r) are related to the decay of

about the instability of the system. This behavior is similar
to the one obtained in Ref. [33], where the spatial densities
of the p meson were calculated and it was shown that the
general stability condition and the positivity of the energy
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density are satisfied by all terms except the ones that
depend on the coupling constant corresponding to the
decay of the p meson.

A. Importance of the A resonances
to nucleon GFFs

Below we estimate the importance of including the A
resonances as explicit degrees of freedom when dealing
with the GFFs of the nucleon. Generally in effective field
theories we expect the coupling constants to be domi-
nated by masses of the lightest particles, that have been
integrated out. In the framework of considered chiral
EFT, we expect that coupling constants are scaled with
the p meson mass (M, =0.75 GeV [34]). Moreover,
when counting the orders of small parameters, we mean

implicitly expansion in massless scales, which are given
calculations up to fourth chiral order, the error of our
calculations is expected to be of order five, which means,
that for Q% ~ M2 ~0.019 GeV? the error due to higher
chiral order contributions is expected to be around
0.02%. From the full results we have at Q> = M2 the
following values for the GFFs with and without A
contributions

. M 2 . .
in our case by 3 and % Since we are doing the
P P

AL (M2) = 1.0086,
JA(M2) = 0.5001,
DA(M2) = 045,

A(M?) = 1.0085,
J(M2) = 0.5005,
D(M2) =0.17. (24)

From Eq. (24) we have differences of 0.01%, 0.08%, and
62% for A(t), J(t), and D(t), respectively. Except for
A(t), these differences lie beyond the estimated error at
t= M,z, and hence, we conclude that the inclusion of the
A resonances is important for the GFFs of the nucleon.
As we can see from the plotted full results, the A
resonances give larger contributions to D(z) than to A(r)
and J(r). This can be explained as follows: The structure
of EMT is such that, at t = 0 we have in both theories
A(0) = 1 which corresponds to mass of the nucleon and
J(0) =1 which corresponds to the spin, while for D(0)
the value is not fixed by the structure of the EMT. Hence,
for D(1) we expect more deviation between both theories
around t = 0, i.e. also at = M2 than for A(¢) and J(1).
It is worth mentioning, that while the above numerical
values correspond to the choice of Eq. (17), we obtained
that for various natural values of the unknown LECs the
resulting GFFs behave similarly to Fig. 2. Moreover, we
can support the observation, that the contributions of the
delta resonances are important by considering the non-
analytic parts of the GFFs [see Eq. (21) and Fig. 3], for
which all LECs are known and fixed via experiments. At
Q? = M2 we have the following values:

AA(M?) = 1.8 x 1073,
JAMZ) = =27 x 1073,
DA(M2) = -0.28,

A(M2) =25x%x 1073,
J(M2) = =26 x 1073,
D(M2) = —0.24. (25)

From the above results we have differences of 28%,
3.7%, and 14.3% for A(t), J(t), and D(t), respectively. All
of these differences lie beyond the estimated error of
0.02%, due to higher chiral orders.

To improve the above calculations one might consider
higher order contributions coming from one-loop correc-
tions that contain vertices from the action given in Eq. (6).
However, such contributions contain many unknown LECs.
This suggests to study various processes of gravity-induced
hadronic interactions, in which the unknown LECs con-
tribute and hence can be determined. An example for such a
process is the transition of the nucleon to the nucleon and
the pion via the gravitational field, whose matrix element
and Lorentz structure is studied in the following section.

IV. MATRIX ELEMENT OF THE ONE
PION GRAVIPRODUCTION

In this section we discuss the OPGP off the nucleon, i.e.,
the matrix element of the EMT where the initial state
contains one nucleon and the final state contains one
nucleon and one pion. As mentioned in the introduction
the OPGP, which is accessible in hard exclusive processes
like the nondiagonal DVCS [y* + N +> y + (zN)] can be
used to obtain additional information about the new LECs
of chiral EFT [19-21], which are needed to make pre-
dictions for other physical processes. The measurement of
the amplitude of the OPGP is planned by the CLAS12
collaboration at JLab (USA) [16].

The matrix element corresponding to OPGP has a
lengthy Lorentz structure, as can be seen in Ref. [21].
This leads to technical complications in calculations, like
checking the current conservation. Therefore it would be
helpful to parametrize the matrix element of OPGP in terms
of independent, conserved Lorentz invariant structures.
This will be done below.

The amplitude of the OPGP has the following general
form

—i{ps.sp.q.c|T"|pi,si) = u(pg.sp) 0" 1u(p;,si).  (26)

where ¢ is the momentum of the pion with isospin index c,
p;i and p; are the momenta of the incoming and outgoing
nucleons, respectively, and O*” is a symmetric matrix in
Dirac space. In the following we make use of the Lorentz
invariance and conservation of the EMT to parametrize O*¥
in terms of independent and separately conserved Lorentz
structures. For that sake we introduce first the following
linearly independent kinematic variables

A=pr+q-pi (27)
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S,

1) 2)

3) 4)

FIG. 4. Tree-order diagrams contributing to the matrix element of OPGP. Solid and dashed lines correspond to nucleons and pions,

respectively, while curly lines represent gravitons.

P=p;—q+ap;, (28)
A=ps+q+bp; (29)
where
2MZ -2t
a:—l—ﬁ,
b_—m,z\,—l—s—l—?
Comd—s+7

and s = (ps +q)% t = (py — p;)?, and T = A% One can
easily check that A-P =0,A-A =0. Analogously to
Ref. [35], applying the Cayley-Hamilton theorem, we

|

construct O** for spin-1/2 systems using two different
covariant multipoles contracted with the kinematic varia-
bles in all possible ways that respect symmetry and
conservation of the EMT. Moreover, since the pion field
has negative parity, it gives an overall minus sign under
parity transformation and hence the tensor O* must
transform with minus under parity.” This means that each
structure in O* must contain either €*’* or ys. We make
use of the Lorentz invariance, symmetry and the con-
servation of the EMT to obtain all possible structures
contributing to O*. After investigating the dependence of
these structures on each other and removing the redundant
ones, we find that the most general form of the matrix
element contains twelve independent structures and it can
be written as

1 - i X
i o Tl = #0503 (£ 28, o3 (i s, e
my

1 7 A ~ ~ ~
+ 2 <f5f75 + lf—6€APAﬂ}’/3> PHAY + (f iy’ + ifs eAPABy >(ti1ﬂv — ArAY)
my

+ lfg( VPAp _ GAPAﬁAU)P”}/ﬂ + lflO( VPAp _ (:'APAﬁAU)A”}//;

+i(fu +f12P”)€DAA/}}’ﬂ +u< V] “u(p;» s;),

where any index p€&{P,A, A} means contraction with
the corresponding variable, e.g., eA"# = ¢**PA P.. The
GTFFs f; are multiplied with separately conserved struc-
tures and they are functions of 7, ¢, and s.

In general one can define P and A differently, such that
the parametrization in Eq. (30) remains the same, as long as
they are orthogonal to A, and P, A, and A are linearly
independent. In Appendix C we show some formulas that
we derived to reduce redundant structures that may appear
while calculating the matrix element.

As an application we consider the tree-order contri-
butions to the OPGP up to third order. There are four
tree-order diagrams shown in Fig. 4. The corresponding
contributions to the GTFFs are given in Appendix D. At
one-loop order there appears a large number of diagrams,
calculation and analysis of which are beyond the scope of
this work. Such calculation is under way and will be a
subject of a separate publication.

(30)

V. SUMMARY AND OUTLOOK

In this work we generalized the chiral effective
Lagrangian in the presence of external gravitational field
to include the delta resonances at the leading order and
calculated the corresponding contributions to the nucleon
GFFs. From the full one-loop expressions we obtained the
D-term and the corresponding slopes expanded in powers
of small quantities. To see the difference between the GFFs
in the cases with and without A resonances we plotted the
numerical results generated by the full expressions of the
GFFs, which are too lengthy to be given explicitly in this
work. From the plots shown in Fig. 2 one can see, that the A
resonances give significant contributions to the nucleon
GFFs that increase with the momentum transfer. Based on

>This is because the parity is conserved for the matrix element
of the EMT.
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the numerical analysis at the end of Sec. III we argued that
the contributions of the A resonances to the GFFs are much
larger than the estimated error of our calculations. This
implies that the inclusion of the delta resonances as explicit
degrees of freedom is essential. This conclusion is also
supported by the nonanalytic parts of the GFFs in the chiral
limit shown in Fig. 3.

From the nonanalytic contributions to the nucleon GFFs
we obtained the long-range behavior of the corresponding
spatial densities in ZAMF of Ref. [32]. We noticed, that the
positivity of the energy density is broken by the terms that
come from A coupling to nucleon and pion. This suggests
that a more detailed study between the stability conditions
and decay of unstable particles is in order.

In the second part we studied the matrix element of the
EMT corresponding to gravitational N +— Nz transition
and gave a general parametrization in terms of twelve
independent GTFFs. This parametrization offers a simple
and consistent way to do the calculations of the corre-
sponding matrix element, where the current conservation
and invariance under parity, charge and Hermitian con-
jugation is directly seen. As an application we used the
constructed Lagrangian to obtain the tree-order contribu-
tions to these GTFFs up to third chiral order. One-loop
order calculations within chiral EFT are underway. Using
arguments, that are similar to those given in Sec. IV, one
can find a parametrization for any nondiagonal matrix
element of the EMT, e.g. when in the final state a photon is

|

<>

1 = <
vV, = i(v" -V,).

u

iV, = Viw =¥ {&'Jaﬂ — 5T, + i5n)

= i . (s
V¥ =0, + w0, + (T, - i)W,
- < _ 1 - - L (s
PV, = 0, % -2 Wo 0 - (T, - iv}).
1
wib = —Eg”ej(dﬂef —ebry,),
2e = uyu" +uytu,
. 1
X+ =X+ — ) <Z+>’
X =2By(s +ip).

u

DN | =

u

1 )
uw = ETT(M”ZJ).

+ i€l Tr(¢T,) — ééija),‘,’baab] — i

emitted instead of a pion or the final state contains one A
and a pion or a photon.

The OPGP is related to deeply virtual hard exclusive
processes and the corresponding GTFFs can be extracted
from the data that will be available from future experi-
ments. From this connection we can obtain information on
the unknown LECs, which will help testing the chiral EFT.
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APPENDIX A: BUILDING BLOCKS OF THE
ACTIONS AND EXPRESSIONS OF EMT

The building blocks of the actions in this work are given
as follows:

V¥ = Vil — [5"1'0,, + 60T, — 80 — iel*Tr(eT,) + %5”0),‘}176“1,] W -T2,

Hys

u, = i[u’0u — ud,u’ —i(u"v,u — uv,u)],

I, == ou+uou’ —i(u'v,u+uv,u’),

(A1)
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Using Eqgs. (8) and (9) we obtain the following expressions for the EMT corresponding to the actions given in Sec. Il

2

2 _ F ¥ U F;2z o + F72r o o
Tr —TTY(DﬂU(DyU) )—7 TTT(D U(D,U) )+7Tf()(U +Ux") ¢+ (n<v),

123 i- < M sy _
Tl<\17r,/,w) = 5 le[lDI/\Il - % (lPl}’ DalP — m‘I“P)

%)
4m2

2 P, DY) + {aa[< D, (TW) - 1<u uD>Da(W)H

iC2
16m

[{u, ") (P{D,. Ds}¥ + {D,. Dy} P¥)] + ——= 0" {(u"u’)[D,¥1y,0

PH

y + Dﬂ‘i‘nwo lP]

PH

1 - icq -
+3 3 ()P + f\p(apﬁ[u W] + 6 [u®, u,]) ¥ ta. <6 %yﬁ Finy

7 = 1 - -
+ 8—7%bﬁ< Flon™¥ — 3w {cl (. )P¥ — g 5 (uqug) (W{D* DP}¥ + {D*, D/} ¥¥)

+ %( u®) Py 4+ 1 ‘I’aaﬂ[ua, ug)¥ + cs 7, W+ 8—‘1’(;”‘/’FJr y 4 o T Po (F, )‘P} +(u<v),

- . hig . — . < . —_ . < . — . . j — . g .
=W,iy*D, Y, +Y¥,iy*D,Y, +¥,,iy*D, ¥, + mp\'¥,¥, — %‘ngﬂDy‘P’“

i o e e
+ 5 (P DoV + Wy, DoY), — Wiy,y y/;Da‘I’ Wy m’”D Wi — Wiy~ yﬁnl)ﬁ‘i‘ )

1
T(Azz.;w =
+7 al[‘I” (Y uMafaply + Nagllufa? ) + MuMpY o) PP] — 7 S (Ply,y W + Py, W)

77;w [P, l]/ﬂD e — WL — Wiy D WP — ‘f”'”’iyﬁDa,‘P;i + Py’ y*y' D, Y

+ mA‘Pay PP+ (u < v),
1 1 pi o« U, awi i anf i T i Ui i U, i Wi
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1
+5 [Wly,y ul¥ + Whyy, ul¥ + Oy, ui Wi + Py, y" uy‘l”]} + (u < v),

2 €8 = icy = = o
T = 3 (1,,0* — 0,0,]P¥ + — [0°(Wy,,V,¥) + 1,,0°0" (Wy,V,;¥)

- aaaﬂ (lilyavulp + lpyuvalp)] + (:u < I/)v
. ; l .
T = 1,V = V, V) I To(DU(DLU)) + s Te(rUT + U] + [0 (Te(D,U(D,U))
+ 1,0 (Tr(DU(DyU)")) = 0%0,(Tr(DU(D,U)T) + 7, Tr(D,U(D,U)Y))] + (1 < v),
v I~ & ~ = ~ & ~ =
T = —Zﬂyy[d1ow7“75<”2>“a‘y + d6Prrs () ua¥ + di7Prys(riug) ¥ + idig¥rys[De, x-]'P)

1. - . L o
+3 [dioPy,rs(u?)u, Y + di6Py,rs(r ) u,Y + dvVPr,rs(ru,)¥Y + idigWy,rs(D,. x| Y]

<>
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where

Aﬂlup = Zlg3§’apﬂy5ulvu‘l’ - iglg4dy(‘i’0pﬂv,1‘l’), (Ag)

N 1is the Minkowski metric tensor with the signature
(+,—,—,—) and ABP| = A*BF — APB*, ABP) = A“BP +
APB®. The covariant derivatives D acting on spin-1/2 and
spin-3/2 fields coincide with V in Eq. (A1) with g,, = 1,,,
ie, I, = wi =0.

APPENDIX B: VARIATION OF TERMS
IN THE ACTION WITH GRAVITY

To obtain the EMT we have to deal with variations
of various quantities, some of them are of the following
form

5‘CR = /d4x\/—gAIMDpéR/}’MUL}_n,

By taking A**, = B*¢% and using Eq. (B5) we obtain:

where A# , 1s some tensor that depends on the fields and/or
their covariant derivatives. From Eq. (4.60) in Ref. [36]
we have:

OR? 5 = vV, — Vbar";ﬂ = (8567 — 5553’)%51“@,, (B2)
1.e.

5Ln = [ dixymgare, @50t - 500 V.o0hl

= [, - ) (B)

From Eq. (4.59) in the same reference we derive the
following expression for the variation of the Christoffel
symbols

1
6F//;w = _5 [giwvyégip + gzvaaqﬂ” - gﬂagwﬁvpégaﬂ]7

We can use the last equation to derive contributions coming from Ricci scalar as follows:

B4
(B1) (B4)
1e.,
|
1
5£R = - 5 / d4xv _g[glmvuéglp + gﬁyvmégip - gﬂagwﬂvpégaﬁ}vk (A”wkp - Aﬂkwp)|g=71
1
= 5 / d4-x\/ _g(vaﬂ [A/MK/) - A/}Klp - A/I/)Kﬁ + A/lkpﬂ])égﬂ”g:n' (BS)
We can use the last equation to derive the EMT contributions coming from the Ricci tensor as follows:
/ N ) / /GBS (R ), = / YN (B6)
1

/ d4X\/—gBlw5Rm/|g:,’ = 5/ d4xw/—g[sz,1p + gﬁpV"VﬁBﬁK - VﬁVP(BM + B/Iﬂ)]égl”g:r]- (B7)
/ d*x\/=gVéR = [9,,V*V - V,V, V]|sg"|,_,. (B8)

/ d4x\/—gV5R|g:,, = / d*x\/=gV gos6R™ lgmy =

where B* and V are arbitrary tensor and scalar fields, respectively.

APPENDIX C: REDUCTION OF STRUCTURES

We make use of various equations from Appendix B of Ref. [35] to derive useful relations to get rid of some redundant
terms in the amplitude of the OPGP. The relations we obtained are given by

yhys = % (AM[T + 8t] = StA* + TPH)ys

Os—1
+1

+ (8t + 285 — D)2}y,

{(8s = D)[IP* = StA* + (T + 51)AF]eAPM 4 2F1[7e PN

(C1)
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y | .
Ays = 5z {20my (7 + bt)ys + (35 =Dy} (€2)
y - bs —1 #(6s —7)? . - 5
Artys = Brys + 5 (o ey i B oy - oy (35— 7P 4 AR JRPy,
2t 2mpyc
it(6s —1) . - ~ =N A
+ UGl [{(85 — )e'PM + 2((85 — T)(8s + 61) + )2y, (C3)
myc
271(8s — A?)

8PPy, — (AM[F + 81] — 612 + TPH)eMPNy,

| 2PH(2(=20 + 285 +61) = (3s =T)(F + 1)), sy 2P1(5s — T)( + 61)

#PAS C4
c - € Yp> (C4)

where ¢ = 271[27t + (6s — )(6t + 7)] and the symbol = means both sides are sandwiched by spinors and the on-shell
relations are used. For example, the Gordon identity

_ I _ .
a(prosp)r'u(pissi) = 5 u(pysp)lPy+ pi +i0*(pr, = pi)lu(pi i), (Cs5)
can be written as
N7 1 H H P UV
v = %[Pf +pi + i (pp — pi)l- (Co)

APPENDIX D: TREE-ORDER EXPRESSIONS TO GTFFS

The diagrams in Fig. 4 yield the following contributions to the GTFFs

1 mytéu  ~  S6téuds(St + Su)

{29A09(Mi -)+ ZimeNétéu — 41394 72 +dg

fi=

" 2FtStéu 2 27
- - 2t — 6t)(0t + ou
g H0u(51 + 1)~ 4030 + (2 = ] + gy =L (1)
7 ! L 2 gscot + & ymyou] (5t + 6u)t
= por = — C m u u
2= F1oui|(T + o1)(6t + ou) — 2] |44 92N
1- 1. N
+ gdg35u5s(5t +6u)® + ng4gAt(—(5t + 6u)3Su + 4m% [~ + (M2 — 5u)*7)
1
(2 = b + g1+ 807 . (02)
1 Z(42 4 72 4 2 P p 2
f3 = —W{“-QACQ(I(t - Mﬂ> + <5t + 5M)(t + Mﬂ -1 - 2tt)) + szdg25S5t
N
— d3055ut(8s — T) — 2d 4, (3s(5t + 285 — 27)(8s — T) + 4m3,61(26s — 1))7
gampyl s
- S%I&& + 2([2d16 — dyg|M2 + ga)my (2t — 7)(T = 85)}. (D3)
1
= — —{—4guco(T — 5)2(P — 561> — (85 + 2t
J4 8F1P5s((6s — 1) (T + 61) —|—2tt){ 9aco(f = 68)°(F" =& (85 +21))
+ [d3T6u(8s — T+ 21) — 2d ymy613|8s(7 — 8s)? — 2gad (55 — T)(—45tm3, (P — 3165 + 25s5(3s + 1))
— 85(8s — T) (=27 + 285 + 6t) (=1 + s + 21)) — 2([2d s — d1g]M? + g4 )my(5s —1)*(6s — T+ 21)}, (D4)
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_ 1 (72 b 4 2 bt
f5 = m{ 4gAC9((6S t)(t + 25S5l lét) + 25SM” 25Sl 45St(5s t))

— dmyd p3s6t(i — 8s — 8t) + d 365(7 — 55) (T — 6t) (T — 65 — 6t)

gampyly; ~ N (i
— 164 FIZ 13 Sst(8t+ s —7) + 2([2dyg — dig]M2 + ga)my(8s — 7)(7 = 8t),

n

+ 294 d [P (—4m3, (8, — 26u) — Sud,) + 18, (4m3, (8, — 36u) — Su®) + Sud? (Su + 8,)]}. (D5)

" SuFitds((T+ ot) (5t + ou) — 28t) | 4

_n2
3552t — 381)] — d p6stmy =D

Fo= ! {gAC9 (P = 65)2[=B + (P + 26561) (85 + 6t)

(6t + 65 — )

~ Os(6s —1)?
SCRNT:

n ([2d16 — dis]M7 + ga)my
8

(85 + 8t — )[(85 — F)(7 — 61) + 2651]

(65 — 1)2[(8s — F)(81 — 7) — 26s1]

ga gl’g4

3 61 [;2(61 — 21‘)(4"’1%[(51 - 26“) + 51/161) + ;51 (51451 (514 + ZI)

+

— 4m3, (48ut — 216, + 8 — 35us,)) — 5ud? (Su + 5,)] } (D6)

1 1 - . - ~
f7 = {— [QA (5”(52 + t)(52 + 5”)[—25209(52 + 22‘) - tt(Cg -+ 2dg5(52 + 2514)) + 4526‘91]

2F 87 | tduds
+ 8yc5imy (8, + 1) (8, + 21 = 21)) = 2([2d16 — d13]M7 + ga)mybud1(6, + Su)]
4 - - ~ -
- Q;TN [(41y, + Ly) + 741,61 + 81,,M2 = 811,1) — 1,3512] — 8mydl, 67
ot(6t +7) .~ o~ -
—my % [dgztst - t(4dgl + dgz)}}, (D7)
T—0s . - . .~
fg = m {gA<t - 5t)(cstm12\, - 2C95S(5S + 5t - t)) - 5smN(4dglt + de(t - 5t))5u}, (Dg)
7—0s
= — — - 212ds — d M2(i=6
fo 8iFmy6u(i(i + 6t — 21) — 6s(7 + 5t)){ [2d16 = duglmy M3 (7 = 3s)
+ 204 (d 4 7(45tm3, + (85 — 1) (6t + 85 — 1)) — 2¢o16t + my (T — 85)) — 6u(d38s(f — 85) + 2d ptmy)}, (DY)
(65 — 1) - ] ;
fio= {(2[2d6 — dig)lmyM7 + d 365 (5s + 6t — 1)) (6s — 1)

~ 8issFmy((6s —1)(T + ot) + 27t)

+ 24 (my — dyuds(8t — 21 + 265)) (85 — T) + 4ga(co — 2d ym% ) (P + 85(5t — 7)) — 2d pSs5tmy }, (D10)
os —1

4FmySst(267 + (65 —7)(6t + 7))

+ dymySsdt(5t + 285 — 7) — d 305 (8s + 5t — 1) (1F + (85 — 7)(6s + 61))

+ 2g4d y (85(25s + 5t)(85(8s + 8t) + 25tm3,) + 27 (3s + 2m3 ) (6s — M2)

— 755((8s + 6t)(48s + 6t) + m% (455 + 65t) — t(25s + 6t)))

+2([2d\6 — d1s]M7 + ga)my(1(8s — M7) — 85(8s + 61)) }, (D11)

fu= {2gaco(165(28s + 35t) — 556t(28s + 6t) — 2% (55 — M2))
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1
4Fmyout(—2t1 + (6t + 6u) (6t + 7))

Jin=

{2g4cot (St + Su)(5téu — T(Su — 2M?2))

+ domySui(5t + du) (5t + 26u — T) + d 365(8s — T)(3s + 6t — 7)((8s — 7)(8s + 6t) + £7)
— 2g5d 4 7(8t + Su)[2m% (5t6u — 1(Su — 2M2)) + Su((5t + du)(Su — 7) + 17)]

+2([2d,6 — d1g|M2 + g4 )my (55 — 1) ((8s — 7)(8s + 6t) + 17)}, (D12)
where
5s = s —m%, St=1t— M2, Su =7—6s— 6t
5, = 8t + éu, 5, =6t —1. (D13)
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