
Definition of fragmentation functions and the violation of sum rules

John Collins *

Department of Physics, Penn State University, University Park, Pennsylvania 16802, USA

Ted C. Rogers †

Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
and Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

(Received 27 September 2023; accepted 8 December 2023; published 5 January 2024)

We point out a problem with the formulation and derivations of sum rules for quark fragmentation
functions that impacts their validity in QCD, but which potentially points toward an improved under-
standing of final states in inclusive hard processes. Fragmentation functions give the distribution of final-
state hadrons arising from a parton exiting a hard scattering, and the sum rules for momentum, electric
charge, etc. express conservation of these quantities. The problem arises from a mismatch between the
quark quantum numbers of the initial quark and the fact that all observed final-state hadrons are confined
bound states with color zero. We point that, in a confining theory like QCD, the Wilson line in the operator
definition of a fragmentation function entails that the final state in a fragmentation function includes a
bound state in the external field generated by the Wilson line. We justify this with the aid of general features
of string hadronization. The anomalous bound states are restricted to fractional momentum z ¼ 0. They
tend to invalidate sum rules like the one for charge conservation when applied to the fragmentation
functions inferred from experimental data but not the momentum sum rule. We propose to exploit our ideas
in future studies as a way to relate the fragmentation functions extracted from inclusive cross sections to
more detailed nonperturbative descriptions of final state hadronization. We also describe scenarios wherein
the traditional sum rules might remain approximately valid with a reasonably high degree of accuracy.
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I. INTRODUCTION

Factorization theorems for inclusive processes in QCD
are the theoretical basis for much existing QCD phenom-
enology. When factorization is applied to distributions of
final-state hadrons, fragmentation functions (ffs) are used
for the distributions of hadrons that arise from partons
exiting the hard scattering. In analogy with sum rules for
parton densities, sum rules for ffs have been written
down [1–6], including for cases withmore than one detected
final-state hadron, and with proofs that ostensibly apply
nonperturbatively. The momentum sum rule in particular is
sometimes proposed as a constraint in phenomenological
extractions [7,8]. Ideally, one could combine the use of ffs
in studies of scattering data with theoretical nonperturba-
tive studies of hadronization. However, one finds that a

contradiction arises concerning the final state sum/integral
that appears in the operator ff definition, see Eq. (2) below.
If we ignore complications, the definition of an ff

involves an initial partonic state created by applying a
light-front creation operator for a quark (or gluon) field to
the vacuum. Then an ff is a distribution of particles in the
final state (i.e., at asymptotically large time). The sum rules
are just expressions of conservation laws in QCD. Now, all
observed final-state particles in QCD have hadronic quan-
tum numbers. In contrast, the initial state of a quark ff has
quark quantum numbers, e.g., fractional baryonic and
electric charge, and so the final state must also have the
same quantum numbers. This not possible for a normal
hadronic final state.
In this paper, we propose a resolution of this paradox. It

involves the Wilson line needed for a gauge-invariant
definition of the operator creating the partonic state.
Since the Wilson line extends out to infinity, it requires
a modified concept for parts of the final state. By using the
successful string scheme for nonperturbative hadronization,
we find that the final state of a quark ff should contain a
particle that is effectively the bound state of quark(s) with
the Wilson line, but that this is localized essentially at zero
fractional momentum, z ¼ 0. This does not affect factori-
zation and does not contribute to the momentum sum rule.
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But it modifies how other sum rules are to be applied
phenomenologically.
Factorization applies in a general quantum field theory,

not just QCD. So part of our paper will contrast the
situation in a QCD-like theory with the situation in a
nongauge model theory where noWilson lines are used and
there is no quark confinement.

II. THE DEFINITION

The standard definition of a “bare” quark ff dð0Þ;h=jðz; pTÞ
is [e.g., Eq. (12.35) of [9] ]:

dð0Þ;h=jðz; pTÞhj; k1jj; k2i

≡
P

Xhj; k1jh; X; outihh; X; outjj; k2i
2zð2πÞ3−2ϵ : ð1Þ

Here, jj; k1i and jj; k2i are initial quark states with flavor j,
which are obtained by applying a light-front creation
operator to the vacuum. We define light-front variables
by k� ¼ ðk0 � kzÞ= ffiffiffi

2
p

, and a two-dimensional transverse
momentum. The initial quark states have given values of k−1
and k−2 , and transverse momenta (with the transverse
momenta taken to zero later). The variable z is the fractional
minus component of the quark momentum carried by the
observed final state hadron h, p− ¼ zk−, and pT is its
transverse momentum. The out states are jh; X; outi, with h
labeling the measured particle species and the sum/integral
over X representing a complete sum over all other con-
tributions to the final state. Because states of definite
momentum are non-normalizable, we work indirectly to
get a number density, which entails the factor hj; k1jj; k2i
on the left of Eq. (1).
We start by considering nongauge theories, so we have

omitted from Eq. (1) the color factor in the corresponding
equation for QCD given in [9]. We require that the theory
be renormalizable and, to show the contrast with QCD, we
require it to contain elementary Dirac fields that we call
quarks, with at least one flavor. The definition is stated in
4 − 2ϵ dimensions to anticipate the existence of ultraviolet
divergences that need to be regulated and renormalized.
Equation (1) actually defines a bare transverse-momentum-
dependent ff. The bare collinear ff is obtained by integrat-
ing over all pT. It can be reexpressed in the more familiar
form,

dð0Þ;h=jðzÞ≡
Z

d2−2ϵpTdð0Þ;h=jðz; pTÞ

¼ TrD
4

X
X

z1−2ϵ
Z

dxþ

2π
eik

−xþγ−

× h0jψ ð0Þ
j ðx=2Þjh; X; outi

× hh; X; outjψ̄ ð0Þ
j ð−x=2Þj0i; ð2Þ

with the fields separated in the þ direction. Some of the
manipulations needed to give Eq. (2) are just to deal with
the fact that partonic states with definite k− and kT are not
normalizable, so the definition of probability densities in
terms of quantum mechanical states is obtained indirectly.
In addition, there is a Lorentz transformation, to take the
transverse momentum of the hadron to zero while preserv-
ing the minus components of momenta.
Finally, we define jj; ki ¼ b†k;jj0i, where b†k;j is a light-

front creation operator. It is obtained from an expansion
of the Fourier transform of the good components of the quark
field on a light front, and obeys anticommutation relations

fbk;α; b†l;α0 g ¼ ð2πÞ32k−δðk− − l−Þδð2ÞðkT − lTÞδαα0 : ð3Þ
In terms of the quark field of a specific flavor, the bkα
operator, for example, is

bk;αðxþÞ ¼
Z

dxþd2xTeik
−xþ−ikT·xT ūk;αγ−ψðxÞ: ð4Þ

See, for example, Sec. 6.6 of [9] for a more detailed review
of light-cone quantization. Our reason for discussing it here
is to emphasize that there are two different types of particle
state involved in ffs: those like the fragmenting quark states
jj; ki, and those for stable particles in the final states at
large timescales, with correspondingly different operators
to create them.

III. SUM RULES

Now we briefly review the essential steps in the
derivation of the momentum sum rule for ffs. For a more
complete treatment, see Sec. 5.4 of [1].
We start with the following expression for the single

inclusive final state sum in terms of creation and annihi-
lation operators for out particles1:X
X

jh;X;outihh;X;outj≡X
X

a†h;p;outjX;outihX;outjah;p;out;

¼ a†h;p;outah;p;out; ð5Þ
so that, for example, Eq. (2) is equivalent to

dð0Þ;h=jðzÞ¼
TrD
4

z1−2ϵ
Z

dxþ

2π
eik

−xþγ−

×h0jψ ð0Þ
j ðx=2Þa†h;p;outah;p;outψ̄ ð0Þ

j ð−x=2Þj0i: ð6Þ

1We emphasize the need to make clear conceptual and nota-
tional distinctions between the (off-shell) light-front creation
operators and those for on-shell asymptotic final-state particles,
and similarly for the states they create. The issue is particularly
acute in a theory without quark confinement, where one finds a
nontrivial ff for a quark to a quark, as we will illustrate calcula-
tionally in the Appendix. Such a concept is paradoxical if the use
of two different types of quark state is not made explicit.
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In terms of a†h;p;out and ah;p;out, the operators for
components of momentum are

Pμ ¼
X
h

Z
∞

0

dp−

2p−

Z
d2−2ϵpT
ð2πÞ3−2ϵ a

†
h;p;outp

μah;p;out; ð7Þ

where the sum over h is over all species and spin states of
stable particle. We substitute this into the matrix element
hj; k1jP−jj; k2i, which equals k−1 hj; k1jj; k2i, and then
apply Eq. (5) to get an integral over z and pT of the
right-hand side of Eq. (1). This gives the momentum
sum rule

X
h

Z
1

0

dz zdð0Þ;h=jðzÞ ¼ 1; ð8Þ

for each quark flavor j.
The remaining nontrivial step is to show that Eq. (8) is

preserved after renormalization. It is well known that this
works for standard renormalization schemes like MS,
so from here forward we will drop “(0)” subscripts in
equations like Eq. (8) and assume that renormalization has
been implemented.

IV. THE FINAL STATES

The above sum rule derivation relies, for its validity, on
the use of a complete set of basis states jX; outiwhose sum/
integral obeys

X
X

jX; outihX; outj ¼ 1̂; ð9Þ

where 1̂ is the unit operator on the physical state space E.2

The derivation also relies on the sum over h in Eq. (2), etc,
being over all kinds of possible stable single-particle states,
such that the momentum operators obey Eq. (7).
Now all observed final-state particles in QCD have

integer baryon number and electric charge. But the initial
state b†j0i in a quark ff has quark quantum numbers,
notably fractional electric charge, and so is orthogonal to all
purely hadronic final states. This appears to give zero for
the matrix elements in Eq. (2) and hence for the ffs.
The paradox does not arise in a nongauge theory: There,

we can apply a locally smeared quark field to the vacuum to
create a normal physical state with quark quantum num-
bers. By general principles of QFT, there must be final
states of quark quantum numbers, and hence at least one
stable particle (bound or not) of the appropriate quantum
numbers, including electric charge.

But in a gauge theory, local quark fields are not gauge-
invariant physical operators. Applied to the vacuum, they do
not give an unambiguously physical state. Instead, the field
used to define the ff of a quark is multiplied by aWilson line,
whichgoes out to infinity in an appropriate lightlike or almost
lightlike direction.3 AWilson line is effectively a source of
color charge, so a Wilson line going out to infinity changes
the nature of the possible final-state particles. In a confining
theory like QCD, we must have, in addition to normal
hadrons, states that are bound to theWilson line. For a quark
ff, the Wilson line is in a color antitriplet representation. So
we can have a mesonlike state with a quark bound to the
Wilson line in a color-singlet configuration. Other possibil-
ities include an antibaryonlike state of two antiquarks bound
to the Wilson line, again in a color-singlet configuration.
Since the Wilson line has a rapidity with respect to the
fragmenting quark that is infinite, or at least large, we can
expect the bound states to be at a fractional momentum z that
is zero, or close to zero.
We therefore extend the normal QCD state space E, with

its Fock basis of out states, to include these extra bound
states. That is, we replace the hadronic state space E by

E ⊗ B; ð10Þ

where B is the space of bound states for the Wilson line.
Correspondingly there is a modified momentum operator,
with corresponding consequences for the sum rules for ffs.
LetH be the set of kinds of normal hadrons, and B be the

set of bound states of the Wilson line. We propose that the
momentum operator should be modified from the one given
in Eq. (7) to

Pμ ¼ Pμ
H þ Pμ

B; ð11Þ

where

Pμ
H ≡ X

h∈H

Z
∞

0

dp−

2p−

Z
d2−2ϵpT
ð2πÞ3−2ϵ a

†
h;p;outp

μah;p;out; ð12Þ

Pμ
B ≡ X

b∈B

Z
∞

0

dp−

2p−

Z
d2−2ϵpT
ð2πÞ3−2ϵ a

†
b;p;outp

μab;p;out: ð13Þ

The conflict about the initial state with quark quantum
numbers relies on the theory being QCD-like, with color
confinement. So we should expect similar issues to arise in
QED in low space-time dimensions (1þ 1, 2þ 1), where
the classical Coulomb potential rises linearly or logarithmi-
cally with distance. In contrast, QED in 3þ 1 dimensions

2The nonvacuum part of the space is then stratified in a one-
particle inclusive form as in Eq. (2), with h being summed over all
possible kinds of single-particle state, including a spin sum.

3Note that when one treats transverse-momentum dependent
ffs there are some complications associated with the details of the
Wilson line—see Ch. 13 of [9] and references therein. These
complications do not affect the basic ideas being explained here.
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does not have electron confinement, so that electrons do
appear as possible final-state particles. Even so, the
definition of an electron ff in QED still needs a Wilson
line going out to infinity, for which bound states can exist.4

So some version of the QCD issues does arise there,
probably only in a minor way.
Once we have modified the momentum operator, we get

a corresponding modified form for the momentum sum
rule, compared with Eq. (8):

X
h∈H

Z
1

0

dz zdh=jðzÞ ¼ 1 −
X
b∈B

Z
1

0

dz zdb=jðzÞ: ð14Þ

The left-hand side is the same quantity as before, and
corresponds to the ffs that can be inferred from scatter-
ing data, with their purely hadronic final-state particles.
The second term on the right-hand side represents a
deficit with respect to the standard value. To the extent
that the parts of the final state with a particle of quark
quantum numbers give a term that is a delta function at
z ¼ 0, which is the natural expectation, the deficit term
is zero, because of the explicit factor of z in the
integrand.
Observe that in a nonconfining theory, the term with

final-state particles of quark quantum numbers is not
restricted to z ¼ 0; indeed it can in part give a term
proportional to δðz − 1Þ, as in perturbative calculations
in model QFTs. Then the setH should be defined to include
such terms, and the set B is to be restricted to bound states
with the Wilson line.
The situation changes for the flavor sum rules, such as

were formulated in [1]. For the charge sum rule, our
modified derivation gives

X
h∈H

Qh

Z
1

0

dz dh=jðzÞ ¼ Qj −
X
b∈B

Qb

Z
1

0

dz db=jðzÞ: ð15Þ

A δðzÞ term for db=jðzÞ no longer gives zero, and we can no
longer expect the original formulation [1] of the sum rule to
be necessarily accurate. A closer and nonperturbative
analysis of the dynamics is needed to get a prediction
for the right-hand side; this we can do with the aid of the
string model, to a useful approximation.
For the total hadron number sum rule [3], we similarly

have

X
h∈H

Z
1

0

dz dh=jðzÞ ¼ hNi −
X
b∈B

Z
1

0

dz db=jðzÞ; ð16Þ

where hNi is the average multiplicity of all final states
produced by the fragmenting quark, including those with
nonhadronic quantum numbers.5

In the Appendix, we illustrate how the sum rules apply in
a renormalizable nongauge theory. The examples there
indicate the importance of keeping terms with final-state
particles that have quark quantum numbers.

V. INTERPRETATION IN QCD

The nature of the final state in a quark ff in QCD is
illustrated by the strong-model account of hadronization in
eþe− annihilation. We present this as a qualitative pertur-
bative schema and approximation in Fig. 1, as in the paper
by Casher, Kogut, and Susskind [11]. At center-of-mass
energy Q, an electron and positron annihilate over a short
distance scale 1=Q to make an outgoing quark-antiquark
pair. A color field between them, which ends up as a flux
tube, is created by gluon emission. Quark-antiquark pairs
are generated in the flux tube, and recombine into color-
singlet mesons. In space-time, the meson production is
roughly localized around a spacelike hyperbola. The slow-
est mesons, of low center-of-mass rapidity, are formed first,
and the fastest, high rapidity, mesons are formed on a long
time-dilated scale. The result is a two jet structure, with
each jet created from one or other of the quark and
antiquark. Between the leading particles in each jet, mesons
fill in the rapidity region with an approximately uniform
distribution in rapidity.
The quark generating a jet preferentially ends up in the

leading particle in its jet, with a corresponding bias in the
leading particle’s charge. For example, the leading particle

FIG. 1. A schematic picture of the production of a final state in
the process eþe− → hadrons. Hadrons on the left-hand side move
with large negative rapidity, and those on the right-hand side
move with large positive rapidity. To split the figure into two ffs
like Fig. 2 with quark number 1, the central boxed hadron must be
split into an orphan quark and an orphan antiquark.

4The need for a Wilson line is likely to be related to the
complications in defining states of charged particles in QED—for
a review, see Ref. [10].

5It is a slight abuse of language to refer to Eq. (16) as a “sum
rule” since the multiplicity associated with a single ff is not a
known measurable or conserved quantity. Moreover, its exact
numerical value depends on an arbitrary choice of renormaliza-
tion scheme or of a cutoff. We will continue to call it the “hadron
number sum rule,” however, to remain consistent with existing
literature, where identities like Eq. (16) guide interpretations.
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in a u-quark jet is more often a πþ than a π−. But there is, at
the same time, no hadron of the fractional charge of the u
quark. This contrasts with the situation in the simple, low-
order model in the Appendix, of fragmentation in a non-
gauge model. In that model, the dominant leading particle
in the fragmentation of a quark analog is exactly an on-shell
particle of quark quantum numbers.
The distribution of hadrons in each jet is given by the

corresponding fragmentation function. One can propose
splitting the final state in Fig. 1 between the two jets. For
symmetry, this split is in the middle of the box labeled
“orphans,” thereby leading to a leftover quark or antiquark
in each part, which we call an orphan quark or antiquark.
This is illustrated in Fig. 2. In this approximation, whether
the orphan is a quark or an antiquark is fully determined by
the corresponding property of the jet-initiating parton. This
gives a long-range correlation, given that the orphan is at
low momentum. But no such correlation applies to which
flavor the orphan has (e.g., u versus d).
In Fig. 2, only mesons are shown in the final state. More

complex arrangements with multiple leftover quarks and
antiquarks can arise to give, for example, baryons in the
final state, as in Fig. 3.
Note that the quantitative description of the hadron

distribution by a fragmentation function should only be
accurate for the faster hadrons, and the just-mentioned split
is at the lowest end of the z range for which fragmentation
is relevant. Given a process at some energy, we can choose
a Q-dependent value zmin, below which we do not attempt
to describe hadron distributions by a fragmentation func-
tion of a given parton. This implies that at a given value
of Q, the portion of the integrals in the sum rules in

the range 0 < z < zmin is not accessible to experimental
measurements. This range decreases approximately like
1=Q asQ gets large. The orphan quark or antiquarks at low
z carry quantum numbers that are able to leak out of the
valid factorization region z > zmin. Thus, we will call the
db=jðzÞ that appear in the correction terms for sum rules like
Eqs. (15) and (16) the “deficit” ffs.
We can also apply the string model to the actual ff we

defined, which includes a Wilson line. This is shown in
Fig. 4. The string model indicates that the orphan quark
should simply combine with the Wilson line, and make a
bound state, as we proposed earlier. The bound state
appears at low z in a region where an ff is not intended
to be accurate as a description of a real process. In contrast,
the top part of Fig. 4, for the faster hadrons, matches the
corresponding part of Fig. 1 for the physical process. The
bound state of the orphan quark has no need to correspond
to any simple observable.
The simplest way to match ffs to the full process is to

implement the afore-mentioned split at central rapidity by
replacing the orphan quark by a bound state to aWilson line
that has zero rapidity in the overall center-of-mass frame. In
Fig. 1, this would correspond to an insertion of a timelike
Wilson line, with rapidity zero, between the central orphan
quark and antiquark. That would match the definition
of a transverse-momentum-dependent ff by Collins and
Soper—see Eq. (5.1) of Ref. [1]—with its use of an axial
gauge and dependence on an auxiliary vector n. In contrast,
for an integrated ff, the Wilson line is of infinite rapidity
(opposite to that of the jet). Given the physical picture just
discussed, that would appear at first sight to include too
much of the final state. However, this problem is resolved
by a careful analysis of the definitions in the context of a
factorization proof, as in [9]. First, transverse-momentum
dependent ffs are defined, and include “soft factors”
defined in precisely such a way as to compensate incorrect
treatment and overcounting of emission at low rapidity.
When one makes the transition to integrated ffs, the soft
factors give unity, because of an exact cancellation between
real and virtual emission. This type of cancellation between
graphs with different kinds of final states highlights the
importance of the level of inclusivity in determining the
validity of a particular factorization formula.

FIG. 2. A schematic picture of an allowed final state in a
calculation of the quark ffs. Hadrons are labeled by H1 through
H3. These belong in the set of particles labeled H in the text. A
final orphan quark with very small z, labeled by a red dot, always
remains. It is part of the set of states labeled B.

FIG. 3. Like Fig. 2 but with a baryon in the final state,
represented by the oval. The result now has a pair of orphan
antiquarks.

FIG. 4. A graph contributing to the calculation of a quark-to-
quark ff. The observed hadron is in the thick-dashed black oval.
The zigzag line at the bottom is an orphan quark binding to the
Wilson line.
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VI. IMPLICATIONS FOR SUM RULES

Determining the orphan quark ffs requires information
from nonperturbative QCD, and a careful treatment is
beyond the scope of this paper. However, general physical
considerations lead to some reasonable conjectures that
may be useful points of departure for more sophisticated
treatments in the future.
The Wilson line that needs to be included with each field

in Eq. (2) is in the lightlike plus direction, opposite the
nearly lightlike minus momentum of the hadronizing
quark. It carries the memory of the oppositely moving
antiquark (and its associated orphan partons) that appeared
in the full process before factorization. It has color opposite
to the original quark and ensures that the entire system is
color neutral. Therefore, the Wilson line forms a type of
bound state with an orphan quark, as discussed in the
previous section. (See Fig. 4.) The orphan quark will
always have a z momentum fraction almost equal to zero,
so the deficit ffs should be approximated by

db=jðzÞ ≈ cj;bδðzÞ; ð17Þ

with constant coefficients cj;b that can be different for
each type of b. In cases with baryon production like
Fig. 3, it would be a pair of orphan antiquarks that bind
with the Wilson line. In this picture, the Wilson line
acts as an external source. Because the ffs need to satisfy
a Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
equation, a literal δ function may not be appropriate here,
but for now Eq. (17) should be interpreted simply as saying
that an orphan ff is only non-negligible in a very narrow
region around z ≈ 0 and is normalized to a constant cj;b.
This also matches the physical intuition provided by the
discussion of Fig. 1. In this picture, the last term vanishes
for the momentum sum rule in Eq. (14), giving back the
original momentum sum rule of [1]. But the number sum
rules need corrections.
To interpret the meaning of the deficit ffs, it is also useful

to consider the consequences of the approximation where
baryons contribute a negligible amount to the total number
of final states. Then the hadronic sector of the final state
always has quark number exactly zero, and the orphan
contribution is always just a single quark of flavor j as in
Fig. 2. We express this below by writing fbg ≈ fqjg, where
q represents just a single isolated orphan quark of flavor j,
bound to the Wilson line. In such a scenario, the deficit ffs
satisfy a simple number sum rule,

X
j0

Z
1

0

dz dqj0=jðzÞ ¼ 1; ð18Þ

where now j0 runs over the flavors of a single orphan quark.
Then the modified hadron number sum rule in Eq. (16) also
takes the very simple form,

X
h∈ fHg

Z
1

0

dz dh=jðzÞ ¼ hNi − 1: ð19Þ

To satisfy Eq. (18), the coefficients in Eq. (17) must obey

X
j0
cj;j0 ¼ 1: ð20Þ

The corrected expression for the hadron number sum rule
in Eq. (19) highlights an ambiguity in the interpretation of
the total number of hadrons associated with an ff as in
Fig. 1: It is ambiguous whether the central, boxed hadron
should be grouped with the left (quark) or right (antiquark)
ff. If we insist that it goes with the left side ff, then the
number of total particles counted in the quark ff includes
the hadron with the orphan quark, and hNi would be the
appropriate quantity to associate with the total particle
multiplicity in the quark ff. However, if the central hadron
goes with the right side antiquark ff, then the left ff only
includes three hadrons, and hNi − 1 would be the appro-
priate measure of multiplicity in the quark ff. If hNi ≫ 1,
then Eq. (19) recovers the hadron number sum rule in, for
example, [3] because the effect of adding or removing just
one particle becomes negligible. This picture becomes
more complicated once we allow for baryons. However,
the no-baryon approximation illustrates how the intuitive
hadron number sum rule interpretation might be recovered
at high enough energies that the average hadron multiplic-
ity is very large.
To extend this model still further, and still using the

meson dominance model above, we note that it is plausible
that the cj;j0 coefficients in Eq. (17) are approximately equal
for all active partons nf, given that the orphan quark will be
very separated in rapidity from the initial quark. In that
case, Eq. (20) gives

cj;j0 ≈ 1=nf ð21Þ

and the charge sum rule in Eq. (15) becomes simply

X
h∈ fHg

Qh

Z
1

0

dz dh=jðzÞ ≈Qj −
1

nf

X
j0 ∈ active

Qj0 : ð22Þ

In this approximation, if the only active quark flavors are
only u,d, and s then the sum of charges is zero and the
subtracted term in Eq. (22) vanishes. Then the standard
charge sum rule from [1] is recovered. If the active flavors
include the charm quark, then Eq. (22) becomes

X
h∈ fHg

Qh

Z
1

0

dz dh=jðzÞ ≈Qj −
e
6
: ð23Þ
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VII. COMMENTS

The simple model above helps to clarify the meaning of
the orphan quark ffs, and it shows how the standard ff sum
rules might be approximately true despite the mismatch of
final state quark numbers. But it is important to keep in
mind that a deeper understanding of the final states and the
nonperturbative properties of the deficit ffs is necessary
before this picture can be placed on a very firm footing. As
it currently stands, it is possible that the range of z where
the orphan ffs are non-negligible extends to somewhat
higher values than might be expected on the basis of the
intuition sketched above, such that there are non-negligible
violations of the momentum sum rule. That possibility is
especially relevant at moderate hard scales where the
kinematical range of validity of factorization is more
limited than at very high scales, and the number of final
state hadrons is smaller.
The ff momentum sum rule is rarely ever used directly to

constrain ffs phenomenologically since to do so requires
knowledge of ffs for all hadron flavors, and these are not
known with enough precision and over a wide enough
range of z for the momentum sum rule to be practically
useful [12–16]. To the extent that it is used, it is typically
only in the form of an upper bound,

X
h∈H

Z
1

0

dz zdh=jðzÞ ≤ 1 ð24Þ

used to test general consistency, usually with a lower
bound on the z integration. Our analysis indicates that this
bound remains valid. Nevertheless, given that the sum rule
is widely quoted as a fundamental property of ffs [see, for
example, Eq. (19.3) of [17] ], it is important to recognize
that, from a theory standpoint, it is not a guaranteed
identity. Unless a model like Eq. (17) is at least approx-
imately valid, then the true upper bound in Eq. (24) might
be more or less restrictive. It is possibly relevant for
existing phenomenology that DGLAP evolution only
preserves the momentum sum rule if all the relevant final
states appear in the sum, including the orphan quark ffs.
An incomplete sum over final state particles is not
guaranteed to be preserved under evolution. Practical
difficulties with implementing momentum sum rules in
combination with DGLAP evolution have been noted in
the literature [18].
To our knowledge, the charge sum rule has not been used

in applications to phenomenological extractions.
With regard to the hadron number sum rule in Eq. (19), it

may seem that subtracting 1 is a minor modification.
However, in semi-inclusive deep inelastic scattering mea-
surements at moderate Q at facilities like Jefferson Lab,
typical hadron multiplicities are around 5, and at a future
EIC are expected to be about 12 to 13 [19]. Adding or

removing a single hadron could significantly impact a
hadron number interpretation of ffs in scenarios like these.
What is perhaps more relevant than the impact on

existing phenomenology is the role of sum rules in guiding
the formulation of new types of ffs and establish their
interpretation. For example, specific definitions for diha-
dron ffs and even n-hadron ffs were proposed in [6]
according to a requirement that they satisfy extended
versions of the hadron number sum rule. There, the
problems discussed in this paper are exacerbated because
the n-hadron ffs occupy a larger part of the final state phase
space, and therefore adding or removing a single particle
has a larger impact. Likewise, [20,21] suggests relating ff
sum rules to the dynamical generation of quark masses and
jet functions. In [5,22], momentum sum rules are derived
that involve first taking transverse moments of transverse
momentum dependent ffs. For these types of sum rules, the
orphan quark problem is compounded by ultraviolet
divergent transverse momentum integrals. Finally, the
sum rules for fracture functions [23,24] suffer from the
same complication as ffs. In all the above applications,
a careful look at the issues discussed in this paper is
warranted.
Models used in Monte Carlo event generators (e.g.,

Refs. [25–27]) could potentially provide frameworks for
clarifying what is needed. There, one is forced to deal
directly with descriptions of complete final states. For
example, in Ref. [28], the authors find that their model only
preserves the momentum sum rule exactly in the limit of
infinite final state cascades.
Finally, we propose that understanding the nonperturba-

tive features of the orphan quark ffs through their operator
definitions will help to clarify the connection between ffs
and full descriptions of the final state hadronization
process, and that this may help with the development of
applications like those listed above.

ACKNOWLEDGMENTS

We thank J. O. Gonzalez-Hernandez for very useful
comments on the text. The ideas in this paper were
originally inspired by a reading of the recent work
in [6], and we thank the authors for a discussion of their
paper. T. Rogers also thanks the Jefferson Lab QCD study
group for helpful discussions of relevant topics. This work
was supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under Award No. DE-
SC0018106. It was also supported by the DOE Contract
No. DE-AC05-06OR23177, under which Jefferson Science
Associates, LLC operates Jefferson Lab.

APPENDIX: CALCULATIONS
IN A NONGAUGE MODEL

To make the sum rules in Eqs. (14)–(16) less abstract, it is
instructive to validate them in a renormalizable nongauge
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theory. We will use a real scalar Yukawa theory with one
flavor of Dirac fermion “quark” and one pion. Both fields
will have nonzeromasses, but wewill set themasses equal to
simplify calculations, mquark ¼ mπ ¼ m. We will consider

the case of a single quark flavor j. Normal Feynman
graph calculations give the pion-in-quark ff from the defi-
nition in Eq. (5) in MS renormalization at lowest non-
trivial order,

ðA1Þ

where aλðμÞ is a coupling constant and μ is the usual MS scale from dimensional regularization. The term with a final-state
quark is, to the same order,

ðA2Þ

Taking the zeroth and first moments givesZ
1

0

dz dqj=jðz; μÞ ¼ 1 − aλðμÞ
�
π

ffiffiffi
3

p

2
− 2þ ln

μ

m

�
þ aλðμÞ

�
π

ffiffiffi
3

p

2
− 2þ ln

μ

m

�
¼ 1; ðA3Þ

Z
1

0

dz dπ=jðz; μÞ ¼ aλðμÞ
�
π

ffiffiffi
3

p

2
− 2þ ln

μ

m

�
; ðA4Þ

Z
1

0

dz zdqj=jðz; μÞ ¼ 1 − aλðμÞ
�
−
13

9
þ πffiffiffi

3
p þ 1

3
ln

μ2

m2

�
; ðA5Þ

Z
1

0

dz zdπ=jðz; μÞ ¼ aλðμÞ
�
−
13

9
þ πffiffiffi

3
p þ 1

3
ln

μ2

m2

�
: ðA6Þ

Equation (A3) demonstrates that the quark number sum rule in Eq. (18) is indeed satisfied. Noting that the pion has zero
charge, Eq. (A3) also confirms the charge sum rule in Eq. (15). Finally, substituting Eqs. (A5) and (A6) into Eq. (14) shows
that the momentum sum rule in Eq. (14) is satisfied, and it appears as

�
aλðμÞ

�
−
13

9
þ πffiffiffi

3
p þ 1

3
ln

μ2

m2

��
¼ 1 −

�
1 − aλðμÞ

�
−
13

9
þ πffiffiffi

3
p þ 1

3
ln

μ2

m2

��
: ðA7Þ

To match the formula in QCD, with its deficit term that
involves final-state particles with quark quantum numbers,
we have put the quark term on the right-hand side.
The sum rules are only satisfied here if the contribution

of an on-shell final-state quark to the ff is included.

Note that if this term were dropped from the right-hand
side of Eq. (A7), not only would the momentum sum rule
be violated, but the amount of the violation would depend
on the evolution scale μ. An important part of this
contribution is from large z, as in the delta-function terms
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in Eq. (A2). Therefore, in this theory, the quark term is an
important contribution to the measurable hadronization of a
quark-induced jet. In terms of our notation for QCD, quark
particles would be included in the set we denoted byH, and
there would be no orphan particles to put in the set B.
The hadron number sum rule in Eq. (19) becomes,

using Eq. (A4),

aλðμÞ
�
π

ffiffiffi
3

p

2
− 2þ ln

μ

m

�
¼ hNi − 1: ðA8Þ

If the coupling is negligible, the left side of Eq. (A8)
vanishes and the sum rule is just hNi ¼ 1, i.e., the final
state is always just a single quark.
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